SlideShare una empresa de Scribd logo
1 de 120
Descargar para leer sin conexión
ISOLASI DAN IDENTIFIKASI SENYAWA
ANTIBAKTERI MINYAK ATSIRI DAUN ZODIA
(Evodia sp.)
AGNES ERI MARYUNI
SEKOLAH PASCASARJANA
INSTITUT PERTANIAN BOGOR
BOGOR
2008
PERNYATAAN MENGENAI TESIS DAN
SUMBER INFORMASI
Dengan ini saya menyatakan bahwa tesis Isolasi dan Identifikasi Senyawa
Antibakteri Minyak Atsiri Daun Zodia (Evodia sp.) adalah karya saya dengan
arahan dari komisi pembimbing dan belum diajukan dalam bentuk apapun kepada
perguruan tinggi manapun. Sumber informasi yang berasal atau dikutip dari karya
yag diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam
teks dan dicantumkan dalam Daftar Pustaka di bagian akhir tesis ini.
Bogor, Agustus 2008
Agnes Eri Maryuni
G851060051
ABSTRACT
AGNES ERI MARYUNI. Isolation and Identification Antibacterial Active
Compound from Zodia’s Essential Oil Leaves (Evodia sp.) Under direction of
MARIA BINTANG and MASNIARI POELOENGAN.
Some plant essential oil compounds has antibacterial properties, such as linalool.
Linalool was one of zodia’s essential oil compound. The aim of this research was
to isolate and identificate antibacterial active compound of the essential oil of
zodia leaves. The the major components of essential oil are evodone 72.32%,
menthofurane 7.52%, limonene 4.73%, curcumene 4.28%, and fonenol 1.66%.
The oil had wide spectrum antibaterial activities. MIC value are 1% against S.
aureus, 0.8% against S. epidermidis, 1.25% against Salmonella enteritidis and
1.2% against E. coli. It’s bactericidal effect against S. aureus began on the 7th
hours. Toxicity evaluation showed that the essential oil has moderately toxic
properties. Essential oil decayed bacterial membran cell. The bacterial cell
became “swell” and change to a “ghost cell”. The active identificated as evodone.
It’s activity was lower than the oil. It indicated that the essential oil’s antibacterial
activity was sinergestic effect from it’s compounds.
Key words: antibacterial activity, zodia, essential oil
RINGKASAN
AGNES ERI MARYUNI. Isolasi dan Identifikasi Senyawa Antibakteri Minyak
Atsiri Daun Zodia (Evodia sp.). Dibimbing oleh MARIA BINTANG dan
MASNIARI POELOENGAN.
Sejak pertama kali ditemukan hingga akhir abad 20, kemoterapi
antimikroba telah berhasil menyembuhkan berbagai jenis penyakit infeksi.
Masalah muncul pada saat terjadi resistensi bakteri. Meskipun berbagai jenis
antibiotik baru ditemukan, muncul masalah baru berkaitan dengan resistensi
terhadap berbaai jenis antibiotik
Tumbuhan memghasilkan ribuan molekul yang berfungsi bagi tumbuhan
itu sendiri maupun lingkungannya. Beberapa jenis komponen minyak atsiri
menghasilkan aktivitas antibakteri. Penelitian ini bertujuan untuk menentukan
potensi antibakteri minyak atsiri daun zodia, mengisolasi dan mengidentifikasi
senyawa aktifnya.
Dalam penelitian ini, sampel daun zodia diambil dari daerah Sentani,
Jayapura, Papua. Minyak atsiri diisolasi dengan menggunakan destilasi uap.
Minyak atsiri yang dihasilkan dianalisis komponen penyusunnya dengan metode
GC-MS. Uji antibakteri menggunakan metode paper dish assay. Uji toksisitas
menggunakan metode Brine-Shrimp Letality Test. Nilai minimum inhibitory
concentration (MIC) ditentukan untuk mengetahui konsentrasi paling kecil dari
minyak atsiri yang dapat membunuh bakteri. Terhadap bakteri diinteraksikan
berbagai variasi konsentrasi minyak atsiri. Bakteri disubkulturkan pada media
padat kemudian jumlah koloni yang tumbuh dihitung. Waktu kontak minyak atsiri
dengan bakteri ditentukan untuk mengetahui waktu munculnya efek bakterisida.
Setelah diinteraksikan dengan minyak atsiri dengan konsentrasi dua kali nilai
MIC, bakteri disubkulturkan pada media padat setiap jam selama 24 jam. Jumlah
koloni bakteri dihitung selanjutnya dibuat kurva ”survival plot”. Data waktu
kontak digunakan sebagai dasar waktu kontak bakteri yang akan dianalisis
perubahan morfologinya dengan scanning electron microscopy.
Isolasi senyawa aktif antibakteri dilakukan dengan metode cooling freeze.
Minyak atsiri didinginkan sampai 180
C. Kristal yang terbentuk dipisahkan
kemudian direkristalisasi menggunakan pelarut heksan. Kristal hasil rekristalisasi
dianalisis dengan GC-MS. Uji antibakteri kristal dilakukan terhadap bakteri S.
aureus.
Isolasi minyak atsiri daun zodia menghasilkan rendemen 1%. Dari analisis
GC-MS didapatkan bahwa komponen utama minyak atsiri adalah evodone
72.32%, menthofurane 7.52%, limonene 4.73%, curcumene 4.28%, dan fonenol
1.66%.
Minyak atsiri menghasilkan aktifitas antibakteri berspektrum luas, dapat
menghambat pertumbuhan bakteri Gram positif Staphylococcus aureus,
Staphylococcus epidermidis dan bakteri Gram negatif Salmonella enteritidis dan
Escherichia coli. Aktivitas terbesar dihasilkan dari interaksi minyak atsiri dengan
bakteri S. aureus.
MIC minyak atsiri bernilai 1% terhadap S. aureus, 0.8% terhadap S.
epidermidis, 1.25% terhadap Salmonella enteritidis and 1.2% terhadap E. coli.
Efek bakterisida minyak atsiri muncul setelah tujuh jam interaksi dengan bakteri
uji dan mematikan secara total setelah 24 jam interaksi. Bakteri sebagian besar
mati pada fase stasionernya. Pada fase stasioner bakteri bersifat rentan. Hal ini
dimungkinkan oleh makin terbatasnya nutrisi dan meningkatnya produk-produk
toksik hasil metabolisme bakteri.
Toksisitas minyak atsiri terhadap artemia salina bernilai 376.7 ppm.
Minyak atsiri daun zodia bersifat toksik sedang. Berdasarkan analisis scanning
electron microscopy, minyak atsiri daun zodia mampu merusak membran sel
bakteri. Interaksi minyak atsiri dengan membrane sel menyebabkan terjadinya
“swelling” hingga pada akhirnya bakteri menjadi “sel ghost”.
Senyawa antif antibakteri minyak atsiri daun zodia berhasil diisolasi dan
diidentifikasi sebagai evodone. Aktivitas antibakteri senyawa tersebut lebih
rendah daripada aktivitas antibakteri minyak atsiri sehingga dapat disimpulkan
bahwa aktivitas minyak atsiri merupakan efek sinergis dari aktivitas komponen
penyusunnya.
Kata kunci: aktivitas antibakteri, zodia, minyak atsiri
©. Hak Cipta milik IPB tahun 2008
Hak Cipta dilindungi Undang-Undang
1. Dilarang mengutip sebagian atau seluruh karya tulis ini
tanpa mencantumkan atau menyebutkan sumber .
a. Pengutipan hanya untuk kepentingan pendidikan
penelitian, penulisan karya ilmiah, penyusunan
laporan, penulisan kritik atau tinjauan suatu
masalah.
b. Pengutipan tidak merugikan kepentingan yang wajar
IPB.
2. Dilarang mengumumkan atau memperbanyak sebagian atau
seluruh karya tulis dalam bentuk apapun tanpa izin IPB.
ISOLASI DAN IDENTIFIKASI SENYAWA
ANTIBAKTERI MINYAK ATSIRI DAUN ZODIA
(Evodia sp.)
AGNES ERI MARYUNI
Tesis
sebagai salah satu syarat untuk memperoleh gelar
Magister Sains pada
Departemen Biokimia
SEKOLAH PASCASARJANA
INSTITUT PERTANIAN BOGOR
BOGOR
2008
Penguji Luar Komisi pada Ujian Tesis: Dr. Suryani MS.
Kupersembahkan karyaku ini sebagai tanda kasihku untuk:
Ayah Bundaku Ibu Sugiyem dan Alm. Bapak Maridjan,
Kakanda Agustinus Sroyer,
Buah hatiku Marchelino Mario dan Amadhea Putri,
Mbakyu dan Kangmasku:
Yanti, Eni, Maryono, Eti, Endang, Budi, Endah, Robert, Esti, Ermi,
Bondan, Tri
Keponakan-keponakanku:
Eka, Wien, Galih, Yogi, Tian, Lina, Lita, Rahma, Widie, Tedi, Tio, Bian
Keagungan Sang Pencipta dan dian Ilmu Pengetahuan
Semoga dapat menjadi motivasi dan sumber inspirasi bagiku, suami dan
anakku, keponakanku
Semoga dapat menjadi sekelumit sumbangsihku
bagi masyarakat Papua
PRAKATA
Segala hormat, puji dan syukur penulis persembahkan pada Tuhan Yesus
Kristus. Cinta dan kasih-Nya telah menyertai penulis hingga penulis berhasil
menyelesaikan pendidikan pascasarjana di Program Studi Biokimia FMIPA IPB
dengan baik. Judul penelitian yang dipilih adalah ”Isolasi dan Identifikasi
Senyawa Antibakteri Minyak Atsiri Daun Zodia (Evodia sp.)”. Dana
penelitian bersumber dari beasiswa BPPS Dirjen DIKTI dan bantuan dari FMIPA
Universitas Cenderawasih.
Terimakasih sedalam-dalamnya kepada Prof. Dr. drh. Maria Bintang, MS.
dan Dra. Masniari Poeloengan, MS. yang telah memberikan bimbingan, dukungan
dan bantuan sarana penelitian. Kepada Dr. Suryani, MS., terimakasih untuk
koreksi dan masukan-masukan yang telah diberikan Terimakasih juga diucapkan
kepada keluarga Yabansabra dan Bapak Drs. Robert Masreng atas tersedianya
contoh daun zodia, Bapak Supartono dari Balai Penelitian Veteriner dan Bapak
Djaswanto dari Labkrim Mabes Polri dan Ibu Endang dari Lab. SEM Zoologi-
Biologi LIPI Cibinong yang telah membantu selama penelitian berlangsung serta
semua pihak yang tidak dapat disebutkan satu persatu. Terimakasih khusus
diberikan kepada Dirjen DIKTI atas bantuan dana studi dan FMIPA Universitas
Cenderawasih atas bantuan dana penelitian yang telah diberikan.
Akhir kata semoga hasil penelitian ini dapat bermanfaat bagi para
pembaca.
Bogor, 26 Agustus 2008
Agnes Eri Maryuni
RIWAYAT HIDUP
Penulis dilahirkan pada tanggal 19 Oktober 1978 sebagai anak ke-8
pasangan Alm. Maridjan dan Sugiyem. Pendidikan sarjana ditempuh di Jurusan
Kimia FMIPA Institut Pertanian Bogor sejak tahun 1997 sampai 2002.
Setelah lulus sarjana, tahun 2002 penulis bekerja sebagai staf quality
control PT Focus Makmur Indah Jakarta. Selanjutnya pada tahun 2003 penulis
bertugas sebagai staf pengajar di Jurusan Kimia FMIPA Universitas
Cenderawasih Jayapura Papua. Pendidikan Pascasarjana S2 di Program Studi
Biokimia FMIPA IPB dimulai tahun 2006 atas bantuan dana pendidikan BPPS
Dirjen Dikti.
Pada tahun 2006 penulis pernah mendapatkan hibah Penelitian Dosen
Muda yang diadakan oleh Dirjen Dikti. Penelitian tersebut berjudul ”Potensi
Antibakteri Minyak Atsiri Daun Zodia (Evodia sp.)”. Penelitian dilanjutkan pada
saat menyelesaikan pendidikan pascasarjana S2 dengan judul ”Isolasi dan
Identifikasi Senyawa Aktif Antibakteri Minyak Atsiri Daun Zodia (Evodia sp.).
Sebagian dana penelitian bersumber dari beasiswa BPPS Dirjen Dikti dan bantuan
dana penelitian dari FMIPA Universitas Cenderawasih Jayapura Papua.
DAFTAR ISI
Halaman
DAFTAR TABEL.......................................................................................................... xiii
DAfTAR GAMBAR...................................................................................................... xiv
DAFTAR LAMPIRAN.................................................................................................. xv
PENDAHULUAN ......................................................................................................... 1
Latar Belakang ...................................................................................................... 1
Tujuan Penelitian .................................................................................................. 3
Manfaat Penelitian ................................................................................................ 3
TINJAUAN PUSTAKA ................................................................................................ 4
Zodia ..................................................................................................................... 4
Antibakteri ............................................................................................................ 7
Komponen Antibakteri Tanamani......................................................................... 9
Bakteri................................................................................................................... 11
Pengaruh Zat Antibaktei terhadap Sel Bakteri...................................................... 12
Isolasi Senyawa Aktif ........................................................................................... 14
METODE PENELITIAN............................................................................................... 16
Waktu dan tempat penelitian................................................................................. 16
Bahan dan Alat...................................................................................................... 16
Metode Penelitian ................................................................................................. 16
Isolasi Minyak Atsiri............................................................................................. 16
Karakterisasi menggunakan GC-MS..................................................................... 17
Pengujian Aktifitas Antibakteri............................................................................. 17
Uji Toksisitas Minyak Atsiri................................................................................. 17
Kromatografi Lapis Tipis...................................................................................... 18
Penentuan minimum inhibitory concentration (MIC)........................................... 18
Penentuan Waktu Kontak Minyak Atsiri.............................................................. 19
Analisis Perubahan Morfologi Sel ..............................................................................19
Isolasi Senyawa Aktif Antibakteri ..............................................................................20
HASIL DAN PEMBAHASAN ............................................................................................21
Komposisi Minyak Atsiri............................................................................................23
Aktivitas Antibakteri Minyak Atsiri ...........................................................................23
Nilai MIC Minyak Atsiri Daun Zodia.........................................................................26
Penentuan Waktu Kontak Minyak Atsiri ....................................................................27
Analisis Perubahan Morfologi Sel ..............................................................................28
Nilai Toksisitas Minyak Atsiri terhadap Artemia salina.............................................30
Pemisahan Komponen Minyak Atsiri Dengan Kromatografi Lapis Tipis..................31
Isolasi Senyawa Aktif Antibakteri ..............................................................................32
KESIMPULAN ....................................................................................................................38
Kesimpulan...........................................................................................................................38
Saran.....................................................................................................................................38
DAFTAR PUSTAKA .................................................................................................... 39
LAMPIRAN................................................................................................................... 44
DAFTAR TABEL
Halaman
1 Komponen utama beberapa jenis minyak atsiri yang memiliki aktivitas
antibakteri..............................................................................................................9
2 Beberapa pelarut organik dan sifat fisiknya..........................................................15
3 Komponen minyak atsiri daun zodia.....................................................................22
4 Aktivitas antibakteri minyak atsiri........................................................................23
5. Sensitifitas Antibiotik ............................................................................................24
6 Klasifikasi Aktivitas Antibakteri ...........................................................................25
7 Hubungan antara LC50, LD50 dan EC50 dan Klasifikasi Toksisitas Tonkes
(Verma, 2008) .......................................................................................................31
8 Nilai hRf kromatogram minyak atsiri ...................................................................32
9 Aktivitas antibakteri fraksi heksan, etil asetat, dan kristal kasar terhadap bakteri
S. aureus................................................................................................................32
DAFTAR GAMBAR
Halaman
1 Zodia .....................................................................................................................4
2 Rutaecarpine..........................................................................................................5
3 Alkaloid quinolon dari Evodia Rutaecarpa...........................................................7
4 Spektra GC-MS minyak atsiri daun zodia ............................................................21
5 Struktur senyawa terpena yang memiliki kemiripan dengan komponen utama
minyak atsiri daun zodia.......................................................................................22
6 Struktur dinding sel bakteri Gram positif dan Gram negatif.................................26
7 Kurva penetapan MIC minyak atsiri daun zodia terhadap bakteri S. aureus(a),
S. epidermidis (b), Salmonella enteritidis(c), dan E. Coli (d) ..............................26
8 Penetapan waktu kontak minyak atsiri..................................................................27
9 Kurva pertumbuhan bakteri S. aureus...................................................................28
10 Mikrograf elektron bakteri S. aureus ....................................................................29
11 Kurva regresi linier penentuan toksisitas minyak atsiri........................................30
12 Kromatogram minyak atsiri dalam pelarut heksan:dietileter (8:2) pada plat
silika gel 60F254 ........................................................................................................................................................ 32
13 Kristal hasil isolasi dari minyak atsiri daun zodia ................................................33
14 Uji kelarutan kristal dalam air (1), heksan (2), aseton (3), etil asetat (4) dan
benzene (5)............................................................................................................33
15 Aktivitas antibakteri fraksi heksan (1), etil asetat (2), dan kristal kasar (3) .........34
15 Kromatogram fraksi heksan (a) dan fraksi etil asetat (b) dalam pelarut
heksan:dietileter (8:2) pada plat silika gel 60F254 .................................................33
16 Bentuk dua dimensi fraksi heksan (a) dan fraksi etilasetat (b) .............................34
17 Spektra GC-MS kristal hasil kristalisasi fraksi etil asetat.....................................36
18 Spektra GC-MS kristal hasil kristalisasi fraksi heksan.........................................36
DAFTAR LAMPIRAN
Halaman
1 Spektra Minyak Atsiri Daun Zodia......................................................................44
2 Spektra GC-MS Komponen ke-1 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................45
3 Fragmentasi Komponen ke-1 dan Senyawa Referens..........................................46
4 Spektra GC-MS Komponen ke-2 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................47
5 Fragmentasi Komponen ke-2 dan Senyawa Referens..........................................48
6 Spektra GC-MS Komponen ke-3 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................49
7 Fragmentasi Komponen ke-3 dan Senyawa Referens.........................................50
8 Spektra GC-MS Komponen ke-4 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................51
9 Fragmentasi Komponen ke-4 dan Senyawa Referens.........................................52
10 Spektra GC-MS Komponen ke-5 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................53
11 Fragmentasi Komponen ke-5 dan Senyawa Referens.........................................54
12 Spektra GC-MS Komponen ke-6 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................55
13 Fragmentasi Komponen ke-6 dan Senyawa Referens.........................................56
14 Spektra GC-MS Komponen ke-7 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................57
15 Fragmentasi Komponen ke-7 dan Senyawa Referens.........................................58
16 Spektra GC-MS Komponen ke-8 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................59
17 Fragmentasi Komponen ke-8 dan Senyawa Referens.........................................60
18 Spektra GC-MS Komponen ke-9 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................61
19 Fragmentasi Komponen ke-9 dan Senyawa Referens........................................62
20 Spektra GC-MS Komponen ke-10 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................63
21 Fragmentasi Komponen ke-10 dan Senyawa Referens.......................................64
22 Spektra GC-MS Komponen ke-11 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................65
23 Fragmentasi Komponen ke-11 dan Senyawa Referens.......................................66
24 Spektra GC-MS Komponen ke-12 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................67
25 Fragmentasi Komponen ke-12 dan Senyawa Referens.......................................68
26 Spektra GC-MS Komponen ke-13 Minyak Stsiri Daun Zodia dan
Fragmentasinya...................................................................................................69
27 Fragmentasi Komponen ke-13 dan Senyawa Referens.......................................70
28 Spektra GC-MS Komponen ke-14 Minyak atsiri Daun Zodia dan
Fragmentasinya...................................................................................................71
29 Fragmentasi Komponen ke-14 dan Senyawa Referens.......................................72
30 Spektra GC-MS Komponen ke-15 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................73
31 Fragmentasi Komponen ke-15 dan Senyawa Referens.......................................74
32 Spektra GC-MS Komponen ke-16 Minyak Stsiri Daun Zodia dan
Fragmentasinya...................................................................................................75
33 Fragmentasi Komponen ke-16 dan Senyawa Referens.......................................76
34 Spektra GC-MS komponen ke-17 minyak atsiri daun zodia dan
fragmentasinya....................................................................................................77
35 Fragmentasi Komponen ke-17 dan Senyawa Referens.......................................78
36 Spektra GC-MS Komponen ke-18 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................79
37 Fragmentasi Komponen ke-18 dan Senyawa Referens.......................................80
38 Spektra GC-MS Komponen ke-19 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................81
39 Fragmentasi Komponen ke-19 dan Senyawa Referens.......................................82
40 Spektra GC-MS Komponen ke-20 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................83
41 Fragmentasi Komponen ke-20 dan Senyawa Referens.......................................84
42 Spektra GC-MS Komponen ke-21 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................85
43 Fragmentasi Komponen ke-21 dan Senyawa Referens.......................................86
44 Spektra GC-MS Komponen ke-22 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................87
45 Fragmentasi Komponen ke-22 dan Senyawa Referens.......................................88
46 Spektra GC-MS Komponen ke-23 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................89
47 Fragmentasi Komponen ke-23 dan Senyawa Referens.......................................90
48 Spektra GC-MS Komponen ke-24 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................91
49 Fragmentasi Komponen ke-24 dan Senyawa Referens.......................................92
50 Spektra GC-MS Komponen ke-25 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................93
51 Spektra GC-MS Komponen ke-26 Minyak Atsiri Daun Zodia dan
Fragmentasinya...................................................................................................94
52 Spektra GC-MS Senyawa dalam Fraksi Etil Asetat............................................95
53 Data Fragmentasi Senyawa dalam Fraksi Etil Asetat .........................................96
54 Spektra GC-MS Sebyawa dalam Fraksi Heksan.................................................97
55 Komposisi media Mueller-Hinton Agar..............................................................98
56 Komposisi Larutan Standard McFarland ............................................................99
57 Pembuatan Larutan-larutan yang Dipakai dalam Analisis SEM.........................100
PENDAHULUAN
Latar Belakang
Sejak penemuannya hingga akhir abad 20, obat-obatan antimikrobial telah
berhasil meyembuhkan berbagai jenis penyakit yang berkaitan dengan infeksi.
Penggunaan antibiotik yang disertai dengan perbaikan sanitasi, tempat tinggal,
dan nutrisi serta meluasnya program imunisasi menyebabkan turunnya angka
kematian. Selama bertahun-tahun, obat-obatan antimikrobial telah menyelamatkan
hidup dan menghapuskan penderitaan jutaan manusia serta memperpanjang usia
harapan hidup.
Keberhasilan obat-obatan antimikrobial dalam terapi penyembuhan
penyakit-penyakit infeksi kini terancam oleh munculnya resistensi bakteri. Dalam
artikelnya, Hill (2005) melaporkan beberapa hasil penelitian. Disebutkan bahwa
lebih dari 90% Staphylococcus aureus resisten pada penicillin. Lima puluh persen
bakteri resisten terhadap methisilin. Dengan mempelajari mekanisme bakteri
methycillin-resistant Staphylococcus aureus (MRSA), Ibba dan Hervey Roy
(2008) dari Ohio State University berhasil menemukan suatu jenis protein yang
berhubungan dengan berkembangnya resistensi pada 200 jenis bakteri. MRSA
juga resistensi terhadap linezoid dan vancomycin (Johnson dalam Hill (2005)).
Multiresistensi juga terjadi pada bakteri E. Coli. Beberapa kasus infeksi saluran
kencing tidak dapat sembuh dengan terapi trimetroprim dan ciplofloxacin.
Penggunaan antibiotik yang tidak tepat juga menimbulkan resistensi pada
bakteri patogen pangan. Dalam penelitiannya yang mengambil contoh bakteri dari
beberapa jenis makanan cepat saji, SIRELI & Ali (2008) menemukan adanya
bakteri Listeria monocytogenes resisten terhadap rifapin dan gentamisin. Dalam
kondisi normal, umumnya bakteri tesebut suseptibel terhadap berbagai jenis
antibiotik kecuali cephalosporin dan phosphomycin.
Tumbuhan mensintesis lebih dari 100.000 molekul, meskipun tidak
banyak yang memiliki aktivitas antimikroba. Beberapa jenis antimikroba yang
berasal dari tumbuhan didapatkan pada kadar tinggi dan hanya memerlukan
konsentrasi beberapa milimolar untuk perlindungan yang memadai. Pada
tumbuhan, senyawa-senyawa tersebut merupakan produk samping sebagai bentuk
pertahanan diri terhadap organisme lain dalam lingkungannya (Lewis & Ausubel,
2006).
Jauh sebelum mikroba ditemukan, pemikiran akan adanya tumbuhan
tertentu yang berpotensi sebagai obat telah diterima dengan baik. Manusia
menggunakan tumbuhan untuk menyembuhkan berbagai penyakit infeksi, dan
sebagian sudah dilakukan sebagai kebiasaan dalam kehidupan sehari-hari
(Mendonςa-Filho, 2006). Sejak awal 1980-an, ketertarikan dalam penggunaan
bahan alam yang kemudian disebut senyawa bioaktif tumbuhan bangkit kembali.
Kebangkitan tersebut dapat dipahami sebagai jawaban keprihatinan akan segi
keamanan, sitotoksisitas, dan efek samping obat-obatan sintetik, dan kebutuhan
akan adanya senyawa obat baru, termasuk antibiotik baru untuk menangani
penyakit-penyakit infeksi yang ditimbulkan oleh bakteri patogen multiresisten dan
terapi penyakit kronik.
Hasil penelitian etnobotani menunjukkan bahwa telah terjaring 106
simplisia tanaman obat Indonesia yang menghasilkan aktivitas antibakteri
(Dzulkarnain et al, 1996). Diantara simplisia tersebut, 42 simplisia diketahui
digunakan secara empirik untuk infeksi saluran pencernaan, 33 simplisia
digunakan secara empirik sebagai obat penyakit kulit, 6 simplisia digunakan
secara empirik untuk infeksi kandung kemih, 1 simplisia digunakan secara
empirik sebagai obat infeksi tenggorokan. Beberapa simplisia lain tidak jelas
penggunaan empiriknya tetapi diteliti daya antibakterinya.
Minyak atsiri (disebut juga minyak menguap atau minyak etheral) adalah
cairan berwujud minyak yang beraroma yang berasal dari berbagai bagian
tumbuhan (bunga, kuncup, biji, daun, ranting, kulit batang, rempah, kayu, buah
dan akar) (Guenther, 1948 dalam Burt (2004)). Minyak atsiri akhir-akhir ini
menarik perhatian dunia. Hal ini disebabkan minyak atsiri dari beberapa
tumbuhan bersifat aktif biologis sebagai antibakteri dan antijamur sehingga dapat
dipergunakan sebagai bahan pengawet pada makanan dan sebagai antibiotik alami
(Burt, 2004). Dalam Ignacimuthu (2006) dijelaskan bahwa sebagian besar minyak
atsiri menunjukkan aktivitas antibakteri terhadap berbagai jenis bakteri uji, baik
Gram positif maupun Gram negatif.
Carvacrol, thymol, dan eugenol adalah komponen minyak atsiri yang
diketahui memiliki aktivitas antibakteri yang tinggi. Ketiga senyawa ini masuk
dalam golongan fenol. Selain itu, komponen minyak atsiri yang bersifat
antibakteri adalah linalool. Linalool masuk dalam golongan monoterpen, senyawa
terpena yang terdiri dari sepuluh atom karbon (Baudoux, 2005).
Linalool merupakan kandungan utama minyak atsiri dalam tanaman
pengusir nyamuk zodia (Kardinan, 2007). Menurut hasil analisis yang dilakukan
di Balai Penelitian Tanaman Rempah dan Obat (Balitro) dengan gas kromatografi,
minyak yang disuling dari daun tanaman ini mengandung linalool (46%) dan α-
pinene (13,26%).
Adanya komponen dalam minyak atsiri daun zodia yang berpotensi
menghasilkan aktivitas antibakteri memacu untuk dilakukannya penelitian tentang
penelusuran senyawa antibakteri dalam minyak atsiri daun zodia.
Tujuan Penelitian
Dari permasalahan di atas dirumuskan tujuan penelitian sebagai berikut:
1. Menentukan aktivitas antibakteri minyak atsiri daun zodia terhadap
beberapa bakteri Gram positif dan Gram negatif
2. Menentukan spektrum antibakteri yang dihasilkan.
3. Menentukan toksisitas minyak atsiri
4. Menentukan pengaruh minyak atsiri terhadap sel bakteri
5. Mengisolasi senyawa aktif antibakteri
6. Mengidentifikasi senyawa aktif antibakteri
Manfaat Penelitian
Penelitian ini diharapkan dapat menambah informasi ilmiah di bidang
kimia, farmasi dan kedokteran tentang manfaat tanaman zodia, mengembangkan
simplisia tanaman zodia sebagai sediaan fitofarmaka dan mendukung upaya
pengembangan ilmu pengetahuan dan teknologi.
TINJAUAN PUSTAKA
Zodia
Zodia merupakan tanaman asli Indonesia yang berasal dari daerah Papua.
Oleh penduduk setempat tanaman ini biasa digunakan untuk menghalau serangga,
khususnya nyamuk apabila hendak pergi kehutan, yaitu dengan cara
menggosokkan daunnya ke kulit. Selain itu, tanaman yang mempunyai tinggi
antara 50 cm hingga 200 cm (rata-rata 75cm), dipercaya mampu mengusir
nyamuk dan serangga lainnya dari sekitar tanaman. Oleh sebab itu tanaman ini,
sering ditanam di pekarangan atau di pot untuk menghalau nyamuk. Aroma yang
dikeluarkan oleh tanaman zodia cukup wangi.
Gambar 1 Zodia
Oleh masyarakat Jayawijaya dan masyarakat Indonesia umumnya, tanaman
ini disebut zodia. Masyarakat Biak Numfor menyebutnya sirih hutan. Berikut
klasifikasi tanaman zodia:
Kingdom : Plantae
Divisi : Spermathophyta
Subdivisi : Angiospermae
Kelas : Dikotiledonae
