SlideShare una empresa de Scribd logo
1 de 83
Nonlinear programming and
grossone: (theory and) algorithms
R. De Leone
School of Science and Tecnology
Universit`a di Camerino
June 2016
Outline of the talk
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 2 / 31
Equality Constraints
Inequality Constraints
Quadratic Problems
Algorithms
Equality Constraints
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
The case of Equality Constraints
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 4 / 31
min
x
f(x)
subject to h(x) = 0
where f : IRn
→ IR and h : IRn
→ IRk
L(x, π) := f(x) +
k
j=1
πjhj(x) = f(x) + πT
h(x)
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 5 / 31
Let x∗ ∈ IRn
and assume that the columns {∇hi(x∗)} are linearly
independent (LICQ condition).
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 5 / 31
Let x∗ ∈ IRn
and assume that the columns {∇hi(x∗)} are linearly
independent (LICQ condition).
If x∗ is a local minimizer then
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 5 / 31
Let x∗ ∈ IRn
and assume that the columns {∇hi(x∗)} are linearly
independent (LICQ condition).
If x∗ is a local minimizer then
there exists π∗ ∈ IRk
such that
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 5 / 31
Let x∗ ∈ IRn
and assume that the columns {∇hi(x∗)} are linearly
independent (LICQ condition).
If x∗ is a local minimizer then
there exists π∗ ∈ IRk
such that
∇xL(x∗
, π∗
) = ∇f(x∗
) +
k
j=1
∇hj(x∗
)π∗
j = 0
∇πL(x∗
, π∗
) = h(x∗
) = 0
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 5 / 31
Let x∗ ∈ IRn
and assume that the columns {∇hi(x∗)} are linearly
independent (LICQ condition).
If x∗ is a local minimizer then
there exists π∗ ∈ IRk
such that
∇xL(x∗
, π∗
) = ∇f(x∗
) + ∇h(x∗
)T
π∗
= 0
∇πL(x∗
, π∗
) = h(x∗
) = 0
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 5 / 31
Let x∗ ∈ IRn
and assume that the columns {∇hi(x∗)} are linearly
independent (LICQ condition).
If x∗ is a local minimizer then
there exists π∗ ∈ IRk
such that
∇xL(x∗
, π∗
) = ∇f(x∗
) + ∇h(x∗
)T
π∗
= 0
∇πL(x∗
, π∗
) = h(x∗
) = 0
KKT (Karush–Kuhn–Tucker) Conditions
Penalty Functions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 6 / 31
A penalty function P : IRn
→ IR satisfies the following condition
P(x)
= 0 if x belongs to the feasible region
> 0 otherwise
Penalty Functions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 6 / 31
A penalty function P : IRn
→ IR satisfies the following condition
P(x)
= 0 if x belongs to the feasible region
> 0 otherwise
P(x) =
k
j=1
|hj(x)|
P(x) =
k
j=1
h2
j (x)
Exactness of a Penalty Function
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 7 / 31
The optimal solution of the constrained problem
min
x
f(x)
subject to h(x) = 0
can be obtained by solving the following unconstrained minimization problem
min f(x) +
1
σ
P(x)
for sufficiently small but fixed σ > 0.
Exactness of a Penalty Function
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 7 / 31
The optimal solution of the constrained problem
min
x
f(x)
subject to h(x) = 0
can be obtained by solving the following unconstrained minimization problem
min f(x) +
1
σ
P(x)
for sufficiently small but fixed σ > 0.
P(x) =
k
j=1
|hj(x)|
Exactness of a Penalty Function
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 7 / 31
The optimal solution of the constrained problem
min
x
f(x)
subject to h(x) = 0
can be obtained by solving the following unconstrained minimization problem
min f(x) +
1
σ
P(x)
for sufficiently small but fixed σ > 0.
P(x) =
k
j=1
|hj(x)|
Non–smooth function!
Sequential Penalty Method
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 8 / 31
Let {σl} ↓ 0 and P(x) =
k
j=1
h2
j (x)
Step 0 Set l = 0
Step 1 Let x(σl) be an optimal solution of the unconstrained
differentiable problem
min f(x) +
1
σl
P(x)
Step 2 Set l = l + 1 and return to Step 1
Introducing ①
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 9 / 31
Let
P(x) =
k
j=1
h2
j (x)
Solve
min f(x) + ①P(x) =: φ (x, ①)
Assumptions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 10 / 31
x = x0
+ ①−1
x1
+ ①−2
x2
+ . . .
with xi ∈ IRn
Assumptions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 10 / 31
x = x0
+ ①−1
x1
+ ①−2
x2
+ . . .
with xi ∈ IRn
f(x) = f(0)
(x) + ①−1
f(1)
(x) + ①−2
f(2)
(x) + . . .
h(x) = h(0)
(x) + ①−1
h(1)
(x) + ①−2
h(2)
(x) + . . .
where f(i) : IRn
→ IR, h(i) : IRn
→ IRk
are all finite–value functions.
Convergence Results
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 11 / 31
min
x
f(x)
subject to h(x) = 0
(1)
Convergence Results
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 11 / 31
min
x
f(x)
subject to h(x) = 0
(1)
min
x
f(x) +
1
2
① h(x) 2
(2)
Convergence Results
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 11 / 31
min
x
f(x)
subject to h(x) = 0
(1)
min
x
f(x) +
1
2
① h(x) 2
(2)
Let
x∗
= x∗0
+ ①−1
x∗1
+ ①−2
x∗2
+ . . .
be a stationary point for (2) and assume that the LICQ condition holds at x∗0
then
Convergence Results
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 11 / 31
min
x
f(x)
subject to h(x) = 0
(1)
min
x
f(x) +
1
2
① h(x) 2
(2)
Let
x∗
= x∗0
+ ①−1
x∗1
+ ①−2
x∗2
+ . . .
be a stationary point for (2) and assume that the LICQ condition holds at x∗0
then
the pair x∗0, π∗ = h(1)(x∗) is a KKT point of (1).
Example 1
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 12 / 31
min
x
1
2x2
1 + 1
6 x2
2
subject to x1 + x2 = 1
The pair (x∗, π∗) with x∗ =


1
4
3
4

, π∗ = −1
4 is a KKT point.
Example 1
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 12 / 31
min
x
1
2x2
1 + 1
6 x2
2
subject to x1 + x2 = 1
The pair (x∗, π∗) with x∗ =


1
4
3
4

, π∗ = −1
4 is a KKT point.
f(x) + ①P(x) =
1
2
x2
1 +
1
6
x2
2 +
1
2
①(1 − x1 − x2)2
Example 1
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 12 / 31
f(x) + ①P(x) =
1
2
x2
1 +
1
6
x2
2 +
1
2
①(1 − x1 − x2)2
First Order Optimality Condition
x1 + ①(x1 + x2 − 1) = 0
1
3x2 + ①(x1 + x2 − 1) = 0
Example 1
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 12 / 31
f(x) + ①P(x) =
1
2
x2
1 +
1
6
x2
2 +
1
2
①(1 − x1 − x2)2
x∗
1 =
1①
1 + 4①
, x∗
2 =
3①
1 + 4①
Example 1
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 12 / 31
f(x) + ①P(x) =
1
2
x2
1 +
1
6
x2
2 +
1
2
①(1 − x1 − x2)2
x∗
1 =
1①
1 + 4①
, x∗
2 =
3①
1 + 4①
x∗
1 =
1
4
− ①−1
(
1
16
−
1
64
①−1
. . .)
x∗
2 =
3
4
− ①−1
(
3
16
−
3
64
①−1
. . .)
Example 1
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 12 / 31
f(x) + ①P(x) =
1
2
x2
1 +
1
6
x2
2 +
1
2
①(1 − x1 − x2)2
x∗
1 =
1①
1 + 4①
, x∗
2 =
3①
1 + 4①
x∗
1 + x∗
2 − 1 =
1
4
−
1
16
①−1
+
1
64
①−2
. . .
+
3
4
−
3
16
①−1
+
3
64
①−2
. . . − 1
= −
1
16
①−1
−
3
16
①−1
+
4
64
①−2
. . .
and h(1)(x∗) = −1
4 = π∗
Example 2
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 13 / 31
min x1 + x2
subject to x2
1 + x2
2 − 2 = 0
L(x, π) = x1 + x2 + π x2
1 + x2
2 − 2
The optimal solution is x∗ =
−1
−1
and the pair x∗, π∗ = 1
2 satisfies the
KKT conditions.
Example 2
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 13 / 31
φ (x, ①) = x1 + x2 +
①
2
x2
1 + x2
2 − 2
2
First–Order Optimality Conditions



