SlideShare una empresa de Scribd logo
1 de 40
Co-ordinator:- Dr. Chavi sethi (M.D)
Speaker:- Dr. Sushil kr. patel
Anatomy
• The key to safe and effective administration of an CNB blockade begins with a
thorough understanding of the anatomy of the vertebral column, ligaments, and
blood supply, the epidural space, spinal canal, and associated structure.
Vertebral Column-The vertebral column consists of 7 cervical, 12 thoracic, and 5
lumbar vertebrae. At the caudal end, the 5 sacral vertebrae are fused to form the
sacrum, and the 4 coccygeal vertebrae are fused to form the coccyx . The primary
functions of the vertebral column are to maintain erect posture, to encase and
protect the spinal cord, and to provide attachment sites for the muscles
responsible for movements of the head and trunk. The normal spinal column is
straight when viewed dorsally or ventrally.When viewed from the side, there are
two ventrally convex curvatures in the cervical and lumbar regions, giving the spinal
column the appearance of a double C.
Structure of Vertebrae-Each vertebra is composed of a vertebral body and a bony
arch. The arch consists of two anterior pedicles and two posterior laminae. The
transverse processes are located at the junction of the pedicles and lamina, and the
spinous process is located at the junction of the laminae. The spinous processes
vary in their angulation in the cervical, thoracic, and lumbar regions. The spinous
processes are almost horizontal in the cervical, lower thoracic, and lumbar regions,
but become significantly more sharply angled in the midthoracic region. The
greatest degree of angulation is found between the T3 and T7 vertebrae, making
insertion of an epidural needle in the midline more difficult.
Primary Curve
Secondary Curves in Lateral
Typical Vertebrae
Typical Lumbar
Joints of the Vertebral Column
• vertebrae articulate at the intervertebral and facet joints.
• intervertebral joints are located between adjacent vertebral bodies. They
maintain the strength of attachment between vertebrae.
• facet joints form between articular processes. The facet joints are heavily
innervated by the medial branch of the dorsal ramus of the spinal nerves.
This innervation serves to direct contraction of muscle that moves the
vertebral column
Ligaments
• Vertebrae are joined together by a series of ligaments and disks. vertebral
bodies are separated by the intervertebral disks. The ligament connecting them
runs from the base of the skull to the sacrum and is called the anterior
longitudinal ligament.
• posterior surface of the vertebral bodies is connected by the posterior
longitudinal ligament, which also forms the anterior wall of the vertebral canal.
The other ligaments of importance :
• Intertransverse ligaments: connects transverse processes
• Supraspinous ligaments: attaches to the apices of the spinous
processes, extends from sacrum to skull where it becomes the ligamentum
nuchae
• Interspinous ligaments: connects spinous processes
• Ligamentum flavum: thick, elastic ligament, connects the laminae, composed
of a right and left ligament that joins in the middle forming an acute angle;
narrows toward the articular processes
ligament
A and P Longitudinal Ligament
Spinal Cord
• Runs through the vertebral canal
• Extends from foramen magnum to second
lumbar vertebra or lower end of 1st vertebrae
• Regions
– Cervical
– Thoracic
– Lumbar
– Sacral
– Coccygeal
• Gives rise to 31 pairs of spinal nerves
– All are mixed nerves
• Not uniform in diameter
– Cervical enlargement: supplies upper limbs
– Lumbar enlargement: supplies lower limbs
• Conus medullaris- tapered inferior end
– Ends between L1 and L2
• Cauda equina - origin of spinal nerves
extending inferiorly from conus medullaris.
spinal cord, which is continuous cephalad with the brainstem through the foramen
magnum and terminates distally in the conus medullaris. This distal
termination, because of differential growth rates between the bony vertebral canal
and the central nervous system (CNS), varies from L3 in infants to the lower border of
L1 in adults.
• Most of us develop the impression that the spinal nerve roots are uniform in size and
structure, but that there is large interindividual variability in nerve root size. These
differences may help explain the interpatient differences in neuraxial block quality
when equivalent techniques are used on seemingly similar patients.
• Another anatomic relationship may affect neuraxial blocks; although the dorsal
(sensory) roots are generally larger than the anterior (motor) roots, the dorsal roots
are often blocked more easily.
