SlideShare una empresa de Scribd logo
1 de 32
NC and CNC machines and Control Programming
Prepared by :
DANIELRAJ K
LECT/ MECH
LAPC
History of CNC
1949
US Air Force asks MIT to develop a "numerically controlled"
machine.
1952
Prototype NC machine demonstrated (punched tape input)
1980-
CNC machines (computer used to link directly to controller)
1990-
DNC: external computer “drip feeds” control programmer
to machine tool controller
Motivation and uses
To manufacture complex curved geometries in 2D or 3D
was extremely expensive by mechanical means (which
usually would require complex jigs to control the cutter
motions)
Machining components with repeatable accuracy
Unmanned machining operations
Advantages of CNC
- Easier to program;
- Easy storage of existing programs;
- Easy to change a program
- Avoids human errors
- NC machines are safer to operate
- Complex geometry is produced as cheaply as simple ones
- Usually generates closer tolerances than manual machines
Conventional milling machines
Vertical milling machine
Vertical Milling machine architecture
Conventional milling machines
Horizontal Milling machine architecture
Conventional milling machines
How does the table move along X- Y- and Z- axes ?
NC machines
Motion control is done by: servo-controlled motors
~
Servo Controller
Counter Comparator
Encoder A/C Motor
Input (converted from analog to digital value)
Table
Leadscrew
CNC terminology
BLU: basic length unit 
smallest programmable move of each axis.
Controller: (Machine Control Unit, MCU) 
Electronic and computerized interface between operator and m/c
Controller components:
1. Data Processing Unit (DPU)
2. Control-Loops Unit (CLU)
Controller components
Data Processing Unit:
Input device [RS-232 port/ Tape Reader/ Punched Tape Reader]
Data Reading Circuits and Parity Checking Circuits
Decoders to distribute data to the axes controllers.
Control Loops Unit:
Interpolator to supply machine-motion commands between data points
Position control loop hardware for each axis of motion
Types of CNC machines
Based on Motion Type:
Point-to-Point or Continuous path
Based on Control Loops:
Open loop or Closed loop
Based on Power Supply:
Electric or Hydraulic or Pneumatic
Based on Positioning System
Incremental or Absolute
Open Loop vs. Closed Loop controls
Open loop control of a Point-to-Point NC drilling machine
NOTE: this machine uses stepper motor control
Components of Servo-motor controlled CNC
Motor speed control
Two types of encoder configurations
Motor lead screw rotation table moves
position sensed by encoder
feedback
Motion Control and feedback
Encoder outputs: electrical pulses (e.g. 500 pulses per revolution)
Rotation of the motor  linear motion of the table: by the leadscrew
The pitch of the leadscrew: horizontal distance between successive threads
One thread in a screw  single start screw: Dist moved in 1 rev = pitch
Two threads in screw  double start screw: Dist moved in 1 rev = 2* pitch
Example 1
A Stepping motor of 20 steps per revolution moves a machine table
through a leadscrew of 0.2 mm pitch.
(a) What is the BLU of the system ?
(b) If the motor receives 2000 pulses per minute, what is the linear
velocity in inch/min ?
Example 2
A DC servo-motor is coupled to a leadscrew (pitch 5mm) of a machine table.
A digital encoder, which emits 500 pulses per revolution, is mounted on the
leadscrew. If the motor rotates at 600 rpm, find
(a) The linear velocity of the table