Ordo : Rutales
Famili : Rutaceae
Genus : Evodia
Tanaman termasuk dalam golongan perdu . Panjang daun tanaman dewasa
20-30 cm. Tanaman tumbuh baik di ketinggian 400-1000 m dpl.
Daun zodia dapat disuling untuk menghasilkan minyak atsiri (essential oil).
Linalool merupakan kandungan utama minyak atsiri dalam tanaman pengusir
nyamuk zodia (Kardinan, 2007). Menurut hasil analisis yang dilakukan di Balai
Penelitian Tanaman Rempah dan Obat (Balitro) dengan gas kromatografi, minyak
yang disuling dari daun tanaman ini mengandung linalool (46%) dan α-pinene
(13,26%). Selain itu minyak atsiri zodia juga mengandung evodiamin dan
rutaecarpin yang juga berfu.ngsi sebagai antinyamuk.
Rebusan kulit batang zodia bermanfaat sebagai pereda demam malaria.
Rebusan daun dipakai sebagai tonik penambah stamina tubuh
http://www.proseanet.org/prohati4/printer.php?photoid=15.
Gambar 2 Rutaecarpine
Dalam Wu, et al. (1995) tumbuhan yang masuk dalam golongan Evodia
terbagi dalam tiga genera, yaitu Tetradium, Evodia s.s. dan Melicope. Klasifikasi
ini didasarkan pada senyawa-senyawa kimia yang diisolasi dari tumbuhan
tersebut. Jenis evodia yang berbeda mengandung beberapa jenis senyawa yang
berbeda pula. Wu et al. berhasil mengisolasi enam jenis alkaloid dari batang kayu
Tetradium glabrifolium (salah satu jenis Evodia yang diambil berasal dari
Taiwan), yaitu bocconoline, norcherithrine, 6-acetonyl dihydrocelerythrine,
arnottianamide dan decarine. Selain itu ditemukan juga senyawa-senyawa berikut:
dictanine, γ-fagarine, robustine, skimmianine; rutaecarpine, hortiacine quinolone;
sitosteryl glucoside, atractylenolide, lupeol, (-)matariesinol, umbeliferone, p-
hydroxybenzaldehide, vanilin, metylvanillate, metylparaben, methylsyringate,
syringaldehide, methyl-p-hydroxycinnamate, trans-4’-hydroxy-
3’methoxycinnamaldehyde, 3,4,5-trimethoxybenzyl alcohol, 2’-hydroxy-4’-
methoxyacetophenone, p-hydroxybenzoic acid, ω-hydroxypropioguaicone,
evofolin-C, hortiamide, limonin, evodol, 12αhydroxyevodol, 6β-acetoxy-5-
epilimonin, rutaevine, graucin, cis-N-p-coumaroyltyramine, trans-N-p-
coumaroyltyramine, cis-N-feruloyltyramine dan trans-N-feruloyltyramine serta
senyawa anorganik KNO3. Evodia lepta dari Hainan, Cina, mengandung leptonol,
metylleptol A, alloevodione, 7,4-dihydroxy-3,5,3’-trimethoxyflavone, 3,7-
dimethylcaemferol dan clovandiol (Li & Zhu, 1998).
Tiga belas jenis Evodia juga tersebar di Madagaskar. Satu senyawa baru
diidentifikasi dari Evodia fatraina oleh Ravelomanantsoa et al.(1995) yaitu
furoquinoline. Senyawa tersebut diisolasi dari bagian akar dan ranting Evodia.
Tang et al. (1996) menemukan lima jenis alkaloid baru golongan quinolon
dari bagian buah Evodia rutaecarpa, yang merupakan obat tradisional Cina. Oleh
masyarakat setempat, digunakan untuk terapi sakit kepala, sakit perut, disentri,
pendarahan setelah melahirkan, nyeri tulang, migrain dan rasa mual. Selain
quinolon, telah dilaporkan adanya senyawa-senyawa alkaloid golongan lainnya
yaitu indol dan limonoid. Dari ekstrak metanol buah kering ditemukan senyawa 1-
,etil-2-nonil-4-quinolon, 1-metil-2-undesil-4-quinolon, 1-metil-2-dodesil-4-
quinolon, 2-tridesil-4-quinolon, dihidroevocarpine, 1-metil-2-pentadesil-4-
quinolon, 1-metil-2-[(Z)-5-undekenil]-4(1H)-quinolon dan 1-metil-2-[(Z)-6-
undekenil]-4(1H)-quinolon. Selain itu terdapat 1-metil-2-[(Z)-7-tridekenil]-4(1H)-
quinolon, evocarpine, 1-metil-2-[(Z)-9-pentadekenil]-4(1H)-quinolon. Ditemukan
sejumlah kecil senyawa 1-metil-2-dodesil-4(1H)-quinolon. Terdapat juga
komponen dalam bentuk minyak: campuran 1-metil-2-[(Z)-5-undekenil]-4(1H)-
quinolon dan 1-metil-2-[(Z)-6-undekenil]-4(1H)-quinolon, campuran 1-metil-2-
[(Z)-7-tridekenil-4(1H)-quinolon dan evocarpine serta campuran 1-metil-2-[(Z)-9-
entadekenil-4(1H)-quinolon dan 1-metil-2-[(Z)-10-pentadekenil]-4(1H)-quinolon.
Gambar 3 Alkaloid quinolon dari Evodia Rutaecarpa (Tang et al. (1996)
Antibakteri
Komponen antimikroba adalah suatu komponen yang bersifat dapat
menghambat pertumbuhan bakteri atau kapang atau membunuh bakteri atau
kapang (Fardiaz, 1992). Antimikroba meliputi antibakteri, antiprotozoa, antifungi,
dan antivirus. Antibakteri termasuk dalam antimikroba yang digunakan untuk
menghambat pertumbuhan bakteri (Schunack et al., 1990).
Zat antibakteri adalah zat yang dapat mengganggu pertumbuhan dan
metabolisme bakteri (Pelczar dan Chan, 1986). Berdasarkan aktivitasnya, zat
antibakteri dibedakan menjadi dua, yaitu antibakteri yang memiliki aktifitas
bakteriostatik (menghambat pertumbuhan bakteri) dan aktivitas bakterisidal
(membunuh bakteri).Antibakteri bakteriostatik bekerja dengan cara menghambat
perbanyakan populasi bakteri dan tidak mematikan. Pada kadar yang tinggi,
R2
O
R1
N
R1
R2
1 Me
2 Me
3 Me
4 H
5 Me
6 Me
7a Me
7b Me
8a Me
8b Me
9a Me
9b Me
antibakteri bakteriostatik juga dapat bertindak sebagai bakterisida (Schunack et
al.1990).
Beberapa faktor dapat mempengaruhi aktivitas penghambatan atau
pembunuhan bakteri oleh suatu zat (Pelzcar & Chan, 1986). Faktor-faktor tersebut
adalah konsentrasi zat, jumlah mikroorganisme, suhu, spesies mikroorganisme,
adanya bahan organik dan pH.
Terdapat beberapa metode yang dapat digunakan dalam uji antibakteri
secara in vitro. Secara garis besar, uji dikelompokkan atas tes difusi dan tes dalam
media cair (Edward, 1980). Masing-masing metode meiliki kekurangan dan
kelebihan. Ada tiga teknik uji yang termasuk dalam kelompok tes difusi, yaitu
disc technique, ditch technique dan hole atau well technique. Tes dalam media
cair biasanya digunakan untuk menentukan nilai minimum inhibitory
cancentration (MIC).
Metode disc dffusion adalah metode paling sederhana yang secara rutin
digunakan dalam uji sensitivitas. Metode ini direkomendasikan oleh komite WHO
dan Asosiasi Patologis Klinis. Dalam metode ini paper disc yang mengandung
sejumlah tertentu zat antibakteri ditempatkan pada permukaan media agar yang
sudah diinokulasi dengan bakteri uji.
Ditch technique saat ini sudah jarang digunakan. Dalam metode tersebut,
dilakukan pengambilan sebagian agar pada salah satu sisi petri untuk diganti
dengan agar yang mengandung antibiotik atau zat uji.
Dalam well technique, media agar padat dilubangi menggunakan cork-
borer kemudian diisi dengan sejumlah antibiotik atau larutan obat. Teknik ini
memiliki kelebihan yaitu bahwa konsentrasi antibiotik atau obat yang digunakan
dapat berbeda-beda serta dapat dibuat lubang dengan ukuran besar sehingga uji
lebih kuantitatif.
Uji menggunakan media cair adalah metode paling sederhana untuk
menentukan nilai MIC (Edward, 1980). Menurut Edberg (1986), MIC merupakan
konsentrasi terendah yang akan menghambat pertumbuhan mikroorganisme
makroskopik. Pertumbuhan mikroorganisme makroskopik dapat dilihat dalam
batas 106
sampai 107
mikroba/ml. Jumlah bakteri pada kontrol dapat mencapai
109
sampai 1010
mikroorganisme/ml.
Komponen Antibakteri Tanaman
Zat aktif yang terkandung dalam berbagai jenis ekstrak tanaman diketahui
dapat menghambat beberapa mikroba patogen maupun perusak pangan. Zat aktif
tersebut dapat berasal dari bagian tanaman, seperti biji, buah, rimpang, batang,
daun, dan umbi.
Komponen antibakteri maupun antifungi dapat ditemukan pada minyak
atsiri suatu tanaman. Efek antimikroba minyak atsiri telah banyak
didokumentasikan dan digunakan dalam pengobatan berbasis herbal di beberapa
negara (Schilcher, 1998; Cowan, 1999; Schilcher, 2002; Longbottom et al. 2004;
Sonboli et al. 2005) diacu dalam Mahboobi et al. (2006). Dalam penelitiannya,
Mahboobi (2006) mempelajari efek sinergis dari minyak atsiri tembakau, lavender
dan geranium. Kerja sinergi beberapa minyak atsiri tersebut menghasilkan
hambatan kuat terhadap P. aeroginosa. Minyak atsiri lengkuas (Alpinia galanga)
juga mampu menghambat pertumbuhan B. subtilis dan S. aureus serta jamur
Neurospora sp. dan Penicillium sp.
Harborne (1987) menyebutkan bahwa zat bioaktif yang terdapat pada
minyak atsiri digolongkan dalam golongan terpenoid. Terpenoid terdiri atas
beberapa macam senyawa, mulai dari minyak atsiri yang mudah menguap, yaitu
monoterpena dan sesquiterpena (C10 dan C15), diterpena yang lebih sukar
menguap (C20), sampai ke senyawa yang tidak menguap, yaitu triterpenoid dan
sterol (C30, serta pigmen karotenoid (C40). Beberapa komponen minyak atsiri yang
memiliki aktivitas antibakteri ditampilkan dalam tabel berikut ini:
Minyak atsiri terdapat di dalam sel kelenjar khusus pada permukaan daun
dan dapat dipisahkan menggunakan metode destilasi. Teknik destilasi terdiri dari
tiga cara yaitu; destilasi air, dimana bahan ditempatkan bersama air kemudian
dipanaskan; destilasi uap dan air, yaitu bahan hanya berhubungan dengan uap
tetapi tidak dengan air panas dan uap dalam keadaan basah, jenuh dan tidak terlalu
panas; dan destilasi uap, dimana bahan yang didetilasi berhubungan dengan uap
jenuh atau lewat jenuh pada tekanan lebih dari satu atmosfer (Heath dan
Reineiccus, 1987).
Tabel 1 Komponen utama beberapa jenis minyak atsiri yang memiliki aktivitas
antibakteri
Nama umum
minyak atsiri
Nama Latin
tumbuhan asal
Komponen
utama
Komposisi (%)
Cilantro Coriandrum
sativum
Linalool
E-2-dekanal
26%
20%
Coriander Caoriandrum
sativum (biji)
Linalool
E-2-dekanal
70%
-
Cinnamon Cinnamonum
zeylandicum
Trans-
sinamaldehid
65%
Oregano Origano vulgare Carvakrol
Timol
γ-Terpinene
p-cimene
Trace- 80%
Trace-64%
2-52%
Trace-52%
Rosemary074 Rosmarinus
officinalis
α-pinene
Bornilasetat
Kampor
1,8-sineol
2 – 25%
0-17%
2-14%
3-89%
Sage Salvia officinalis
L.
Kampor
α-pinene
β-pinene
1,8-sineol
α-tujone
6-15%
4-5%
2-10%
6-145
20-42%
Clove Syzygium
aromaticum
Eugenol
Eugenilasetat
75-85%
8-15%
Thyme Thymus vulgaris Timol
Karvakrol
γ-Terpinene
p-cimene
10-64%
2-11%
2-31%
10-56%
Sumber: Burt (2004)
Bakteri
Bakteri adalah sel prokariotik yang khas, bersifat uniseluler dan tidak
mengandung struktur yang terbatasi membran di dalam sitoplasmanya. Sel bakteri
memiliki bentuk yang khas, seperti bola, batang, atau spiral. Umumnya bakteri
berdiameter antara 0.5 – 1.0 μm (Pelczar & Chan, 1986).
Struktur utama yang ada di bagian luar sel bakteri adalah flagella, pili, dan
kapsul. Flagela berbentuk seperti rambut tipis yang berfungsi sebagai alat gerak.
Pilus atau pili adalah sebuah bentuk filamen yang lebih kecil, lebih banyak
flagela. Kapsul adalah lapisan lendir yang menyelubungi dinding sel bakteri dan
merupakan pelindung sel serta berfungsi sebagai makanan cadangan. Bakteri
dapat hidup berpasangan, bergerombol, membentuk rantai atau filamen.
Bakteri melakukan reproduksi melalui pembelahan biner sederhana atau
membentuk sel khusus yang disebut spora. Selang waktu khusus yang dibutuhkan
bakteri untuk membelah diri agar populasinya menjadi dua kali lipat disebut
waktu generasi (Pelczar dan Chan, 1988). Berdasarkan komposisi dinding sel
bakteri, bakteri dibedakan menjadi bakteri Gram positif dan Gram negatif.
Bakteri Gram positif memiliki struktur dinding sel yang tebal (15-80 μm)
dan berlapis tunggal dengan komposisi dinding sel terdiri atas lipid peptidoglikan
dan asam teikoat. Kandungan lipid pada bakteri Gram positif antara 1-4%.
Dinding sel terdiri dari lapisan tunggal peptidoglikan yang mencapai lebih dari
50% berat kering sel bakteri. Asam teikoat sebagai bagian utama dinding sel yang
hanya terdapat pada bakteri Gram positif adalah polimer linear yang diturunkan
baik dari gliserol fosfat maupun dari ribitol fosfat. Bakteri Gram positif rentan
terhadap gangguan fisik (Pelczar dan Chan, 1986; Cummins, 1990; Williams et al.
1996).
Bakteri Gram negatif memiliki struktur dinding sel berlapis tiga dengan
ketebalan 10-15 nm. Komposisi dinding sel terdiri atas lipid dan peptidoglikan
yang berada dalam lapisan sebelah dalam dengan jumlah sekitar 10% berat kering.
Kandungan lipid pada bakteri Gram negatif cukup tinggi, yaitu 11-22%. Bakteri
ini umumnya kurang rentan terhadap penisilin dan gangguan fisik. Selain itu,
dinding sel bakteri Gram negatif lebih tipis daripada bakteri Gram positif.
Pengaruh zat antibakteri terhadap sel bakteri
Senyawa antibakteri dalam menghambat pertumbuhan bakteri bahkan
membunuhnya. Menutur menurut Pelczar dan Chan (1986) hal tersebut
disebabkan oleh:
1.Kerusakan struktur dinding sel
Unit dasar dari dinding sel bakteri adalah peptidoglikan yang secara
mekanis memberikan ketegaran pada sel bakteri, disamping sebagai dasar
membran sitoplasma. Peptidoglikan tersebut terdiri dari turunan gula, yaitu asam
N-asetilglukosamin dan N-asetilmuramat serta asam amino L-alanin, D-alanin, D-
glutamat, dan lisin. Struktur dinding sel bakteri Gram positif mengandung 90%
peptidoglikan serta lapisan tipis asam teikoat dan asam teikuronat yang bermuatan
negatif. Ada bakteri Gram negatif, selain peptidoglikan 5-10%, terkandung juga
protein, lipoprotein dan lipopolisakarida. Perbedaan utama kedua Gram tersebut
terletak pada lapisan membran luar, yang meliputi lipopolisakarida (Madigan et
al. 2003). Kehadiran membran ini menyebabkan bakteri kaya akan lipid (11-
22%). Membran tersebut tidak hanya terdiri dari fosfolipida saja seperti pada
membran plasma tetapi mengandung juga lipid lainnya, seperti polisakarida dan
protein. Lipid dan polisakarida ini berhubungan erat dan membentuk struktur yang
khas yang disebut lipopolisakarida. Lipopolisakarida terikat satu sama lain dengan
kation divalen Ca2+
dan Mg2+
(Murray, 1998).
Membran luar bakteri Gram negatif mempunyai peranan sebagai barrier
masuknya senyawa-senyawa yang tidak dibutuhkan oleh sel, diantaranya
bakteriosin, enzim dan senyawa-senyawa yang bersifat hidrofobik (Alakomi et al.
2000). Dalam upaya untuk mencapai sasaran, senyawa antimikroba dapat
menembus lipopolisakarida dinding sel. Molekul-molekul yang bersifat hidrofilik
lebih mudah melewati lapisan lipopolisakarida dibandingkan dengan yang bersifat
hidrofobik. Bakteri Gram positif mempunyai sisi hidrofilik, yaitu karboksil, asam
amino, dan hidroksil. Asam-asam organik dapat menghambat pertumbuhan
bakteri Gram negatif dengan mengkelat kation Ca2+
dan Mg2+
(Stratford, 2000).
Mekanisme kerusakan dinding sel dapat disebabkan oleh adanya
akumulasi komponen lipofilik yang terdapat pada dinding sel atau membran sel
sehingga menyebabkan perubahan komposisi penyusun dinding sel. Terjadinya
akumulasi senyawa antibakteri dipengaruhi oleh bentuk terdisosiasi. Gugus
hidrofobik pada senyawa antibakteri dapat mengikat daerah hidrofobik membran
serta melarut baik ada fase lipid membran bakteri.
Umumnya senyawa antimikroba dapat menghambat sintesis peptidoglikan
karena kemampuan dari senyawa tersebut dalam menghambat enzim-enzim yang
berperan dalam pembentukan peptidoglikan seperti karboksipeptidase,
endopeptidase dan transpeptidase. Jika aktifitas enzim-enzim tersebut dihambat
oleh senyawa antibakteri maka sifat enzim autolitik sebagai reseptor hilang dan
enzim tidak mampu mengendalikan aktifitasnya sehingga dinding sel akan
mengalami degradasi.
2. Perubahan permeabilitas membran sitoplasma.
Sel bakteri dikelilingi oleh struktur kaku yang disebut dinding sel, yang
melindungi sitoplasma baik osmotik maupun mekanik. Setiap zat yang dapat
merusak dinding sel atau mencegah sintesisnya akan menyebabkan terbentuknya
sel-sel yang peka terhadap osmotik. Adanya tekanan osmotik dalam sel bakteri
akan menyebabkan terjadinya lisis yang merupakan dasar efek bakterisidal pada
bakteri yang peka.
3. Perubahan molekul protein dan asam nukleat
Hidup suatu sel tergantung pada terpeliharanya molekul-molekul protein
dan asam nukleat dalam keadaan alamiahnya. Suatu kondisi atau substansi yang
mengubah keadaan ini, yaitu mendenaturasikan protein dan asam-asam nukleat
dapat merusak sel tanpa dapat diperbaiki kembali. Suhu tinggi dan konsentrasi
pekat beberapa zat kimia dapat mengakibatkan koagulasi irreversibel komponen-
komponen selular yang vital ini.
4. Penghambatan kerja enzim di dalam sel sehingga mengakibatkan
terganggunya metabolisme atau matinya sel.
Senyawa antibakteri dapat menghambat pertumbuhan atau membunuh
mikroorganisme dengan cara mengganggu aktifitas enzim-enzim metabolik.
Beberapa senyawa antibakteri yang dapat menginaktifasi enzim adalah asam
benzoat, asam lemak, sulfit dan nitrit. Nitrit dapat menghambat sistem enzim
fosfat dehidrogenase sehingga mengakibatkan reduksi ATP dan ekskresi piruvat
dalam bakteri S. aureus. Asam benzoat dapat menghambat aktifitas α-ketoglutarat
dehidrogenase dan suksinat dehidrogenase. Hal ini akan menghambat konversi α-
ketoglutarat menjadi suksinil-KoA dan suksinat menjadi fumarat.
5. Penghambatan sintesis asam nukleat dan protein
Kim et al. (1995) menyatakan bahwa senyawa antimikroba dapat merusak
sistem metabolisme di dalam sel dengan cara menghambat sintesis protein bakteri
dan menghambat kerja enzim entraseluler. Sistem enzim yang terpengaruh akan
mengakibatkan gangguan pada produksi energi penyusun sel dan sintesis
komponen secara struktural.
Branen dan Davidson (1993) menyatakan adanya mekanisme antimikroba
yang mendestruksi atau menginaktivasi fungsi dari materi genetik. Sintesis protein
merupakan hasil akhir dari proses transkripsi dan translasi. Dalam Kim et al.
(1995) dijelaskan bahwa suatu senyawa yang bersifat antimikroba dapat
mengganggu pembentukan asam nukleat sehingga transfer informasi genetik akan
terganngu. Hal ini disebabkan senyawa antimikroba menghambat aktifitas enzim
RNA polimerase dan DNA polimerase yang selanjutnya dapat menginaktifasi atau
merusak materi genetik sehingga mengganggu proses pembelahan sel untuk
pembiakan.
Kerja antibakteri dipengaruhi oleh lingkungannya, antara lain konsentrasi zat
antibakteri, spesies antibakteri, pH, dan lingkungannya. Bakteri Gram positif
cenderung lebih sensitif terhadap komponen antibakteri. Hal ini disebabkan oleh
struktur dinding sel bakteri Gram positif berlapis tunggal yang relatif sederhana
sehingga memudahkan senyawa antibakteri masuk ke dalam sel dan menemukan
sasarannya untuk bekerja. Bakteri gram negatif lebih resisten karena struktur
dinding sel bakteri Gram negatif relatif lebih kompleks dan berlapis tiga, yaitu
lapisan luar berupa lipoprotein, lapisan tengah berupa polisakarida dan lapisan
dalam peptidoglikan (Pelczar dan Chan, 1986).
Isolasi Senyawa Aktif
Ekstraksi merupakan suatu proses yang secara selektif mengambil zat
terlarut dari campuran dengan bantuan pelarut. Teknik ekstraksi didasarkan pada
kenyataan bahwa jika suatu zat dapat larut dalam dua fase yang tidak tercampur
maka zat itu dapat dialihkan dari saru fase ke fase lainnya dengan mengocoknya
bersama-sama. Zat terlarut yang diekstraksi dapat berada dalam medium padat
maupun cair. Pelarut yang digunakan untuk ekstraksi dapat bersifat larut dalam air
seperti alkohol atau yang tidak larut air seperti heksana dan kloroform. Pemilihan
pelarut yang digunakan tergantung pada sifat zat yang dilarutkan karena setiap zat
memiliki kelarutan yang berbeda-beda (Achmadi, 1992).
Dalam memilih pelarut yang dipakai harus diperhatikan sifat metabolit
yang akan diekstrak. Sifat yang penting adalah sifat kepolaran dan gugus polar
pada senyawa yang akan diekstrak. Dengan mengetahui sifat metabolit yang akan
diekstraksi dapat dipilih pelarut yang sesuai berdasarkan kepolaran. Senyawa
polar akan lebih mudah larut dalam pelarut polar dan senyawa nonpolar lebih
mudah larut dalam pelarut nonpolar. Derajat kepolaran bergantung pada tetapan
dielektrik. Makin besar tetapan dielektrik makin polar pelarut tersebut.
Tabel 2 Beberapa pelarut organik dan sifat fisiknya
Pelarut Titik didih (0
C) Tetapan dielektrik
Air
Asam formiat
Asetonitril
Metanol
Etanol
Aseton
Metil klorida
Asam asetat
Etil asetat
Dietil eter
Heksan
Benzen
100
100
81
68
78
56
40
118
78
35
69
80
80
58
36.6
33
24.3
20.7
9.08
6.15
6.02
4.34
2.02
2.28
KLT adalah metode yang sederhana dan murah untuk mendeteksi unsur-
unsur dalam tumbuhan (Hostettman, 1998). Metode tersebut mudah dalam
pengoprasian, keterulangan baik, dan hanya memerlukan sedikit perlengkapan.
BAHAN DAN METODE
Waktu dan Tempat Penelitian
Penelitian ini dilaksanakan sejak bulan Maret sampai dengan Juli 2008.
Kegiatan penelitian dilakukan di Laboratorium Bakteriologi Balai Veteriner
Bogor, Laboratorium Biokimia IPB dan Laboratorium Pusat Studi Biofarmaka
IPB. Identifikasi GC-MS dilakukan di Laboratorium Kesehatan Daerah Jakarta
dan Laboratorium Kriminal Mabes Polri Jakarta. Scanning electron microscopy
dilaksanakan di Laboratorium Zoologi-Biologi LIPI Cibinong.
Bahan dan Alat
Bahan yang digunakan dalam penelitian ini meliputi daun zodia, pelarut
organik , media padat Mueler Hinton, plat silika gel 60 G F254, allumunium foil,
kertas saring Whatman 42, telur Artemia salina, bakteri biakan uji
Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, dan
Salmonella enteritidis.
Alat yang digunakan adalah alat –alat gelas, perangkat destilasi,
mikrosentrifuse, mikropipet, shaker, bejana KLT, lampu UV panjang gelombang
254 nm dan 365 nm, microwell, aerator, perangkat GC-MS, scanning electron
microscop tipe JSM-5000.
Metode Penelitian
Isolasi Minyak Atsiri (Lopes et al. 1997)
Minyak atsiri daun zodia diisolasi mengunakan metode destilasi uap. Daun
zodia dicuci dan dikeringudarakan. Selanjutnya sebanyak 400g daun kering
didestilasi uap selama 4 jam sampai. Destilat diambil, air yang tercampur
dipisahkan dengan penambahan Na2SO4 anhidrat. Minyak atsiri dipisahkan
dengan cara memipetnya menggunakan pipet tetes.
Karakterisasi menggunakan GC-MS (Lopes et al. 1997)
Senyawa aktif dilarutkan dalam metanol. Larutan kemudian diinjeksikan ke
dalam alat GC-MS. Adapun spesifikasi alat GC-MS yang digunakan adalah
sebagai berikut:
instrumen GC-MS Agilent Technologies 6890 GC dengan auto sampler
5973 Mass Selective Detector
chemstation data system.
Kolom innowax dengan panjang kolom kapiler 30 m diameter 0.25 mm dan
ketebalan 0.25 μm.
Gas pembawa adalah helium dengan kecepatan alir 0.6 µl/menit
Pengujian Aktifitas Antibakteri (Simons & Craven, 1980)
Pengujian antibakteri dilakukan dengan metode disc difusion. Bakteri
biakan uji diinkubasikan pada temperatur 370
C selama 24 jam. Ke dalam media
Mueller Hinton yang telah membeku dalam cawan petri diinokulasikan bakteri
biakan uji dengan densitas bakteri 108
(menggunakan standard Mac Farland no. 2.
Paper disc yang telah ditetesi contoh sebanyak 15 μl diletakkan pada permukaan
media. Pengamatan dan pengukuran zona bening dilakukan setelah inkubasi
selama 18 jam pada suhu 370
C.
Uji Toksisitas Minyak Atsiri (Latha et al. 2007)
Uji toksisitas minyak atsiri menggunakan metode Brine-Shrimp Letality
Test. Disiapkan larutan uji minyak atsiri dengan konsentrasi 0, 100, 500, dan 1000
ppm dalam akuades dengan Tween 80 sebanyak 0,1% sebagai penurun tegangan
permukaan. Ke dalam setiap sumur yang berisi larutan dimasukkan larva udang
Artemia salina berumur 28 jam. Interaksi artemia dan larutan uji dilakukan selama
24 jam, selanjutnya jumlah larva udang yang mati dihitung. Data persen larva
udang hidup diplotkan terhadap konsentrasi minyak atsiri dalam kurva regresi
linier. Nilai LC50 ditentukan dengan menggunakan persamaan kurva yang
dihasilkan.
Kromatografi Lapis Tipis (Stahl, 1969)
Pemisahan senyawa antibakteri dilakukan dengan teknik kromatografi
lapis tipis dengan mencari eluen yang cocok. Lempeng lapis tipis silika gel 60 G
F254 dengan ukuran panjang 10 cm dan lebar 2.5 cm diberi tanda garis dengan
pensil pada jarak 1 cm dari setiap ujung lempeng. Fraksi aktif dilarutkan dalam
pelarut asal. Eluen dimasukkan dalam tabung kromatografi hingga tingginya
mencapai 0.5 cm dari dasar tabung dan ditutup rapat lalu dibiarkan agar tabung
jenuh dengan uap pelarut. Larutan ektrak sampel diteteskan pada lempeng silika
gel. Plat dicelupkan ke dalam larutan pengembang. Setelah mencapai batas 1 cm
dari bagian atas plat, elusi dihentikan selanjutnya plat dikeringkan pada suhu
ruang. Spot hasil pemisahan dideteksi menggunakan sinar UV dengan panjang
gelombang 254 nm dan 365 nm dan diberi tanda dengan pensil lalu dihitung nilai
retardation factor (Rf) masing-masing noda yang terbentuk.
Rf = jarak tempuh analit dari titik awal
Jarak tempuh pelarut
Penentuan Minimum Inhibitory Concentration (MIC)
(Edberg, 1986 yang dimodifikasi)
Nilai MIC adalah konsentrasi terendah yang mematikan semua bakteri
yang diinokulasikan ke dalam medium. MIC ditentukan menggunakan metode
broth dillution menggunakan kaldu Mueller Hinton. Minyak atsiri diencerkan
dalam suatu rangkaian konsentrasi dalam kaldu Mueller Hinton dengan bantuan
pengemulsi. Bakteri patogen dibuat konsentrasinya menjadi 105
sampai 106
organisme/ml. Ke dalam setiap tabung dimasukkan inokulum termasuk juga satu
tabung yang hanya berisi kaldu Mueller Hinton sebagai kontrol. Setelah inokulasi,
tabung ditempatkan dalam inkubator suhu 370
C selama 18 jam. Selanjutnya kultur
bakteri disubkultur kembali pada media padat Mueller Hinton dan diinkubasi
kembali pada suhu 370
C selama 18 jam. Setelah inkubasi selesai, dilakukan
pengamatan terhadap adanya pertumbuhan bakteri. Konsentrasi minyak atsiri
yang menyebabkan bakteri tidak tumbuh pada subkultur merupakan konsentrasi
yang dipilih sebagai nilai MIC.
Penentuan Waktu Kontak Minyak Atsiri (metode Bintang, 1993)
Disiapkan media cair Mueller Hinton yang mengandung ekstrak dengan
konsentrasi 2%. Disiapkan pula satu tabung yang hanya berisi media cair sebagai
kontrol. Semua tabung diinkubasi pada 200
C selama 5 menit. Selanjutnya ke dalam
setiap tabung dimasukkan bakteri biakan uji S. aureus sebanyak 100 μl dengan
interval waktu 30 detik untuk setiap tabung. Setelah diinkubasi selama 1 jam, diambil
20 μl kultur untuk disubkulturkan pada media padat Mueller Hinton. Subkultur
dilakukan lagi pada setiap jam berikutnya selama 24 jam. Media yang telah
diinokulasi diinkubasi pada 370
C selama 24 jam. Setelah itu jumlah bakteri yang
tumbuh dalam setiap media subkultur dihitung.
Analisis Perubahan Morfologi Sel (Ritz et al. 2001)
Tahap ini bertujuan untuk mengetahui perubahan morfologi dan struktur sel
bakteri. Perubahan-perubahan yang diamati diantaranya adalah perubahan
penampakan sel secara umum, ketebalan dinding sel, ukuran sel dan lainnya yang
dapat diamati dengan SEM.
Suspensi bakteri yang telah diinteraksikan dengan minyak atsiri daun
zodia dengan konsentrasi 2% selama 17 jam disentrifus dengan kecepatan 3500
rpm selama 15 menit. Supernatan dibuang, contoh direndam dengan
glutaraldehyde 2% selama beberapa jam. Contoh disentrifus kembali, larutan
fiksatif dibuang, ditambahkan buffer caccodylate, dilakukan perendaman selama
10 menit. Perendaman dilakukan dua kali. Contoh disentrifus kembali, buffer
dibuang, lalu ditambahkan osmium tetra oksida 1% dan direndam selama 1 jam.
Contoh disentrifuse, larutan dibuang, ditambahkan alkohol 50 % dan direndam
selama 10 menit sebanyak 2 kali. Selanjutnya berturut-turut tambahkan alkohol 70
% , alkohol 80%, dan 95 %, masing 2 kali 10 menit dan alkohol absolut selama 10
menit. Pengerjaan ini dilakukan sekali lagi. Contoh disentrifus, larutan dibuang,
ditambahkan t- butanol, contoh direndam 2 kali 10 menit, sentrifus dilakukan lagi,
butanol dibuang, ditambahkan butanol, dibuat suspensi dalam butanol, Potongan
cover slip dibekukan, dibuat ulasan suspensi pada cover slip lalu coverslip
dikeringkan dengan dengan Freeze Drier dan dilapisi dengan. Preparat siap
diamati. Semua proses dilakukan pada suhu 40
C.
Isolasi Senyawa Aktif Antibakteri (Atkins, 1994)
Minyak atsiri daun zodia didinginkan mencapai suhu 18o
C sampai terbentuk
kristal. Kristal yang dihasilkan dipisahkan dari fase cair. Kristal dicuci beberapa kali
menggunakan akuades. Kristal hasil cucian dilarutkan dalam heksan. Fraksi heksan
dipisahkan kemudian kristal sisa dilarutkaan dalam etil asetat. Pelarut dari setiap
fraksi kemudian dihilangkan dengan metode penguapan pada suhu kamar.
Selanjutnya aktivitas antibakteri diuji kembali serta dilakukan analisis kemurnian
kristal dengan metode KLT dan GC-MS.
HASIL DAN PEMBAHASAN
Komposisi Minyak Atsiri
Minyak atsiri daun zodia diisolasi menggunakan metode destilasi uap.
Rendemen yang dihasilkan adalah 1% berdasarkan bobot kering dengan kadar air
11%. Komponen minyak atsiri dianalisis dengan metode GC-MS.
Gambar 4 Spektra GC-MS minyak atsiri daun zodia
Spektra GC-MS menampakkan 26 puncak yang menunjukkan adanya 26
komponen penyusun minyak atsiri. Total persentase komponen penyusun adalah
100% dengan komponen utama adalah evodone dengan kadar 72.32%, diikuti
dengan menthofuran sebesar 7.52%, limonene 4.73%, curcumene 4.28% dan
fonenol 1.66%, sedangkan sisanya merupakan komponen-komponen berkadar
rendah (Tabel 3).
Evodone dan mentofuran termasuk dalam golongan monoterpena yang
terbentuk dari dua unit isoprena, terdiri dari 10 atom karbon. Evodone merupakan
furanomonoterpena. Komponen ini secara alami dapat diisolasi dari tumbuhan
Evodia hortensis (Lee et al. 2002). Dilaporkan bahwa evodone mampu
menghambat pertumbuhan biji Schizachyrium scoparium. Sifat allelopati tersebut
juga ditunjukkan terhadap Rudbeckia hirta (Weidenhamer, 1994). Seperti halnya
evodone, monoterpene golongan mentofuran juga memiliki efek allelopati
(Weidenhamer, 1994).
Tabel 3 Komponen minyak atsiri daun zodia
No. Nama komponen Kadar (%)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
Limonene
Menthofuran
α-Copaene
2,4,6-trimetilpiridin
Trans-kariophilen
Β- Salinene
α-Humulen
β-Himachalene
Delta-Cadinene
AR-Curcumene
l-carveol
Evodone
Cariophylene oksida
p-Mentha-1(7),8(10)-dien-9-ol
Fonenol
Epiglobulol
4-aminostirene
2-asetil-4,5-dimetilfenol
Mint furanon
3-Aminothieno(2,3-B)pirazine-2-car
1-Methoxycarbonyl-2-vinyl-1,2-dihidropiridin
Asam 2-propenoat
2-Etil-trans-2-butenal
Xanthorizol
Asam 3-(3-thienil)prop-2-enoat
Asam heksadekanoat
4.73
7.52
0.61
0.21
0.56
0.27
0.29
0.57
0.30
4.28
0.89
72.32
0.34
0.49
1.66
0.32
0.16
0.20
0.94
0.27
0.62
0.84
0.43
0.20
0.67
0.31
limonene
O
O
evodone curcumene
Gambar 5 Struktur senyawa terpena yang memiliki kemiripan
dengan komponen utama minyak atsiri daun zodia
Curcumene terbentuk dari tiga unit isoprena. Komponen yang termasuk
dalam golongan sesquiterpena ini telah banyak diteliti akan aktivitas biologisnya,
diantaranya adalah sebagai antioksidan, antikanker, antiinflamasi, antibakteri dan
hepatoprotektor (Saiki (2008); Hwang et al (2008); Sidik (2008)).
Aktivitas Antibakteri Minyak Atsiri
Pengujian aktivitas antibakteri dilakukan untuk menentukan potensi
minyak atsiri dalam menghambat pertumbuhan bakteri. Uji dilakukan terhadap
bakteri Gram positif dan Gram negatif. Dengan demikian spektrum antibakteri
minyak atsiri dapat ditentukan. Hasil uji aktivitas antibakteri dapat dilihat dalam
Tabel 4.
Tabel 4 Aktivitas antibakteri minyak atsiri
Contoh yang
diuji
Bakteri uji/ Diameter zona hambat (mm)
S. aureus S. epidermidis Salmonela
enteritidis
E.coli
Minyak Atsiri 15 11 10 9
Ampisilin 30 40 0 26
Kloramfenikol 24 30 30 30
Neomisin 16 18 16 12
Metisilin 20 18 0 0
Minyak atsiri mampu menghambat bahkan membunuh pertumbuhan S.
aureus, S epidermidis, Salmonella enteritidis maupun E. coli. Aktivitasnya
berspektrum luas dan bersifat bakterisida. Aktivitas dimungkinkan berasal dari
senyawa-senyawa golongan terpenoid yang terkandung dalam minyak atsiri.
Karena sifatnya yang lipofilik, senyawa golongan terpenoid mampu berinteraksi
dengan membran biologis (Brehm-Strecher & Johnson, 2003). Akumulasi