x1 + 2①x1 x2
1 + x2
2 − 2
2
= 0
x2 + 2①x2 x2
1 + x2
2 − 2
2
= 0
The solution is given by



x1 = −1 − ①−1 1
8 + ①−2
C
x2 = −1 − ①−1 1
8 + ①−2
C
Example 2
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 13 / 31
Moreover
x2
1 + x2
2 − 2 = 1 +
1
64
①−2
+ ①−4
C2 1
4
①−1
− 2①−2
−
1
4
①−3
C +
1 +
1
64
①−2
+ ①−4
C2 1
4
①−1
− 2①−2
−
1
4
①−3
C
=
1
2
①−1
+
1
32
− 4C ①−2
+ −
1
2
C ①−3
+ −2C2
①−4
Inequality Constraints
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
Inequality Constraints
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 15 / 31
min
x
f(x)
subject to g(x) ≤ 0
h(x) = 0
where f : IRn
→ IR, g : IRn
→ IRm
h : IRn
→ IRk
.
L(x, π, µ) := f(x) +
m
i=1
µigi(x) +
k
j=1
πjhj(x)
= f(x) + µT
g(x) + πT
h(x)
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 16 / 31
Let x∗ ∈ IRn
with
∇gi(x∗
), i : gi(x∗
) = 0, ∇hj(x∗
), j = 1, . . . , k
linearly independent
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 16 / 31
Let x∗ ∈ IRn
with
∇gi(x∗
), i : gi(x∗
) = 0, ∇hj(x∗
), j = 1, . . . , k
linearly independent
If x∗ is a local minimizer then
First Order Optimality Conditions
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 16 / 31
Let x∗ ∈ IRn
with
∇gi(x∗
), i : gi(x∗
) = 0, ∇hj(x∗
), j = 1, . . . , k
linearly independent
If x∗ is a local minimizer then there exists µ∗ ∈ IRm
+ , π∗ ∈ IRk
such that
∇xL(x∗
, µ∗
, π∗
) = ∇f(x∗
) +
k
j=1
∇hj(x∗
)π∗
j = 0
∇µL(x∗
, µ∗
, π∗
) = g(x∗
) ≤ 0
∇πL(x∗
, µ∗
, π∗
) = h(x∗
) = 0
µ∗
≥ 0
µ∗T
∇πL(x∗
, µ∗
, π∗
) = 0
Modified LICQ condition
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 17 / 31
Let x0 ∈ IRn
. The Modified LICQ (MLICQ) condition is said to hold at x0 if
the vectors
∇gi(x0
), i : gi(x0
) ≥ 0, ∇hj(x0
), j = 1, . . . , k
are linearly independent.
Convergence Results
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 18 / 31
min
x
f(x)
subject to g(x) ≤ 0
h(x) = 0
min
x
f(x) +
①
2
max{0, gi(x)} 2
+
①
2
h(x) 2
x∗
= x∗0
+ ①−1
x∗1
+ ①−2
x∗2
+ . . .
⇓ (MLICQ)
Convergence Results
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 18 / 31
min
x
f(x)
subject to g(x) ≤ 0
h(x) = 0
min
x
f(x) +
①
2
max{0, gi(x)} 2
+
①
2
h(x) 2
x∗
= x∗0
+ ①−1
x∗1
+ ①−2
x∗2
+ . . .
⇓ (MLICQ)
x∗0
, µ∗
= g(1)
(x∗
), π∗
= h(1)
(x∗
)
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
min x1 + x2
subject to x2
1 + x2
2 − 2 ≤ 0
−x2 ≤ 0
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
min x1 + x2
subject to x2
1 + x2
2 − 2 ≤ 0
−x2 ≤ 0
L(x, π) = x1 + x2 + µ1 x2
1 + x2
2 − 2 − µ2x2
The solution is x∗ =
−
√
2
0
and (x∗, µ∗) with µ∗ =
1/2
√
2
1
satisfies
KKT conditions.
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
min x1 + x2
subject to x2
1 + x2
2 − 2 ≤ 0
−x2 ≤ 0
φ(x, ①) = x1 + x2 +
①
2
max 0, x2
1 + x2
2 − 2
2
+
①
2
max {0, −x2}2
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
φ(x, ①) = x1 + x2 +
①
2
max 0, x2
1 + x2
2 − 2
2
+
①
2
max {0, −x2}2
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
φ(x, ①) = x1 + x2 +
①
2
max 0, x2
1 + x2
2 − 2
2
+
①
2
max {0, −x2}2



1 + 2x1① max 0, x2
1 + x2
2 − 2 = 0
1 + 2x2① max 0, x2
1 + x2
2 − 2 − ① max {0, −x2} = 0
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
φ(x, ①) = x1 + x2 +
①
2
max 0, x2
1 + x2
2 − 2
2
+
①
2
max {0, −x2}2



1 + 2x1① max 0, x2
1 + x2
2 − 2 = 0
1 + 2x2① max 0, x2
1 + x2
2 − 2 − ① max {0, −x2} = 0



x∗
1 = −
√
2 + A①−1
+ B①−2
+ . . .
x∗
2 = 0 − 1①−1
+ D①−2
+ . . .
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
g1(x∗
) = (x∗
1)2
+ (x∗
2)2
− 2 =
+2
√
2
1
8
①−1
+
1
64
− 2
√
2B + C2
①−2
+ · · ·
µ∗
1 = 2
√
2
1
8
=
1
2
√
2
Example 3
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 19 / 31
g2(x∗
) = −x∗
2
− −①−1
− D①−2
+ · · ·
µ∗
2 = 1
Example 3B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 20 / 31
min 1
2 x1 − 3
2
2
+ 1
2 x2 − 1
2
4
subject to x1 + x2 − 1 ≤ 0
x1 − x2 − 1 ≤ 0
−x1 + x2 − 1 ≤ 0
−x1 − x2 − 1 ≤ 0
The solution is x∗ =
1
0
and (x+, µ∗) with µ∗ =




3/8
1/8
0
0



 satisfies KKT
conditions.
Example 3B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 20 / 31
φ(x, ①) =
1
2
x1 −
3
2
2
+
1
2
x2 −
1
2
4
+
①
2
max{0, x1 + x2 − 1}2
+
max{0, x1 − x2 − 1}2
+ max{0, −x1 + x2 − 1}2
+ max{0, −x1 − x2 − 1}2
Example 3B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 20 / 31
φ(x, ①) =
1
2
x1 −
3
2
2
+
1
2
x2 −
1
2
4
+
①
2
max{0, x1 + x2 − 1}2
+
max{0, x1 − x2 − 1}2
+ max{0, −x1 + x2 − 1}2
+ max{0, −x1 − x2 − 1}2



x1 − 3
2
+ ① max{0, x1 + x2 − 1}+
max{0, x1 − x2 − 1} − max{0, −x1 + x2 − 1} − max{0, −x1 − x2 − 1} = 0
2 x2 − 1
2
3
+ ① max{0, x1 + x2 − 1}−
max{0, x1 − x2 − 1} + max{0, −x1 + x2 − 1} − max{0, −x1 − x2 − 1} = 0
Example 3B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 20 / 31



x∗
1 = 1 + 1
4①−1
+ · · ·
x∗
2 = 1
8 ①−1
+ · · ·
x∗
1 + x∗
2 − 1 = 1 + 1
4
①−1
+ 1
8
①−1
+ · · · = 3
8
①−1
+ · · · > 0
x∗
1 − x∗
2 − 1 = 1 + 1
4
①−1
− 1
8
①−1
+ · · · = 1
8
①−1
+ · · · > 0
−x∗
1 + x∗
2 − 1 = −1 − 1
4
①−1
+ 1
8
①−1
+ · · · < 0
−x∗
1 − x∗
2 − 1 = −1 − 1
4
①−1
− 1
8
①−1
+ · · · < 0
Example 3B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 20 / 31