(b) The BLU of the machine
(c) The frequency of pulses emitted by the encoder.
Manual NC programming
Part program: A computer program to specify
- Which tool should be loaded on the machine spindle;
- What are the cutting conditions (speed, feed, coolant ON/OFF etc)
- The start point and end point of a motion segment
- how to move the tool with respect to the machine.
Standard Part programming language: RS 274-D (Gerber, GN-code)
History of CNC
The RS274-D is a word address format
Each line of program == 1 block
Each block is composed of several instructions, or (words)
Sequence and format of words:
N3 G2 X+1.4 Y+1.4 Z+1.4 I1.4 J1.4 K1.4 F3.2 S4 T4 M2
sequence no
preparatory function
destination coordinates dist to center of circle
feed rate spindle speed
tool
miscellaneous function
Manual Part Programming Example
Tool size = 0.25 inch,
Feed rate = 6 inch per minute,
Cutting speed = 300 rpm,
Tool start position: 2.0, 2.0
Programming in inches
(4, 4)
(2, 2)
5”
p0
p1
p2
5”
2.5”
1”
45°
p3
p4
p5
Motion of tool:
p0  p1  p2  p3  p4  p5  p1  p0
Spindle CCW
(4, 4)
(2, 2)
5”
p0
p1
p2
5”
2.5”
1”
45°
p3
p4
p5
1. Set up the programming parameters
N010 G70 G90 G94 G97 M04
Programming in inches
Use absolute coordinates
Spindle speed in rpm
Feed in ipm
Flood coolant ON
(4, 4)
(2, 2)
5”
p0
p1
p2
5”
2.5”
1”
45°
p3
p4
p5
2. Set up the machining conditions
N020 G17 G75 F6.0 S300 T1001 M08
Machine moves in XY-plane
Feed rate
Tool no.
Spindle speed
Use full-circle interpolation
(4, 4)
(2, 2)
5”
p0
p1
p2
5”
2.5”
1”
45°
p3
p4
p5
3. Move tool from p0 to p1 in straight line
N030 G01 X3.875 Y3.698
Linear interpolation
target coordinates
(4, 4)
(2, 2)
5”
p0
p1
p2
5”
2.5”
1”
45°
p3
p4
p5
4. Cut profile from p1 to p2
N040 G01 X3.875 Y9.125
Linear interpolation
target coordinates
N040 G01 Y9.125
X-coordinate does not change  no need to program it
or
(4, 4)
(2, 2)
5”
p0
p1
p2
5”
2.5”
1”
45°
p3
p4
p5
5. Cut profile from p2 to p3
N050 G01 X5.634 Y9.125
Linear interpolation
target coordinates
1”
p3
.125
(x, y)
(6.5, 9)
y = 9 + 0.125 = 9.125
(6.5 - x)2 + 0.1252 = (1 - 0.125)2
x = 5.634
coordinates of center of circle
(4, 4)
(2, 2)
5”
p0
p1
p2
5”
2.5”
1”
45°
p3
p4
p5
6. Cut along circle from p3 to p4
N060 G03 X7.366 Y9.125 I6.5 J9.0
circular interpolation, CCW motion
target coordinates
(4, 4)
(2, 2)
5”
p0
p1
p2
5”
2.5”
1”
45°
p3
p4
p5
7. Cut from p4 to p5
N070 G01 X9.302
target coordinates (Y is unchanged)
Linear interpolation
(4, 4)
(2, 2)
5”
p0
p1
p2
5”
2.5”
1”
45°
p3
p4
p5
8. Cut from p5 to p1
N080 G01 X3.875 Y3.698
target coordinates (see step 3)
Linear interpolation
(4, 4)
(2, 2)
5”
p0
p1
p2
5”
2.5”
1”
45°
p3
p4
p5
9. Return to home position, stop program
N090 G01 X2.0 Y2.0 M30
end of data
target coordinates (see step 3)
Linear interpolation
N100 M00
program stop
Automatic Part Programming
Software programs can automatic generation of CNC data
Make 3D model
Define Tool
CNC data
Simulate
cutting
Automatic part programming and DNC
Very complex part shapes  very large NC program
NC controller memory may not handle HUGE part program
computer feeds few blocks of
NC program to controller
When almost all blocks executed,
controller requests more blocks
Summary
CNC machines allow precise and repeatable control in machining
CNC lathes, Milling machines, etc. are all controlled by NC programs
NC programs can be generated manually, automatically
Additional references: RS274D code descriptions