• This seeming paradox is explained by organization of the dorsal roots into component
bundles, which creates a much larger surface area on which the local anesthetics
act, thus explaining why larger sensory nerves are blocked more easily than smaller
motor nerves.
Meninges
• Connective tissue membranes
– Dura mater: outermost layer; continuous with
epineurium of the spinal nerves
– Arachnoid mater: thin and wispy
– Pia mater: bound tightly to surface
• Forms the filum terminale
– anchors spinal cord to coccyx
• Forms the denticulate ligaments that attach the
spinal cord to the dura
• Spaces
– Epidural: external to the dura
• Drug injected here in epidural block
• Fat-fill
– Subdural space: serous fluid
– Subarachnoid: between pia and arachnoid
• Filled with CSF
Spinal Cord and its membrane
.
• From the spinal cord extends a series of dorsal and ventral roots that converge to
form mixed spinal nerves. The mixed nerves contains motor, sensory, and in many
cases, autonomic fibers.
• There are eight cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal pairs of
spinal nerves.
• The roots inferior to the conus medullaris become the cauda equina before exiting
through the lumbar and sacral foramina. After the spinal nerves leave the spinal
canal through the intervertebral foramina, they divide into the anterior and
posterior primary rami.
• The posterior primary rami innervate the skin and muscles of the back. The
anterior rami supply the rest of the trunk and the limbs. Each spinal nerve supplies
a specific region of skin referred to as a dermatome .
• There is overlap between adjacent segmental nerves. Loss of a single spinal nerve
will produce an area of altered sensation, but won’t result in total sensory loss. For
instance, destruction of at least three consecutive spinal nerves is required to
produce a total sensory loss of the dermatome supplied by the middle nerve of the
three.
Vertebral Relationships
Spinal Cord and its membrane
• pia mater is a highly vascular membrane that closely invests the spinal cord .
• arachnoid mater is a delicate, nonvascular membrane closely attached to the
outermost layer, the dura.
• Of these two membranes, it is thought that the arachnoid functions as the principal
barrier to drugs crossing in and out of the CSF and is estimated to account for 90%
of the resistance to drug migration.
• In the subarachnoid space -- CSF, spinal nerves, a trabecular network between the
two membranes, and blood vessels that supply the spinal cord and lateral
extensions of the pia mater and dentate ligaments, which provide lateral support
from the spinal cord to the dura mater .
• Although the spinal cord ends at the lower border of L1 in adults, the
subarachnoid space continues to S2.
Membrane......
• Third and outermost membrane in the spinal canal is a randomly organized
fibroelastic membrane, the dura mater (or theca).
• This layer is a direct extension of the cranial dura mater and extends as the
spinal dura mater from the foramen magnum to S2, where the filum terminale
(an extension of the pia mater beginning at the conus medullaris) blends with
the periosteum on the coccyx .
• There is a potential space between the dura mater and the arachnoid, the
subdural space, that contains only small amounts of serous fluid and thus
allows the dura and arachnoid to move over each other.
• This space is not intentionally used by anesthesiologists, although injection into
it during spinal anesthesia may explain the occasional failed spinal anesthesia
and the rare “total spinal” after epidural anesthesia when there is no indication
of errant injection of local anesthetic into CSF.
•Surrounding the dura mater is another space , epidural space. The spinal
epidural space extends from the foramen magnum to the sacral hiatus and surrounds
the dura mater anteriorly, laterally, and more usefully, posteriorly.
•The epidural space is bounded anteriorly by the posterior longitudinal
ligaments, laterally by the pedicles and intervertebral foramina, and posteriorly by the
ligamentum flavum.
•Contents of the epidural space include the nerve roots that traverse it from foramina
to peripheral locations, as well as fat, areolar tissue, lymphatics, and blood
vessels, including the well-organized Batson venous plexus.
•
• lack of epidural space uniformity extends to age-related differences. There is
evidence that adipose tissue in the epidural space diminishes with age.
• Another anatomic change in epidural space anatomy that has long been promoted is
that the intervertebral foramina decrease in size with increasing age.
•This decrease has been linked conceptually to higher block levels for similar epidural
doses of local anesthetic. considered together, it may be that the decrease in epidural
space adipose tissue with age may dominate the age-related changes in epidural dose
reqirement
13-20
Meninges of Vertebra and Spinal Cord
conti.......