x∗
1 = 1 + 1
4①−1
+ · · ·
x∗
2 = 1
8 ①−1
+ · · ·
x∗
1 + x∗
2 − 1 = 1 + 1
4
①−1
+ 1
8
①−1
+ · · · = 3
8
①−1
+ · · · > 0
x∗
1 − x∗
2 − 1 = 1 + 1
4
①−1
− 1
8
①−1
+ · · · = 1
8
①−1
+ · · · > 0
−x∗
1 + x∗
2 − 1 = −1 − 1
4
①−1
+ 1
8
①−1
+ · · · < 0
−x∗
1 − x∗
2 − 1 = −1 − 1
4
①−1
− 1
8
①−1
+ · · · < 0
x∗
1 −
3
2
+ ①
3
8
①−1
+
1
8
①−1
+ · · · =
1 +
1
4
①−1
+ · · · −
3
2
+ ①
3
8
①−1
+
1
8
①−1
+ · · · = 0 + · · · ①−1
+ · · ·
Example 3B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 20 / 31



x∗
1 = 1 + 1
4①−1
+ · · ·
x∗
2 = 1
8 ①−1
+ · · ·
x∗
1 + x∗
2 − 1 = 1 + 1
4
①−1
+ 1
8
①−1
+ · · · = 3
8
①−1
+ · · · > 0
x∗
1 − x∗
2 − 1 = 1 + 1
4
①−1
− 1
8
①−1
+ · · · = 1
8
①−1
+ · · · > 0
−x∗
1 + x∗
2 − 1 = −1 − 1
4
①−1
+ 1
8
①−1
+ · · · < 0
−x∗
1 − x∗
2 − 1 = −1 − 1
4
①−1
− 1
8
①−1
+ · · · < 0
2 x∗
2 −
1
2
3
+ ①
3
8
①−1
+
1
8
①−1
+ · · · =
2
1
8
①−1
+ · · · −
1
2
−
3
2
+ ①
3
8
①−1
+
1
8
①−1
+ · · · =
2 −
1
2
3
+ · · · ①−1
+ · · · −
1
2
−
3
2
+ ①
3
8
①−1
+
1
8
①−1
+ · · · = 0 + · · · ①−1
Example 3B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 20 / 31



x∗
1 = 1 + 1
4①−1
+ · · ·
x∗
2 = 1
8 ①−1
+ · · ·
x∗
1 + x∗
2 − 1 = 1 + 1
4
①−1
+ 1
8
①−1
+ · · · = 3
8
①−1
+ · · · > 0
x∗
1 − x∗
2 − 1 = 1 + 1
4
①−1
− 1
8
①−1
+ · · · = 1
8
①−1
+ · · · > 0
−x∗
1 + x∗
2 − 1 = −1 − 1
4
①−1
+ 1
8
①−1
+ · · · < 0
−x∗
1 − x∗
2 − 1 = −1 − 1
4
①−1
− 1
8
①−1
+ · · · < 0
x∗
1 + x∗
2 − 1 =
3
8
①−1
+ · · · =⇒ µ∗
1 =
3
8
x∗
1 − x∗
2 − 1 =
1
8
①−1
+ · · · =⇒ µ∗
1 =
1
8
Example 4
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 21 / 31
min x1 + x2
subject to x2
1 + x2
2 − 2
2
= 0
L(x, π) = x1 + x2 + π x2
1 + x2
2 − 2
2
The optimal solution is x∗ =
−1
−1
Example 4
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 21 / 31
φ (x, ①) = x1 + x2 +
①
2
x2
1 + x2
2 − 2
4
First–Order Optimality Conditions



x1 + 4①x1 x2
1 + x2
2 − 2
3
= 0
x2 + 4①x2 x2
1 + x2
2 − 2
3
= 0
Example 4
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 21 / 31



x1 = A + B①−1
+ C①−2
x2 = D + E①−1
+ F①−2
1 + 4①x∗
1 x2
1 + x2
2 − 2
3
=
1 + 4A① + 4B + 4C①−1
R + · · · ①−1
+ · · · + · · ·
3
=
where R = A2 + B2 − 2. If R = 0 there is still a term multiplying ①. If
R = 0, a term ①−3
can be factored out. The only possibility to eliminate the
term multiplying ① is A = 0. Spurious solution!
Quadratic Problems
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
Quadratic Problems
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 23 / 31
min
x
1
2xT Mx
subject to Ax = b
x ≥ 0
Quadratic Problems
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 23 / 31
min
x
1
2xT Mx
subject to Ax = b
x ≥ 0
KKT conditions
Mx + q − AT
u − v = 0
Ax − b = 0
x ≥ 0, v ≥ 0, xT
v = 0
Quadratic Problems
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 23 / 31
min
x
1
2xT Mx
subject to Ax = b
x ≥ 0
min
1
2
xT
Mx +
①
2
Ax − b 2
2 +
①
2
max{0, −x} 2
2 =: F(x)
Quadratic Problems
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 23 / 31
min
x
1
2xT Mx
subject to Ax = b
x ≥ 0
min
1
2
xT
Mx +
①
2
Ax − b 2
2 +
①
2
max{0, −x} 2
2 =: F(x)
∇F(x) = Mx + q + ①AT
(Ax − b) − ① max{0, −x}
Quadratic Problems
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 23 / 31
min
x
1
2xT Mx
subject to Ax = b
x ≥ 0
min
1
2
xT
Mx +
①
2
Ax − b 2
2 +
①
2
max{0, −x} 2
2 =: F(x)
∇F(x) = Mx + q + ①AT
(Ax − b) − ① max{0, −x}
x = x(0)
+ ①−1
x(1)
+ ①−2
x(2)
+ . . .
b = b(0)
+ ①−1
b(1)
+ ①−2
b(2)
+ . . .
A ∈ IRm×n
rank(A) = m
∇F(x) = 0
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 24 / 31
0 = Mx + q + ①AT A x(0) + ①−1
x(1) + ①−2
x(2) + . . .
−b(0) − ①−1
b(1) − ①−2
b(2) + . . .
+① max 0, −x(0) − ①−1
x(1) − ①−2
x(2) + . . .
∇F(x) = 0
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 24 / 31
0 = Mx + q + ①AT A x(0) + ①−1
x(1) + ①−2
x(2) + . . .
−b(0) − ①−1
b(1) − ①−2
b(2) + . . .
+① max 0, −x(0) − ①−1
x(1) − ①−2
x(2) + . . .
Looking at the ① terms
Ax(0)
− b(0)
= 0
max 0, −x(0)
= 0 and hence x(0)
≥ 0
∇F(x) = 0
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 24 / 31
0 = Mx + q + ①AT A x(0) + ①−1
x(1) + ①−2
x(2) + . . .
−b(0) − ①−1
b(1) − ①−2
b(2) + . . .
+① max 0, −x(0) − ①−1
x(1) − ①−2
x(2) + . . .
Looking at the ①0
terms
Mx(0)
+ q + AT
Ax(1)
− b(1)
− v = 0
where
vj = max 0, −x
(1)
j
only for the indices j for which x
(0)
j = 0, otherwise vj = 0
∇F(x) = 0
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 24 / 31
0 = Mx + q + ①AT A x(0) + ①−1
x(1) + ①−2
x(2) + . . .
−b(0) − ①−1
b(1) − ①−2
b(2) + . . .
+① max 0, −x(0) − ①−1
x(1) − ①−2
x(2) + . . .
Set
u = Ax(1)
− b(1)
vj =
0 if x
(0)
j = 0
max 0, −x
(1)
j otherwise
Then
Mx(0)
+ q + AT
u − v = 0
v ≥ 0, vT
x0
= 0
Algorithms
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
A Generic Algorithm
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 26 / 31
min
x
f(x)
f(x) = ①f(1)
(x) + f(0)
(x) + ①−1
f(−1)
(x) + . . .
∇f(x) = ①∇f(1)
(x) + ∇f(0)
(x) + ①−1
∇f(−1)
(x) + . . .
A Generic Algorithm
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 26 / 31
min
x
f(x)
At iteration k
A Generic Algorithm
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 26 / 31
min
x
f(x)
At iteration k
If
∇f(1)
(xk
) = 0 and ∇f(0)
(xk
) = 0
STOP
A Generic Algorithm
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 26 / 31
min
x
f(x)
At iteration k
otherwise find xk+1 such that
A Generic Algorithm
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 26 / 31
min
x
f(x)
At iteration k
otherwise find xk+1 such that
If ∇f(1)(xk) = 0
f(1)
(xk+1
) ≤ f(1)
(xk
) + σ ∇f(1)
(xk
)
f(0)
(xk+1
) ≤ max
0≤j≤lk
f(0)
(xk−j
) + σ ∇f(0)
(xk
)
A Generic Algorithm
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 26 / 31
min
x
f(x)
At iteration k
otherwise find xk+1 such that
If ∇f(1)(xk) = 0
f(0)
(xk+1
) ≤ f(0)
(xk
) + σ ∇f(0)
(xk
)
f(1)
(xk+1
) ≤ max
0≤j≤mk
f(1)
(xk−j
)
A Generic Algorithm
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 26 / 31
min
x
f(x)
m0 = 0, mk+1 ≤ max {mk + 1, M}
l0 = 0, kk+1 ≤ max {lk + 1, L}
σ(.) is a forcing function.
Convergence
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 27 / 31
Case 1: ∃¯k such that ∇f(1)(xk) = 0, k ≥ ¯k
Then
f(1)
(xk+1
) ≤ max
0≤j≤mk
f(1)
(xk−j
), k ≥ ¯k
and hence
max
0≤i≤M
f(1)
(x
¯k+Ml+i
) ≤ max
0≤i≤M
f(1)
(x
¯k+M(l−1)+i
)
and
f(0)
(xk+1
) ≤ f(0)
(xk
) + σ ∇f(0)
(xk
) , k ≥ ¯k
Assuming that the level sets for f(1)(x0) and f(0)(x0) are compact sets, then
the sequence has at least one accumulation point x∗ and any accumulation
point satisfies ∇f(1)(x∗) = 0 and ∇f(0)(x∗) = 0
Convergence
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 27 / 31
Case 2: ∃ a subsequence jk such that ∇f(1)(xjk ) = 0
Then
f(1)
(xjk+1
) ≤ f(1)
(xjk
) + +σ ∇f(1)
(xjk
)
Again
max
0≤i≤M
f(1)
(xjk+Mt+i
) ≤ max
0≤i≤M
f(1)
(xjk+M(t−1)+i
) + σ ∇f(1)
(xjk
)
and hence ∇f(1)(xjk ) → 0.
Convergence
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 27 / 31
Case 2: ∃ a subsequence jk such that ∇f(1)(xjk ) = 0
Then
f(1)
(xjk+1
) ≤ f(1)
(xjk
) + +σ ∇f(1)
(xjk
)
Again
max
0≤i≤M
f(1)
(xjk+Mt+i
) ≤ max
0≤i≤M
f(1)
(xjk+M(t−1)+i
) + σ ∇f(1)
(xjk
)
and hence ∇f(1)(xjk ) → 0. Moreover,
max
0≤i≤L
f(0)
(xjk+Lt+i
) ≤ max
0≤i≤L
f(0)
(xjk+L(t−1)+i
) + σ ∇f(0)
(xjk
)
and hence ∇f(0)(xjk ) → 0.
Gradient Method
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 28 / 31
At iterations k calculate ∇f(xk).
If ∇f(1)(xk) = 0
xk+1
= min
α≥0,β≥0
f xk
− α∇f(1)
(xk
) − β∇f(0)
(xk
)
If ∇f(1)(xk) = 0
xk+1
= min
α≥0
f(0)
xk
− α∇f(0)
(xk
)
Example A
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 29 / 31
min
x
1
2x2
1 + 1
6 x2
2
subject to x1 + x2 − 1 = 0
f(x) =
1
2
x2
1 +
1
6
x2
2 +
1
2
①(1 − x1 − x2)2
x0
=
4
1
→ x1
=
0.31
0.69
→ x2
=
−0.1
0.39
→ x3
=
0.26
0.74
→
x4
=
−0.12
0.38
→ x5
=
0.25
0.75
Example B
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 30 / 31
min
x
x1 + x2
subject to x1
1 + x2
2 − 2 = 0
f(x) =
1
2
x2
1 +
1
6
x2
2 +
1
2
①(1 − x1 − x2)2
x0
=
0.25
0.75
→ x1
=
−1.22
−0.72
→ x2
=
−7.39
−6.89
→ x3
=
1.04
0.95
→
x4
=
−7.10
−7.19
→ x5
=
−1
−1
Equality Constraints Inequality Constraints Quadratic Problems Algorithms
NUMTA2016 31 / 31
Thanks for your attention