Más contenido relacionado

La actualidad más candente

CNC Programmingmodifies examination 1
CNC Programmingmodifies examination 1CNC Programmingmodifies examination 1
CNC Programmingmodifies examination 1
Prof. S.Rajendiran
 
The Concept Notes
The Concept NotesThe Concept Notes
The Concept Notes
An Nguyen
 

La actualidad más candente (20)

Features of CNC machining centers
Features of CNC machining centersFeatures of CNC machining centers
Features of CNC machining centers
 
5 axis cnc machine
5 axis cnc machine5 axis cnc machine
5 axis cnc machine
 
Introduction to nc
Introduction to ncIntroduction to nc
Introduction to nc
 
Top 8 Tips to Take your Design from CAD Drawing to CNC Fabrication
Top 8 Tips to Take your Design from CAD Drawing to CNC FabricationTop 8 Tips to Take your Design from CAD Drawing to CNC Fabrication
Top 8 Tips to Take your Design from CAD Drawing to CNC Fabrication
 
CNC Programmingmodifies examination 1
CNC Programmingmodifies examination 1CNC Programmingmodifies examination 1
CNC Programmingmodifies examination 1
 
CNC Part programming
CNC Part programmingCNC Part programming
CNC Part programming
 
Mechanical Industrial Training (in Quality & CNC Machine )at Vishwas Overseas
Mechanical Industrial Training (in Quality & CNC Machine )at Vishwas OverseasMechanical Industrial Training (in Quality & CNC Machine )at Vishwas Overseas
Mechanical Industrial Training (in Quality & CNC Machine )at Vishwas Overseas
 
Manual part programming
Manual part programmingManual part programming
Manual part programming
 
introduction to CNC machine.
introduction to CNC machine.introduction to CNC machine.
introduction to CNC machine.
 
Flexible manufacturing system(FMS)
Flexible manufacturing system(FMS)Flexible manufacturing system(FMS)
Flexible manufacturing system(FMS)
 
Tool compensationCNC
Tool compensationCNCTool compensationCNC
Tool compensationCNC
 
Introduction to 5-Axis CNC Machines
Introduction to 5-Axis CNC MachinesIntroduction to 5-Axis CNC Machines
Introduction to 5-Axis CNC Machines
 
Manual part programming
Manual part programmingManual part programming
Manual part programming
 
Mechnical cnc machines ppt
Mechnical cnc machines pptMechnical cnc machines ppt
Mechnical cnc machines ppt
 
5 g-code
5   g-code5   g-code
5 g-code
 
Heavy duty 4 axis cnc router
Heavy duty 4 axis cnc routerHeavy duty 4 axis cnc router
Heavy duty 4 axis cnc router
 
Numerical control machines tool
Numerical control machines toolNumerical control machines tool
Numerical control machines tool
 
The Concept Notes
The Concept NotesThe Concept Notes
The Concept Notes
 
CNC part programming
CNC part programmingCNC part programming
CNC part programming
 
presentation6
presentation6presentation6
presentation6
 

Similar a Cnc programming

Ch-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdf
Ch-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdfCh-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdf
Ch-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdf
JAYANTKUMAR469151
 

Similar a Cnc programming (20)

9_CNC.ppt
9_CNC.ppt9_CNC.ppt
9_CNC.ppt
 
9_CNC.ppt
9_CNC.ppt9_CNC.ppt
9_CNC.ppt
 
9 cnc (1)
9 cnc (1)9 cnc (1)
9 cnc (1)
 
9 cnc
9 cnc9 cnc
9 cnc
 
Part Programming Examples.pdf
Part Programming Examples.pdfPart Programming Examples.pdf
Part Programming Examples.pdf
 
MT-II UNIT V CNC MACHINING
MT-II UNIT V CNC MACHININGMT-II UNIT V CNC MACHINING
MT-II UNIT V CNC MACHINING
 
9_CNC (1).ppt
9_CNC (1).ppt9_CNC (1).ppt
9_CNC (1).ppt
 
CNC1.ppt
CNC1.pptCNC1.ppt
CNC1.ppt
 
CNC1.ppt
CNC1.pptCNC1.ppt
CNC1.ppt
 
CNC1 (1).ppt
CNC1 (1).pptCNC1 (1).ppt
CNC1 (1).ppt
 
CNC Training.ppt
CNC Training.pptCNC Training.ppt
CNC Training.ppt
 
Cnc1
Cnc1Cnc1
Cnc1
 
CNC1.ppt
CNC1.pptCNC1.ppt
CNC1.ppt
 
nc and cnc dp
nc and cnc dpnc and cnc dp
nc and cnc dp
 
Ch-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdf
Ch-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdfCh-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdf
Ch-11 NC; CNC; DNC; FMS; Automation and Robotics_2.pdf
 
PPT ON BHEL HARIDWAR
PPT ON BHEL HARIDWARPPT ON BHEL HARIDWAR
PPT ON BHEL HARIDWAR
 
Me761 a lecture-4 cnc
Me761 a lecture-4 cncMe761 a lecture-4 cnc
Me761 a lecture-4 cnc
 
Nc programming
Nc programmingNc programming
Nc programming
 
Introduction to CNC machining processes-
Introduction to CNC machining processes-Introduction to CNC machining processes-
Introduction to CNC machining processes-
 
introduction to cnc machines
 introduction to cnc machines introduction to cnc machines
introduction to cnc machines
 

Más de Daniel raj

Más de Daniel raj (11)