senyawa-senyawa tersebut mempengaruhi struktur dan sifat fungsional membran.
Dibandingkan beberapa antibiotik komersial, aktivitas minyak atsiri
terhadap bakteri S. aureus mencapai 95% aktivitas neomisin. Aktivitas sebesar
61% aktivitas antibiotik neomisin dan metisilin dihasilkan dari uji terhadap
bakteri S. epidermidis. Untuk Salmonella enteritidis dan E. coli, aktivitasnya juga
cukup baik dibandingkan antibiotik neomisin (62,5% untuk Salmonella enteritidis
dan 75% E. Coli). Ampisilin dan kloramfenikol menghasilkan aktivitas sangat
kuat. Aktivitas antibakteri minyak atsiri dapat dikatakan kecil jika dibandingkan
dengan kedua jenis antibiotik ini.
Salmonella enteritidis merupakan bakteri penyebab infeksi akut (Winarno,
2004). Bakteri ini mampu bertahan hidup pada kondisi pH 3.7-9.5 dan suhu 0-
45.6o
C. Dalam penelitian ini, bakteri Salmonella entritidis diisolasi dari karkas
ayam. Uji aktivitas antibakteri menunjukkan bahwa bakteri telah resisten terhadap
antibiotik ampisilin (Tabel 5). Resistensi mungkin disebabkan oleh pemberian
antibiotik terus menerus untuk meningkatkan produksi ternak ayam. Terhadap
bakteri resisten ini, minyak atsiri daun zodia mampu menghasilkan penghambatan
pertumbuhan dengan pembentukan zona hambat sebesar 10 mm (Tabel 4).
Tabel 5 Sensitifitas antibiotik (Simmons & Craven, 1980)
Obat
Potensi
Disc
Zona hambat (mm)
Resisten Intermediet Suseptibel
ampisilin 10 μg 20 atau kurang 21-28 29 atau lebih
kloramfenikol 30 μg 12 atau kurang 13-17 18 atau lebih
neomisin 30 μg 12 atau kurang 13-16 17 atau lebih
metisilin 5 μg 9 atau kurang 10-13 14 atau lebih
Merujuk pada sensitifitas antibiotik dalam tabel 5, bakteri E. Coli juga
telah mengalami resistensi terhadap neomisin. Zona hambat yang terbentuk hanya
12 mm. Terhadap E. Coli resisten ini, minyak atsiri daun zodia mampu
menghasilkan penghambatan sebesar 9 mm.
David Stount mengelompokkan aktivitas antibakteri ke dalam tiga
golongan, yaitu rendah, sedang dan besar. Berdasarkan klasifikasi tersebut (Tabel
6), aktivitas antibakteri minyak atsiri daun zodia termasuk dalam golongan sedang
untuk bakteri Gram negatif dan besar untuk bakteri Gram positif.
Tabel 6 Klasifikasi aktivitas antibakteri menurut David Stount (Suryawiria, 1978)
Aktivitas Diameter zona hambat (mm)
Rendah < 5
Sedang 5 – 10
Besar >10
Bakteri Gram positif lebih peka terhadap minyak atsiri. Hal ini mungkin
disebabkan oleh karekteristik membran sel yang berbeda antara bakteri Gram
positif dan Gram negatif.
Bakteri Gram negatif memiliki pembatas permeabilitas tambahan yang
terdapat dari struktur membran luar (Brehm-Stecher & Johnson (2003). Dinding
sel bakteri Gram negatif lebih kompleks dibandingkan dengan bakteri Gram
positif. Perbedaan utama terletak pada adanya lapisan lipopolisakarida pada
lapisan membran luar sel bakteri Gram negatif. Lapisan inilah yang berperan
sebagai barrier (Gambar 6).
Hipotesis lain yang dikemukakan oleh McBroom & Kuehn (2007)
menjelaskan bahwa kemampuan bakteri Gram negatif untuk bertahan hidup
berhubungan dengan kemampuan bakteri Gram negatif dalam memanajemen
stress. Faktor stress dapat berupa temperatur, ketersediaan nutrisi, paparan
toksikan, salah satunya adalah antibiotik. Peningkatan jumlah vesikel merupakan
bentuk manajemen stress yang dimiliki bakteri
Vesikel berasal dari tonjolan membran luar yang melingkungi komponen
periplasma. Tonjolan membran tersebut mengalami fisi kemudian memisah
membentuk vesikel. Vesikel dapat bertindak sebagai sarana transport intraselular.
Vesikel yang berasosiasi dengan komponen berperan dalam pencernaan nutrisi
dan eliminasi organisme kompetitor (McBroom & Kuehn, 2005, dalam
McBroom& Kuehn (2007)).
Lepasnya vesikel membran luar menghasilkan mekanisme efektif bagi sel
untuk membuang materi seperti makromolekul kompleks, memungkinkan sel
membuang materi tersebut atau mengubah selubung bakteri yang menguntungkan
bagi keberadaan bakteri itu sendiri. Produksi vesikel menjadi merupakan
mekanisme perlindungan diri bakteri. Senyawa-senyawa antimikroba dapat terikat
pada vesikel kemudian terperangkap dalam lingkungan sel atau terikat pada
membran luar dan terlepas bersamaan dengan dibentuknya vesikel (McBroom &
Kuehn, 2007).
Gambar 6 Struktur dinding sel bakteri Gram positif dan Gram negatif
Nilai MIC Minyak Atsiri Daun Zodia
Nilai MIC menunjukkan konsentrsi terendah komponen antimikroba
dimana tidak terjadi pertumbuhan mikroba pada masa inkubasi 24 jam. Dalam
penelitian ini, konsentrasi minyak atsiri yang dicoba 0.2-1.25, bervariasi untuk
setiap jenis bakteri berdasarkan range yang dipersempit dari hasil uji pendahuluan.
Dari Gambar 7 terlihat bahwa nilai MIC minyak atsiri daun zodia berbeda-
beda untuk setiap jenis bakteri. Bakteri yang paling sensitif adalah S. epidermidis.
Salmonella enteritidis mempunyai ketahanan paling besar. Hal ini dapat dilihat
dari nilai MIC yang dimiliki adalah tertinggi, yaitu 1,25.
Gambar 7 Kurva penetapan MIC minyak atsiri daun zodia terhadap bakteri S.
aureus (a) S. epidermidis (b) Salmonella enteritidis (c) dan E. col i(d)
Penetapan Waktu Kontak Minyak Atsiri
Kecepatan efek bakterisida atau durasi efek bakteriostatik dapat ditentukan
dengan analisis “time-killing” (Burt, 2004). Survival curve plot sebagai hasil
analisis menggambarkan hubungan antara jumlah sel yang hidup setelah
berinteraksi dengan minyak atsiri terhadap waktu.
Gambar 8 Penetapan waktu kontak minyak atsiri
0
25
50
75
100
125
150
175
200
225
250
275
0 1 2 3 5 7 9 13 15 16 17 19 20 22 23 24
Jamke-
Log10cfuml-1
0
5
10
15
0.5 0.6 0.7 0.8 0.9 1 1.25
% minyak atsiri
Log10cfuml-1
0
2
4
6
8
0.4 0.6 0.8 1 1.2
% minyak atsiri
Log10cfuml-1
(c) (d)
0
5
10
15
20
25
30
0.7 0.8 0.9 1
% minyak atsiri
Log10cfuml-1
0
5
10
15
20
0.2 0.3 0.4 0.5 0.6 0.7 0.8
% minyak atsiri
Log10cfuml-1
(a) (b)
Bakteri S. aureus mulai mati pada jam ke-3, akan tetapi sebagian besar
bakteri dapat bertahan dan masih dapat berkembang biak hingga jam ke-5. Jumlah
bakteri hidup menurun tajam mulai jam ke-7 hingga mati semuanya pada jam ke-
24.
Penurunan jumlah viabel sel dalam jumlah besar berada pada fase
stasioner bakteri. Menurut Pelczar & Chan (1986) dan Thiel (1999), pada fase
stasioner ini bakteri tumbuh dan membelah dalam kecepatan tetap. Nutrisi yang
tersedia mulai terbatas. Bakteri lebih sensitif terhadap stress (Carson et al. 2002).
Gambar 9 Kurva pertumbuhan bakteri S. aureus
Analisis Perubahan Morfologi Sel
Kerusakan dinding sel dan hilangnya material seluler dapat diamati
menggunakan scanning electron microscope. Prototip mikroskop ini pertama kali
dibuat oleh Ruska dan Knell dari Jerman pada tahun 1931, digunakan pertama kali
pada tahun 1940 serta dikomerialisasikan sekitar tahun 1965 (Suryanto, 1997).
Pada dasarnya peralatan terbagi dalam tiga komponen utama, yaitu sistem lensa
elektromagnetik, sistem pelarikan dan sistem deteksi. Sistem lensa berfungi
menfokuskan cahaya yang berupa berkas–berkas elektron dari filamen yang
dipanaskan. Pada sistem pelarikan, berkas elektron melarik obyek yang diamati.
Hasil interaksi berkas elektron menghasilkan elektron sekunder dan terhambur
balik dimana elektron-lelektron tersebut dikumpulkan dan diolah oleh detektor.
Detektor elektron sekunder kemudian mengolah dan memberikan informasi
tentang topografi dan morfologi permukaan sampel.
0.000
0.200
0.400
0.600
0.800
1.000
0.25 1 5 15 20 23
Jamke-
Absorbans
Analisis mikroskop elektron menunjukkan terjadinya kerusakan pada
membran sel bakteri S. aureus (Gambar 10 b, c dan d) karena berinteraksi dengan
minyak atsiri daun zodia. Permukaan sel mengkerut, kasar sehingga bentuknya
menjadi tidak beraturan (Gambar 10b). Ukuran sel menjadi lebih besar 3 sampai 5
kali lipat ukuran normal yang berkisar 1 µm (Gambar 10a). Respon yang sama
dihasilkan oleh bakteri P. aeruginosa dan E. coli yang terpapar antibiotik
ciprofloksaxin (Wojnicz et al. (2007). Dalam Clinkenbeard et al. (1989), keadaan
sel yang demikian dikatakan sedang mengalami swelling.
Masuknya toksin ke dalam plasma membran menyebabkan terbentuknya
pori transmembran (Bernheimer (1947) dalam Clinkenbeard et al. (1989)). Sel
yang menurut Cook (1965) mengalami “kebocoran” (Gambar 10c)
memungkinkan pergerakan ion secara pasif lebih cepat daripada yang berlangsung
melalui transport aktif. Dijelaskan dalam Clinkenbeard et al. (1989)) bahwa ion-
ion K+
keluar dari dalam sel melalui pori, sedangan komponen sitoplasma yang
(d)(c)
Gambar 10 Mikrograf elektron bakteri S. aureus
Ket: tanpa perlakuan (a) dan setelah perlakuan dengan minyak atsiri daun
zodia (b, c, d) dengan pembesaran 10.000x (a, b, c,) dan 750x (d)
(a) (b)
berukuran lebih besar seperti protein tetap berada dalam sel. Tekanan osmotik
dalam sel menjadi lebih besar daripada tekanan osmosis media sehingga sel
mengalami swelling.
Setelah mengalami swelling, komponen-komponen sitoplama yang
berukuran besar dapat keluar ke lingkungannya (Clinkenbeard et al. (1989)). Sel
tidak lagi memiliki nukleus atau organel lainnya. Kini sel hanya terdiri dari
membran sel yang kosong tanpa isi. Sel demikian disebut sebagai sel “ghost”
(Gambar 10d).
Nilai Toksisitas Minyak Atsiri terhadap Artemia salina
Uji toksisitas larva udang merupakan salah satu metode uji yang paling
banyak digunakan untuk memprediksi adanya aktivitas farmakologis suatu
senyawa. Menurut Olila et al (2001), beberapa kelebihan yang dimiliki oleh
metode ini adalah sederhana, tidak memerlukan sterilitas, hasil dapat diperoleh
dalam waktu singkat (24 jam).
Dalam uji toksisitas minyak atsiri daun zodia ini dicoba empat vaiasi
konsentrasi minyak atsiri, yaitu 0, 100, 500, dan 1000 ppm. Jumlah larva yang
mati diamati dihitung setelah larva berinteraksi dengan contoh selama 24 jam.
Dengan cara memplotkan jumlah larva yang mati dan konsentrasi minyak atsiri
dalam sebuah kurva regresi (Latha et al, 2007) maka didapatkan nilai toksisitas
minyak atsiri sebesar 376.7 ppm.
Gambar 11 Kurva regresi penentuan toksisitas minyak atsiri
y = 0.1081x + 9.2742
0
20
40
60
80
100
0 200 400 600 800 1000
konsentrasi minyak atsiri (ppm)
%letal
Uji toksisitas menunjukkan bahwa minyak atsiri daun zodia memiliki
potensi bioaktif farmakologis. Berdasarkan klasifikasi toksisitas menurut Tonkes
(Verma, 2008), toksisitas minyak atsiri daun zodia termasuk dalam golongan
sedang. Dengan demikian minyak atsiri tersebut tidak disarankan digunakan
secara oral, melainkan baik untuk penggunaan secara topikal. Meski demikian
perlu dilakukan analisis toksisitas lebih lanjut untuk melihat efeknya toksiknya.
Tabel 7 Hubungan Antara LC50, LD50 and EC50 dan Klasifikasi Toksisitas Tonkes
(Vema, 2008)
LD50 LC50 EC30 Klasifikasi
toksisitas
> 5000 > 100 > 100 Relatif tidak
toksik
500 – 5000 10 – 100 10 – 100% Toksisitas rendah
50 – 500 1 - 10 1 – 10% Toksisitas sedang
<50 < 1 < 1% Sangat Toksik
Pemisahan Komponen Minyak Atsiri Dengan Kromatografi Lapis Tipis
Kromatografi lapis tipis merupakan metode sederhana dan efisien untuk
memisahkan komponen yang jumlahnya sangat sedikit. Minyak atsiri bersifat
hidrofobik. Menurut Stahl (1969), semua jenis adsorben anorganik, kecuali
kieselguhr baik digunakan untuk memisahkan komponen yang bersifat lipofilik.
Silika gel dan alumina umum digunakan dalam pemisahan komponen minyak
atsiri.
Berdasarkan analisis menggunakan KLT diperoleh eluen terbaik yang
terdiri dari campuran heksan : dietileter dengan perbandingan 8 : 2 menggunakan
plat silika gel 60F254. Pemisahan menggunakan eluen tersebut menghasilkan 11
bercak dengan nilai hRf (100 x Rf) seperti yang tercantum dalam Tabel 8.
Gambar 12 Kromatogram minyak atsiri dalam pelarut heksan:dietileter
(8:2) pada plat silika gel 60F254
Tabel 8 Nilai hRf kromatogram minyak atsiri
No.
komponen
hRf
1 5
2 16
3 30
4 35
5 40
6 48
7 58
8 59
9 71
10 80
11 90
Isolasi Senyawa Aktif Antibakteri
Dalam penelitian ini isolasi senyawa aktif dilakukan dengan metode
kristalisasi menggunakan temperatur dingin. Adapun tempertur yang digunakan
adalah 180
C. Dari proses ini didapatkan kristal berwarna putih yang bersifat tidak
larut dalam air, akan tetapi larut dalam etanol dan pelarut organik semipolar
seperti etil asetat dan aseton dan pelarut nonpolar benzena. Dengan pelarut
heksan, kristal tidak dapat larut sempurna, ada sebagian yang larut dan ada pula
yang bertahan bentuknya sebagai kristal. Diperkirakan bahwa kristal terdiri dari
komponen yang bersifat semipolar dan nonpolar.
Kristal kasar hasil proses kristalisasi kemudian dipartisi. Pertama-tama
kristal dicuci menggunakan akuades untuk membersihkan pengotor. Selanjutnya
kristal dilarutkan dalam pelarut heksan. Fraksi heksan diambil kemudian
dikeringudarakan. Pencucian dengan heksan dilakukan berulang kali hingga
didapat fraksi heksan dan kristal sisa pelarutan dengan heksan. Kristal sisa
dilarutkan dalam etil asetat. Selanjutnya dilakukan uji antibakteri terhadap fraksi
heksan, etil asetat dan kristal kasar dalam aseton.
Gambar 13 Kristal hasil isolasi dari minyak atsiri daun zodia
(mikroskop BHS Olympus pembesaran 10.000 x)
Gambar 14 Uji kelarutan kristal dalam air (1) heksan (2), aseton (3),
etil asetat (4) dan benzene (5)
1
4
5
2
3
Tabel 9 Aktivitas antibakteri fraksi heksan, etil asetat dan fraksi air terhadap
bakteri S. aureus
Jenis fraksi Diameter zona hambat (cm)
Fraksi heksan 7
Fraksi etil asetat 6
Kristal kasar dalam aseton 10
Uji aktivitas fraksi menunjukkan bahwa aktivitas fraksi lebih kecil jika
dibandingkan dengan aktivitas kristal kasar maupun aktivitas minyak atsiri (Tabel
9). Aktivitas antibakteri kristal kasar ternyata merupakan hasil kerja sinergi antara
komponen-komponen penyusun kristal kasar tersebut. Demikian juga dengan
aktivitas antibakteri minyak atsiri yang meruakan efek sinergi komponen-
komponennya.
Gambar 15 Aktivitas antibakteri fraksi heksan (1), etil asetat (2)
dan kristal kasar (3)
Untuk menguji kemurnian kristal hasil isolasi, kristal yang berasal dari
fraksi heksan dilarutkan kembali dalam pelarut heksan, kristal yang larut dalam
etil asetat dilarutkan dalam etil asetat, kemudian dianalisis dengan metode
kromatografi lapis tipis menggunakan eluen heksan:dietileter (8:2).
(1) (2) (3)
Gambar 16 Kromatogram fraksi heksan (a) dan fraksi etil asetat (b) de-
ngan pelarut heksan:dietileter (8:2) pada plat silika gel 60 F254
Kromatogram fraksi-fraksi hasil isolasi menggambarkan bahwa fraksi etil
asetat masih mengandung beberapa komponen, sedangkan fraksi heksan hanya
mengandung satu jenis komponen saja dengan hRf 70. Bercak hasil pemisahan
fraksi etil asetat memiliki hRf 42 dan 75. Dengan membandingkan nilai hRf fraksi
heksan dan etil asetat dengan nilai–nilai hRf minyak atsiri dalam Tabel 8, hRf
fraksi heksan mendekati hRf komponen ke-9, sedangkan hRf fraksi etil asetat
mendekati hRf komponen ke-5 dan ke-9.
Gambar17 mempresentasikan gambar satu dimensi kristal yang diamati
menggunakan mikroskop optik Olympus model BHS dengan pembesaran 10.000
kali. Kristal didapatkan dengan menguapkan terlebih dahulu pelarut yang
digunakan dengan cara dikeringudarakan .
Gambar 17 Bentuk dua dimensi fraksi heksan (a) dan fraksi etilasetat (b)
(a) (b)
(a) (b)
Gambar 18 Spektra GC-MS kistal hasil kristalisasi fraksi etil asetat
Gambar 19 Spektra GC-MS kristal hasil kristalisasi fraksi heksan
Hasil analisis GC-MS menunjukkan bahwa kristal hasil kristalisasi fraksi
etil asetat mengandung komponen evodone (77.97%) dan (10.21%) sebagai
komponen utama dengan waktu retensi 10.5 dan 10.7. Komponen lain ditemukan
dalam jumlah kecil, yaitu mentofuran (3.06%) asam palmitat (5.52%). Kristal
hasil kristalisasi frksi heksan merupakan komponen murni dengan struktur
menyerupai evodone dengan waktu retensi 10.5.
KESIMPULAN DAN SARAN
Kesimpulan
Dari hasil penelitian dapat disimpulkan bahwa minyak atsiri daun zodia
mengandung evodon dengan kadar 72.32%, menthofuran 7.52%, limonene 4.73%,
curcumene 4.28% dan fonenol 1.66%. Minyak atsiri menghasilkan aktifitas
antibakteri dan aktivitasnya berspektrum luas. MIC minyak atsiri bernilai 1%
terhadap S. aureus, 0.8% terhadap S. epidermidis, 1.25% terhadap Salmonella
enteritidis and 1.2% terhadap E. coli Minyak atsiri bersifat toksik sedang dan
dapat menyebabkan kerusakan membran sel bakteri. Bakteri mengalami
“swelling” dan sel bakteri berubah menjadi “sel ghost”. Senyawa aktif anti bakteri
adalah evodone. Aktivitas yang dihasilkan oleh senyawa murni lebih rendah
daripada aktivitas minyak atsiri itu sendiri. Jadi aktivitas antibakteri minyak atsiri
merupakan efek kerja sinergi komponen-komponen aktifnya.
Saran
Quality dalam analisis GC-MS menggambarkan persen kemiripan struktur
senyawa dalam contoh dengan struktur senyawa standard. Senyawa aktif
antibakteri hasil isolasi memiliki nilai quality sebesar 91. Hal ini menunjukkan
masih ada perbedaan struktur antara senyawa aktif hasil isolasi dengan senyawa
standard. Oleh karena itu, perlu dilakukan analisis IR-NMR sehingga struktur
senyawa secara utuh dapat ditentukan. Selain itu perlu dilakukan pula analisis
toksisitas akut, subakut dan kronik serta pengaruh minyak atsiri terhadap organ
menggunakan analisis histopatologi sehingga dapat ditentukan pemanfaatan sifat
antibakteri minyak atsiri daun zodia.
DAFTAR PUSTAKA
Achmadi, S. 1992. Teknik Kimia Organik. Jurusan Kimia. Fakultas matematika
dan Ilmu engetahuan Alam. IPB, Bogor.
Alakomi H. L., Skytta E, Saarela M, Mattila-Sandholm T. 2000. Lactic acid
permeabilizes Gram-negatif bacteria by disrupting the outer membrane. J.
Applied Enviroment Microbiology 66:2001-2005.
Atkins, P. 1994. Physical Chemistry, 5th edition. New York: W.H Freeman and
Company.
.Baudoux, D. 2005. Antiviral and Antimikrobial Properties of Essential Oils.
Dalam : http://www.positif health.com ( diakses Desember 2007)
Bintang, M. 1993. Studi Antimikroba dari Streptococcus lactis BCC 2259
(disertasi). Bandung: Program Doktor ITB.
Branen A. L dan Davidson P. M. 1993. Antimicrobial in Food. Marcel Dekker,
New York.
Brehm-Strecher B. F. & E. A. Johnson, 2003. Sensitization of Staphylococcus
aureus and Escherichia coli to Antibiotics by the Sesquiterpenoids
Nerolidol, Farnesol, Bisabolol, and Apritone. Dalam Antimicrobial Agent
and Chemotherapy 47(10): 3357–3360
Burt, S. 2004. Essential oils: their antibacterial properties and potential
applications in foods-a review. Dalam Intenational Journal of Food
Microbiology 94:233-253.
Carson C. F., B. J. Mee, T. V. Riley. 2002. Mechanism of Action of Melaleuca
alternifolia (Tea Tree) Oil on Staphylococcus aureus Determined by
Time-Kill, Lysis, Leakage, and Salt Tolerance Assays and Electron
Microscopy. Dalam Antimicrobial Agents and Chemoteraphy, 6(6): 1914–
1920.
Clinkenbeard, K. D., D. A. Mosier, A. W. Confr. 1989. Transmembrane Pore
Size and Role of Cell Swelling in Cytotoxicity Caused by Pasteurella
haemolytica Leukotoxint. Dalam Infection and Immunity 420-425
Cummins. 1990. Bacterial Cell Wall Structure. Dalam O’Leary, W.M. Practical
hanbook of Microbiology. CRC Press: Boca Raton, Boston.
Dzulkarnain, B., D. Sundari, A. Chozin. 1996. Tanaman Obat Bersifat Antibakteri
di Indonesia. Cermin Dunia Kedokteran 110:35-38.
Edberg, S. C. 1986. Antibiotika dan Infeksi (Antibiotics and Infection).
Terjemahan chandra Sanusi. EGC, Jakarta.
Edward, D. 1980. Antimicrobial Drug Action. The MacMillan Press, Hongkong.
Fardiaz, S. 1992. Mikrobiologi Pengolahan pangan lanjut. PAU Pangan dan Gizi
IPB, Bogor.
Gritter, R. J. , J. M. Bobbit dan A. E. Schwarting. 1981. Penghantar
Kromatografi. Terjemahan Kosasih Padmawinata. ITB, Bandung. 1991
Harborn J. B. 1987. Metode Fitokimia. Padmawinata K, Soediro I. Bandung, ITB.
Hamasaki N, Ishii E, Tominaga K, Tezuka Y, Nagaoka T, Kadota S, Kuroki T,
Yano I. 2000. Highly selective antibacterial activity of novel alkyl
quinolone alkaloids from a Chinese herbal medicine, Gosyuyu (Wu-Chu-
Yu ), against Helicobacter pylori in vitro. Dalam Microbiol Immunol.
44(1):9-15.
Heath & Reineiccus. 1987. Flavour chemistry and technology. Vonostrand
Reinhold, New york.
Hill, H. (2005). How Concerned Should We Be About The Spectre of Antibiotic
Resistance? Dalam The Pharmaceutical Journal 275: 462.
Hostettman, K. 1998. Strategy for Biological and chemical Evaluation on plant
Extract. Dalam Pure Appl. Chem. 70(11).
http://www.proseanet.og/pohati4/printer.php?photoid=15 diakses Maret 28.
Hwang J. 2008 Industrial potensial of Curcuma xanthorrhiza as Antimicrobial and
Antiinflamatory Agent. Dalam prosiding The First International
Symposium on Temulawak. Bogor, 27-29 Mei 2008 hal. 3-4. Bogor, IPB.
Ibba Herve R. 2008. Proteins That Help Bacteria Put Up A FightIdentified.
ScienceDaily Feb 27, 2008.
Ignacimuthu, S. Seenivasan P., M. Jayakumar. 2006. In Vitro Antibacterial
Activity of Some Plant Essential oil. Dalam BMC Complementary and
Alternative Medicine 6:39.
Kardinan, A. 2004. Zodia, Tanaman Pengusir Nyamuk dalam Tabloid Sinar Tani
23 Juni 2004.
Kim J. M., Mashall M. R. , Cornell J. A., Boston J. F., Wei CI. 1995.
Antibacterial Activity of carvacrol, citral and geraniols against Salmonella
typhimurium in Culture Medium and Fish cubes. Dalam J. Food Sci. 60
(6):1129-1131.
Latha L. Y., S. Sasidharan, Z. Zuraini, S. Suryani , L. Shirley, S. Sangetha dan M.
Davaselvi . 2007. Antimicrobial Activities and Toxicity of Crude Extract
of The Psophocarpus Tetrgonolobus Pods. Dalam African Journal of
Traditional, Complementary and Alternative Medicines 4 ( 1): 23-36
Lewis K. & F. M. Ausubel. 2006. Prospect for plant-derived antibacterials dalam
Nature Biotechnology 12:1504-1509.
Lee,Y. R.,* Gun .L., and Keon Y.K. 2002. Application to the Synthesis of
Evodone and Avicequinone-Ceric Ammonium Nitrate(CAN)-Mediated
Oxidative Cycloaddition of 1,3-Dicarbonyls to Vinyl Sulfides. Dalam
Bull. Korean Chem. Soc. 23(10): 1477.
Li, G., J. Zeng, D. Zhu. 1998. Chromans From Evodia Lepta dalam
Phytochemistry 47(1):101-104.
Lopes, N, Massuo J.K.,Eloisa H. A A, Jose G. S. M, MASAYOSHI Y. 1997.
Cicardian and Seasonal Variation in The Essential Oil from Virola
Surinamemsis Leaves. Dalam Phytochemistry 46 (4):689-693.
Madigan, M. T., Martinko, J. M., parker J. 2003. Brock Biology of microorganism
10th
ed. Southern Illionis University, Carbondale.
Mahboobi, M, F Shahcheraghi , M M Feizabadi. 2006. Bactericidal effects of
essential oils from clove, lavender and geranium on multi-drug resistant
isolates of Pseudomonas aeruginosa. Dalam. Iranian Journal of 4(2):137-
140
McBroom, A. J. & M. J. Kuehn. 2005. Outer membrane vesicles. Dalam EcoSal –
Escherichia coli dan Salmonella: Cellular and Molecular biology, Chapter
2. 2. 4. Curtiss, R., III (ed). Washington, DC: American Society for
Microbiology Press. www. ecosal. org.
McBroom, A. J. & M. J. Kuehn. 2007. Release of outer membrane vesicles by
Grm-negatif bacteria is a novel envelope stress response. Dalam
Molecular Microbiology 63(2), 545-558.
Mendoca-Filho, R. M. 2006. Bioactive Phytocompounds in Phytosciences. Dalam
Modern Phytomedicine, Turning Medicinal into Drugs . Wiley-VCH
Verlag GmbH, Weinheim.
Michael, J. P. 2001. Quinoline, quinazoline and acridone alkaloids. Dalam Nat.
Prod. Rep. 18:543-559.
Murray, P. R. Rosenthal, K. S. Kobayashi, G. S., Pfallerial, M. A. 1998. Medical
Microbiology 3- ed. Mosby, London.
Olila, D.aOpuda-Asibo, Jb.and Olwa-Odyekc. 2001.Bioassay-guided studies on
the cytotoxic and in vitro trypanocidal activities of a sesquiterpene
(Muzigadial) derived from a Ugandan medicinal plant (Warburgia
ugandensis). Dalam African Health Sci. 1(1): 12 - 15
Pelczar & Chan. 1986. Dasar-Dasar Mikrobiologi Jilid 1. UI, Jakarta.
Ravelomanantsoa, N., P. Rasoanaivo, M. Delmas. Furoquinoline from Evodia
fatraina. Dalam Biochemical Systematics and Ecology 23(3): 339.
Ritz M., Tholozan j.L., Federihgi M., Pilet M. F. 2001. Morphological and
Physiological Characterization of Listeria monocytogens Subjected to
Hydrostatic Pressure. Applied and Enviromental Microbiology
67(5):2240-2247
Saiki, I. 2008. Curcumin and Cancer Metastasis. Dalam prosiding The First
International Symposium on Temulawak. Bogor, 27-29 Mei 2008 hal. 1-2.
Bogor, IPB.
Stahl, E. 1969. Thin Layer Chromatography. Ed. Ke-2. Terjemahan M. R. F.
Ashworth. Springer-Verlag, Berlin.
Schunack, W. , Mayer K., Haake M. 1990. Senyawa Obat. UGM, Yogyakarta.
Sidik, H. R. 2008. Indigenous Medicine, Botani, Chemistry and Pharmacology.
Dalam prosiding The First International Symposium on Temulawak.
Bogor, 27-29 Mei 2008 hal. 5 Bogor, IPB.
Simmons G. C. & J. Craven. 1980. Antibiotic Sensitivity Test Using The Disc
Method. Australian Bureau of Animal Health.
ŞǏRELI, U. T. & Ali G. 2008.Prevalence and antibiotic resistance of Listeria spp.
Isolated from Ready-to-Eat foods in Ankara. Dalam Turk. J. Vet. Anim.
Sci. 32(2):131-135.
Statford, M. .2000. Traditional Preservatives-organic Acid. Dalam Encyclopedia
of Food Microbiology vol 1. Academic Press, London.
Suryanto. 1997. Basic Analysis Using a TEM. Workshop Mikroskopi dan
Mikroanalisis II. Puspitek Serpong.
Suryawiria. 1978. Mikroba lingkungan. Ed. Ke-2. ITB, Bandung.
Tang, Y.X. Feng, L. Huang. 1996. Quinolone Alkaloids from Evodia Rutaecarpa
dalam Phytochemistry 43(3):719-722.
Tominaga K, Higuchi K, Hamasaki N, Hamaguchi M, Takashima T, Tanigawa T,
Watanabe T, Fujiwara Y, Tezuka Y, Nagaoka T, Kadota S, Ishii E,
Kobayashi K, Arakawa T. J. 2002. In vivo action of novel alkyl methyl
quinolone alkaloids against Helicobacter pylori. Dalam Antimicrob
Chemother. 2002 Oct;50(4):547-552.
Verma, Y. 2008. : Toxicity Evaluation of Effluents from Dye and Dye
Intermediate Producing Industries Using Daphnia Bioassay . Dalam The
Internet Journal of Toxicology. 4(2).
Weidenhamer J. D., Marios M.F., Macias A. Nikolaus H. F., Donald R. R. dan
G. Bruce W. 1994. Allelopathic potential of menthofuran monoterpenes
from Calamintha ashei. Dalam Journal of Chemical Ecology
20(12):3345-3359.
Wiliams , R. A. D., P. A. Lambert dan P. Singleton. 1996. Antimicrobial drug
Action. BIOS Scientific Publisher, Oxford.
Winarno, F. G. 2004. HACCP dan Penerapannya Dalam Industri Pangan. Bogor,
M-BRIO PRESS.
Wojnicz, D., M. Klak, R. Adamski, S. Jankowski. 2007. Influence of
subinhibitory concentrations of Amikacin and Ciprofloxacin on
Morphology and Adherence Ability of Uropathogenic Strains. Dalam
Folia Microbiol. 52(4): 29-436.
Wu, T, J. Yeh, P. Wu. 1995. The Heartwood Constituent of Tetradium
glabrifolium dalam Phytochemistry 40( 1):121-124.
LAMPIRAN
Lampiran 1 Spektra Minyak Atsiri Daun Zodia
Lampiran 2 Spektra GC-MS Komponen ke-1 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 3 Fragmentasi Komponen ke-1 dan Senyawa Referens
Lampiran 4 Spektra GC-MS Komponen ke-2 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 5 Fragmentasi Komponen ke-2 dan Senyawa Referens
Lampiran 6 Spektra GC-MS Komponen ke-3 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 7 Fragmentasi Komponen ke-3 dan Senyawa Referens
Lampiran 8 Spektra GC-MS Komponen ke-4 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 9 Fragmentasi Komponen ke-4 dan Senyawa Referens
Lampiran 10 Spektra GC-MS Komponen ke-5 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 11 Fragmentasi Komponen ke-5 dan Senyawa Referens
Lampiran 12 Spektra GC-MS Komponen ke-6 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 13 Fragmentasi Komponen ke-6 dan Senyawa Referens
Lampiran 14 Spektra GC-MS Komponen ke-7 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 15 Fragmentasi Komponen ke-7 dan Senyawa Referens
Lampiran 16 Spektra GC-MS Komponen ke-8 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 17 Fragmentasi Komponen ke-8 dan Senyawa Referens
Lampiran 18 Spektra GC-MS Komponen ke-9 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 19 Fragmentasi Komponen ke-9 dan Senyawa Referens
Lampiran 20 Spektra GC-MS Komponen ke-10 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 21 Fragmentasi Komponen ke-10 dan Senyawa Referens
Lampiran 22 Spektra GC-MS Komponen ke-11 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 23 Fragmentasi Komponen ke-11 dan Senyawa Referens
Lampiran 24 Spektra GC-MS Komponen ke-12 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 25 Fragmentasi Komponen ke-12 dan Senyawa Referens
Lampiran 26 Spektra GC-MS Komponen ke-13 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 27 Fragmentasi Komponen ke-13dan Senyawa Referens
Lampiran 28 Spektra GC-MS Komponen ke-14 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 29 Fragmentasi Komponen ke-14 dan Senyawa Referens
Lampiran 30 Spektra GC-MS Komponen ke-15 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 31 Fragmentasi Komponen ke-15 dan Senyawa Referens
Lampiran 32 Spektra GC-MS Komponen ke-16 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 33 Fragmentasi Komponen ke-16 dan Senyawa Referens
Lampiran 34 Spektra GC-MS Komponen ke-17 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 35 Fragmentasi Komponen ke-17 dan Senyawa Referens
Lampiran 36 Spektra GC-MS Komponen ke-18 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 37 Fragmentasi Komponen ke-18 dan Senyawa Referens
Lampiran 38 Spektra GC-MS Komponen ke-19 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 39 Fragmentasi Komponen ke-19dan Senyawa Referens
Lampiran 40 Spektra GC-MS Komponen ke-20 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 41 Fragmentasi Komponen ke-20 dan Senyawa Referens
Lampiran 42 Spektra GC-MS Komponen ke-21 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 43 Fragmentasi Komponen ke-21 dan Senyawa Referens
Lampiran 44 Spektra GC-MS Komponen ke-22 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 45 Fragmentasi Komponen ke-22 dan Senyawa Referens
Lampiran 46 Spektra GC-MS Komponen ke-23 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 47 Fragmentasi Komponen ke-23 dan Senyawa Referens
Lampiran 48 Spektra GC-MS Komponen ke-24 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 49 Fragmentasi Komponen ke-24 dan Senyawa Referens
Lampiran 50 Spektra GC-MS Komponen ke-25 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 51 Spektra GC-MS Komponen ke-26 Minyak Atsiri Daun Zodia dan
Fragmentasinya
Lampiran 52 Spektra GC-MS Senyawa Dalam Fraksi Etil Asetat
Lampiran 53 Data Fragmentasi Senyawa Dalam Fraksi Etil Asetat
Lampiran 54 Spektra GC-MS Senyawa Dalam Fraksi Heksan
Lampiran 55 Komposisi Media Mueller Hinton Agar
Beef infusion form 30g
Cassamino acid teknis 17.5g
Starch 1.5g
Agar 17g
Lampiran 56 Komposisi Larutan Standard McFarland
McFarland Vol BaCl2 1%
(ml)
Volume H2SO4 1%
(ml)
Kepadatan Sel
(x 108
)
0.5 0.05 0.950 1
1 0.1 9.9 4
2 0.2 9.8 8
3 0.3 9.7 12
4 0.4 9.6 16
5 0.5 9.5 20
6 0.6 9.4 24
7 0.7 9.3 28
8 0.8 9.2 32
9 0.9 9.1 36
10 1.0 9 40
Lampiran 57 Pembuatan Larutan-larutan Yang Dipakai dalam Analisis SEM
Buffer Caccodylate
Disiapkan larutan larutan stok yang terbuat dari campuran 0,2 M sodium
caccodylate (42,6 gr sodium caccodylate ditambah akuades sampai 1000 ml). pH
dibuat menjadi 8.4.
Untuk membuat larutan siap pakai, sebanyak 50 ml larutan stok ditambah dengan
5,4 ml 0,1 M HCl dan aquades sampai 200 ml atau pH 8,4
Glutaraldehyde 2,5 %
Sebanyak 5 ml glutaraldehyde dilarutkan dalam buffer caccodylate sampai 40 ml
Larutan Tannic acid 2 %
Sebanyak 2 gr tannic acid dilarutkan dalam 100 ml caccodylate buffer
Larutan OsO4 1%
Dibuat campuran dalam perbandingan 1 bag. OsO41 % dengan 4 bagian
caccodylate buffer