Más contenido relacionado

La actualidad más candente

Accelerated approximate Bayesian computation with applications to protein fol...
Accelerated approximate Bayesian computation with applications to protein fol...Accelerated approximate Bayesian computation with applications to protein fol...
Accelerated approximate Bayesian computation with applications to protein fol...Umberto Picchini
 
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...BRNSS Publication Hub
 
ABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space modelsABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space modelsUmberto Picchini
 
BlUP and BLUE- REML of linear mixed model
BlUP and BLUE- REML of linear mixed modelBlUP and BLUE- REML of linear mixed model
BlUP and BLUE- REML of linear mixed modelKyusonLim
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward differenceRaj Parekh
 
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...Alexander Litvinenko
 
A lambda calculus for density matrices with classical and probabilistic controls
A lambda calculus for density matrices with classical and probabilistic controlsA lambda calculus for density matrices with classical and probabilistic controls
A lambda calculus for density matrices with classical and probabilistic controlsAlejandro Díaz-Caro
 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsMeenakshisundaram N
 
Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...Umberto Picchini
 
Newton’s Divided Difference Formula
Newton’s Divided Difference FormulaNewton’s Divided Difference Formula
Newton’s Divided Difference FormulaJas Singh Bhasin
 
Lecture 8 - Splines
Lecture 8 - SplinesLecture 8 - Splines
Lecture 8 - SplinesEric Cochran
 
Seminar: Calculus of Variation
Seminar: Calculus of VariationSeminar: Calculus of Variation
Seminar: Calculus of VariationSubhajit Pramanick
 
My data are incomplete and noisy: Information-reduction statistical methods f...
My data are incomplete and noisy: Information-reduction statistical methods f...My data are incomplete and noisy: Information-reduction statistical methods f...
My data are incomplete and noisy: Information-reduction statistical methods f...Umberto Picchini
 

La actualidad más candente (20)

Accelerated approximate Bayesian computation with applications to protein fol...
Accelerated approximate Bayesian computation with applications to protein fol...Accelerated approximate Bayesian computation with applications to protein fol...
Accelerated approximate Bayesian computation with applications to protein fol...
 
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
 
ABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space modelsABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space models
 
BlUP and BLUE- REML of linear mixed model
BlUP and BLUE- REML of linear mixed modelBlUP and BLUE- REML of linear mixed model
BlUP and BLUE- REML of linear mixed model
 
Slides ACTINFO 2016
Slides ACTINFO 2016Slides ACTINFO 2016
Slides ACTINFO 2016
 
talk MCMC & SMC 2004
talk MCMC & SMC 2004talk MCMC & SMC 2004
talk MCMC & SMC 2004
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward difference
 
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
 
A lambda calculus for density matrices with classical and probabilistic controls
A lambda calculus for density matrices with classical and probabilistic controlsA lambda calculus for density matrices with classical and probabilistic controls
A lambda calculus for density matrices with classical and probabilistic controls
 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential Equations
 
Lec1 01
Lec1 01Lec1 01
Lec1 01
 
Prime numbers
Prime numbersPrime numbers
Prime numbers
 
Slides Bank England
Slides Bank EnglandSlides Bank England
Slides Bank England
 
Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...
 
Newton’s Divided Difference Formula
Newton’s Divided Difference FormulaNewton’s Divided Difference Formula
Newton’s Divided Difference Formula
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Lecture 8 - Splines
Lecture 8 - SplinesLecture 8 - Splines
Lecture 8 - Splines
 
Seminar: Calculus of Variation
Seminar: Calculus of VariationSeminar: Calculus of Variation
Seminar: Calculus of Variation
 
My data are incomplete and noisy: Information-reduction statistical methods f...
My data are incomplete and noisy: Information-reduction statistical methods f...My data are incomplete and noisy: Information-reduction statistical methods f...
My data are incomplete and noisy: Information-reduction statistical methods f...
 