Robot And it configuration
Robot And it configurationRobot And it configuration
Robot And it configuration
 
Additive MANAUFACTURING
Additive MANAUFACTURINGAdditive MANAUFACTURING
Additive MANAUFACTURING
 
Iot in manufacturing
Iot in manufacturingIot in manufacturing
Iot in manufacturing
 
Forming technology
Forming technologyForming technology
Forming technology
 
Casting defects
Casting defectsCasting defects
Casting defects
 
Theory of metal cutting
Theory of metal cutting Theory of metal cutting
Theory of metal cutting
 
Welding technology
Welding technologyWelding technology
Welding technology
 
MANUFACTURING PROCESS
MANUFACTURING PROCESSMANUFACTURING PROCESS
MANUFACTURING PROCESS
 
Pattern alowances
Pattern alowancesPattern alowances
Pattern alowances
 
Pattern 1.2
Pattern 1.2Pattern 1.2
Pattern 1.2
 
Casting AND NEEDS
Casting AND NEEDSCasting AND NEEDS
Casting AND NEEDS
 

Último

Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
dharasingh5698
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Último (20)

Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdf
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 

Cnc programming

  • 1. NC and CNC machines and Control Programming Prepared by : DANIELRAJ K LECT/ MECH LAPC
  • 2. History of CNC 1949 US Air Force asks MIT to develop a "numerically controlled" machine. 1952 Prototype NC machine demonstrated (punched tape input) 1980- CNC machines (computer used to link directly to controller) 1990- DNC: external computer “drip feeds” control programmer to machine tool controller
  • 3. Motivation and uses To manufacture complex curved geometries in 2D or 3D was extremely expensive by mechanical means (which usually would require complex jigs to control the cutter motions) Machining components with repeatable accuracy Unmanned machining operations
  • 4. Advantages of CNC - Easier to program; - Easy storage of existing programs; - Easy to change a program - Avoids human errors - NC machines are safer to operate - Complex geometry is produced as cheaply as simple ones - Usually generates closer tolerances than manual machines
  • 6. Vertical Milling machine architecture Conventional milling machines
  • 7. Horizontal Milling machine architecture Conventional milling machines How does the table move along X- Y- and Z- axes ?
  • 8. NC machines Motion control is done by: servo-controlled motors ~ Servo Controller Counter Comparator Encoder A/C Motor Input (converted from analog to digital value) Table Leadscrew
  • 9. CNC terminology BLU: basic length unit  smallest programmable move of each axis. Controller: (Machine Control Unit, MCU)  Electronic and computerized interface between operator and m/c Controller components: 1. Data Processing Unit (DPU) 2. Control-Loops Unit (CLU)
  • 10. Controller components Data Processing Unit: Input device [RS-232 port/ Tape Reader/ Punched Tape Reader] Data Reading Circuits and Parity Checking Circuits Decoders to distribute data to the axes controllers. Control Loops Unit: Interpolator to supply machine-motion commands between data points Position control loop hardware for each axis of motion
  • 11. Types of CNC machines Based on Motion Type: Point-to-Point or Continuous path Based on Control Loops: Open loop or Closed loop Based on Power Supply: Electric or Hydraulic or Pneumatic Based on Positioning System Incremental or Absolute
  • 12. Open Loop vs. Closed Loop controls
  • 13. Open loop control of a Point-to-Point NC drilling machine NOTE: this machine uses stepper motor control
  • 14. Components of Servo-motor controlled CNC Motor speed control Two types of encoder configurations Motor lead screw rotation table moves position sensed by encoder feedback
  • 15. Motion Control and feedback Encoder outputs: electrical pulses (e.g. 500 pulses per revolution) Rotation of the motor  linear motion of the table: by the leadscrew The pitch of the leadscrew: horizontal distance between successive threads One thread in a screw  single start screw: Dist moved in 1 rev = pitch Two threads in screw  double start screw: Dist moved in 1 rev = 2* pitch