Más contenido relacionado

La actualidad más candente

Analisa mikrobiologi pada makanan
Analisa mikrobiologi pada makananAnalisa mikrobiologi pada makanan
Analisa mikrobiologi pada makananNuzul Dianperdana
 
29. isolasi-dan-identifikasi-mikroba-t.-kuswinanti
29. isolasi-dan-identifikasi-mikroba-t.-kuswinanti29. isolasi-dan-identifikasi-mikroba-t.-kuswinanti
29. isolasi-dan-identifikasi-mikroba-t.-kuswinantiSri Nopitasari
 
Artikel Ilmiah: Isolasi dan Karakterisasi Bakteri Bubur Kacang Hijau
Artikel Ilmiah: Isolasi dan Karakterisasi Bakteri Bubur Kacang HijauArtikel Ilmiah: Isolasi dan Karakterisasi Bakteri Bubur Kacang Hijau
Artikel Ilmiah: Isolasi dan Karakterisasi Bakteri Bubur Kacang HijauUNESA
 
Laporan praktikum inokulasi
Laporan praktikum inokulasiLaporan praktikum inokulasi
Laporan praktikum inokulasiTidar University
 
Pembuatan Media Agar
Pembuatan Media AgarPembuatan Media Agar
Pembuatan Media Agardinmaul
 
04 isolasi dan inokulasi
04 isolasi dan inokulasi04 isolasi dan inokulasi
04 isolasi dan inokulasiSyahrir Ghibran
 

La actualidad más candente (13)

Analisa mikrobiologi pada makanan
Analisa mikrobiologi pada makananAnalisa mikrobiologi pada makanan
Analisa mikrobiologi pada makanan
 
Abon ikan
Abon ikanAbon ikan
Abon ikan
 
bakteri filosfer
bakteri filosferbakteri filosfer
bakteri filosfer
 
29. isolasi-dan-identifikasi-mikroba-t.-kuswinanti
29. isolasi-dan-identifikasi-mikroba-t.-kuswinanti29. isolasi-dan-identifikasi-mikroba-t.-kuswinanti
29. isolasi-dan-identifikasi-mikroba-t.-kuswinanti
 
Tugas mikrobiologi ningsih
Tugas  mikrobiologi ningsihTugas  mikrobiologi ningsih
Tugas mikrobiologi ningsih
 
Artikel Ilmiah: Isolasi dan Karakterisasi Bakteri Bubur Kacang Hijau
Artikel Ilmiah: Isolasi dan Karakterisasi Bakteri Bubur Kacang HijauArtikel Ilmiah: Isolasi dan Karakterisasi Bakteri Bubur Kacang Hijau
Artikel Ilmiah: Isolasi dan Karakterisasi Bakteri Bubur Kacang Hijau
 
Laporan praktikum inokulasi
Laporan praktikum inokulasiLaporan praktikum inokulasi
Laporan praktikum inokulasi
 
Laporan praktikum media
Laporan praktikum mediaLaporan praktikum media
Laporan praktikum media
 
Pembuatan Media Agar
Pembuatan Media AgarPembuatan Media Agar
Pembuatan Media Agar
 
Jurnal echino
Jurnal echinoJurnal echino
Jurnal echino
 
04 isolasi dan inokulasi
04 isolasi dan inokulasi04 isolasi dan inokulasi
04 isolasi dan inokulasi
 
2. daftar isi
2. daftar isi2. daftar isi
2. daftar isi
 
Pewarnaan Bakteri
Pewarnaan  BakteriPewarnaan  Bakteri
Pewarnaan Bakteri
 

Similar a 2008aem(1)

Ppt.formulasi emulgel
Ppt.formulasi emulgelPpt.formulasi emulgel
Ppt.formulasi emulgelnayr_88
 
Makalah KI (Kunjungan Industri)
Makalah KI (Kunjungan Industri)Makalah KI (Kunjungan Industri)
Makalah KI (Kunjungan Industri)085257007182
 
57 article text-120-1-10-20180423
57 article text-120-1-10-2018042357 article text-120-1-10-20180423
57 article text-120-1-10-20180423Lailatul Rofiah
 
(Modul%2003)%20 pengamatan%20bentuk%20khamir
(Modul%2003)%20 pengamatan%20bentuk%20khamir(Modul%2003)%20 pengamatan%20bentuk%20khamir
(Modul%2003)%20 pengamatan%20bentuk%20khamirRegiAnggara
 
Optimalisasi Pemanfaatan Daun Mangroves Menjadi Hand Sanitizer.pptx
Optimalisasi Pemanfaatan Daun Mangroves Menjadi Hand Sanitizer.pptxOptimalisasi Pemanfaatan Daun Mangroves Menjadi Hand Sanitizer.pptx
Optimalisasi Pemanfaatan Daun Mangroves Menjadi Hand Sanitizer.pptxDiana Agustina
 
kelas11 smk-biologi-pertanian_ameilia-dkk
 kelas11 smk-biologi-pertanian_ameilia-dkk kelas11 smk-biologi-pertanian_ameilia-dkk
kelas11 smk-biologi-pertanian_ameilia-dkkdedibiru
 
079_Dewi Oktavianti_Laprak Acara 2 Bakterisida dan Fungisida.pdf
079_Dewi Oktavianti_Laprak Acara 2 Bakterisida dan Fungisida.pdf079_Dewi Oktavianti_Laprak Acara 2 Bakterisida dan Fungisida.pdf
079_Dewi Oktavianti_Laprak Acara 2 Bakterisida dan Fungisida.pdfdewioktavianti4
 
Full jrki vol 4 no 1 th 2022
Full jrki vol 4 no 1 th 2022Full jrki vol 4 no 1 th 2022
Full jrki vol 4 no 1 th 2022AnNisaaPeanut
 
Pengaruh Konsentrasi Pakan Hijauan Sorghum (Sorghum bicolor) Terhadap Kandung...
Pengaruh Konsentrasi Pakan Hijauan Sorghum (Sorghum bicolor) Terhadap Kandung...Pengaruh Konsentrasi Pakan Hijauan Sorghum (Sorghum bicolor) Terhadap Kandung...
Pengaruh Konsentrasi Pakan Hijauan Sorghum (Sorghum bicolor) Terhadap Kandung...Universitas Islam As-syafi'iah
 
Formulasi sediaan losio ekstrak etanol daun sirsak
Formulasi sediaan losio ekstrak etanol daun sirsakFormulasi sediaan losio ekstrak etanol daun sirsak
Formulasi sediaan losio ekstrak etanol daun sirsakershahasan
 
Pendapat Para Ahli tentang Khasiat Kulit Manggis
Pendapat Para Ahli tentang Khasiat Kulit ManggisPendapat Para Ahli tentang Khasiat Kulit Manggis
Pendapat Para Ahli tentang Khasiat Kulit ManggisCAOSWEB
 
jahe merah senyawa bioaktif manfaat dan.pdf
jahe merah senyawa bioaktif manfaat dan.pdfjahe merah senyawa bioaktif manfaat dan.pdf
jahe merah senyawa bioaktif manfaat dan.pdfdeway549
 
Diana Retnasari-161710301045-.pdf
Diana Retnasari-161710301045-.pdfDiana Retnasari-161710301045-.pdf
Diana Retnasari-161710301045-.pdfIsoSuwarso1
 
Kti ekstrak etanol dari biji pepaya
Kti ekstrak etanol dari biji pepayaKti ekstrak etanol dari biji pepaya
Kti ekstrak etanol dari biji pepayaLee Hye
 
jm_pharmacon,+42.+Cicilia+Kosasi+(351-359).pdf
jm_pharmacon,+42.+Cicilia+Kosasi+(351-359).pdfjm_pharmacon,+42.+Cicilia+Kosasi+(351-359).pdf
jm_pharmacon,+42.+Cicilia+Kosasi+(351-359).pdfYuliWulanSari5
 
PENGARlJH IRR-\DIASI SINAR GAMMA COBALT 60 TERHADAP KARAKTER MORFOLOGI TANAMA...
PENGARlJH IRR-\DIASI SINAR GAMMA COBALT 60 TERHADAP KARAKTER MORFOLOGI TANAMA...PENGARlJH IRR-\DIASI SINAR GAMMA COBALT 60 TERHADAP KARAKTER MORFOLOGI TANAMA...
PENGARlJH IRR-\DIASI SINAR GAMMA COBALT 60 TERHADAP KARAKTER MORFOLOGI TANAMA...Repository Ipb
 

Similar a 2008aem(1) (20)

Koch2
Koch2Koch2
Koch2
 
Ppt.formulasi emulgel
Ppt.formulasi emulgelPpt.formulasi emulgel
Ppt.formulasi emulgel
 
Trepium Sertik
Trepium SertikTrepium Sertik
Trepium Sertik
 
Makalah KI (Kunjungan Industri)
Makalah KI (Kunjungan Industri)Makalah KI (Kunjungan Industri)
Makalah KI (Kunjungan Industri)
 
57 article text-120-1-10-20180423
57 article text-120-1-10-2018042357 article text-120-1-10-20180423
57 article text-120-1-10-20180423
 
(Modul%2003)%20 pengamatan%20bentuk%20khamir
(Modul%2003)%20 pengamatan%20bentuk%20khamir(Modul%2003)%20 pengamatan%20bentuk%20khamir
(Modul%2003)%20 pengamatan%20bentuk%20khamir
 
Optimalisasi Pemanfaatan Daun Mangroves Menjadi Hand Sanitizer.pptx
Optimalisasi Pemanfaatan Daun Mangroves Menjadi Hand Sanitizer.pptxOptimalisasi Pemanfaatan Daun Mangroves Menjadi Hand Sanitizer.pptx
Optimalisasi Pemanfaatan Daun Mangroves Menjadi Hand Sanitizer.pptx
 
kelas11 smk-biologi-pertanian_ameilia-dkk
 kelas11 smk-biologi-pertanian_ameilia-dkk kelas11 smk-biologi-pertanian_ameilia-dkk
kelas11 smk-biologi-pertanian_ameilia-dkk
 
079_Dewi Oktavianti_Laprak Acara 2 Bakterisida dan Fungisida.pdf
079_Dewi Oktavianti_Laprak Acara 2 Bakterisida dan Fungisida.pdf079_Dewi Oktavianti_Laprak Acara 2 Bakterisida dan Fungisida.pdf
079_Dewi Oktavianti_Laprak Acara 2 Bakterisida dan Fungisida.pdf
 
antidiare
antidiareantidiare
antidiare
 
Full jrki vol 4 no 1 th 2022
Full jrki vol 4 no 1 th 2022Full jrki vol 4 no 1 th 2022
Full jrki vol 4 no 1 th 2022
 
Pengaruh Konsentrasi Pakan Hijauan Sorghum (Sorghum bicolor) Terhadap Kandung...
Pengaruh Konsentrasi Pakan Hijauan Sorghum (Sorghum bicolor) Terhadap Kandung...Pengaruh Konsentrasi Pakan Hijauan Sorghum (Sorghum bicolor) Terhadap Kandung...
Pengaruh Konsentrasi Pakan Hijauan Sorghum (Sorghum bicolor) Terhadap Kandung...
 