So a webinar-2013-2
So a webinar-2013-2So a webinar-2013-2
So a webinar-2013-2
 

Similar a Main

MCMC and likelihood-free methods
MCMC and likelihood-free methodsMCMC and likelihood-free methods
MCMC and likelihood-free methodsChristian Robert
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and transDr Fereidoun Dejahang
 
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...Satoshi Kura
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3Amin khalil
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 
Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Asma Ben Slimene
 
Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Asma Ben Slimene
 
Controlled sequential Monte Carlo
Controlled sequential Monte Carlo Controlled sequential Monte Carlo
Controlled sequential Monte Carlo JeremyHeng10
 
138191 rvsp lecture notes
138191 rvsp lecture notes138191 rvsp lecture notes
138191 rvsp lecture notesAhmed Tayeh
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyFrank Nielsen
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsElvis DOHMATOB
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
A Family Of Extragradient Methods For Solving Equilibrium Problems
A Family Of Extragradient Methods For Solving Equilibrium ProblemsA Family Of Extragradient Methods For Solving Equilibrium Problems
A Family Of Extragradient Methods For Solving Equilibrium ProblemsYasmine Anino
 

Similar a Main (20)

MCMC and likelihood-free methods
MCMC and likelihood-free methodsMCMC and likelihood-free methods
MCMC and likelihood-free methods
 
05_AJMS_332_21.pdf
05_AJMS_332_21.pdf05_AJMS_332_21.pdf
05_AJMS_332_21.pdf
 
smtlecture.6
smtlecture.6smtlecture.6
smtlecture.6
 
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...
 
Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...
 
Controlled sequential Monte Carlo
Controlled sequential Monte Carlo Controlled sequential Monte Carlo
Controlled sequential Monte Carlo
 
138191 rvsp lecture notes
138191 rvsp lecture notes138191 rvsp lecture notes
138191 rvsp lecture notes
 
ma112011id535
ma112011id535ma112011id535
ma112011id535
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
 
Randomized algorithms ver 1.0
Randomized algorithms ver 1.0Randomized algorithms ver 1.0
Randomized algorithms ver 1.0
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priors
 
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
 
1010n3a
1010n3a1010n3a
1010n3a
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
A Family Of Extragradient Methods For Solving Equilibrium Problems
A Family Of Extragradient Methods For Solving Equilibrium ProblemsA Family Of Extragradient Methods For Solving Equilibrium Problems
A Family Of Extragradient Methods For Solving Equilibrium Problems
 

Más de Renato De Leone (13)

Its
ItsIts
Its
 
Inn
InnInn
Inn
 
Main
MainMain
Main
 
Brasile
BrasileBrasile
Brasile
 
Its
ItsIts
Its
 
Pau 2015
Pau 2015Pau 2015
Pau 2015
 
Poster microgrid
Poster microgridPoster microgrid
Poster microgrid
 
SD approach to the boarding process
SD approach to the boarding processSD approach to the boarding process
SD approach to the boarding process
 
Main
MainMain
Main
 
Main
MainMain
Main
 
Airo2014
Airo2014Airo2014
Airo2014
 
Impara la Ricerca Operativa divertendoti
Impara la Ricerca Operativa divertendotiImpara la Ricerca Operativa divertendoti
Impara la Ricerca Operativa divertendoti
 
Matematica e medicina
Matematica e medicinaMatematica e medicina
Matematica e medicina
 

Último

Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINsankalpkumarsahoo174
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxjana861314
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 

Último (20)

Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 

Main

  • 1. Nonlinear programming and grossone: (theory and) algorithms R. De Leone School of Science and Tecnology Universit`a di Camerino June 2016
  • 2. Outline of the talk Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 2 / 31 Equality Constraints Inequality Constraints Quadratic Problems Algorithms
  • 3. Equality Constraints Equality Constraints Inequality Constraints Quadratic Problems Algorithms
  • 4. The case of Equality Constraints Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 4 / 31 min x f(x) subject to h(x) = 0 where f : IRn → IR and h : IRn → IRk L(x, π) := f(x) + k j=1 πjhj(x) = f(x) + πT h(x)
  • 5. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 5 / 31 Let x∗ ∈ IRn and assume that the columns {∇hi(x∗)} are linearly independent (LICQ condition).
  • 6. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 5 / 31 Let x∗ ∈ IRn and assume that the columns {∇hi(x∗)} are linearly independent (LICQ condition). If x∗ is a local minimizer then
  • 7. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 5 / 31 Let x∗ ∈ IRn and assume that the columns {∇hi(x∗)} are linearly independent (LICQ condition). If x∗ is a local minimizer then there exists π∗ ∈ IRk such that
  • 8. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 5 / 31 Let x∗ ∈ IRn and assume that the columns {∇hi(x∗)} are linearly independent (LICQ condition). If x∗ is a local minimizer then there exists π∗ ∈ IRk such that ∇xL(x∗ , π∗ ) = ∇f(x∗ ) + k j=1 ∇hj(x∗ )π∗ j = 0 ∇πL(x∗ , π∗ ) = h(x∗ ) = 0
  • 9. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 5 / 31 Let x∗ ∈ IRn and assume that the columns {∇hi(x∗)} are linearly independent (LICQ condition). If x∗ is a local minimizer then there exists π∗ ∈ IRk such that ∇xL(x∗ , π∗ ) = ∇f(x∗ ) + ∇h(x∗ )T π∗ = 0 ∇πL(x∗ , π∗ ) = h(x∗ ) = 0
  • 10. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 5 / 31 Let x∗ ∈ IRn and assume that the columns {∇hi(x∗)} are linearly independent (LICQ condition). If x∗ is a local minimizer then there exists π∗ ∈ IRk such that ∇xL(x∗ , π∗ ) = ∇f(x∗ ) + ∇h(x∗ )T π∗ = 0 ∇πL(x∗ , π∗ ) = h(x∗ ) = 0 KKT (Karush–Kuhn–Tucker) Conditions
  • 11. Penalty Functions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 6 / 31 A penalty function P : IRn → IR satisfies the following condition P(x) = 0 if x belongs to the feasible region > 0 otherwise
  • 12. Penalty Functions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 6 / 31 A penalty function P : IRn → IR satisfies the following condition P(x) = 0 if x belongs to the feasible region > 0 otherwise P(x) = k j=1 |hj(x)| P(x) = k j=1 h2 j (x)
  • 13. Exactness of a Penalty Function Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 7 / 31 The optimal solution of the constrained problem min x f(x) subject to h(x) = 0 can be obtained by solving the following unconstrained minimization problem min f(x) + 1 σ P(x) for sufficiently small but fixed σ > 0.
  • 14. Exactness of a Penalty Function Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 7 / 31 The optimal solution of the constrained problem min x f(x) subject to h(x) = 0 can be obtained by solving the following unconstrained minimization problem min f(x) + 1 σ P(x) for sufficiently small but fixed σ > 0. P(x) = k j=1 |hj(x)|
  • 15. Exactness of a Penalty Function Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 7 / 31 The optimal solution of the constrained problem min x f(x) subject to h(x) = 0 can be obtained by solving the following unconstrained minimization problem min f(x) + 1 σ P(x) for sufficiently small but fixed σ > 0. P(x) = k j=1 |hj(x)| Non–smooth function!
  • 16. Sequential Penalty Method Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 8 / 31 Let {σl} ↓ 0 and P(x) = k j=1 h2 j (x) Step 0 Set l = 0 Step 1 Let x(σl) be an optimal solution of the unconstrained differentiable problem min f(x) + 1 σl P(x) Step 2 Set l = l + 1 and return to Step 1
  • 17. Introducing ① Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 9 / 31 Let P(x) = k j=1 h2 j (x) Solve min f(x) + ①P(x) =: φ (x, ①)
  • 18. Assumptions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 10 / 31 x = x0 + ①−1 x1 + ①−2 x2 + . . . with xi ∈ IRn
  • 19. Assumptions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 10 / 31 x = x0 + ①−1 x1 + ①−2 x2 + . . . with xi ∈ IRn f(x) = f(0) (x) + ①−1 f(1) (x) + ①−2 f(2) (x) + . . . h(x) = h(0) (x) + ①−1 h(1) (x) + ①−2 h(2) (x) + . . . where f(i) : IRn → IR, h(i) : IRn → IRk are all finite–value functions.
  • 20. Convergence Results Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 11 / 31 min x f(x) subject to h(x) = 0 (1)
  • 21. Convergence Results Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 11 / 31 min x f(x) subject to h(x) = 0 (1) min x f(x) + 1 2 ① h(x) 2 (2)
  • 22. Convergence Results Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 11 / 31 min x f(x) subject to h(x) = 0 (1) min x f(x) + 1 2 ① h(x) 2 (2) Let x∗ = x∗0 + ①−1 x∗1 + ①−2 x∗2 + . . . be a stationary point for (2) and assume that the LICQ condition holds at x∗0 then
  • 23. Convergence Results Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 11 / 31 min x f(x) subject to h(x) = 0 (1) min x f(x) + 1 2 ① h(x) 2 (2) Let x∗ = x∗0 + ①−1 x∗1 + ①−2 x∗2 + . . . be a stationary point for (2) and assume that the LICQ condition holds at x∗0 then the pair x∗0, π∗ = h(1)(x∗) is a KKT point of (1).
  • 24. Example 1 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 12 / 31 min x 1 2x2 1 + 1 6 x2 2 subject to x1 + x2 = 1 The pair (x∗, π∗) with x∗ =   1 4 3 4  , π∗ = −1 4 is a KKT point.
  • 25. Example 1 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 12 / 31 min x 1 2x2 1 + 1 6 x2 2 subject to x1 + x2 = 1 The pair (x∗, π∗) with x∗ =   1 4 3 4  , π∗ = −1 4 is a KKT point. f(x) + ①P(x) = 1 2 x2 1 + 1 6 x2 2 + 1 2 ①(1 − x1 − x2)2
  • 26. Example 1 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 12 / 31 f(x) + ①P(x) = 1 2 x2 1 + 1 6 x2 2 + 1 2 ①(1 − x1 − x2)2 First Order Optimality Condition x1 + ①(x1 + x2 − 1) = 0 1 3x2 + ①(x1 + x2 − 1) = 0
  • 27. Example 1 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 12 / 31 f(x) + ①P(x) = 1 2 x2 1 + 1 6 x2 2 + 1 2 ①(1 − x1 − x2)2 x∗ 1 = 1① 1 + 4① , x∗ 2 = 3① 1 + 4①
  • 28. Example 1 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 12 / 31 f(x) + ①P(x) = 1 2 x2 1 + 1 6 x2 2 + 1 2 ①(1 − x1 − x2)2 x∗ 1 = 1① 1 + 4① , x∗ 2 = 3① 1 + 4① x∗ 1 = 1 4 − ①−1 ( 1 16 − 1 64 ①−1 . . .) x∗ 2 = 3 4 − ①−1 ( 3 16 − 3 64 ①−1 . . .)
  • 29. Example 1 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 12 / 31 f(x) + ①P(x) = 1 2 x2 1 + 1 6 x2 2 + 1 2 ①(1 − x1 − x2)2 x∗ 1 = 1① 1 + 4① , x∗ 2 = 3① 1 + 4① x∗ 1 + x∗ 2 − 1 = 1 4 − 1 16 ①−1 + 1 64 ①−2 . . . + 3 4 − 3 16 ①−1 + 3 64 ①−2 . . . − 1 = − 1 16 ①−1 − 3 16 ①−1 + 4 64 ①−2 . . . and h(1)(x∗) = −1 4 = π∗