• Posterior to the epidural space is the ligamentum flavum (the so-called yellow
ligament), which also extends from the foramen magnum to the sacral hiatus.
Although classically portrayed as a single ligament, it is really composed of two
ligamenta flava, the right and the left, which join in the middle and form an
acute angle with a ventral opening .
• The ligamentum flavum is not uniform from skull to sacrum, nor even within
an intervertebral space. Ligament thickness, distance to the dura, and skin-to-
dura distance vary with the area of the vertebral canal . The two ligamenta
flava are variably joined (fused) in the midline, and this fusion or lack of fusion
of the ligamenta flava even occurs at different vertebral levels in individual
patients.
• Immediately posterior to the ligamentum flavum are the lamina and spinous
processes of vertebral bodies or the interspinous ligaments. Extending from
the external occipital protuberance to the coccyx posterior to these structures
is the supraspinous ligament, which joins the vertebral spines .
Surface Anatomy
• Surface structures assist in determining the level of entry into the epidural and
subarach space. The spinous processes help define the location of the midline as
they are usually midline structures. The cervical and lumbar spinous processes are
horizontally directed whereas the T4 to T9 thoracic spinous processes have a sharp
caudal angulation .
• Needle entry into the cervical and lumbar regions should be directed horizontally
with a slight upward angulation, whereas in the upper thoracic region, a midline
approach to the epidural space is more difficult because of the angulation of the
spinous processes. A paramedian approach is usually more successful
• safest point of entry into the epidural space is below the level of the spinal cord. In
adults, this corresponds to the lower border of the L1 vertebrae, and in children, at
the lower border of the L3 vertebrae. Epidural insertion in adults is commonly
introduced at either the L3-4 interspinous space or one higher, L2-3. A line drawn
between the superior aspect of the iliac crests crosses either the spinous process of
L4 or the L4-5 interspace.
• Interspinous space above this point (L3-4 interspinous space) or one higher (L2-3)
can safely be chosen for needle entry into the epidural space of adults. Some
research has challenged the accuracy of the iliac crest in assessing the level, but
this is still a generally accepted surface landmark. By approximately the age of 8
years, the same interspaces can be chosen for children; however, under the age of
7, to avoid accidental cord injury the caudal approach to the epidural space is safer.
Anatomic Landmarks to Identify Vertebral Levels Before Epidural
Injection
Anatomic Landmark Features
C7
Vertebral prominence, the most prominent
process in the neck
T3 Root of the spine of the scapula
T7 Inferior angle of the scapula
L4 Line connecting iliac crests
S2
Line connecting the posterior inferior iliac
spines
Sacral hiatus
Groove or depression just above or between
the gluteal clefts above the coccyx
Dermatomal Levels of Spinal Anesthesia for Common
Surgical Procedures
Procedure Dermatomal Level
Upper abdominal surgery T4
Intestinal, gynecologic, and urologic surgery T6
Transurethral resection of the prostate T8
Vaginal delivery of a fetus, and hip surgery T10
Thigh surgery and lower leg amputations L1
Foot and ankle surgery L2
Perineal and anal surgery S2 to S5 (saddle block)
Anatomical and physiological differences in children
•
There are certain features of paediatric anatomy and physiology which are different
from the adult and thus make the central neuraxial blockade a good alter-native
anaesthetic technique.
• spinal cord ends at L3 level at birth and reaches L-1 by 6-12 months.
• The dural sac is at the S4 level at birth and reaches S2 by the end of the first year.
The line joining the two supe-rior iliac crests (inter-cristal line) crosses at L5-S1
in-terspace at birth, L5 vertebra in young children and L3/4 interspace in adults.
• It is for this reason that the lumbar puncture be done at a level below which the
cord ends, safest being at or below the inter cristal line.
• bones of the sacrum are not fused posteriorly in children enabling an access to the
subarachnoid space even at this level.
• Another feature which is unique in infants is that there is only one anterior concave
curvature of the vertebral column at birth. The cervical lordosis begins in the first 3
months of life with the child's ability to hold the head upright. The lumbar lordosis
starts as the child begins to walk at the age of 6-9 months. Therefore, the spread of
isobaric local anaesthetic is different in infants particularly as compared to adults.
conti.....