Formulasi sediaan losio ekstrak etanol daun sirsak
Formulasi sediaan losio ekstrak etanol daun sirsakFormulasi sediaan losio ekstrak etanol daun sirsak
Formulasi sediaan losio ekstrak etanol daun sirsak
 
Pendapat Para Ahli tentang Khasiat Kulit Manggis
Pendapat Para Ahli tentang Khasiat Kulit ManggisPendapat Para Ahli tentang Khasiat Kulit Manggis
Pendapat Para Ahli tentang Khasiat Kulit Manggis
 
Pf
PfPf
Pf
 
jahe merah senyawa bioaktif manfaat dan.pdf
jahe merah senyawa bioaktif manfaat dan.pdfjahe merah senyawa bioaktif manfaat dan.pdf
jahe merah senyawa bioaktif manfaat dan.pdf
 
Diana Retnasari-161710301045-.pdf
Diana Retnasari-161710301045-.pdfDiana Retnasari-161710301045-.pdf
Diana Retnasari-161710301045-.pdf
 
Kti ekstrak etanol dari biji pepaya
Kti ekstrak etanol dari biji pepayaKti ekstrak etanol dari biji pepaya
Kti ekstrak etanol dari biji pepaya
 
jm_pharmacon,+42.+Cicilia+Kosasi+(351-359).pdf
jm_pharmacon,+42.+Cicilia+Kosasi+(351-359).pdfjm_pharmacon,+42.+Cicilia+Kosasi+(351-359).pdf
jm_pharmacon,+42.+Cicilia+Kosasi+(351-359).pdf
 
PENGARlJH IRR-\DIASI SINAR GAMMA COBALT 60 TERHADAP KARAKTER MORFOLOGI TANAMA...
PENGARlJH IRR-\DIASI SINAR GAMMA COBALT 60 TERHADAP KARAKTER MORFOLOGI TANAMA...PENGARlJH IRR-\DIASI SINAR GAMMA COBALT 60 TERHADAP KARAKTER MORFOLOGI TANAMA...
PENGARlJH IRR-\DIASI SINAR GAMMA COBALT 60 TERHADAP KARAKTER MORFOLOGI TANAMA...
 

Más de dharma281276

23540646 carbon-c13-nmr-spectroscopy
23540646 carbon-c13-nmr-spectroscopy23540646 carbon-c13-nmr-spectroscopy
23540646 carbon-c13-nmr-spectroscopydharma281276
 
38149960 nmr-fatih-university
38149960 nmr-fatih-university38149960 nmr-fatih-university
38149960 nmr-fatih-universitydharma281276
 
23125135 the-basics-of-nmr
23125135 the-basics-of-nmr23125135 the-basics-of-nmr
23125135 the-basics-of-nmrdharma281276
 
Bjy dissertation(1)
Bjy dissertation(1)Bjy dissertation(1)
Bjy dissertation(1)dharma281276
 
Dissertation tesso
Dissertation tessoDissertation tesso
Dissertation tessodharma281276
 
75820 eliana maldonado_hela-2
75820 eliana maldonado_hela-275820 eliana maldonado_hela-2
75820 eliana maldonado_hela-2dharma281276
 
133495373 elusidasi
133495373 elusidasi133495373 elusidasi
133495373 elusidasidharma281276
 
Molecules 16-03037
Molecules 16-03037Molecules 16-03037
Molecules 16-03037dharma281276
 
155440187 digital-20313353-t31494-isolasi-dan-elusidasi
155440187 digital-20313353-t31494-isolasi-dan-elusidasi155440187 digital-20313353-t31494-isolasi-dan-elusidasi
155440187 digital-20313353-t31494-isolasi-dan-elusidasidharma281276
 
Makalah alkaloid-dan-terpenoid
Makalah alkaloid-dan-terpenoidMakalah alkaloid-dan-terpenoid
Makalah alkaloid-dan-terpenoiddharma281276
 
6. daun beluntas(beres)
6. daun beluntas(beres)6. daun beluntas(beres)
6. daun beluntas(beres)dharma281276
 
13 pharmacodynamics
13 pharmacodynamics13 pharmacodynamics
13 pharmacodynamicsdharma281276
 

Más de dharma281276 (20)

23540646 carbon-c13-nmr-spectroscopy
23540646 carbon-c13-nmr-spectroscopy23540646 carbon-c13-nmr-spectroscopy
23540646 carbon-c13-nmr-spectroscopy
 
38149960 nmr-fatih-university
38149960 nmr-fatih-university38149960 nmr-fatih-university
38149960 nmr-fatih-university
 
73559530 cosy-nmr
73559530 cosy-nmr73559530 cosy-nmr
73559530 cosy-nmr
 
23125135 the-basics-of-nmr
23125135 the-basics-of-nmr23125135 the-basics-of-nmr
23125135 the-basics-of-nmr
 
Bjy dissertation(1)
Bjy dissertation(1)Bjy dissertation(1)
Bjy dissertation(1)
 
M dthesis
M dthesisM dthesis
M dthesis
 
Dissertation tesso
Dissertation tessoDissertation tesso
Dissertation tesso
 
75820 eliana maldonado_hela-2
75820 eliana maldonado_hela-275820 eliana maldonado_hela-2
75820 eliana maldonado_hela-2
 
Rama13
Rama13Rama13
Rama13
 
133495373 elusidasi
133495373 elusidasi133495373 elusidasi
133495373 elusidasi
 
Molecules 16-03037
Molecules 16-03037Molecules 16-03037
Molecules 16-03037
 
126 236-1-sm
126 236-1-sm126 236-1-sm
126 236-1-sm
 
3547 7597-1-sm(1)
3547 7597-1-sm(1)3547 7597-1-sm(1)
3547 7597-1-sm(1)
 
155440187 digital-20313353-t31494-isolasi-dan-elusidasi
155440187 digital-20313353-t31494-isolasi-dan-elusidasi155440187 digital-20313353-t31494-isolasi-dan-elusidasi
155440187 digital-20313353-t31494-isolasi-dan-elusidasi
 
148 154-1-pb(1)
148 154-1-pb(1)148 154-1-pb(1)
148 154-1-pb(1)
 
Makalah alkaloid-dan-terpenoid
Makalah alkaloid-dan-terpenoidMakalah alkaloid-dan-terpenoid
Makalah alkaloid-dan-terpenoid
 
6. daun beluntas(beres)
6. daun beluntas(beres)6. daun beluntas(beres)
6. daun beluntas(beres)
 
13 pharmacodynamics
13 pharmacodynamics13 pharmacodynamics
13 pharmacodynamics
 
Gerhana matahari
Gerhana matahariGerhana matahari
Gerhana matahari
 
Gerhana bulan
Gerhana bulanGerhana bulan
Gerhana bulan
 

2008aem(1)