  • 30. Example 2 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 13 / 31 min x1 + x2 subject to x2 1 + x2 2 − 2 = 0 L(x, π) = x1 + x2 + π x2 1 + x2 2 − 2 The optimal solution is x∗ = −1 −1 and the pair x∗, π∗ = 1 2 satisfies the KKT conditions.
  • 31. Example 2 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 13 / 31 φ (x, ①) = x1 + x2 + ① 2 x2 1 + x2 2 − 2 2 First–Order Optimality Conditions    x1 + 2①x1 x2 1 + x2 2 − 2 2 = 0 x2 + 2①x2 x2 1 + x2 2 − 2 2 = 0 The solution is given by    x1 = −1 − ①−1 1 8 + ①−2 C x2 = −1 − ①−1 1 8 + ①−2 C
  • 32. Example 2 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 13 / 31 Moreover x2 1 + x2 2 − 2 = 1 + 1 64 ①−2 + ①−4 C2 1 4 ①−1 − 2①−2 − 1 4 ①−3 C + 1 + 1 64 ①−2 + ①−4 C2 1 4 ①−1 − 2①−2 − 1 4 ①−3 C = 1 2 ①−1 + 1 32 − 4C ①−2 + − 1 2 C ①−3 + −2C2 ①−4
  • 33. Inequality Constraints Equality Constraints Inequality Constraints Quadratic Problems Algorithms
  • 34. Inequality Constraints Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 15 / 31 min x f(x) subject to g(x) ≤ 0 h(x) = 0 where f : IRn → IR, g : IRn → IRm h : IRn → IRk . L(x, π, µ) := f(x) + m i=1 µigi(x) + k j=1 πjhj(x) = f(x) + µT g(x) + πT h(x)
  • 35. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 16 / 31 Let x∗ ∈ IRn with ∇gi(x∗ ), i : gi(x∗ ) = 0, ∇hj(x∗ ), j = 1, . . . , k linearly independent
  • 36. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 16 / 31 Let x∗ ∈ IRn with ∇gi(x∗ ), i : gi(x∗ ) = 0, ∇hj(x∗ ), j = 1, . . . , k linearly independent If x∗ is a local minimizer then
  • 37. First Order Optimality Conditions Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 16 / 31 Let x∗ ∈ IRn with ∇gi(x∗ ), i : gi(x∗ ) = 0, ∇hj(x∗ ), j = 1, . . . , k linearly independent If x∗ is a local minimizer then there exists µ∗ ∈ IRm + , π∗ ∈ IRk such that ∇xL(x∗ , µ∗ , π∗ ) = ∇f(x∗ ) + k j=1 ∇hj(x∗ )π∗ j = 0 ∇µL(x∗ , µ∗ , π∗ ) = g(x∗ ) ≤ 0 ∇πL(x∗ , µ∗ , π∗ ) = h(x∗ ) = 0 µ∗ ≥ 0 µ∗T ∇πL(x∗ , µ∗ , π∗ ) = 0
  • 38. Modified LICQ condition Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 17 / 31 Let x0 ∈ IRn . The Modified LICQ (MLICQ) condition is said to hold at x0 if the vectors ∇gi(x0 ), i : gi(x0 ) ≥ 0, ∇hj(x0 ), j = 1, . . . , k are linearly independent.
  • 39. Convergence Results Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 18 / 31 min x f(x) subject to g(x) ≤ 0 h(x) = 0 min x f(x) + ① 2 max{0, gi(x)} 2 + ① 2 h(x) 2 x∗ = x∗0 + ①−1 x∗1 + ①−2 x∗2 + . . . ⇓ (MLICQ)
  • 40. Convergence Results Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 18 / 31 min x f(x) subject to g(x) ≤ 0 h(x) = 0 min x f(x) + ① 2 max{0, gi(x)} 2 + ① 2 h(x) 2 x∗ = x∗0 + ①−1 x∗1 + ①−2 x∗2 + . . . ⇓ (MLICQ) x∗0 , µ∗ = g(1) (x∗ ), π∗ = h(1) (x∗ )
  • 41. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 min x1 + x2 subject to x2 1 + x2 2 − 2 ≤ 0 −x2 ≤ 0
  • 42. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 min x1 + x2 subject to x2 1 + x2 2 − 2 ≤ 0 −x2 ≤ 0 L(x, π) = x1 + x2 + µ1 x2 1 + x2 2 − 2 − µ2x2 The solution is x∗ = − √ 2 0 and (x∗, µ∗) with µ∗ = 1/2 √ 2 1 satisfies KKT conditions.
  • 43. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 min x1 + x2 subject to x2 1 + x2 2 − 2 ≤ 0 −x2 ≤ 0 φ(x, ①) = x1 + x2 + ① 2 max 0, x2 1 + x2 2 − 2 2 + ① 2 max {0, −x2}2
  • 44. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 φ(x, ①) = x1 + x2 + ① 2 max 0, x2 1 + x2 2 − 2 2 + ① 2 max {0, −x2}2
  • 45. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 φ(x, ①) = x1 + x2 + ① 2 max 0, x2 1 + x2 2 − 2 2 + ① 2 max {0, −x2}2    1 + 2x1① max 0, x2 1 + x2 2 − 2 = 0 1 + 2x2① max 0, x2 1 + x2 2 − 2 − ① max {0, −x2} = 0
  • 46. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 φ(x, ①) = x1 + x2 + ① 2 max 0, x2 1 + x2 2 − 2 2 + ① 2 max {0, −x2}2    1 + 2x1① max 0, x2 1 + x2 2 − 2 = 0 1 + 2x2① max 0, x2 1 + x2 2 − 2 − ① max {0, −x2} = 0    x∗ 1 = − √ 2 + A①−1 + B①−2 + . . . x∗ 2 = 0 − 1①−1 + D①−2 + . . .
  • 47. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 g1(x∗ ) = (x∗ 1)2 + (x∗ 2)2 − 2 = +2 √ 2 1 8 ①−1 + 1 64 − 2 √ 2B + C2 ①−2 + · · · µ∗ 1 = 2 √ 2 1 8 = 1 2 √ 2
  • 48. Example 3 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 19 / 31 g2(x∗ ) = −x∗ 2 − −①−1 − D①−2 + · · · µ∗ 2 = 1
  • 49. Example 3B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 20 / 31 min 1 2 x1 − 3 2 2 + 1 2 x2 − 1 2 4 subject to x1 + x2 − 1 ≤ 0 x1 − x2 − 1 ≤ 0 −x1 + x2 − 1 ≤ 0 −x1 − x2 − 1 ≤ 0 The solution is x∗ = 1 0 and (x+, µ∗) with µ∗ =     3/8 1/8 0 0     satisfies KKT conditions.
  • 50. Example 3B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 20 / 31 φ(x, ①) = 1 2 x1 − 3 2 2 + 1 2 x2 − 1 2 4 + ① 2 max{0, x1 + x2 − 1}2 + max{0, x1 − x2 − 1}2 + max{0, −x1 + x2 − 1}2 + max{0, −x1 − x2 − 1}2
  • 51. Example 3B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 20 / 31 φ(x, ①) = 1 2 x1 − 3 2 2 + 1 2 x2 − 1 2 4 + ① 2 max{0, x1 + x2 − 1}2 + max{0, x1 − x2 − 1}2 + max{0, −x1 + x2 − 1}2 + max{0, −x1 − x2 − 1}2    x1 − 3 2 + ① max{0, x1 + x2 − 1}+ max{0, x1 − x2 − 1} − max{0, −x1 + x2 − 1} − max{0, −x1 − x2 − 1} = 0 2 x2 − 1 2 3 + ① max{0, x1 + x2 − 1}− max{0, x1 − x2 − 1} + max{0, −x1 + x2 − 1} − max{0, −x1 − x2 − 1} = 0
  • 52. Example 3B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 20 / 31    x∗ 1 = 1 + 1 4①−1 + · · · x∗ 2 = 1 8 ①−1 + · · · x∗ 1 + x∗ 2 − 1 = 1 + 1 4 ①−1 + 1 8 ①−1 + · · · = 3 8 ①−1 + · · · > 0 x∗ 1 − x∗ 2 − 1 = 1 + 1 4 ①−1 − 1 8 ①−1 + · · · = 1 8 ①−1 + · · · > 0 −x∗ 1 + x∗ 2 − 1 = −1 − 1 4 ①−1 + 1 8 ①−1 + · · · < 0 −x∗ 1 − x∗ 2 − 1 = −1 − 1 4 ①−1 − 1 8 ①−1 + · · · < 0
  • 53. Example 3B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 20 / 31    x∗ 1 = 1 + 1 4①−1 + · · · x∗ 2 = 1 8 ①−1 + · · · x∗ 1 + x∗ 2 − 1 = 1 + 1 4 ①−1 + 1 8 ①−1 + · · · = 3 8 ①−1 + · · · > 0 x∗ 1 − x∗ 2 − 1 = 1 + 1 4 ①−1 − 1 8 ①−1 + · · · = 1 8 ①−1 + · · · > 0 −x∗ 1 + x∗ 2 − 1 = −1 − 1 4 ①−1 + 1 8 ①−1 + · · · < 0 −x∗ 1 − x∗ 2 − 1 = −1 − 1 4 ①−1 − 1 8 ①−1 + · · · < 0 x∗ 1 − 3 2 + ① 3 8 ①−1 + 1 8 ①−1 + · · · = 1 + 1 4 ①−1 + · · · − 3 2 + ① 3 8 ①−1 + 1 8 ①−1 + · · · = 0 + · · · ①−1 + · · ·
  • 54. Example 3B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 20 / 31    x∗ 1 = 1 + 1 4①−1 + · · · x∗ 2 = 1 8 ①−1 + · · · x∗ 1 + x∗ 2 − 1 = 1 + 1 4 ①−1 + 1 8 ①−1 + · · · = 3 8 ①−1 + · · · > 0 x∗ 1 − x∗ 2 − 1 = 1 + 1 4 ①−1 − 1 8 ①−1 + · · · = 1 8 ①−1 + · · · > 0 −x∗ 1 + x∗ 2 − 1 = −1 − 1 4 ①−1 + 1 8 ①−1 + · · · < 0 −x∗ 1 − x∗ 2 − 1 = −1 − 1 4 ①−1 − 1 8 ①−1 + · · · < 0 2 x∗ 2 − 1 2 3 + ① 3 8 ①−1 + 1 8 ①−1 + · · · = 2 1 8 ①−1 + · · · − 1 2 − 3 2 + ① 3 8 ①−1 + 1 8 ①−1 + · · · = 2 − 1 2 3 + · · · ①−1 + · · · − 1 2 − 3 2 + ① 3 8 ①−1 + 1 8 ①−1 + · · · = 0 + · · · ①−1
  • 55. Example 3B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 20 / 31    x∗ 1 = 1 + 1 4①−1 + · · · x∗ 2 = 1 8 ①−1 + · · · x∗ 1 + x∗ 2 − 1 = 1 + 1 4 ①−1 + 1 8 ①−1 + · · · = 3 8 ①−1 + · · · > 0 x∗ 1 − x∗ 2 − 1 = 1 + 1 4 ①−1 − 1 8 ①−1 + · · · = 1 8 ①−1 + · · · > 0 −x∗ 1 + x∗ 2 − 1 = −1 − 1 4 ①−1 + 1 8 ①−1 + · · · < 0 −x∗ 1 − x∗ 2 − 1 = −1 − 1 4 ①−1 − 1 8 ①−1 + · · · < 0 x∗ 1 + x∗ 2 − 1 = 3 8 ①−1 + · · · =⇒ µ∗ 1 = 3 8 x∗ 1 − x∗ 2 − 1 = 1 8 ①−1 + · · · =⇒ µ∗ 1 = 1 8