• The subarachnoid space is incompletely divided by the denticulate ligament
laterally, and the subarachnoid septum medially.
• The volume of cerebrospinal fluid CSF is 4 ml.kg -1 which is double the adult
volume. Moreover, in infants half of this volume is in the spinal space whereas
adults have only one-fourth. This significantly affects the pharmocokinetics of
intrathecal drugs.
• The spinal fluid hydrostatic pressure of 30-40mm H 2 O in horizontal position is also
much less than that in adults.
• The neck can be in extension for lateral positioning while performing a lumbar
puncture as cervical flexion is of no benefit in children and in fact, may obstruct the
airway during the procedure. It can also be performed in sitting position with the
head extended.
• The physiological impact of sympathectomy is minimal or none in smaller age
groups.
• fall in blood pressure and a drop in the heart rate are practically not seen in
children less than five years. Therefore there is no role of preloading with fluids
before a subarachnoid block.
conti.....
• This may be due to the immature sympathetic nervous system in children younger
than five-eight years or a result of the relatively small intravascular volume in the
lower extremities and splanchnic system limiting venous pooling and relatively
vasodilated peripheral blood vessels.
• Infants respond to high thoracic spinal anaesthesia by reflex withdrawal of vagal
parasympathetic tone to the heart. It is one of the reasons why spinal anaesthesia
has been the technique of choice in critically ill and moribund neonates who
present for surgery in grave haemodynamic instability.
• most important concern with the use of intrathecal local anaesthetics in infants
and young children is the risk of toxicity. This age group is particularly prone to
direct toxicity to the spinal cord when administered in large doses.
• Neonates with immature hepatic metabolism and decreased plasma proteins like
albumin and alpha 1 acid glycoprotein have higher serum levels of unbound amide
local anaesthetics, which are normally highly protein bound (90%).
• A relatively higher cardiac output and regional blood flow in infants also increases
the drug uptake from neuraxial spaces and can predispose them to local
anaesthetic toxicity besides decreasing the duration of action. Infants may have
decreased levels of plasma pseudocholinesterase which may augment local
anaesthetic toxicity especially with the ester group.
Physiologic Effects of Neuraxial
Blockade
Somatic Blockade
• Neuraxial anesthesia effectively stops the transmission of painful sensation and
abolishes the tone of skeletal muscle, enhancing operating conditions for the
surgeon.
• Sensory blockade involves somatic and visceral painful stimulation.
• Motor blockade involves skeletal muscles. Neuraxial anesthesia results in a
phenomenon known as differential blockade.
• This effect is due to the activity of local anesthetics and anatomical factors. Local
anesthetic factors include the concentration and duration of contact with the spinal
nerve root.
• As the local anesthetic spreads out from the site of injection the concentration
becomes less, which may in turn effect which nerve fibers are susceptible to
blockade. Anatomical factors are related to various fiber types found within each
nerve root.
• Small myelinated fibers are easier to block than large unmyelinated fibers. In
general, the differential blockade found after neuraxial blockade is as follows:
sympathetic blockade is 2-6 dermatome segments higher than sensory and sensory
blockade is generally 2 dermatome levels higher than motor.
Autonomic Blockade
• Neuraxial blockade effectively blocks efferent autonomic transmission of the spinal
nerve roots, producing a sympathetic block and a partial parasympathetic block.
• Sympathetic fibers are small, myelinated, and easily blocked. During neuraxial
blockade, sympathetic block occour prior to sensory, followed by motor.
• sympathetic nervous system (SNS) is described as thoracolumbar since
sympathetic fibers exit the spinal cord from T1 to L2.
• The parasympathetic nervous system (PNS) has been described as craniosacral
since parasympathetic fibers exit in the cranial and sacral regions of the CNS. It
should be noted that neuraxial blockade does not affect the vagus nerve (10th
cranial nerve).
• End result of neuraxial blockade is a decreased sympathetic tone with an
unopposed parasympathetic tone. This imbalance will result in many of the
expected alterations of normal homeostasis noted with the administration of
epidural and spinal anesthesia.
Cardiovascular Effects
• Neuraxial blockade can impact the cardiovascular system by causing the
following changes:
1. Decrease in blood pressure (33% incidence of hypotension in non-obstetric
populations)
2. Decrease in heart rate (13% incidence of bradycardia in non-obstetric
populations)
3. Decrease in cardiac contractility
• Sympathectomy is the term used to describe blockade of sympathetic outflow.