  • 1. ISOLASI DAN IDENTIFIKASI SENYAWA ANTIBAKTERI MINYAK ATSIRI DAUN ZODIA (Evodia sp.) AGNES ERI MARYUNI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2008
  • 2. PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan bahwa tesis Isolasi dan Identifikasi Senyawa Antibakteri Minyak Atsiri Daun Zodia (Evodia sp.) adalah karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apapun kepada perguruan tinggi manapun. Sumber informasi yang berasal atau dikutip dari karya yag diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir tesis ini. Bogor, Agustus 2008 Agnes Eri Maryuni G851060051
  • 3. ABSTRACT AGNES ERI MARYUNI. Isolation and Identification Antibacterial Active Compound from Zodia’s Essential Oil Leaves (Evodia sp.) Under direction of MARIA BINTANG and MASNIARI POELOENGAN. Some plant essential oil compounds has antibacterial properties, such as linalool. Linalool was one of zodia’s essential oil compound. The aim of this research was to isolate and identificate antibacterial active compound of the essential oil of zodia leaves. The the major components of essential oil are evodone 72.32%, menthofurane 7.52%, limonene 4.73%, curcumene 4.28%, and fonenol 1.66%. The oil had wide spectrum antibaterial activities. MIC value are 1% against S. aureus, 0.8% against S. epidermidis, 1.25% against Salmonella enteritidis and 1.2% against E. coli. It’s bactericidal effect against S. aureus began on the 7th hours. Toxicity evaluation showed that the essential oil has moderately toxic properties. Essential oil decayed bacterial membran cell. The bacterial cell became “swell” and change to a “ghost cell”. The active identificated as evodone. It’s activity was lower than the oil. It indicated that the essential oil’s antibacterial activity was sinergestic effect from it’s compounds. Key words: antibacterial activity, zodia, essential oil
  • 4. RINGKASAN AGNES ERI MARYUNI. Isolasi dan Identifikasi Senyawa Antibakteri Minyak Atsiri Daun Zodia (Evodia sp.). Dibimbing oleh MARIA BINTANG dan MASNIARI POELOENGAN. Sejak pertama kali ditemukan hingga akhir abad 20, kemoterapi antimikroba telah berhasil menyembuhkan berbagai jenis penyakit infeksi. Masalah muncul pada saat terjadi resistensi bakteri. Meskipun berbagai jenis antibiotik baru ditemukan, muncul masalah baru berkaitan dengan resistensi terhadap berbaai jenis antibiotik Tumbuhan memghasilkan ribuan molekul yang berfungsi bagi tumbuhan itu sendiri maupun lingkungannya. Beberapa jenis komponen minyak atsiri menghasilkan aktivitas antibakteri. Penelitian ini bertujuan untuk menentukan potensi antibakteri minyak atsiri daun zodia, mengisolasi dan mengidentifikasi senyawa aktifnya. Dalam penelitian ini, sampel daun zodia diambil dari daerah Sentani, Jayapura, Papua. Minyak atsiri diisolasi dengan menggunakan destilasi uap. Minyak atsiri yang dihasilkan dianalisis komponen penyusunnya dengan metode GC-MS. Uji antibakteri menggunakan metode paper dish assay. Uji toksisitas menggunakan metode Brine-Shrimp Letality Test. Nilai minimum inhibitory concentration (MIC) ditentukan untuk mengetahui konsentrasi paling kecil dari minyak atsiri yang dapat membunuh bakteri. Terhadap bakteri diinteraksikan berbagai variasi konsentrasi minyak atsiri. Bakteri disubkulturkan pada media padat kemudian jumlah koloni yang tumbuh dihitung. Waktu kontak minyak atsiri dengan bakteri ditentukan untuk mengetahui waktu munculnya efek bakterisida. Setelah diinteraksikan dengan minyak atsiri dengan konsentrasi dua kali nilai MIC, bakteri disubkulturkan pada media padat setiap jam selama 24 jam. Jumlah koloni bakteri dihitung selanjutnya dibuat kurva ”survival plot”. Data waktu kontak digunakan sebagai dasar waktu kontak bakteri yang akan dianalisis perubahan morfologinya dengan scanning electron microscopy. Isolasi senyawa aktif antibakteri dilakukan dengan metode cooling freeze. Minyak atsiri didinginkan sampai 180 C. Kristal yang terbentuk dipisahkan kemudian direkristalisasi menggunakan pelarut heksan. Kristal hasil rekristalisasi dianalisis dengan GC-MS. Uji antibakteri kristal dilakukan terhadap bakteri S. aureus. Isolasi minyak atsiri daun zodia menghasilkan rendemen 1%. Dari analisis GC-MS didapatkan bahwa komponen utama minyak atsiri adalah evodone 72.32%, menthofurane 7.52%, limonene 4.73%, curcumene 4.28%, dan fonenol 1.66%. Minyak atsiri menghasilkan aktifitas antibakteri berspektrum luas, dapat menghambat pertumbuhan bakteri Gram positif Staphylococcus aureus, Staphylococcus epidermidis dan bakteri Gram negatif Salmonella enteritidis dan Escherichia coli. Aktivitas terbesar dihasilkan dari interaksi minyak atsiri dengan bakteri S. aureus.
  • 5. MIC minyak atsiri bernilai 1% terhadap S. aureus, 0.8% terhadap S. epidermidis, 1.25% terhadap Salmonella enteritidis and 1.2% terhadap E. coli. Efek bakterisida minyak atsiri muncul setelah tujuh jam interaksi dengan bakteri uji dan mematikan secara total setelah 24 jam interaksi. Bakteri sebagian besar mati pada fase stasionernya. Pada fase stasioner bakteri bersifat rentan. Hal ini dimungkinkan oleh makin terbatasnya nutrisi dan meningkatnya produk-produk toksik hasil metabolisme bakteri. Toksisitas minyak atsiri terhadap artemia salina bernilai 376.7 ppm. Minyak atsiri daun zodia bersifat toksik sedang. Berdasarkan analisis scanning electron microscopy, minyak atsiri daun zodia mampu merusak membran sel bakteri. Interaksi minyak atsiri dengan membrane sel menyebabkan terjadinya “swelling” hingga pada akhirnya bakteri menjadi “sel ghost”. Senyawa antif antibakteri minyak atsiri daun zodia berhasil diisolasi dan diidentifikasi sebagai evodone. Aktivitas antibakteri senyawa tersebut lebih rendah daripada aktivitas antibakteri minyak atsiri sehingga dapat disimpulkan bahwa aktivitas minyak atsiri merupakan efek sinergis dari aktivitas komponen penyusunnya. Kata kunci: aktivitas antibakteri, zodia, minyak atsiri
  • 6. ©. Hak Cipta milik IPB tahun 2008 Hak Cipta dilindungi Undang-Undang 1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan atau menyebutkan sumber . a. Pengutipan hanya untuk kepentingan pendidikan penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah. b. Pengutipan tidak merugikan kepentingan yang wajar IPB. 2. Dilarang mengumumkan atau memperbanyak sebagian atau seluruh karya tulis dalam bentuk apapun tanpa izin IPB.
  • 7. ISOLASI DAN IDENTIFIKASI SENYAWA ANTIBAKTERI MINYAK ATSIRI DAUN ZODIA (Evodia sp.) AGNES ERI MARYUNI Tesis sebagai salah satu syarat untuk memperoleh gelar Magister Sains pada Departemen Biokimia SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2008
  • 8. Penguji Luar Komisi pada Ujian Tesis: Dr. Suryani MS.
  • 9.
  • 10. Kupersembahkan karyaku ini sebagai tanda kasihku untuk: Ayah Bundaku Ibu Sugiyem dan Alm. Bapak Maridjan, Kakanda Agustinus Sroyer, Buah hatiku Marchelino Mario dan Amadhea Putri, Mbakyu dan Kangmasku: Yanti, Eni, Maryono, Eti, Endang, Budi, Endah, Robert, Esti, Ermi, Bondan, Tri Keponakan-keponakanku: Eka, Wien, Galih, Yogi, Tian, Lina, Lita, Rahma, Widie, Tedi, Tio, Bian Keagungan Sang Pencipta dan dian Ilmu Pengetahuan Semoga dapat menjadi motivasi dan sumber inspirasi bagiku, suami dan anakku, keponakanku Semoga dapat menjadi sekelumit sumbangsihku bagi masyarakat Papua
  • 11. PRAKATA Segala hormat, puji dan syukur penulis persembahkan pada Tuhan Yesus Kristus. Cinta dan kasih-Nya telah menyertai penulis hingga penulis berhasil menyelesaikan pendidikan pascasarjana di Program Studi Biokimia FMIPA IPB dengan baik. Judul penelitian yang dipilih adalah ”Isolasi dan Identifikasi Senyawa Antibakteri Minyak Atsiri Daun Zodia (Evodia sp.)”. Dana penelitian bersumber dari beasiswa BPPS Dirjen DIKTI dan bantuan dari FMIPA Universitas Cenderawasih. Terimakasih sedalam-dalamnya kepada Prof. Dr. drh. Maria Bintang, MS. dan Dra. Masniari Poeloengan, MS. yang telah memberikan bimbingan, dukungan dan bantuan sarana penelitian. Kepada Dr. Suryani, MS., terimakasih untuk koreksi dan masukan-masukan yang telah diberikan Terimakasih juga diucapkan kepada keluarga Yabansabra dan Bapak Drs. Robert Masreng atas tersedianya contoh daun zodia, Bapak Supartono dari Balai Penelitian Veteriner dan Bapak Djaswanto dari Labkrim Mabes Polri dan Ibu Endang dari Lab. SEM Zoologi- Biologi LIPI Cibinong yang telah membantu selama penelitian berlangsung serta semua pihak yang tidak dapat disebutkan satu persatu. Terimakasih khusus diberikan kepada Dirjen DIKTI atas bantuan dana studi dan FMIPA Universitas Cenderawasih atas bantuan dana penelitian yang telah diberikan. Akhir kata semoga hasil penelitian ini dapat bermanfaat bagi para pembaca. Bogor, 26 Agustus 2008 Agnes Eri Maryuni
  • 12. RIWAYAT HIDUP Penulis dilahirkan pada tanggal 19 Oktober 1978 sebagai anak ke-8 pasangan Alm. Maridjan dan Sugiyem. Pendidikan sarjana ditempuh di Jurusan Kimia FMIPA Institut Pertanian Bogor sejak tahun 1997 sampai 2002. Setelah lulus sarjana, tahun 2002 penulis bekerja sebagai staf quality control PT Focus Makmur Indah Jakarta. Selanjutnya pada tahun 2003 penulis bertugas sebagai staf pengajar di Jurusan Kimia FMIPA Universitas Cenderawasih Jayapura Papua. Pendidikan Pascasarjana S2 di Program Studi Biokimia FMIPA IPB dimulai tahun 2006 atas bantuan dana pendidikan BPPS Dirjen Dikti. Pada tahun 2006 penulis pernah mendapatkan hibah Penelitian Dosen Muda yang diadakan oleh Dirjen Dikti. Penelitian tersebut berjudul ”Potensi Antibakteri Minyak Atsiri Daun Zodia (Evodia sp.)”. Penelitian dilanjutkan pada saat menyelesaikan pendidikan pascasarjana S2 dengan judul ”Isolasi dan Identifikasi Senyawa Aktif Antibakteri Minyak Atsiri Daun Zodia (Evodia sp.). Sebagian dana penelitian bersumber dari beasiswa BPPS Dirjen Dikti dan bantuan dana penelitian dari FMIPA Universitas Cenderawasih Jayapura Papua.
  • 13. DAFTAR ISI Halaman DAFTAR TABEL.......................................................................................................... xiii DAfTAR GAMBAR...................................................................................................... xiv DAFTAR LAMPIRAN.................................................................................................. xv PENDAHULUAN ......................................................................................................... 1 Latar Belakang ...................................................................................................... 1 Tujuan Penelitian .................................................................................................. 3 Manfaat Penelitian ................................................................................................ 3 TINJAUAN PUSTAKA ................................................................................................ 4 Zodia ..................................................................................................................... 4 Antibakteri ............................................................................................................ 7 Komponen Antibakteri Tanamani......................................................................... 9 Bakteri................................................................................................................... 11 Pengaruh Zat Antibaktei terhadap Sel Bakteri...................................................... 12 Isolasi Senyawa Aktif ........................................................................................... 14 METODE PENELITIAN............................................................................................... 16 Waktu dan tempat penelitian................................................................................. 16 Bahan dan Alat...................................................................................................... 16 Metode Penelitian ................................................................................................. 16 Isolasi Minyak Atsiri............................................................................................. 16 Karakterisasi menggunakan GC-MS..................................................................... 17 Pengujian Aktifitas Antibakteri............................................................................. 17 Uji Toksisitas Minyak Atsiri................................................................................. 17 Kromatografi Lapis Tipis...................................................................................... 18 Penentuan minimum inhibitory concentration (MIC)........................................... 18 Penentuan Waktu Kontak Minyak Atsiri.............................................................. 19 Analisis Perubahan Morfologi Sel ..............................................................................19 Isolasi Senyawa Aktif Antibakteri ..............................................................................20 HASIL DAN PEMBAHASAN ............................................................................................21 Komposisi Minyak Atsiri............................................................................................23 Aktivitas Antibakteri Minyak Atsiri ...........................................................................23 Nilai MIC Minyak Atsiri Daun Zodia.........................................................................26 Penentuan Waktu Kontak Minyak Atsiri ....................................................................27 Analisis Perubahan Morfologi Sel ..............................................................................28 Nilai Toksisitas Minyak Atsiri terhadap Artemia salina.............................................30 Pemisahan Komponen Minyak Atsiri Dengan Kromatografi Lapis Tipis..................31 Isolasi Senyawa Aktif Antibakteri ..............................................................................32
  • 15. DAFTAR TABEL Halaman 1 Komponen utama beberapa jenis minyak atsiri yang memiliki aktivitas antibakteri..............................................................................................................9 2 Beberapa pelarut organik dan sifat fisiknya..........................................................15 3 Komponen minyak atsiri daun zodia.....................................................................22 4 Aktivitas antibakteri minyak atsiri........................................................................23 5. Sensitifitas Antibiotik ............................................................................................24 6 Klasifikasi Aktivitas Antibakteri ...........................................................................25 7 Hubungan antara LC50, LD50 dan EC50 dan Klasifikasi Toksisitas Tonkes (Verma, 2008) .......................................................................................................31 8 Nilai hRf kromatogram minyak atsiri ...................................................................32 9 Aktivitas antibakteri fraksi heksan, etil asetat, dan kristal kasar terhadap bakteri S. aureus................................................................................................................32
  • 16. DAFTAR GAMBAR Halaman 1 Zodia .....................................................................................................................4 2 Rutaecarpine..........................................................................................................5 3 Alkaloid quinolon dari Evodia Rutaecarpa...........................................................7 4 Spektra GC-MS minyak atsiri daun zodia ............................................................21 5 Struktur senyawa terpena yang memiliki kemiripan dengan komponen utama minyak atsiri daun zodia.......................................................................................22 6 Struktur dinding sel bakteri Gram positif dan Gram negatif.................................26 7 Kurva penetapan MIC minyak atsiri daun zodia terhadap bakteri S. aureus(a), S. epidermidis (b), Salmonella enteritidis(c), dan E. Coli (d) ..............................26 8 Penetapan waktu kontak minyak atsiri..................................................................27 9 Kurva pertumbuhan bakteri S. aureus...................................................................28 10 Mikrograf elektron bakteri S. aureus ....................................................................29 11 Kurva regresi linier penentuan toksisitas minyak atsiri........................................30 12 Kromatogram minyak atsiri dalam pelarut heksan:dietileter (8:2) pada plat silika gel 60F254 ........................................................................................................................................................ 32 13 Kristal hasil isolasi dari minyak atsiri daun zodia ................................................33 14 Uji kelarutan kristal dalam air (1), heksan (2), aseton (3), etil asetat (4) dan benzene (5)............................................................................................................33 15 Aktivitas antibakteri fraksi heksan (1), etil asetat (2), dan kristal kasar (3) .........34 15 Kromatogram fraksi heksan (a) dan fraksi etil asetat (b) dalam pelarut heksan:dietileter (8:2) pada plat silika gel 60F254 .................................................33 16 Bentuk dua dimensi fraksi heksan (a) dan fraksi etilasetat (b) .............................34 17 Spektra GC-MS kristal hasil kristalisasi fraksi etil asetat.....................................36 18 Spektra GC-MS kristal hasil kristalisasi fraksi heksan.........................................36
  • 17. DAFTAR LAMPIRAN Halaman 1 Spektra Minyak Atsiri Daun Zodia......................................................................44 2 Spektra GC-MS Komponen ke-1 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................45 3 Fragmentasi Komponen ke-1 dan Senyawa Referens..........................................46 4 Spektra GC-MS Komponen ke-2 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................47 5 Fragmentasi Komponen ke-2 dan Senyawa Referens..........................................48 6 Spektra GC-MS Komponen ke-3 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................49 7 Fragmentasi Komponen ke-3 dan Senyawa Referens.........................................50 8 Spektra GC-MS Komponen ke-4 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................51 9 Fragmentasi Komponen ke-4 dan Senyawa Referens.........................................52 10 Spektra GC-MS Komponen ke-5 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................53 11 Fragmentasi Komponen ke-5 dan Senyawa Referens.........................................54 12 Spektra GC-MS Komponen ke-6 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................55 13 Fragmentasi Komponen ke-6 dan Senyawa Referens.........................................56 14 Spektra GC-MS Komponen ke-7 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................57 15 Fragmentasi Komponen ke-7 dan Senyawa Referens.........................................58 16 Spektra GC-MS Komponen ke-8 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................59 17 Fragmentasi Komponen ke-8 dan Senyawa Referens.........................................60 18 Spektra GC-MS Komponen ke-9 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................61 19 Fragmentasi Komponen ke-9 dan Senyawa Referens........................................62
  • 18. 20 Spektra GC-MS Komponen ke-10 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................63 21 Fragmentasi Komponen ke-10 dan Senyawa Referens.......................................64 22 Spektra GC-MS Komponen ke-11 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................65 23 Fragmentasi Komponen ke-11 dan Senyawa Referens.......................................66 24 Spektra GC-MS Komponen ke-12 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................67 25 Fragmentasi Komponen ke-12 dan Senyawa Referens.......................................68 26 Spektra GC-MS Komponen ke-13 Minyak Stsiri Daun Zodia dan Fragmentasinya...................................................................................................69 27 Fragmentasi Komponen ke-13 dan Senyawa Referens.......................................70 28 Spektra GC-MS Komponen ke-14 Minyak atsiri Daun Zodia dan Fragmentasinya...................................................................................................71 29 Fragmentasi Komponen ke-14 dan Senyawa Referens.......................................72 30 Spektra GC-MS Komponen ke-15 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................73 31 Fragmentasi Komponen ke-15 dan Senyawa Referens.......................................74 32 Spektra GC-MS Komponen ke-16 Minyak Stsiri Daun Zodia dan Fragmentasinya...................................................................................................75 33 Fragmentasi Komponen ke-16 dan Senyawa Referens.......................................76 34 Spektra GC-MS komponen ke-17 minyak atsiri daun zodia dan fragmentasinya....................................................................................................77 35 Fragmentasi Komponen ke-17 dan Senyawa Referens.......................................78 36 Spektra GC-MS Komponen ke-18 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................79 37 Fragmentasi Komponen ke-18 dan Senyawa Referens.......................................80 38 Spektra GC-MS Komponen ke-19 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................81 39 Fragmentasi Komponen ke-19 dan Senyawa Referens.......................................82 40 Spektra GC-MS Komponen ke-20 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................83
  • 19. 41 Fragmentasi Komponen ke-20 dan Senyawa Referens.......................................84 42 Spektra GC-MS Komponen ke-21 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................85 43 Fragmentasi Komponen ke-21 dan Senyawa Referens.......................................86 44 Spektra GC-MS Komponen ke-22 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................87 45 Fragmentasi Komponen ke-22 dan Senyawa Referens.......................................88 46 Spektra GC-MS Komponen ke-23 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................89 47 Fragmentasi Komponen ke-23 dan Senyawa Referens.......................................90 48 Spektra GC-MS Komponen ke-24 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................91 49 Fragmentasi Komponen ke-24 dan Senyawa Referens.......................................92 50 Spektra GC-MS Komponen ke-25 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................93 51 Spektra GC-MS Komponen ke-26 Minyak Atsiri Daun Zodia dan Fragmentasinya...................................................................................................94 52 Spektra GC-MS Senyawa dalam Fraksi Etil Asetat............................................95 53 Data Fragmentasi Senyawa dalam Fraksi Etil Asetat .........................................96 54 Spektra GC-MS Sebyawa dalam Fraksi Heksan.................................................97 55 Komposisi media Mueller-Hinton Agar..............................................................98 56 Komposisi Larutan Standard McFarland ............................................................99 57 Pembuatan Larutan-larutan yang Dipakai dalam Analisis SEM.........................100
  • 20. PENDAHULUAN Latar Belakang Sejak penemuannya hingga akhir abad 20, obat-obatan antimikrobial telah berhasil meyembuhkan berbagai jenis penyakit yang berkaitan dengan infeksi. Penggunaan antibiotik yang disertai dengan perbaikan sanitasi, tempat tinggal, dan nutrisi serta meluasnya program imunisasi menyebabkan turunnya angka kematian. Selama bertahun-tahun, obat-obatan antimikrobial telah menyelamatkan hidup dan menghapuskan penderitaan jutaan manusia serta memperpanjang usia harapan hidup. Keberhasilan obat-obatan antimikrobial dalam terapi penyembuhan penyakit-penyakit infeksi kini terancam oleh munculnya resistensi bakteri. Dalam artikelnya, Hill (2005) melaporkan beberapa hasil penelitian. Disebutkan bahwa lebih dari 90% Staphylococcus aureus resisten pada penicillin. Lima puluh persen bakteri resisten terhadap methisilin. Dengan mempelajari mekanisme bakteri methycillin-resistant Staphylococcus aureus (MRSA), Ibba dan Hervey Roy (2008) dari Ohio State University berhasil menemukan suatu jenis protein yang berhubungan dengan berkembangnya resistensi pada 200 jenis bakteri. MRSA juga resistensi terhadap linezoid dan vancomycin (Johnson dalam Hill (2005)). Multiresistensi juga terjadi pada bakteri E. Coli. Beberapa kasus infeksi saluran kencing tidak dapat sembuh dengan terapi trimetroprim dan ciplofloxacin. Penggunaan antibiotik yang tidak tepat juga menimbulkan resistensi pada bakteri patogen pangan. Dalam penelitiannya yang mengambil contoh bakteri dari beberapa jenis makanan cepat saji, SIRELI & Ali (2008) menemukan adanya bakteri Listeria monocytogenes resisten terhadap rifapin dan gentamisin. Dalam kondisi normal, umumnya bakteri tesebut suseptibel terhadap berbagai jenis antibiotik kecuali cephalosporin dan phosphomycin. Tumbuhan mensintesis lebih dari 100.000 molekul, meskipun tidak banyak yang memiliki aktivitas antimikroba. Beberapa jenis antimikroba yang berasal dari tumbuhan didapatkan pada kadar tinggi dan hanya memerlukan konsentrasi beberapa milimolar untuk perlindungan yang memadai. Pada tumbuhan, senyawa-senyawa tersebut merupakan produk samping sebagai bentuk
  • 21. pertahanan diri terhadap organisme lain dalam lingkungannya (Lewis & Ausubel, 2006). Jauh sebelum mikroba ditemukan, pemikiran akan adanya tumbuhan tertentu yang berpotensi sebagai obat telah diterima dengan baik. Manusia menggunakan tumbuhan untuk menyembuhkan berbagai penyakit infeksi, dan sebagian sudah dilakukan sebagai kebiasaan dalam kehidupan sehari-hari (Mendonςa-Filho, 2006). Sejak awal 1980-an, ketertarikan dalam penggunaan bahan alam yang kemudian disebut senyawa bioaktif tumbuhan bangkit kembali. Kebangkitan tersebut dapat dipahami sebagai jawaban keprihatinan akan segi keamanan, sitotoksisitas, dan efek samping obat-obatan sintetik, dan kebutuhan akan adanya senyawa obat baru, termasuk antibiotik baru untuk menangani penyakit-penyakit infeksi yang ditimbulkan oleh bakteri patogen multiresisten dan terapi penyakit kronik. Hasil penelitian etnobotani menunjukkan bahwa telah terjaring 106 simplisia tanaman obat Indonesia yang menghasilkan aktivitas antibakteri (Dzulkarnain et al, 1996). Diantara simplisia tersebut, 42 simplisia diketahui digunakan secara empirik untuk infeksi saluran pencernaan, 33 simplisia digunakan secara empirik sebagai obat penyakit kulit, 6 simplisia digunakan secara empirik untuk infeksi kandung kemih, 1 simplisia digunakan secara empirik sebagai obat infeksi tenggorokan. Beberapa simplisia lain tidak jelas penggunaan empiriknya tetapi diteliti daya antibakterinya. Minyak atsiri (disebut juga minyak menguap atau minyak etheral) adalah cairan berwujud minyak yang beraroma yang berasal dari berbagai bagian tumbuhan (bunga, kuncup, biji, daun, ranting, kulit batang, rempah, kayu, buah dan akar) (Guenther, 1948 dalam Burt (2004)). Minyak atsiri akhir-akhir ini menarik perhatian dunia. Hal ini disebabkan minyak atsiri dari beberapa tumbuhan bersifat aktif biologis sebagai antibakteri dan antijamur sehingga dapat dipergunakan sebagai bahan pengawet pada makanan dan sebagai antibiotik alami (Burt, 2004). Dalam Ignacimuthu (2006) dijelaskan bahwa sebagian besar minyak atsiri menunjukkan aktivitas antibakteri terhadap berbagai jenis bakteri uji, baik Gram positif maupun Gram negatif.
  • 22. Carvacrol, thymol, dan eugenol adalah komponen minyak atsiri yang diketahui memiliki aktivitas antibakteri yang tinggi. Ketiga senyawa ini masuk dalam golongan fenol. Selain itu, komponen minyak atsiri yang bersifat antibakteri adalah linalool. Linalool masuk dalam golongan monoterpen, senyawa terpena yang terdiri dari sepuluh atom karbon (Baudoux, 2005). Linalool merupakan kandungan utama minyak atsiri dalam tanaman pengusir nyamuk zodia (Kardinan, 2007). Menurut hasil analisis yang dilakukan di Balai Penelitian Tanaman Rempah dan Obat (Balitro) dengan gas kromatografi, minyak yang disuling dari daun tanaman ini mengandung linalool (46%) dan α- pinene (13,26%). Adanya komponen dalam minyak atsiri daun zodia yang berpotensi menghasilkan aktivitas antibakteri memacu untuk dilakukannya penelitian tentang penelusuran senyawa antibakteri dalam minyak atsiri daun zodia. Tujuan Penelitian Dari permasalahan di atas dirumuskan tujuan penelitian sebagai berikut: 1. Menentukan aktivitas antibakteri minyak atsiri daun zodia terhadap beberapa bakteri Gram positif dan Gram negatif 2. Menentukan spektrum antibakteri yang dihasilkan. 3. Menentukan toksisitas minyak atsiri 4. Menentukan pengaruh minyak atsiri terhadap sel bakteri 5. Mengisolasi senyawa aktif antibakteri 6. Mengidentifikasi senyawa aktif antibakteri Manfaat Penelitian Penelitian ini diharapkan dapat menambah informasi ilmiah di bidang kimia, farmasi dan kedokteran tentang manfaat tanaman zodia, mengembangkan simplisia tanaman zodia sebagai sediaan fitofarmaka dan mendukung upaya pengembangan ilmu pengetahuan dan teknologi.
  • 23. TINJAUAN PUSTAKA Zodia Zodia merupakan tanaman asli Indonesia yang berasal dari daerah Papua. Oleh penduduk setempat tanaman ini biasa digunakan untuk menghalau serangga, khususnya nyamuk apabila hendak pergi kehutan, yaitu dengan cara menggosokkan daunnya ke kulit. Selain itu, tanaman yang mempunyai tinggi antara 50 cm hingga 200 cm (rata-rata 75cm), dipercaya mampu mengusir nyamuk dan serangga lainnya dari sekitar tanaman. Oleh sebab itu tanaman ini, sering ditanam di pekarangan atau di pot untuk menghalau nyamuk. Aroma yang dikeluarkan oleh tanaman zodia cukup wangi. Gambar 1 Zodia Oleh masyarakat Jayawijaya dan masyarakat Indonesia umumnya, tanaman ini disebut zodia. Masyarakat Biak Numfor menyebutnya sirih hutan. Berikut klasifikasi tanaman zodia: Kingdom : Plantae Divisi : Spermathophyta Subdivisi : Angiospermae Kelas : Dikotiledonae
  • 24. Ordo : Rutales Famili : Rutaceae Genus : Evodia Tanaman termasuk dalam golongan perdu . Panjang daun tanaman dewasa 20-30 cm. Tanaman tumbuh baik di ketinggian 400-1000 m dpl. Daun zodia dapat disuling untuk menghasilkan minyak atsiri (essential oil). Linalool merupakan kandungan utama minyak atsiri dalam tanaman pengusir nyamuk zodia (Kardinan, 2007). Menurut hasil analisis yang dilakukan di Balai Penelitian Tanaman Rempah dan Obat (Balitro) dengan gas kromatografi, minyak yang disuling dari daun tanaman ini mengandung linalool (46%) dan α-pinene (13,26%). Selain itu minyak atsiri zodia juga mengandung evodiamin dan rutaecarpin yang juga berfu.ngsi sebagai antinyamuk. Rebusan kulit batang zodia bermanfaat sebagai pereda demam malaria. Rebusan daun dipakai sebagai tonik penambah stamina tubuh http://www.proseanet.org/prohati4/printer.php?photoid=15. Gambar 2 Rutaecarpine Dalam Wu, et al. (1995) tumbuhan yang masuk dalam golongan Evodia terbagi dalam tiga genera, yaitu Tetradium, Evodia s.s. dan Melicope. Klasifikasi ini didasarkan pada senyawa-senyawa kimia yang diisolasi dari tumbuhan tersebut. Jenis evodia yang berbeda mengandung beberapa jenis senyawa yang berbeda pula. Wu et al. berhasil mengisolasi enam jenis alkaloid dari batang kayu Tetradium glabrifolium (salah satu jenis Evodia yang diambil berasal dari