  • 56. Example 4 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 21 / 31 min x1 + x2 subject to x2 1 + x2 2 − 2 2 = 0 L(x, π) = x1 + x2 + π x2 1 + x2 2 − 2 2 The optimal solution is x∗ = −1 −1
  • 57. Example 4 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 21 / 31 φ (x, ①) = x1 + x2 + ① 2 x2 1 + x2 2 − 2 4 First–Order Optimality Conditions    x1 + 4①x1 x2 1 + x2 2 − 2 3 = 0 x2 + 4①x2 x2 1 + x2 2 − 2 3 = 0
  • 58. Example 4 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 21 / 31    x1 = A + B①−1 + C①−2 x2 = D + E①−1 + F①−2 1 + 4①x∗ 1 x2 1 + x2 2 − 2 3 = 1 + 4A① + 4B + 4C①−1 R + · · · ①−1 + · · · + · · · 3 = where R = A2 + B2 − 2. If R = 0 there is still a term multiplying ①. If R = 0, a term ①−3 can be factored out. The only possibility to eliminate the term multiplying ① is A = 0. Spurious solution!
  • 59. Quadratic Problems Equality Constraints Inequality Constraints Quadratic Problems Algorithms
  • 60. Quadratic Problems Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 23 / 31 min x 1 2xT Mx subject to Ax = b x ≥ 0
  • 61. Quadratic Problems Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 23 / 31 min x 1 2xT Mx subject to Ax = b x ≥ 0 KKT conditions Mx + q − AT u − v = 0 Ax − b = 0 x ≥ 0, v ≥ 0, xT v = 0
  • 62. Quadratic Problems Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 23 / 31 min x 1 2xT Mx subject to Ax = b x ≥ 0 min 1 2 xT Mx + ① 2 Ax − b 2 2 + ① 2 max{0, −x} 2 2 =: F(x)
  • 63. Quadratic Problems Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 23 / 31 min x 1 2xT Mx subject to Ax = b x ≥ 0 min 1 2 xT Mx + ① 2 Ax − b 2 2 + ① 2 max{0, −x} 2 2 =: F(x) ∇F(x) = Mx + q + ①AT (Ax − b) − ① max{0, −x}
  • 64. Quadratic Problems Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 23 / 31 min x 1 2xT Mx subject to Ax = b x ≥ 0 min 1 2 xT Mx + ① 2 Ax − b 2 2 + ① 2 max{0, −x} 2 2 =: F(x) ∇F(x) = Mx + q + ①AT (Ax − b) − ① max{0, −x} x = x(0) + ①−1 x(1) + ①−2 x(2) + . . . b = b(0) + ①−1 b(1) + ①−2 b(2) + . . . A ∈ IRm×n rank(A) = m
  • 65. ∇F(x) = 0 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 24 / 31 0 = Mx + q + ①AT A x(0) + ①−1 x(1) + ①−2 x(2) + . . . −b(0) − ①−1 b(1) − ①−2 b(2) + . . . +① max 0, −x(0) − ①−1 x(1) − ①−2 x(2) + . . .
  • 66. ∇F(x) = 0 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 24 / 31 0 = Mx + q + ①AT A x(0) + ①−1 x(1) + ①−2 x(2) + . . . −b(0) − ①−1 b(1) − ①−2 b(2) + . . . +① max 0, −x(0) − ①−1 x(1) − ①−2 x(2) + . . . Looking at the ① terms Ax(0) − b(0) = 0 max 0, −x(0) = 0 and hence x(0) ≥ 0
  • 67. ∇F(x) = 0 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 24 / 31 0 = Mx + q + ①AT A x(0) + ①−1 x(1) + ①−2 x(2) + . . . −b(0) − ①−1 b(1) − ①−2 b(2) + . . . +① max 0, −x(0) − ①−1 x(1) − ①−2 x(2) + . . . Looking at the ①0 terms Mx(0) + q + AT Ax(1) − b(1) − v = 0 where vj = max 0, −x (1) j only for the indices j for which x (0) j = 0, otherwise vj = 0
  • 68. ∇F(x) = 0 Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 24 / 31 0 = Mx + q + ①AT A x(0) + ①−1 x(1) + ①−2 x(2) + . . . −b(0) − ①−1 b(1) − ①−2 b(2) + . . . +① max 0, −x(0) − ①−1 x(1) − ①−2 x(2) + . . . Set u = Ax(1) − b(1) vj = 0 if x (0) j = 0 max 0, −x (1) j otherwise Then Mx(0) + q + AT u − v = 0 v ≥ 0, vT x0 = 0
  • 69. Algorithms Equality Constraints Inequality Constraints Quadratic Problems Algorithms
  • 70. A Generic Algorithm Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 26 / 31 min x f(x) f(x) = ①f(1) (x) + f(0) (x) + ①−1 f(−1) (x) + . . . ∇f(x) = ①∇f(1) (x) + ∇f(0) (x) + ①−1 ∇f(−1) (x) + . . .
  • 71. A Generic Algorithm Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 26 / 31 min x f(x) At iteration k
  • 72. A Generic Algorithm Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 26 / 31 min x f(x) At iteration k If ∇f(1) (xk ) = 0 and ∇f(0) (xk ) = 0 STOP
  • 73. A Generic Algorithm Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 26 / 31 min x f(x) At iteration k otherwise find xk+1 such that
  • 74. A Generic Algorithm Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 26 / 31 min x f(x) At iteration k otherwise find xk+1 such that If ∇f(1)(xk) = 0 f(1) (xk+1 ) ≤ f(1) (xk ) + σ ∇f(1) (xk ) f(0) (xk+1 ) ≤ max 0≤j≤lk f(0) (xk−j ) + σ ∇f(0) (xk )
  • 75. A Generic Algorithm Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 26 / 31 min x f(x) At iteration k otherwise find xk+1 such that If ∇f(1)(xk) = 0 f(0) (xk+1 ) ≤ f(0) (xk ) + σ ∇f(0) (xk ) f(1) (xk+1 ) ≤ max 0≤j≤mk f(1) (xk−j )
  • 76. A Generic Algorithm Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 26 / 31 min x f(x) m0 = 0, mk+1 ≤ max {mk + 1, M} l0 = 0, kk+1 ≤ max {lk + 1, L} σ(.) is a forcing function.
  • 77. Convergence Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 27 / 31 Case 1: ∃¯k such that ∇f(1)(xk) = 0, k ≥ ¯k Then f(1) (xk+1 ) ≤ max 0≤j≤mk f(1) (xk−j ), k ≥ ¯k and hence max 0≤i≤M f(1) (x ¯k+Ml+i ) ≤ max 0≤i≤M f(1) (x ¯k+M(l−1)+i ) and f(0) (xk+1 ) ≤ f(0) (xk ) + σ ∇f(0) (xk ) , k ≥ ¯k Assuming that the level sets for f(1)(x0) and f(0)(x0) are compact sets, then the sequence has at least one accumulation point x∗ and any accumulation point satisfies ∇f(1)(x∗) = 0 and ∇f(0)(x∗) = 0
  • 78. Convergence Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 27 / 31 Case 2: ∃ a subsequence jk such that ∇f(1)(xjk ) = 0 Then f(1) (xjk+1 ) ≤ f(1) (xjk ) + +σ ∇f(1) (xjk ) Again max 0≤i≤M f(1) (xjk+Mt+i ) ≤ max 0≤i≤M f(1) (xjk+M(t−1)+i ) + σ ∇f(1) (xjk ) and hence ∇f(1)(xjk ) → 0.
  • 79. Convergence Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 27 / 31 Case 2: ∃ a subsequence jk such that ∇f(1)(xjk ) = 0 Then f(1) (xjk+1 ) ≤ f(1) (xjk ) + +σ ∇f(1) (xjk ) Again max 0≤i≤M f(1) (xjk+Mt+i ) ≤ max 0≤i≤M f(1) (xjk+M(t−1)+i ) + σ ∇f(1) (xjk ) and hence ∇f(1)(xjk ) → 0. Moreover, max 0≤i≤L f(0) (xjk+Lt+i ) ≤ max 0≤i≤L f(0) (xjk+L(t−1)+i ) + σ ∇f(0) (xjk ) and hence ∇f(0)(xjk ) → 0.
  • 80. Gradient Method Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 28 / 31 At iterations k calculate ∇f(xk). If ∇f(1)(xk) = 0 xk+1 = min α≥0,β≥0 f xk − α∇f(1) (xk ) − β∇f(0) (xk ) If ∇f(1)(xk) = 0 xk+1 = min α≥0 f(0) xk − α∇f(0) (xk )
  • 81. Example A Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 29 / 31 min x 1 2x2 1 + 1 6 x2 2 subject to x1 + x2 − 1 = 0 f(x) = 1 2 x2 1 + 1 6 x2 2 + 1 2 ①(1 − x1 − x2)2 x0 = 4 1 → x1 = 0.31 0.69 → x2 = −0.1 0.39 → x3 = 0.26 0.74 → x4 = −0.12 0.38 → x5 = 0.25 0.75
  • 82. Example B Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 30 / 31 min x x1 + x2 subject to x1 1 + x2 2 − 2 = 0 f(x) = 1 2 x2 1 + 1 6 x2 2 + 1 2 ①(1 − x1 − x2)2 x0 = 0.25 0.75 → x1 = −1.22 −0.72 → x2 = −7.39 −6.89 → x3 = 1.04 0.95 → x4 = −7.10 −7.19 → x5 = −1 −1
  • 83. Equality Constraints Inequality Constraints Quadratic Problems Algorithms NUMTA2016 31 / 31 Thanks for your attention