  • 16. Example 1 A Stepping motor of 20 steps per revolution moves a machine table through a leadscrew of 0.2 mm pitch. (a) What is the BLU of the system ? (b) If the motor receives 2000 pulses per minute, what is the linear velocity in inch/min ?
  • 17. Example 2 A DC servo-motor is coupled to a leadscrew (pitch 5mm) of a machine table. A digital encoder, which emits 500 pulses per revolution, is mounted on the leadscrew. If the motor rotates at 600 rpm, find (a) The linear velocity of the table (b) The BLU of the machine (c) The frequency of pulses emitted by the encoder.
  • 18. Manual NC programming Part program: A computer program to specify - Which tool should be loaded on the machine spindle; - What are the cutting conditions (speed, feed, coolant ON/OFF etc) - The start point and end point of a motion segment - how to move the tool with respect to the machine. Standard Part programming language: RS 274-D (Gerber, GN-code)
  • 19. History of CNC The RS274-D is a word address format Each line of program == 1 block Each block is composed of several instructions, or (words) Sequence and format of words: N3 G2 X+1.4 Y+1.4 Z+1.4 I1.4 J1.4 K1.4 F3.2 S4 T4 M2 sequence no preparatory function destination coordinates dist to center of circle feed rate spindle speed tool miscellaneous function
  • 20. Manual Part Programming Example Tool size = 0.25 inch, Feed rate = 6 inch per minute, Cutting speed = 300 rpm, Tool start position: 2.0, 2.0 Programming in inches (4, 4) (2, 2) 5” p0 p1 p2 5” 2.5” 1” 45° p3 p4 p5 Motion of tool: p0  p1  p2  p3  p4  p5  p1  p0
  • 21. Spindle CCW (4, 4) (2, 2) 5” p0 p1 p2 5” 2.5” 1” 45° p3 p4 p5 1. Set up the programming parameters N010 G70 G90 G94 G97 M04 Programming in inches Use absolute coordinates Spindle speed in rpm Feed in ipm
  • 22. Flood coolant ON (4, 4) (2, 2) 5” p0 p1 p2 5” 2.5” 1” 45° p3 p4 p5 2. Set up the machining conditions N020 G17 G75 F6.0 S300 T1001 M08 Machine moves in XY-plane Feed rate Tool no. Spindle speed Use full-circle interpolation
  • 23. (4, 4) (2, 2) 5” p0 p1 p2 5” 2.5” 1” 45° p3 p4 p5 3. Move tool from p0 to p1 in straight line N030 G01 X3.875 Y3.698 Linear interpolation target coordinates
  • 24. (4, 4) (2, 2) 5” p0 p1 p2 5” 2.5” 1” 45° p3 p4 p5 4. Cut profile from p1 to p2 N040 G01 X3.875 Y9.125 Linear interpolation target coordinates N040 G01 Y9.125 X-coordinate does not change  no need to program it or
  • 25. (4, 4) (2, 2) 5” p0 p1 p2 5” 2.5” 1” 45° p3 p4 p5 5. Cut profile from p2 to p3 N050 G01 X5.634 Y9.125 Linear interpolation target coordinates 1” p3 .125 (x, y) (6.5, 9) y = 9 + 0.125 = 9.125 (6.5 - x)2 + 0.1252 = (1 - 0.125)2 x = 5.634
  • 26. coordinates of center of circle (4, 4) (2, 2) 5” p0 p1 p2 5” 2.5” 1” 45° p3 p4 p5 6. Cut along circle from p3 to p4 N060 G03 X7.366 Y9.125 I6.5 J9.0 circular interpolation, CCW motion target coordinates
  • 27. (4, 4) (2, 2) 5” p0 p1 p2 5” 2.5” 1” 45° p3 p4 p5 7. Cut from p4 to p5 N070 G01 X9.302 target coordinates (Y is unchanged) Linear interpolation
  • 28. (4, 4) (2, 2) 5” p0 p1 p2 5” 2.5” 1” 45° p3 p4 p5 8. Cut from p5 to p1 N080 G01 X3.875 Y3.698 target coordinates (see step 3) Linear interpolation
  • 29. (4, 4) (2, 2) 5” p0 p1 p2 5” 2.5” 1” 45° p3 p4 p5 9. Return to home position, stop program N090 G01 X2.0 Y2.0 M30 end of data target coordinates (see step 3) Linear interpolation N100 M00 program stop
  • 30. Automatic Part Programming Software programs can automatic generation of CNC data Make 3D model Define Tool CNC data Simulate cutting
  • 31. Automatic part programming and DNC Very complex part shapes  very large NC program NC controller memory may not handle HUGE part program computer feeds few blocks of NC program to controller When almost all blocks executed, controller requests more blocks
  • 32. Summary CNC machines allow precise and repeatable control in machining CNC lathes, Milling machines, etc. are all controlled by NC programs NC programs can be generated manually, automatically Additional references: RS274D code descriptions