  • 25. Taiwan), yaitu bocconoline, norcherithrine, 6-acetonyl dihydrocelerythrine, arnottianamide dan decarine. Selain itu ditemukan juga senyawa-senyawa berikut: dictanine, γ-fagarine, robustine, skimmianine; rutaecarpine, hortiacine quinolone; sitosteryl glucoside, atractylenolide, lupeol, (-)matariesinol, umbeliferone, p- hydroxybenzaldehide, vanilin, metylvanillate, metylparaben, methylsyringate, syringaldehide, methyl-p-hydroxycinnamate, trans-4’-hydroxy- 3’methoxycinnamaldehyde, 3,4,5-trimethoxybenzyl alcohol, 2’-hydroxy-4’- methoxyacetophenone, p-hydroxybenzoic acid, ω-hydroxypropioguaicone, evofolin-C, hortiamide, limonin, evodol, 12αhydroxyevodol, 6β-acetoxy-5- epilimonin, rutaevine, graucin, cis-N-p-coumaroyltyramine, trans-N-p- coumaroyltyramine, cis-N-feruloyltyramine dan trans-N-feruloyltyramine serta senyawa anorganik KNO3. Evodia lepta dari Hainan, Cina, mengandung leptonol, metylleptol A, alloevodione, 7,4-dihydroxy-3,5,3’-trimethoxyflavone, 3,7- dimethylcaemferol dan clovandiol (Li & Zhu, 1998). Tiga belas jenis Evodia juga tersebar di Madagaskar. Satu senyawa baru diidentifikasi dari Evodia fatraina oleh Ravelomanantsoa et al.(1995) yaitu furoquinoline. Senyawa tersebut diisolasi dari bagian akar dan ranting Evodia. Tang et al. (1996) menemukan lima jenis alkaloid baru golongan quinolon dari bagian buah Evodia rutaecarpa, yang merupakan obat tradisional Cina. Oleh masyarakat setempat, digunakan untuk terapi sakit kepala, sakit perut, disentri, pendarahan setelah melahirkan, nyeri tulang, migrain dan rasa mual. Selain quinolon, telah dilaporkan adanya senyawa-senyawa alkaloid golongan lainnya yaitu indol dan limonoid. Dari ekstrak metanol buah kering ditemukan senyawa 1- ,etil-2-nonil-4-quinolon, 1-metil-2-undesil-4-quinolon, 1-metil-2-dodesil-4- quinolon, 2-tridesil-4-quinolon, dihidroevocarpine, 1-metil-2-pentadesil-4- quinolon, 1-metil-2-[(Z)-5-undekenil]-4(1H)-quinolon dan 1-metil-2-[(Z)-6- undekenil]-4(1H)-quinolon. Selain itu terdapat 1-metil-2-[(Z)-7-tridekenil]-4(1H)- quinolon, evocarpine, 1-metil-2-[(Z)-9-pentadekenil]-4(1H)-quinolon. Ditemukan sejumlah kecil senyawa 1-metil-2-dodesil-4(1H)-quinolon. Terdapat juga komponen dalam bentuk minyak: campuran 1-metil-2-[(Z)-5-undekenil]-4(1H)- quinolon dan 1-metil-2-[(Z)-6-undekenil]-4(1H)-quinolon, campuran 1-metil-2-
  • 26. [(Z)-7-tridekenil-4(1H)-quinolon dan evocarpine serta campuran 1-metil-2-[(Z)-9- entadekenil-4(1H)-quinolon dan 1-metil-2-[(Z)-10-pentadekenil]-4(1H)-quinolon. Gambar 3 Alkaloid quinolon dari Evodia Rutaecarpa (Tang et al. (1996) Antibakteri Komponen antimikroba adalah suatu komponen yang bersifat dapat menghambat pertumbuhan bakteri atau kapang atau membunuh bakteri atau kapang (Fardiaz, 1992). Antimikroba meliputi antibakteri, antiprotozoa, antifungi, dan antivirus. Antibakteri termasuk dalam antimikroba yang digunakan untuk menghambat pertumbuhan bakteri (Schunack et al., 1990). Zat antibakteri adalah zat yang dapat mengganggu pertumbuhan dan metabolisme bakteri (Pelczar dan Chan, 1986). Berdasarkan aktivitasnya, zat antibakteri dibedakan menjadi dua, yaitu antibakteri yang memiliki aktifitas bakteriostatik (menghambat pertumbuhan bakteri) dan aktivitas bakterisidal (membunuh bakteri).Antibakteri bakteriostatik bekerja dengan cara menghambat perbanyakan populasi bakteri dan tidak mematikan. Pada kadar yang tinggi, R2 O R1 N R1 R2 1 Me 2 Me 3 Me 4 H 5 Me 6 Me 7a Me 7b Me 8a Me 8b Me 9a Me 9b Me
  • 27. antibakteri bakteriostatik juga dapat bertindak sebagai bakterisida (Schunack et al.1990). Beberapa faktor dapat mempengaruhi aktivitas penghambatan atau pembunuhan bakteri oleh suatu zat (Pelzcar & Chan, 1986). Faktor-faktor tersebut adalah konsentrasi zat, jumlah mikroorganisme, suhu, spesies mikroorganisme, adanya bahan organik dan pH. Terdapat beberapa metode yang dapat digunakan dalam uji antibakteri secara in vitro. Secara garis besar, uji dikelompokkan atas tes difusi dan tes dalam media cair (Edward, 1980). Masing-masing metode meiliki kekurangan dan kelebihan. Ada tiga teknik uji yang termasuk dalam kelompok tes difusi, yaitu disc technique, ditch technique dan hole atau well technique. Tes dalam media cair biasanya digunakan untuk menentukan nilai minimum inhibitory cancentration (MIC). Metode disc dffusion adalah metode paling sederhana yang secara rutin digunakan dalam uji sensitivitas. Metode ini direkomendasikan oleh komite WHO dan Asosiasi Patologis Klinis. Dalam metode ini paper disc yang mengandung sejumlah tertentu zat antibakteri ditempatkan pada permukaan media agar yang sudah diinokulasi dengan bakteri uji. Ditch technique saat ini sudah jarang digunakan. Dalam metode tersebut, dilakukan pengambilan sebagian agar pada salah satu sisi petri untuk diganti dengan agar yang mengandung antibiotik atau zat uji. Dalam well technique, media agar padat dilubangi menggunakan cork- borer kemudian diisi dengan sejumlah antibiotik atau larutan obat. Teknik ini memiliki kelebihan yaitu bahwa konsentrasi antibiotik atau obat yang digunakan dapat berbeda-beda serta dapat dibuat lubang dengan ukuran besar sehingga uji lebih kuantitatif. Uji menggunakan media cair adalah metode paling sederhana untuk menentukan nilai MIC (Edward, 1980). Menurut Edberg (1986), MIC merupakan konsentrasi terendah yang akan menghambat pertumbuhan mikroorganisme makroskopik. Pertumbuhan mikroorganisme makroskopik dapat dilihat dalam batas 106 sampai 107 mikroba/ml. Jumlah bakteri pada kontrol dapat mencapai 109 sampai 1010 mikroorganisme/ml.
  • 28. Komponen Antibakteri Tanaman Zat aktif yang terkandung dalam berbagai jenis ekstrak tanaman diketahui dapat menghambat beberapa mikroba patogen maupun perusak pangan. Zat aktif tersebut dapat berasal dari bagian tanaman, seperti biji, buah, rimpang, batang, daun, dan umbi. Komponen antibakteri maupun antifungi dapat ditemukan pada minyak atsiri suatu tanaman. Efek antimikroba minyak atsiri telah banyak didokumentasikan dan digunakan dalam pengobatan berbasis herbal di beberapa negara (Schilcher, 1998; Cowan, 1999; Schilcher, 2002; Longbottom et al. 2004; Sonboli et al. 2005) diacu dalam Mahboobi et al. (2006). Dalam penelitiannya, Mahboobi (2006) mempelajari efek sinergis dari minyak atsiri tembakau, lavender dan geranium. Kerja sinergi beberapa minyak atsiri tersebut menghasilkan hambatan kuat terhadap P. aeroginosa. Minyak atsiri lengkuas (Alpinia galanga) juga mampu menghambat pertumbuhan B. subtilis dan S. aureus serta jamur Neurospora sp. dan Penicillium sp. Harborne (1987) menyebutkan bahwa zat bioaktif yang terdapat pada minyak atsiri digolongkan dalam golongan terpenoid. Terpenoid terdiri atas beberapa macam senyawa, mulai dari minyak atsiri yang mudah menguap, yaitu monoterpena dan sesquiterpena (C10 dan C15), diterpena yang lebih sukar menguap (C20), sampai ke senyawa yang tidak menguap, yaitu triterpenoid dan sterol (C30, serta pigmen karotenoid (C40). Beberapa komponen minyak atsiri yang memiliki aktivitas antibakteri ditampilkan dalam tabel berikut ini: Minyak atsiri terdapat di dalam sel kelenjar khusus pada permukaan daun dan dapat dipisahkan menggunakan metode destilasi. Teknik destilasi terdiri dari tiga cara yaitu; destilasi air, dimana bahan ditempatkan bersama air kemudian dipanaskan; destilasi uap dan air, yaitu bahan hanya berhubungan dengan uap tetapi tidak dengan air panas dan uap dalam keadaan basah, jenuh dan tidak terlalu panas; dan destilasi uap, dimana bahan yang didetilasi berhubungan dengan uap jenuh atau lewat jenuh pada tekanan lebih dari satu atmosfer (Heath dan Reineiccus, 1987).
  • 29. Tabel 1 Komponen utama beberapa jenis minyak atsiri yang memiliki aktivitas antibakteri Nama umum minyak atsiri Nama Latin tumbuhan asal Komponen utama Komposisi (%) Cilantro Coriandrum sativum Linalool E-2-dekanal 26% 20% Coriander Caoriandrum sativum (biji) Linalool E-2-dekanal 70% - Cinnamon Cinnamonum zeylandicum Trans- sinamaldehid 65% Oregano Origano vulgare Carvakrol Timol γ-Terpinene p-cimene Trace- 80% Trace-64% 2-52% Trace-52% Rosemary074 Rosmarinus officinalis α-pinene Bornilasetat Kampor 1,8-sineol 2 – 25% 0-17% 2-14% 3-89% Sage Salvia officinalis L. Kampor α-pinene β-pinene 1,8-sineol α-tujone 6-15% 4-5% 2-10% 6-145 20-42% Clove Syzygium aromaticum Eugenol Eugenilasetat 75-85% 8-15% Thyme Thymus vulgaris Timol Karvakrol γ-Terpinene p-cimene 10-64% 2-11% 2-31% 10-56% Sumber: Burt (2004)
  • 30. Bakteri Bakteri adalah sel prokariotik yang khas, bersifat uniseluler dan tidak mengandung struktur yang terbatasi membran di dalam sitoplasmanya. Sel bakteri memiliki bentuk yang khas, seperti bola, batang, atau spiral. Umumnya bakteri berdiameter antara 0.5 – 1.0 μm (Pelczar & Chan, 1986). Struktur utama yang ada di bagian luar sel bakteri adalah flagella, pili, dan kapsul. Flagela berbentuk seperti rambut tipis yang berfungsi sebagai alat gerak. Pilus atau pili adalah sebuah bentuk filamen yang lebih kecil, lebih banyak flagela. Kapsul adalah lapisan lendir yang menyelubungi dinding sel bakteri dan merupakan pelindung sel serta berfungsi sebagai makanan cadangan. Bakteri dapat hidup berpasangan, bergerombol, membentuk rantai atau filamen. Bakteri melakukan reproduksi melalui pembelahan biner sederhana atau membentuk sel khusus yang disebut spora. Selang waktu khusus yang dibutuhkan bakteri untuk membelah diri agar populasinya menjadi dua kali lipat disebut waktu generasi (Pelczar dan Chan, 1988). Berdasarkan komposisi dinding sel bakteri, bakteri dibedakan menjadi bakteri Gram positif dan Gram negatif. Bakteri Gram positif memiliki struktur dinding sel yang tebal (15-80 μm) dan berlapis tunggal dengan komposisi dinding sel terdiri atas lipid peptidoglikan dan asam teikoat. Kandungan lipid pada bakteri Gram positif antara 1-4%. Dinding sel terdiri dari lapisan tunggal peptidoglikan yang mencapai lebih dari 50% berat kering sel bakteri. Asam teikoat sebagai bagian utama dinding sel yang hanya terdapat pada bakteri Gram positif adalah polimer linear yang diturunkan baik dari gliserol fosfat maupun dari ribitol fosfat. Bakteri Gram positif rentan terhadap gangguan fisik (Pelczar dan Chan, 1986; Cummins, 1990; Williams et al. 1996). Bakteri Gram negatif memiliki struktur dinding sel berlapis tiga dengan ketebalan 10-15 nm. Komposisi dinding sel terdiri atas lipid dan peptidoglikan yang berada dalam lapisan sebelah dalam dengan jumlah sekitar 10% berat kering. Kandungan lipid pada bakteri Gram negatif cukup tinggi, yaitu 11-22%. Bakteri ini umumnya kurang rentan terhadap penisilin dan gangguan fisik. Selain itu, dinding sel bakteri Gram negatif lebih tipis daripada bakteri Gram positif.
  • 31. Pengaruh zat antibakteri terhadap sel bakteri Senyawa antibakteri dalam menghambat pertumbuhan bakteri bahkan membunuhnya. Menutur menurut Pelczar dan Chan (1986) hal tersebut disebabkan oleh: 1.Kerusakan struktur dinding sel Unit dasar dari dinding sel bakteri adalah peptidoglikan yang secara mekanis memberikan ketegaran pada sel bakteri, disamping sebagai dasar membran sitoplasma. Peptidoglikan tersebut terdiri dari turunan gula, yaitu asam N-asetilglukosamin dan N-asetilmuramat serta asam amino L-alanin, D-alanin, D- glutamat, dan lisin. Struktur dinding sel bakteri Gram positif mengandung 90% peptidoglikan serta lapisan tipis asam teikoat dan asam teikuronat yang bermuatan negatif. Ada bakteri Gram negatif, selain peptidoglikan 5-10%, terkandung juga protein, lipoprotein dan lipopolisakarida. Perbedaan utama kedua Gram tersebut terletak pada lapisan membran luar, yang meliputi lipopolisakarida (Madigan et al. 2003). Kehadiran membran ini menyebabkan bakteri kaya akan lipid (11- 22%). Membran tersebut tidak hanya terdiri dari fosfolipida saja seperti pada membran plasma tetapi mengandung juga lipid lainnya, seperti polisakarida dan protein. Lipid dan polisakarida ini berhubungan erat dan membentuk struktur yang khas yang disebut lipopolisakarida. Lipopolisakarida terikat satu sama lain dengan kation divalen Ca2+ dan Mg2+ (Murray, 1998). Membran luar bakteri Gram negatif mempunyai peranan sebagai barrier masuknya senyawa-senyawa yang tidak dibutuhkan oleh sel, diantaranya bakteriosin, enzim dan senyawa-senyawa yang bersifat hidrofobik (Alakomi et al. 2000). Dalam upaya untuk mencapai sasaran, senyawa antimikroba dapat menembus lipopolisakarida dinding sel. Molekul-molekul yang bersifat hidrofilik lebih mudah melewati lapisan lipopolisakarida dibandingkan dengan yang bersifat hidrofobik. Bakteri Gram positif mempunyai sisi hidrofilik, yaitu karboksil, asam amino, dan hidroksil. Asam-asam organik dapat menghambat pertumbuhan bakteri Gram negatif dengan mengkelat kation Ca2+ dan Mg2+ (Stratford, 2000). Mekanisme kerusakan dinding sel dapat disebabkan oleh adanya akumulasi komponen lipofilik yang terdapat pada dinding sel atau membran sel sehingga menyebabkan perubahan komposisi penyusun dinding sel. Terjadinya
  • 32. akumulasi senyawa antibakteri dipengaruhi oleh bentuk terdisosiasi. Gugus hidrofobik pada senyawa antibakteri dapat mengikat daerah hidrofobik membran serta melarut baik ada fase lipid membran bakteri. Umumnya senyawa antimikroba dapat menghambat sintesis peptidoglikan karena kemampuan dari senyawa tersebut dalam menghambat enzim-enzim yang berperan dalam pembentukan peptidoglikan seperti karboksipeptidase, endopeptidase dan transpeptidase. Jika aktifitas enzim-enzim tersebut dihambat oleh senyawa antibakteri maka sifat enzim autolitik sebagai reseptor hilang dan enzim tidak mampu mengendalikan aktifitasnya sehingga dinding sel akan mengalami degradasi. 2. Perubahan permeabilitas membran sitoplasma. Sel bakteri dikelilingi oleh struktur kaku yang disebut dinding sel, yang melindungi sitoplasma baik osmotik maupun mekanik. Setiap zat yang dapat merusak dinding sel atau mencegah sintesisnya akan menyebabkan terbentuknya sel-sel yang peka terhadap osmotik. Adanya tekanan osmotik dalam sel bakteri akan menyebabkan terjadinya lisis yang merupakan dasar efek bakterisidal pada bakteri yang peka. 3. Perubahan molekul protein dan asam nukleat Hidup suatu sel tergantung pada terpeliharanya molekul-molekul protein dan asam nukleat dalam keadaan alamiahnya. Suatu kondisi atau substansi yang mengubah keadaan ini, yaitu mendenaturasikan protein dan asam-asam nukleat dapat merusak sel tanpa dapat diperbaiki kembali. Suhu tinggi dan konsentrasi pekat beberapa zat kimia dapat mengakibatkan koagulasi irreversibel komponen- komponen selular yang vital ini. 4. Penghambatan kerja enzim di dalam sel sehingga mengakibatkan terganggunya metabolisme atau matinya sel. Senyawa antibakteri dapat menghambat pertumbuhan atau membunuh mikroorganisme dengan cara mengganggu aktifitas enzim-enzim metabolik. Beberapa senyawa antibakteri yang dapat menginaktifasi enzim adalah asam benzoat, asam lemak, sulfit dan nitrit. Nitrit dapat menghambat sistem enzim fosfat dehidrogenase sehingga mengakibatkan reduksi ATP dan ekskresi piruvat dalam bakteri S. aureus. Asam benzoat dapat menghambat aktifitas α-ketoglutarat
  • 33. dehidrogenase dan suksinat dehidrogenase. Hal ini akan menghambat konversi α- ketoglutarat menjadi suksinil-KoA dan suksinat menjadi fumarat. 5. Penghambatan sintesis asam nukleat dan protein Kim et al. (1995) menyatakan bahwa senyawa antimikroba dapat merusak sistem metabolisme di dalam sel dengan cara menghambat sintesis protein bakteri dan menghambat kerja enzim entraseluler. Sistem enzim yang terpengaruh akan mengakibatkan gangguan pada produksi energi penyusun sel dan sintesis komponen secara struktural. Branen dan Davidson (1993) menyatakan adanya mekanisme antimikroba yang mendestruksi atau menginaktivasi fungsi dari materi genetik. Sintesis protein merupakan hasil akhir dari proses transkripsi dan translasi. Dalam Kim et al. (1995) dijelaskan bahwa suatu senyawa yang bersifat antimikroba dapat mengganggu pembentukan asam nukleat sehingga transfer informasi genetik akan terganngu. Hal ini disebabkan senyawa antimikroba menghambat aktifitas enzim RNA polimerase dan DNA polimerase yang selanjutnya dapat menginaktifasi atau merusak materi genetik sehingga mengganggu proses pembelahan sel untuk pembiakan. Kerja antibakteri dipengaruhi oleh lingkungannya, antara lain konsentrasi zat antibakteri, spesies antibakteri, pH, dan lingkungannya. Bakteri Gram positif cenderung lebih sensitif terhadap komponen antibakteri. Hal ini disebabkan oleh struktur dinding sel bakteri Gram positif berlapis tunggal yang relatif sederhana sehingga memudahkan senyawa antibakteri masuk ke dalam sel dan menemukan sasarannya untuk bekerja. Bakteri gram negatif lebih resisten karena struktur dinding sel bakteri Gram negatif relatif lebih kompleks dan berlapis tiga, yaitu lapisan luar berupa lipoprotein, lapisan tengah berupa polisakarida dan lapisan dalam peptidoglikan (Pelczar dan Chan, 1986). Isolasi Senyawa Aktif Ekstraksi merupakan suatu proses yang secara selektif mengambil zat terlarut dari campuran dengan bantuan pelarut. Teknik ekstraksi didasarkan pada kenyataan bahwa jika suatu zat dapat larut dalam dua fase yang tidak tercampur maka zat itu dapat dialihkan dari saru fase ke fase lainnya dengan mengocoknya
  • 34. bersama-sama. Zat terlarut yang diekstraksi dapat berada dalam medium padat maupun cair. Pelarut yang digunakan untuk ekstraksi dapat bersifat larut dalam air seperti alkohol atau yang tidak larut air seperti heksana dan kloroform. Pemilihan pelarut yang digunakan tergantung pada sifat zat yang dilarutkan karena setiap zat memiliki kelarutan yang berbeda-beda (Achmadi, 1992). Dalam memilih pelarut yang dipakai harus diperhatikan sifat metabolit yang akan diekstrak. Sifat yang penting adalah sifat kepolaran dan gugus polar pada senyawa yang akan diekstrak. Dengan mengetahui sifat metabolit yang akan diekstraksi dapat dipilih pelarut yang sesuai berdasarkan kepolaran. Senyawa polar akan lebih mudah larut dalam pelarut polar dan senyawa nonpolar lebih mudah larut dalam pelarut nonpolar. Derajat kepolaran bergantung pada tetapan dielektrik. Makin besar tetapan dielektrik makin polar pelarut tersebut. Tabel 2 Beberapa pelarut organik dan sifat fisiknya Pelarut Titik didih (0 C) Tetapan dielektrik Air Asam formiat Asetonitril Metanol Etanol Aseton Metil klorida Asam asetat Etil asetat Dietil eter Heksan Benzen 100 100 81 68 78 56 40 118 78 35 69 80 80 58 36.6 33 24.3 20.7 9.08 6.15 6.02 4.34 2.02 2.28 KLT adalah metode yang sederhana dan murah untuk mendeteksi unsur- unsur dalam tumbuhan (Hostettman, 1998). Metode tersebut mudah dalam pengoprasian, keterulangan baik, dan hanya memerlukan sedikit perlengkapan.
  • 35. BAHAN DAN METODE Waktu dan Tempat Penelitian Penelitian ini dilaksanakan sejak bulan Maret sampai dengan Juli 2008. Kegiatan penelitian dilakukan di Laboratorium Bakteriologi Balai Veteriner Bogor, Laboratorium Biokimia IPB dan Laboratorium Pusat Studi Biofarmaka IPB. Identifikasi GC-MS dilakukan di Laboratorium Kesehatan Daerah Jakarta dan Laboratorium Kriminal Mabes Polri Jakarta. Scanning electron microscopy dilaksanakan di Laboratorium Zoologi-Biologi LIPI Cibinong. Bahan dan Alat Bahan yang digunakan dalam penelitian ini meliputi daun zodia, pelarut organik , media padat Mueler Hinton, plat silika gel 60 G F254, allumunium foil, kertas saring Whatman 42, telur Artemia salina, bakteri biakan uji Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, dan Salmonella enteritidis. Alat yang digunakan adalah alat –alat gelas, perangkat destilasi, mikrosentrifuse, mikropipet, shaker, bejana KLT, lampu UV panjang gelombang 254 nm dan 365 nm, microwell, aerator, perangkat GC-MS, scanning electron microscop tipe JSM-5000. Metode Penelitian Isolasi Minyak Atsiri (Lopes et al. 1997) Minyak atsiri daun zodia diisolasi mengunakan metode destilasi uap. Daun zodia dicuci dan dikeringudarakan. Selanjutnya sebanyak 400g daun kering didestilasi uap selama 4 jam sampai. Destilat diambil, air yang tercampur dipisahkan dengan penambahan Na2SO4 anhidrat. Minyak atsiri dipisahkan dengan cara memipetnya menggunakan pipet tetes.
  • 36. Karakterisasi menggunakan GC-MS (Lopes et al. 1997) Senyawa aktif dilarutkan dalam metanol. Larutan kemudian diinjeksikan ke dalam alat GC-MS. Adapun spesifikasi alat GC-MS yang digunakan adalah sebagai berikut: instrumen GC-MS Agilent Technologies 6890 GC dengan auto sampler 5973 Mass Selective Detector chemstation data system. Kolom innowax dengan panjang kolom kapiler 30 m diameter 0.25 mm dan ketebalan 0.25 μm. Gas pembawa adalah helium dengan kecepatan alir 0.6 µl/menit Pengujian Aktifitas Antibakteri (Simons & Craven, 1980) Pengujian antibakteri dilakukan dengan metode disc difusion. Bakteri biakan uji diinkubasikan pada temperatur 370 C selama 24 jam. Ke dalam media Mueller Hinton yang telah membeku dalam cawan petri diinokulasikan bakteri biakan uji dengan densitas bakteri 108 (menggunakan standard Mac Farland no. 2. Paper disc yang telah ditetesi contoh sebanyak 15 μl diletakkan pada permukaan media. Pengamatan dan pengukuran zona bening dilakukan setelah inkubasi selama 18 jam pada suhu 370 C. Uji Toksisitas Minyak Atsiri (Latha et al. 2007) Uji toksisitas minyak atsiri menggunakan metode Brine-Shrimp Letality Test. Disiapkan larutan uji minyak atsiri dengan konsentrasi 0, 100, 500, dan 1000 ppm dalam akuades dengan Tween 80 sebanyak 0,1% sebagai penurun tegangan permukaan. Ke dalam setiap sumur yang berisi larutan dimasukkan larva udang Artemia salina berumur 28 jam. Interaksi artemia dan larutan uji dilakukan selama 24 jam, selanjutnya jumlah larva udang yang mati dihitung. Data persen larva udang hidup diplotkan terhadap konsentrasi minyak atsiri dalam kurva regresi linier. Nilai LC50 ditentukan dengan menggunakan persamaan kurva yang dihasilkan.
  • 37. Kromatografi Lapis Tipis (Stahl, 1969) Pemisahan senyawa antibakteri dilakukan dengan teknik kromatografi lapis tipis dengan mencari eluen yang cocok. Lempeng lapis tipis silika gel 60 G F254 dengan ukuran panjang 10 cm dan lebar 2.5 cm diberi tanda garis dengan pensil pada jarak 1 cm dari setiap ujung lempeng. Fraksi aktif dilarutkan dalam pelarut asal. Eluen dimasukkan dalam tabung kromatografi hingga tingginya mencapai 0.5 cm dari dasar tabung dan ditutup rapat lalu dibiarkan agar tabung jenuh dengan uap pelarut. Larutan ektrak sampel diteteskan pada lempeng silika gel. Plat dicelupkan ke dalam larutan pengembang. Setelah mencapai batas 1 cm dari bagian atas plat, elusi dihentikan selanjutnya plat dikeringkan pada suhu ruang. Spot hasil pemisahan dideteksi menggunakan sinar UV dengan panjang gelombang 254 nm dan 365 nm dan diberi tanda dengan pensil lalu dihitung nilai retardation factor (Rf) masing-masing noda yang terbentuk. Rf = jarak tempuh analit dari titik awal Jarak tempuh pelarut Penentuan Minimum Inhibitory Concentration (MIC) (Edberg, 1986 yang dimodifikasi) Nilai MIC adalah konsentrasi terendah yang mematikan semua bakteri yang diinokulasikan ke dalam medium. MIC ditentukan menggunakan metode broth dillution menggunakan kaldu Mueller Hinton. Minyak atsiri diencerkan dalam suatu rangkaian konsentrasi dalam kaldu Mueller Hinton dengan bantuan pengemulsi. Bakteri patogen dibuat konsentrasinya menjadi 105 sampai 106 organisme/ml. Ke dalam setiap tabung dimasukkan inokulum termasuk juga satu tabung yang hanya berisi kaldu Mueller Hinton sebagai kontrol. Setelah inokulasi, tabung ditempatkan dalam inkubator suhu 370 C selama 18 jam. Selanjutnya kultur bakteri disubkultur kembali pada media padat Mueller Hinton dan diinkubasi kembali pada suhu 370 C selama 18 jam. Setelah inkubasi selesai, dilakukan pengamatan terhadap adanya pertumbuhan bakteri. Konsentrasi minyak atsiri yang menyebabkan bakteri tidak tumbuh pada subkultur merupakan konsentrasi yang dipilih sebagai nilai MIC.
  • 38. Penentuan Waktu Kontak Minyak Atsiri (metode Bintang, 1993) Disiapkan media cair Mueller Hinton yang mengandung ekstrak dengan konsentrasi 2%. Disiapkan pula satu tabung yang hanya berisi media cair sebagai kontrol. Semua tabung diinkubasi pada 200 C selama 5 menit. Selanjutnya ke dalam setiap tabung dimasukkan bakteri biakan uji S. aureus sebanyak 100 μl dengan interval waktu 30 detik untuk setiap tabung. Setelah diinkubasi selama 1 jam, diambil 20 μl kultur untuk disubkulturkan pada media padat Mueller Hinton. Subkultur dilakukan lagi pada setiap jam berikutnya selama 24 jam. Media yang telah diinokulasi diinkubasi pada 370 C selama 24 jam. Setelah itu jumlah bakteri yang tumbuh dalam setiap media subkultur dihitung. Analisis Perubahan Morfologi Sel (Ritz et al. 2001) Tahap ini bertujuan untuk mengetahui perubahan morfologi dan struktur sel bakteri. Perubahan-perubahan yang diamati diantaranya adalah perubahan penampakan sel secara umum, ketebalan dinding sel, ukuran sel dan lainnya yang dapat diamati dengan SEM. Suspensi bakteri yang telah diinteraksikan dengan minyak atsiri daun zodia dengan konsentrasi 2% selama 17 jam disentrifus dengan kecepatan 3500 rpm selama 15 menit. Supernatan dibuang, contoh direndam dengan glutaraldehyde 2% selama beberapa jam. Contoh disentrifus kembali, larutan fiksatif dibuang, ditambahkan buffer caccodylate, dilakukan perendaman selama 10 menit. Perendaman dilakukan dua kali. Contoh disentrifus kembali, buffer dibuang, lalu ditambahkan osmium tetra oksida 1% dan direndam selama 1 jam. Contoh disentrifuse, larutan dibuang, ditambahkan alkohol 50 % dan direndam selama 10 menit sebanyak 2 kali. Selanjutnya berturut-turut tambahkan alkohol 70 % , alkohol 80%, dan 95 %, masing 2 kali 10 menit dan alkohol absolut selama 10 menit. Pengerjaan ini dilakukan sekali lagi. Contoh disentrifus, larutan dibuang, ditambahkan t- butanol, contoh direndam 2 kali 10 menit, sentrifus dilakukan lagi, butanol dibuang, ditambahkan butanol, dibuat suspensi dalam butanol, Potongan cover slip dibekukan, dibuat ulasan suspensi pada cover slip lalu coverslip dikeringkan dengan dengan Freeze Drier dan dilapisi dengan. Preparat siap diamati. Semua proses dilakukan pada suhu 40 C.
  • 39. Isolasi Senyawa Aktif Antibakteri (Atkins, 1994) Minyak atsiri daun zodia didinginkan mencapai suhu 18o C sampai terbentuk kristal. Kristal yang dihasilkan dipisahkan dari fase cair. Kristal dicuci beberapa kali menggunakan akuades. Kristal hasil cucian dilarutkan dalam heksan. Fraksi heksan dipisahkan kemudian kristal sisa dilarutkaan dalam etil asetat. Pelarut dari setiap fraksi kemudian dihilangkan dengan metode penguapan pada suhu kamar. Selanjutnya aktivitas antibakteri diuji kembali serta dilakukan analisis kemurnian kristal dengan metode KLT dan GC-MS.
  • 40. HASIL DAN PEMBAHASAN Komposisi Minyak Atsiri Minyak atsiri daun zodia diisolasi menggunakan metode destilasi uap. Rendemen yang dihasilkan adalah 1% berdasarkan bobot kering dengan kadar air 11%. Komponen minyak atsiri dianalisis dengan metode GC-MS. Gambar 4 Spektra GC-MS minyak atsiri daun zodia Spektra GC-MS menampakkan 26 puncak yang menunjukkan adanya 26 komponen penyusun minyak atsiri. Total persentase komponen penyusun adalah 100% dengan komponen utama adalah evodone dengan kadar 72.32%, diikuti dengan menthofuran sebesar 7.52%, limonene 4.73%, curcumene 4.28% dan fonenol 1.66%, sedangkan sisanya merupakan komponen-komponen berkadar rendah (Tabel 3). Evodone dan mentofuran termasuk dalam golongan monoterpena yang terbentuk dari dua unit isoprena, terdiri dari 10 atom karbon. Evodone merupakan furanomonoterpena. Komponen ini secara alami dapat diisolasi dari tumbuhan Evodia hortensis (Lee et al. 2002). Dilaporkan bahwa evodone mampu menghambat pertumbuhan biji Schizachyrium scoparium. Sifat allelopati tersebut
  • 41. juga ditunjukkan terhadap Rudbeckia hirta (Weidenhamer, 1994). Seperti halnya evodone, monoterpene golongan mentofuran juga memiliki efek allelopati (Weidenhamer, 1994). Tabel 3 Komponen minyak atsiri daun zodia No. Nama komponen Kadar (%) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. Limonene Menthofuran α-Copaene 2,4,6-trimetilpiridin Trans-kariophilen Β- Salinene α-Humulen β-Himachalene Delta-Cadinene AR-Curcumene l-carveol Evodone Cariophylene oksida p-Mentha-1(7),8(10)-dien-9-ol Fonenol Epiglobulol 4-aminostirene 2-asetil-4,5-dimetilfenol Mint furanon 3-Aminothieno(2,3-B)pirazine-2-car 1-Methoxycarbonyl-2-vinyl-1,2-dihidropiridin Asam 2-propenoat 2-Etil-trans-2-butenal Xanthorizol Asam 3-(3-thienil)prop-2-enoat Asam heksadekanoat 4.73 7.52 0.61 0.21 0.56 0.27 0.29 0.57 0.30 4.28 0.89 72.32 0.34 0.49 1.66 0.32 0.16 0.20 0.94 0.27 0.62 0.84 0.43 0.20 0.67 0.31 limonene O O evodone curcumene Gambar 5 Struktur senyawa terpena yang memiliki kemiripan dengan komponen utama minyak atsiri daun zodia
  • 42. Curcumene terbentuk dari tiga unit isoprena. Komponen yang termasuk dalam golongan sesquiterpena ini telah banyak diteliti akan aktivitas biologisnya, diantaranya adalah sebagai antioksidan, antikanker, antiinflamasi, antibakteri dan hepatoprotektor (Saiki (2008); Hwang et al (2008); Sidik (2008)). Aktivitas Antibakteri Minyak Atsiri Pengujian aktivitas antibakteri dilakukan untuk menentukan potensi minyak atsiri dalam menghambat pertumbuhan bakteri. Uji dilakukan terhadap bakteri Gram positif dan Gram negatif. Dengan demikian spektrum antibakteri minyak atsiri dapat ditentukan. Hasil uji aktivitas antibakteri dapat dilihat dalam Tabel 4. Tabel 4 Aktivitas antibakteri minyak atsiri Contoh yang diuji Bakteri uji/ Diameter zona hambat (mm) S. aureus S. epidermidis Salmonela enteritidis E.coli Minyak Atsiri 15 11 10 9 Ampisilin 30 40 0 26 Kloramfenikol 24 30 30 30 Neomisin 16 18 16 12 Metisilin 20 18 0 0 Minyak atsiri mampu menghambat bahkan membunuh pertumbuhan S. aureus, S epidermidis, Salmonella enteritidis maupun E. coli. Aktivitasnya berspektrum luas dan bersifat bakterisida. Aktivitas dimungkinkan berasal dari senyawa-senyawa golongan terpenoid yang terkandung dalam minyak atsiri. Karena sifatnya yang lipofilik, senyawa golongan terpenoid mampu berinteraksi dengan membran biologis (Brehm-Strecher & Johnson, 2003). Akumulasi senyawa-senyawa tersebut mempengaruhi struktur dan sifat fungsional membran. Dibandingkan beberapa antibiotik komersial, aktivitas minyak atsiri terhadap bakteri S. aureus mencapai 95% aktivitas neomisin. Aktivitas sebesar 61% aktivitas antibiotik neomisin dan metisilin dihasilkan dari uji terhadap bakteri S. epidermidis. Untuk Salmonella enteritidis dan E. coli, aktivitasnya juga cukup baik dibandingkan antibiotik neomisin (62,5% untuk Salmonella enteritidis
  • 43. dan 75% E. Coli). Ampisilin dan kloramfenikol menghasilkan aktivitas sangat kuat. Aktivitas antibakteri minyak atsiri dapat dikatakan kecil jika dibandingkan dengan kedua jenis antibiotik ini. Salmonella enteritidis merupakan bakteri penyebab infeksi akut (Winarno, 2004). Bakteri ini mampu bertahan hidup pada kondisi pH 3.7-9.5 dan suhu 0- 45.6o C. Dalam penelitian ini, bakteri Salmonella entritidis diisolasi dari karkas ayam. Uji aktivitas antibakteri menunjukkan bahwa bakteri telah resisten terhadap antibiotik ampisilin (Tabel 5). Resistensi mungkin disebabkan oleh pemberian antibiotik terus menerus untuk meningkatkan produksi ternak ayam. Terhadap bakteri resisten ini, minyak atsiri daun zodia mampu menghasilkan penghambatan pertumbuhan dengan pembentukan zona hambat sebesar 10 mm (Tabel 4). Tabel 5 Sensitifitas antibiotik (Simmons & Craven, 1980) Obat Potensi Disc Zona hambat (mm) Resisten Intermediet Suseptibel ampisilin 10 μg 20 atau kurang 21-28 29 atau lebih kloramfenikol 30 μg 12 atau kurang 13-17 18 atau lebih neomisin 30 μg 12 atau kurang 13-16 17 atau lebih metisilin 5 μg 9 atau kurang 10-13 14 atau lebih Merujuk pada sensitifitas antibiotik dalam tabel 5, bakteri E. Coli juga telah mengalami resistensi terhadap neomisin. Zona hambat yang terbentuk hanya 12 mm. Terhadap E. Coli resisten ini, minyak atsiri daun zodia mampu menghasilkan penghambatan sebesar 9 mm. David Stount mengelompokkan aktivitas antibakteri ke dalam tiga golongan, yaitu rendah, sedang dan besar. Berdasarkan klasifikasi tersebut (Tabel 6), aktivitas antibakteri minyak atsiri daun zodia termasuk dalam golongan sedang untuk bakteri Gram negatif dan besar untuk bakteri Gram positif.
  • 44. Tabel 6 Klasifikasi aktivitas antibakteri menurut David Stount (Suryawiria, 1978) Aktivitas Diameter zona hambat (mm) Rendah < 5 Sedang 5 – 10 Besar >10 Bakteri Gram positif lebih peka terhadap minyak atsiri. Hal ini mungkin disebabkan oleh karekteristik membran sel yang berbeda antara bakteri Gram positif dan Gram negatif. Bakteri Gram negatif memiliki pembatas permeabilitas tambahan yang terdapat dari struktur membran luar (Brehm-Stecher & Johnson (2003). Dinding sel bakteri Gram negatif lebih kompleks dibandingkan dengan bakteri Gram positif. Perbedaan utama terletak pada adanya lapisan lipopolisakarida pada lapisan membran luar sel bakteri Gram negatif. Lapisan inilah yang berperan sebagai barrier (Gambar 6). Hipotesis lain yang dikemukakan oleh McBroom & Kuehn (2007) menjelaskan bahwa kemampuan bakteri Gram negatif untuk bertahan hidup berhubungan dengan kemampuan bakteri Gram negatif dalam memanajemen stress. Faktor stress dapat berupa temperatur, ketersediaan nutrisi, paparan toksikan, salah satunya adalah antibiotik. Peningkatan jumlah vesikel merupakan bentuk manajemen stress yang dimiliki bakteri Vesikel berasal dari tonjolan membran luar yang melingkungi komponen periplasma. Tonjolan membran tersebut mengalami fisi kemudian memisah membentuk vesikel. Vesikel dapat bertindak sebagai sarana transport intraselular. Vesikel yang berasosiasi dengan komponen berperan dalam pencernaan nutrisi dan eliminasi organisme kompetitor (McBroom & Kuehn, 2005, dalam McBroom& Kuehn (2007)). Lepasnya vesikel membran luar menghasilkan mekanisme efektif bagi sel untuk membuang materi seperti makromolekul kompleks, memungkinkan sel membuang materi tersebut atau mengubah selubung bakteri yang menguntungkan bagi keberadaan bakteri itu sendiri. Produksi vesikel menjadi merupakan
  • 45. mekanisme perlindungan diri bakteri. Senyawa-senyawa antimikroba dapat terikat pada vesikel kemudian terperangkap dalam lingkungan sel atau terikat pada membran luar dan terlepas bersamaan dengan dibentuknya vesikel (McBroom & Kuehn, 2007). Gambar 6 Struktur dinding sel bakteri Gram positif dan Gram negatif Nilai MIC Minyak Atsiri Daun Zodia Nilai MIC menunjukkan konsentrsi terendah komponen antimikroba dimana tidak terjadi pertumbuhan mikroba pada masa inkubasi 24 jam. Dalam penelitian ini, konsentrasi minyak atsiri yang dicoba 0.2-1.25, bervariasi untuk setiap jenis bakteri berdasarkan range yang dipersempit dari hasil uji pendahuluan. Dari Gambar 7 terlihat bahwa nilai MIC minyak atsiri daun zodia berbeda- beda untuk setiap jenis bakteri. Bakteri yang paling sensitif adalah S. epidermidis. Salmonella enteritidis mempunyai ketahanan paling besar. Hal ini dapat dilihat dari nilai MIC yang dimiliki adalah tertinggi, yaitu 1,25.
  • 46. Gambar 7 Kurva penetapan MIC minyak atsiri daun zodia terhadap bakteri S. aureus (a) S. epidermidis (b) Salmonella enteritidis (c) dan E. col i(d) Penetapan Waktu Kontak Minyak Atsiri Kecepatan efek bakterisida atau durasi efek bakteriostatik dapat ditentukan dengan analisis “time-killing” (Burt, 2004). Survival curve plot sebagai hasil analisis menggambarkan hubungan antara jumlah sel yang hidup setelah berinteraksi dengan minyak atsiri terhadap waktu. Gambar 8 Penetapan waktu kontak minyak atsiri 0 25 50 75 100 125 150 175 200 225 250 275 0 1 2 3 5 7 9 13 15 16 17 19 20 22 23 24 Jamke- Log10cfuml-1 0 5 10 15 0.5 0.6 0.7 0.8 0.9 1 1.25 % minyak atsiri Log10cfuml-1 0 2 4 6 8 0.4 0.6 0.8 1 1.2 % minyak atsiri Log10cfuml-1 (c) (d) 0 5 10 15 20 25 30 0.7 0.8 0.9 1 % minyak atsiri Log10cfuml-1 0 5 10 15 20 0.2 0.3 0.4 0.5 0.6 0.7 0.8 % minyak atsiri Log10cfuml-1 (a) (b)
  • 47. Bakteri S. aureus mulai mati pada jam ke-3, akan tetapi sebagian besar bakteri dapat bertahan dan masih dapat berkembang biak hingga jam ke-5. Jumlah bakteri hidup menurun tajam mulai jam ke-7 hingga mati semuanya pada jam ke- 24. Penurunan jumlah viabel sel dalam jumlah besar berada pada fase stasioner bakteri. Menurut Pelczar & Chan (1986) dan Thiel (1999), pada fase stasioner ini bakteri tumbuh dan membelah dalam kecepatan tetap. Nutrisi yang tersedia mulai terbatas. Bakteri lebih sensitif terhadap stress (Carson et al. 2002). Gambar 9 Kurva pertumbuhan bakteri S. aureus Analisis Perubahan Morfologi Sel Kerusakan dinding sel dan hilangnya material seluler dapat diamati menggunakan scanning electron microscope. Prototip mikroskop ini pertama kali dibuat oleh Ruska dan Knell dari Jerman pada tahun 1931, digunakan pertama kali pada tahun 1940 serta dikomerialisasikan sekitar tahun 1965 (Suryanto, 1997). Pada dasarnya peralatan terbagi dalam tiga komponen utama, yaitu sistem lensa elektromagnetik, sistem pelarikan dan sistem deteksi. Sistem lensa berfungi menfokuskan cahaya yang berupa berkas–berkas elektron dari filamen yang dipanaskan. Pada sistem pelarikan, berkas elektron melarik obyek yang diamati. Hasil interaksi berkas elektron menghasilkan elektron sekunder dan terhambur balik dimana elektron-lelektron tersebut dikumpulkan dan diolah oleh detektor. Detektor elektron sekunder kemudian mengolah dan memberikan informasi tentang topografi dan morfologi permukaan sampel. 0.000 0.200 0.400 0.600 0.800 1.000 0.25 1 5 15 20 23 Jamke- Absorbans
  • 48. Analisis mikroskop elektron menunjukkan terjadinya kerusakan pada membran sel bakteri S. aureus (Gambar 10 b, c dan d) karena berinteraksi dengan minyak atsiri daun zodia. Permukaan sel mengkerut, kasar sehingga bentuknya menjadi tidak beraturan (Gambar 10b). Ukuran sel menjadi lebih besar 3 sampai 5 kali lipat ukuran normal yang berkisar 1 µm (Gambar 10a). Respon yang sama dihasilkan oleh bakteri P. aeruginosa dan E. coli yang terpapar antibiotik ciprofloksaxin (Wojnicz et al. (2007). Dalam Clinkenbeard et al. (1989), keadaan sel yang demikian dikatakan sedang mengalami swelling. Masuknya toksin ke dalam plasma membran menyebabkan terbentuknya pori transmembran (Bernheimer (1947) dalam Clinkenbeard et al. (1989)). Sel yang menurut Cook (1965) mengalami “kebocoran” (Gambar 10c) memungkinkan pergerakan ion secara pasif lebih cepat daripada yang berlangsung melalui transport aktif. Dijelaskan dalam Clinkenbeard et al. (1989)) bahwa ion- ion K+ keluar dari dalam sel melalui pori, sedangan komponen sitoplasma yang (d)(c) Gambar 10 Mikrograf elektron bakteri S. aureus Ket: tanpa perlakuan (a) dan setelah perlakuan dengan minyak atsiri daun zodia (b, c, d) dengan pembesaran 10.000x (a, b, c,) dan 750x (d) (a) (b)
  • 49. berukuran lebih besar seperti protein tetap berada dalam sel. Tekanan osmotik dalam sel menjadi lebih besar daripada tekanan osmosis media sehingga sel mengalami swelling. Setelah mengalami swelling, komponen-komponen sitoplama yang berukuran besar dapat keluar ke lingkungannya (Clinkenbeard et al. (1989)). Sel tidak lagi memiliki nukleus atau organel lainnya. Kini sel hanya terdiri dari membran sel yang kosong tanpa isi. Sel demikian disebut sebagai sel “ghost” (Gambar 10d). Nilai Toksisitas Minyak Atsiri terhadap Artemia salina Uji toksisitas larva udang merupakan salah satu metode uji yang paling banyak digunakan untuk memprediksi adanya aktivitas farmakologis suatu senyawa. Menurut Olila et al (2001), beberapa kelebihan yang dimiliki oleh metode ini adalah sederhana, tidak memerlukan sterilitas, hasil dapat diperoleh dalam waktu singkat (24 jam). Dalam uji toksisitas minyak atsiri daun zodia ini dicoba empat vaiasi konsentrasi minyak atsiri, yaitu 0, 100, 500, dan 1000 ppm. Jumlah larva yang mati diamati dihitung setelah larva berinteraksi dengan contoh selama 24 jam. Dengan cara memplotkan jumlah larva yang mati dan konsentrasi minyak atsiri dalam sebuah kurva regresi (Latha et al, 2007) maka didapatkan nilai toksisitas minyak atsiri sebesar 376.7 ppm. Gambar 11 Kurva regresi penentuan toksisitas minyak atsiri y = 0.1081x + 9.2742 0 20 40 60 80 100 0 200 400 600 800 1000 konsentrasi minyak atsiri (ppm) %letal
  • 50. Uji toksisitas menunjukkan bahwa minyak atsiri daun zodia memiliki potensi bioaktif farmakologis. Berdasarkan klasifikasi toksisitas menurut Tonkes (Verma, 2008), toksisitas minyak atsiri daun zodia termasuk dalam golongan sedang. Dengan demikian minyak atsiri tersebut tidak disarankan digunakan secara oral, melainkan baik untuk penggunaan secara topikal. Meski demikian perlu dilakukan analisis toksisitas lebih lanjut untuk melihat efeknya toksiknya. Tabel 7 Hubungan Antara LC50, LD50 and EC50 dan Klasifikasi Toksisitas Tonkes (Vema, 2008) LD50 LC50 EC30 Klasifikasi toksisitas > 5000 > 100 > 100 Relatif tidak toksik 500 – 5000 10 – 100 10 – 100% Toksisitas rendah 50 – 500 1 - 10 1 – 10% Toksisitas sedang <50 < 1 < 1% Sangat Toksik Pemisahan Komponen Minyak Atsiri Dengan Kromatografi Lapis Tipis Kromatografi lapis tipis merupakan metode sederhana dan efisien untuk memisahkan komponen yang jumlahnya sangat sedikit. Minyak atsiri bersifat hidrofobik. Menurut Stahl (1969), semua jenis adsorben anorganik, kecuali kieselguhr baik digunakan untuk memisahkan komponen yang bersifat lipofilik. Silika gel dan alumina umum digunakan dalam pemisahan komponen minyak atsiri. Berdasarkan analisis menggunakan KLT diperoleh eluen terbaik yang terdiri dari campuran heksan : dietileter dengan perbandingan 8 : 2 menggunakan plat silika gel 60F254. Pemisahan menggunakan eluen tersebut menghasilkan 11 bercak dengan nilai hRf (100 x Rf) seperti yang tercantum dalam Tabel 8.
  • 51. Gambar 12 Kromatogram minyak atsiri dalam pelarut heksan:dietileter (8:2) pada plat silika gel 60F254 Tabel 8 Nilai hRf kromatogram minyak atsiri No. komponen hRf 1 5 2 16 3 30 4 35 5 40 6 48 7 58 8 59 9 71 10 80 11 90 Isolasi Senyawa Aktif Antibakteri Dalam penelitian ini isolasi senyawa aktif dilakukan dengan metode kristalisasi menggunakan temperatur dingin. Adapun tempertur yang digunakan adalah 180 C. Dari proses ini didapatkan kristal berwarna putih yang bersifat tidak larut dalam air, akan tetapi larut dalam etanol dan pelarut organik semipolar seperti etil asetat dan aseton dan pelarut nonpolar benzena. Dengan pelarut heksan, kristal tidak dapat larut sempurna, ada sebagian yang larut dan ada pula yang bertahan bentuknya sebagai kristal. Diperkirakan bahwa kristal terdiri dari komponen yang bersifat semipolar dan nonpolar.
  • 52. Kristal kasar hasil proses kristalisasi kemudian dipartisi. Pertama-tama kristal dicuci menggunakan akuades untuk membersihkan pengotor. Selanjutnya kristal dilarutkan dalam pelarut heksan. Fraksi heksan diambil kemudian dikeringudarakan. Pencucian dengan heksan dilakukan berulang kali hingga didapat fraksi heksan dan kristal sisa pelarutan dengan heksan. Kristal sisa dilarutkan dalam etil asetat. Selanjutnya dilakukan uji antibakteri terhadap fraksi heksan, etil asetat dan kristal kasar dalam aseton. Gambar 13 Kristal hasil isolasi dari minyak atsiri daun zodia (mikroskop BHS Olympus pembesaran 10.000 x) Gambar 14 Uji kelarutan kristal dalam air (1) heksan (2), aseton (3), etil asetat (4) dan benzene (5) 1 4 5 2 3
  • 53. Tabel 9 Aktivitas antibakteri fraksi heksan, etil asetat dan fraksi air terhadap bakteri S. aureus Jenis fraksi Diameter zona hambat (cm) Fraksi heksan 7 Fraksi etil asetat 6 Kristal kasar dalam aseton 10 Uji aktivitas fraksi menunjukkan bahwa aktivitas fraksi lebih kecil jika dibandingkan dengan aktivitas kristal kasar maupun aktivitas minyak atsiri (Tabel 9). Aktivitas antibakteri kristal kasar ternyata merupakan hasil kerja sinergi antara komponen-komponen penyusun kristal kasar tersebut. Demikian juga dengan aktivitas antibakteri minyak atsiri yang meruakan efek sinergi komponen- komponennya. Gambar 15 Aktivitas antibakteri fraksi heksan (1), etil asetat (2) dan kristal kasar (3) Untuk menguji kemurnian kristal hasil isolasi, kristal yang berasal dari fraksi heksan dilarutkan kembali dalam pelarut heksan, kristal yang larut dalam etil asetat dilarutkan dalam etil asetat, kemudian dianalisis dengan metode kromatografi lapis tipis menggunakan eluen heksan:dietileter (8:2). (1) (2) (3)
  • 54. Gambar 16 Kromatogram fraksi heksan (a) dan fraksi etil asetat (b) de- ngan pelarut heksan:dietileter (8:2) pada plat silika gel 60 F254 Kromatogram fraksi-fraksi hasil isolasi menggambarkan bahwa fraksi etil asetat masih mengandung beberapa komponen, sedangkan fraksi heksan hanya mengandung satu jenis komponen saja dengan hRf 70. Bercak hasil pemisahan fraksi etil asetat memiliki hRf 42 dan 75. Dengan membandingkan nilai hRf fraksi heksan dan etil asetat dengan nilai–nilai hRf minyak atsiri dalam Tabel 8, hRf fraksi heksan mendekati hRf komponen ke-9, sedangkan hRf fraksi etil asetat mendekati hRf komponen ke-5 dan ke-9. Gambar17 mempresentasikan gambar satu dimensi kristal yang diamati menggunakan mikroskop optik Olympus model BHS dengan pembesaran 10.000 kali. Kristal didapatkan dengan menguapkan terlebih dahulu pelarut yang digunakan dengan cara dikeringudarakan . Gambar 17 Bentuk dua dimensi fraksi heksan (a) dan fraksi etilasetat (b) (a) (b) (a) (b)
  • 55. Gambar 18 Spektra GC-MS kistal hasil kristalisasi fraksi etil asetat Gambar 19 Spektra GC-MS kristal hasil kristalisasi fraksi heksan
  • 56. Hasil analisis GC-MS menunjukkan bahwa kristal hasil kristalisasi fraksi etil asetat mengandung komponen evodone (77.97%) dan (10.21%) sebagai komponen utama dengan waktu retensi 10.5 dan 10.7. Komponen lain ditemukan dalam jumlah kecil, yaitu mentofuran (3.06%) asam palmitat (5.52%). Kristal hasil kristalisasi frksi heksan merupakan komponen murni dengan struktur menyerupai evodone dengan waktu retensi 10.5.
  • 57. KESIMPULAN DAN SARAN Kesimpulan Dari hasil penelitian dapat disimpulkan bahwa minyak atsiri daun zodia mengandung evodon dengan kadar 72.32%, menthofuran 7.52%, limonene 4.73%, curcumene 4.28% dan fonenol 1.66%. Minyak atsiri menghasilkan aktifitas antibakteri dan aktivitasnya berspektrum luas. MIC minyak atsiri bernilai 1% terhadap S. aureus, 0.8% terhadap S. epidermidis, 1.25% terhadap Salmonella enteritidis and 1.2% terhadap E. coli Minyak atsiri bersifat toksik sedang dan dapat menyebabkan kerusakan membran sel bakteri. Bakteri mengalami “swelling” dan sel bakteri berubah menjadi “sel ghost”. Senyawa aktif anti bakteri adalah evodone. Aktivitas yang dihasilkan oleh senyawa murni lebih rendah daripada aktivitas minyak atsiri itu sendiri. Jadi aktivitas antibakteri minyak atsiri merupakan efek kerja sinergi komponen-komponen aktifnya. Saran Quality dalam analisis GC-MS menggambarkan persen kemiripan struktur senyawa dalam contoh dengan struktur senyawa standard. Senyawa aktif antibakteri hasil isolasi memiliki nilai quality sebesar 91. Hal ini menunjukkan masih ada perbedaan struktur antara senyawa aktif hasil isolasi dengan senyawa standard. Oleh karena itu, perlu dilakukan analisis IR-NMR sehingga struktur senyawa secara utuh dapat ditentukan. Selain itu perlu dilakukan pula analisis toksisitas akut, subakut dan kronik serta pengaruh minyak atsiri terhadap organ menggunakan analisis histopatologi sehingga dapat ditentukan pemanfaatan sifat antibakteri minyak atsiri daun zodia.
  • 58. DAFTAR PUSTAKA Achmadi, S. 1992. Teknik Kimia Organik. Jurusan Kimia. Fakultas matematika dan Ilmu engetahuan Alam. IPB, Bogor. Alakomi H. L., Skytta E, Saarela M, Mattila-Sandholm T. 2000. Lactic acid permeabilizes Gram-negatif bacteria by disrupting the outer membrane. J. Applied Enviroment Microbiology 66:2001-2005. Atkins, P. 1994. Physical Chemistry, 5th edition. New York: W.H Freeman and Company. .Baudoux, D. 2005. Antiviral and Antimikrobial Properties of Essential Oils. Dalam : http://www.positif health.com ( diakses Desember 2007) Bintang, M. 1993. Studi Antimikroba dari Streptococcus lactis BCC 2259 (disertasi). Bandung: Program Doktor ITB. Branen A. L dan Davidson P. M. 1993. Antimicrobial in Food. Marcel Dekker, New York. Brehm-Strecher B. F. & E. A. Johnson, 2003. Sensitization of Staphylococcus aureus and Escherichia coli to Antibiotics by the Sesquiterpenoids Nerolidol, Farnesol, Bisabolol, and Apritone. Dalam Antimicrobial Agent and Chemotherapy 47(10): 3357–3360 Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. Dalam Intenational Journal of Food Microbiology 94:233-253. Carson C. F., B. J. Mee, T. V. Riley. 2002. Mechanism of Action of Melaleuca alternifolia (Tea Tree) Oil on Staphylococcus aureus Determined by Time-Kill, Lysis, Leakage, and Salt Tolerance Assays and Electron Microscopy. Dalam Antimicrobial Agents and Chemoteraphy, 6(6): 1914– 1920. Clinkenbeard, K. D., D. A. Mosier, A. W. Confr. 1989. Transmembrane Pore Size and Role of Cell Swelling in Cytotoxicity Caused by Pasteurella haemolytica Leukotoxint. Dalam Infection and Immunity 420-425 Cummins. 1990. Bacterial Cell Wall Structure. Dalam O’Leary, W.M. Practical hanbook of Microbiology. CRC Press: Boca Raton, Boston.
  • 59. Dzulkarnain, B., D. Sundari, A. Chozin. 1996. Tanaman Obat Bersifat Antibakteri di Indonesia. Cermin Dunia Kedokteran 110:35-38. Edberg, S. C. 1986. Antibiotika dan Infeksi (Antibiotics and Infection). Terjemahan chandra Sanusi. EGC, Jakarta. Edward, D. 1980. Antimicrobial Drug Action. The MacMillan Press, Hongkong. Fardiaz, S. 1992. Mikrobiologi Pengolahan pangan lanjut. PAU Pangan dan Gizi IPB, Bogor. Gritter, R. J. , J. M. Bobbit dan A. E. Schwarting. 1981. Penghantar Kromatografi. Terjemahan Kosasih Padmawinata. ITB, Bandung. 1991 Harborn J. B. 1987. Metode Fitokimia. Padmawinata K, Soediro I. Bandung, ITB. Hamasaki N, Ishii E, Tominaga K, Tezuka Y, Nagaoka T, Kadota S, Kuroki T, Yano I. 2000. Highly selective antibacterial activity of novel alkyl quinolone alkaloids from a Chinese herbal medicine, Gosyuyu (Wu-Chu- Yu ), against Helicobacter pylori in vitro. Dalam Microbiol Immunol. 44(1):9-15. Heath & Reineiccus. 1987. Flavour chemistry and technology. Vonostrand Reinhold, New york. Hill, H. (2005). How Concerned Should We Be About The Spectre of Antibiotic Resistance? Dalam The Pharmaceutical Journal 275: 462. Hostettman, K. 1998. Strategy for Biological and chemical Evaluation on plant Extract. Dalam Pure Appl. Chem. 70(11). http://www.proseanet.og/pohati4/printer.php?photoid=15 diakses Maret 28. Hwang J. 2008 Industrial potensial of Curcuma xanthorrhiza as Antimicrobial and Antiinflamatory Agent. Dalam prosiding The First International Symposium on Temulawak. Bogor, 27-29 Mei 2008 hal. 3-4. Bogor, IPB. Ibba Herve R. 2008. Proteins That Help Bacteria Put Up A FightIdentified. ScienceDaily Feb 27, 2008. Ignacimuthu, S. Seenivasan P., M. Jayakumar. 2006. In Vitro Antibacterial Activity of Some Plant Essential oil. Dalam BMC Complementary and Alternative Medicine 6:39. Kardinan, A. 2004. Zodia, Tanaman Pengusir Nyamuk dalam Tabloid Sinar Tani 23 Juni 2004.
  • 60. Kim J. M., Mashall M. R. , Cornell J. A., Boston J. F., Wei CI. 1995. Antibacterial Activity of carvacrol, citral and geraniols against Salmonella typhimurium in Culture Medium and Fish cubes. Dalam J. Food Sci. 60 (6):1129-1131. Latha L. Y., S. Sasidharan, Z. Zuraini, S. Suryani , L. Shirley, S. Sangetha dan M. Davaselvi . 2007. Antimicrobial Activities and Toxicity of Crude Extract of The Psophocarpus Tetrgonolobus Pods. Dalam African Journal of Traditional, Complementary and Alternative Medicines 4 ( 1): 23-36 Lewis K. & F. M. Ausubel. 2006. Prospect for plant-derived antibacterials dalam Nature Biotechnology 12:1504-1509. Lee,Y. R.,* Gun .L., and Keon Y.K. 2002. Application to the Synthesis of Evodone and Avicequinone-Ceric Ammonium Nitrate(CAN)-Mediated Oxidative Cycloaddition of 1,3-Dicarbonyls to Vinyl Sulfides. Dalam Bull. Korean Chem. Soc. 23(10): 1477. Li, G., J. Zeng, D. Zhu. 1998. Chromans From Evodia Lepta dalam Phytochemistry 47(1):101-104. Lopes, N, Massuo J.K.,Eloisa H. A A, Jose G. S. M, MASAYOSHI Y. 1997. Cicardian and Seasonal Variation in The Essential Oil from Virola Surinamemsis Leaves. Dalam Phytochemistry 46 (4):689-693. Madigan, M. T., Martinko, J. M., parker J. 2003. Brock Biology of microorganism 10th ed. Southern Illionis University, Carbondale. Mahboobi, M, F Shahcheraghi , M M Feizabadi. 2006. Bactericidal effects of essential oils from clove, lavender and geranium on multi-drug resistant isolates of Pseudomonas aeruginosa. Dalam. Iranian Journal of 4(2):137- 140 McBroom, A. J. & M. J. Kuehn. 2005. Outer membrane vesicles. Dalam EcoSal – Escherichia coli dan Salmonella: Cellular and Molecular biology, Chapter 2. 2. 4. Curtiss, R., III (ed). Washington, DC: American Society for Microbiology Press. www. ecosal. org. McBroom, A. J. & M. J. Kuehn. 2007. Release of outer membrane vesicles by Grm-negatif bacteria is a novel envelope stress response. Dalam Molecular Microbiology 63(2), 545-558.
  • 61. Mendoca-Filho, R. M. 2006. Bioactive Phytocompounds in Phytosciences. Dalam Modern Phytomedicine, Turning Medicinal into Drugs . Wiley-VCH Verlag GmbH, Weinheim. Michael, J. P. 2001. Quinoline, quinazoline and acridone alkaloids. Dalam Nat. Prod. Rep. 18:543-559. Murray, P. R. Rosenthal, K. S. Kobayashi, G. S., Pfallerial, M. A. 1998. Medical Microbiology 3- ed. Mosby, London. Olila, D.aOpuda-Asibo, Jb.and Olwa-Odyekc. 2001.Bioassay-guided studies on the cytotoxic and in vitro trypanocidal activities of a sesquiterpene (Muzigadial) derived from a Ugandan medicinal plant (Warburgia ugandensis). Dalam African Health Sci. 1(1): 12 - 15 Pelczar & Chan. 1986. Dasar-Dasar Mikrobiologi Jilid 1. UI, Jakarta. Ravelomanantsoa, N., P. Rasoanaivo, M. Delmas. Furoquinoline from Evodia fatraina. Dalam Biochemical Systematics and Ecology 23(3): 339. Ritz M., Tholozan j.L., Federihgi M., Pilet M. F. 2001. Morphological and Physiological Characterization of Listeria monocytogens Subjected to Hydrostatic Pressure. Applied and Enviromental Microbiology 67(5):2240-2247 Saiki, I. 2008. Curcumin and Cancer Metastasis. Dalam prosiding The First International Symposium on Temulawak. Bogor, 27-29 Mei 2008 hal. 1-2. Bogor, IPB. Stahl, E. 1969. Thin Layer Chromatography. Ed. Ke-2. Terjemahan M. R. F. Ashworth. Springer-Verlag, Berlin. Schunack, W. , Mayer K., Haake M. 1990. Senyawa Obat. UGM, Yogyakarta. Sidik, H. R. 2008. Indigenous Medicine, Botani, Chemistry and Pharmacology. Dalam prosiding The First International Symposium on Temulawak. Bogor, 27-29 Mei 2008 hal. 5 Bogor, IPB. Simmons G. C. & J. Craven. 1980. Antibiotic Sensitivity Test Using The Disc Method. Australian Bureau of Animal Health. ŞǏRELI, U. T. & Ali G. 2008.Prevalence and antibiotic resistance of Listeria spp. Isolated from Ready-to-Eat foods in Ankara. Dalam Turk. J. Vet. Anim. Sci. 32(2):131-135.
  • 62. Statford, M. .2000. Traditional Preservatives-organic Acid. Dalam Encyclopedia of Food Microbiology vol 1. Academic Press, London. Suryanto. 1997. Basic Analysis Using a TEM. Workshop Mikroskopi dan Mikroanalisis II. Puspitek Serpong. Suryawiria. 1978. Mikroba lingkungan. Ed. Ke-2. ITB, Bandung. Tang, Y.X. Feng, L. Huang. 1996. Quinolone Alkaloids from Evodia Rutaecarpa dalam Phytochemistry 43(3):719-722. Tominaga K, Higuchi K, Hamasaki N, Hamaguchi M, Takashima T, Tanigawa T, Watanabe T, Fujiwara Y, Tezuka Y, Nagaoka T, Kadota S, Ishii E, Kobayashi K, Arakawa T. J. 2002. In vivo action of novel alkyl methyl quinolone alkaloids against Helicobacter pylori. Dalam Antimicrob Chemother. 2002 Oct;50(4):547-552. Verma, Y. 2008. : Toxicity Evaluation of Effluents from Dye and Dye Intermediate Producing Industries Using Daphnia Bioassay . Dalam The Internet Journal of Toxicology. 4(2). Weidenhamer J. D., Marios M.F., Macias A. Nikolaus H. F., Donald R. R. dan G. Bruce W. 1994. Allelopathic potential of menthofuran monoterpenes from Calamintha ashei. Dalam Journal of Chemical Ecology 20(12):3345-3359. Wiliams , R. A. D., P. A. Lambert dan P. Singleton. 1996. Antimicrobial drug Action. BIOS Scientific Publisher, Oxford. Winarno, F. G. 2004. HACCP dan Penerapannya Dalam Industri Pangan. Bogor, M-BRIO PRESS. Wojnicz, D., M. Klak, R. Adamski, S. Jankowski. 2007. Influence of subinhibitory concentrations of Amikacin and Ciprofloxacin on Morphology and Adherence Ability of Uropathogenic Strains. Dalam Folia Microbiol. 52(4): 29-436. Wu, T, J. Yeh, P. Wu. 1995. The Heartwood Constituent of Tetradium glabrifolium dalam Phytochemistry 40( 1):121-124.
  • 64. Lampiran 1 Spektra Minyak Atsiri Daun Zodia
  • 65. Lampiran 2 Spektra GC-MS Komponen ke-1 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 66. Lampiran 3 Fragmentasi Komponen ke-1 dan Senyawa Referens
  • 67. Lampiran 4 Spektra GC-MS Komponen ke-2 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 68. Lampiran 5 Fragmentasi Komponen ke-2 dan Senyawa Referens
  • 69. Lampiran 6 Spektra GC-MS Komponen ke-3 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 70. Lampiran 7 Fragmentasi Komponen ke-3 dan Senyawa Referens
  • 71. Lampiran 8 Spektra GC-MS Komponen ke-4 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 72. Lampiran 9 Fragmentasi Komponen ke-4 dan Senyawa Referens
  • 73. Lampiran 10 Spektra GC-MS Komponen ke-5 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 74. Lampiran 11 Fragmentasi Komponen ke-5 dan Senyawa Referens
  • 75. Lampiran 12 Spektra GC-MS Komponen ke-6 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 76. Lampiran 13 Fragmentasi Komponen ke-6 dan Senyawa Referens
  • 77. Lampiran 14 Spektra GC-MS Komponen ke-7 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 78. Lampiran 15 Fragmentasi Komponen ke-7 dan Senyawa Referens
  • 79. Lampiran 16 Spektra GC-MS Komponen ke-8 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 80. Lampiran 17 Fragmentasi Komponen ke-8 dan Senyawa Referens
  • 81. Lampiran 18 Spektra GC-MS Komponen ke-9 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 82. Lampiran 19 Fragmentasi Komponen ke-9 dan Senyawa Referens
  • 83. Lampiran 20 Spektra GC-MS Komponen ke-10 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 84. Lampiran 21 Fragmentasi Komponen ke-10 dan Senyawa Referens
  • 85. Lampiran 22 Spektra GC-MS Komponen ke-11 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 86. Lampiran 23 Fragmentasi Komponen ke-11 dan Senyawa Referens
  • 87. Lampiran 24 Spektra GC-MS Komponen ke-12 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 88. Lampiran 25 Fragmentasi Komponen ke-12 dan Senyawa Referens
  • 89. Lampiran 26 Spektra GC-MS Komponen ke-13 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 90. Lampiran 27 Fragmentasi Komponen ke-13dan Senyawa Referens
  • 91. Lampiran 28 Spektra GC-MS Komponen ke-14 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 92. Lampiran 29 Fragmentasi Komponen ke-14 dan Senyawa Referens
  • 93. Lampiran 30 Spektra GC-MS Komponen ke-15 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 94. Lampiran 31 Fragmentasi Komponen ke-15 dan Senyawa Referens
  • 95. Lampiran 32 Spektra GC-MS Komponen ke-16 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 96. Lampiran 33 Fragmentasi Komponen ke-16 dan Senyawa Referens
  • 97. Lampiran 34 Spektra GC-MS Komponen ke-17 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 98. Lampiran 35 Fragmentasi Komponen ke-17 dan Senyawa Referens
  • 99. Lampiran 36 Spektra GC-MS Komponen ke-18 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 100. Lampiran 37 Fragmentasi Komponen ke-18 dan Senyawa Referens
  • 101. Lampiran 38 Spektra GC-MS Komponen ke-19 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 102. Lampiran 39 Fragmentasi Komponen ke-19dan Senyawa Referens
  • 103. Lampiran 40 Spektra GC-MS Komponen ke-20 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 104. Lampiran 41 Fragmentasi Komponen ke-20 dan Senyawa Referens
  • 105. Lampiran 42 Spektra GC-MS Komponen ke-21 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 106. Lampiran 43 Fragmentasi Komponen ke-21 dan Senyawa Referens
  • 107. Lampiran 44 Spektra GC-MS Komponen ke-22 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 108. Lampiran 45 Fragmentasi Komponen ke-22 dan Senyawa Referens
  • 109. Lampiran 46 Spektra GC-MS Komponen ke-23 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 110. Lampiran 47 Fragmentasi Komponen ke-23 dan Senyawa Referens
  • 111. Lampiran 48 Spektra GC-MS Komponen ke-24 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 112. Lampiran 49 Fragmentasi Komponen ke-24 dan Senyawa Referens
  • 113. Lampiran 50 Spektra GC-MS Komponen ke-25 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 114. Lampiran 51 Spektra GC-MS Komponen ke-26 Minyak Atsiri Daun Zodia dan Fragmentasinya
  • 115. Lampiran 52 Spektra GC-MS Senyawa Dalam Fraksi Etil Asetat
  • 116. Lampiran 53 Data Fragmentasi Senyawa Dalam Fraksi Etil Asetat
  • 117. Lampiran 54 Spektra GC-MS Senyawa Dalam Fraksi Heksan
  • 118. Lampiran 55 Komposisi Media Mueller Hinton Agar Beef infusion form 30g Cassamino acid teknis 17.5g Starch 1.5g Agar 17g
  • 119. Lampiran 56 Komposisi Larutan Standard McFarland McFarland Vol BaCl2 1% (ml) Volume H2SO4 1% (ml) Kepadatan Sel (x 108 ) 0.5 0.05 0.950 1 1 0.1 9.9 4 2 0.2 9.8 8 3 0.3 9.7 12 4 0.4 9.6 16 5 0.5 9.5 20 6 0.6 9.4 24 7 0.7 9.3 28 8 0.8 9.2 32 9 0.9 9.1 36 10 1.0 9 40
  • 120. Lampiran 57 Pembuatan Larutan-larutan Yang Dipakai dalam Analisis SEM Buffer Caccodylate Disiapkan larutan larutan stok yang terbuat dari campuran 0,2 M sodium caccodylate (42,6 gr sodium caccodylate ditambah akuades sampai 1000 ml). pH dibuat menjadi 8.4. Untuk membuat larutan siap pakai, sebanyak 50 ml larutan stok ditambah dengan 5,4 ml 0,1 M HCl dan aquades sampai 200 ml atau pH 8,4 Glutaraldehyde 2,5 % Sebanyak 5 ml glutaraldehyde dilarutkan dalam buffer caccodylate sampai 40 ml Larutan Tannic acid 2 % Sebanyak 2 gr tannic acid dilarutkan dalam 100 ml caccodylate buffer Larutan OsO4 1% Dibuat campuran dalam perbandingan 1 bag. OsO41 % dengan 4 bagian caccodylate buffer