Nerve fibers that affect vasomotor tone of the arterial and venous vessels arise
from provider wants to block with neuraxial blockade.
• The sympathetic dermatome ranges from 2-6 levels higher than the sensory
dermatome level. Sympathectomy is directly related to the height of the block
and results in venous and arterial vasodilatation.
• The venous system contains about 75% of the total blood volume while the
arterial system contains about 25%. Dilation of the venous system is
predominantly responsible for decreases in blood pressure since the arterial
system is able to maintain much of its vascular tone. T5-L1, which is generally
within the area that the anesthesia
•Total peripheral vascular resistance in the normal patient (normal cardiac output and
normovolemic) will decrease 15-18%.
•In the elderly the systemic vascular resistance may decrease as much as 25% with a
10% decrease in cardiac output.
•Heart rate may decrease during a high block due to blockade of the
cardioaccelerator fibers (T1-T4). Heart rate may also decline as a result of a decrease
in SVR, decreased right atrial filling, and decreases in the intrinsic chronotropic stretch
receptor response.
• that epidural and spinal anesthesia differ in their effect on arterial blood pressure? A
common concept is that the decrease in arterial blood pressure is more gradual and of
less magnitude with epidural than with spinal anesthesia of comparable levels. During
the T10 block, there was no significant change in organ blood flow; during the T1
block, with a 22% decrease in mean arterial pressure, cerebral and myocardial blood
flow was insignificantly altered
Respiratory Effects
• Neuraxial blockade plays a very minor role in altering pulmonary function. Even
with high thoracic levels of blockade, tidal volume is unchanged. There is a slight
decrease in vital capacity.
• This is the result of relaxation of the abdominal muscles during exhalation.
• phrenic nerve is innervated by C3-C5 and is responsible for the diaphragm.
phrenic nerve is extremely hard to block, even with a high spinal.
• In fact, apnea associated with a high spinal is thought to be related to brainstem
hypoperfusion and not blockade of the phrenic nerve. This is based on the fact
that spontaneous respiration resumes after hemodynamic resuscitation has
occurre.
• risk and benefits of neuraxial anesthesia should be carefully weighed for the
patient with severe lung disease.
• Patients with chronic lung disease depend on intercostal and abdominal muscles
to aid their inspiration and exhalation.
• Neuraxial blockade may reduce the function of these muscles, having a
detrimental impact on the patient’s ability to breathe, as well as affect the ability to
clear secretions and cough.
• For procedures above the umbilicus, a pure regional anesthetic may not be
beneficial for the patient with chronic lung disease.
• However, postoperative analgesia with thoracic epidurals has been found to be
helpful to the patient with severe lung disease undergoing a thoracic or abdominal
procedure.
• .
• Thoracic and abdominal surgical procedures are associated with decreased phrenic
nerve activity resulting in decreased diaphragmatic function and FRC (functional
reserve capacity). This can lead to atelectasis and hypoxia due to
ventilation/perfusion mismatching.
• Thoracic epidural analgesia has been found to decrease the incidence of
pneumonia, respiratory failure, improve oxygenation, and decrease the amount of
time that the patient may require for postoperative ventilation
•
Gastrointestinal Effects
•Another organ system affected during neuraxial blockade is the gastrointestinal tract.
•Nausea and vomiting may be associated with neuraxial block in up to 20% of patients
and are primarily related to gastrointestinal hyperperistalsis caused by unopposed
parasympathetic (vagal) activity.
•Atropine is effective in treating nausea associated with high (T5) subarachnoid
anesthesia.
• This gastrointestinal hyperperistalsis has the advantage of providing excellent surgical
conditions because of a contracted gut.
• An often-cited advantage of regional anesthesia in patients with compromised
gastrointestinal function (e.g., hepatic dysfunction) is that less physiologic impairment
is possible than with general anesthesia.
• decrease in hepatic blood flow during spinal anesthesia parallels the decrease in
mean arterial blood pressure.When epidural analgesia is continued into the
postoperative period, there may be a protective effect on the gastric mucosa because
intramucosal pH is higher during postoperative epidural analgesia than during systemic
analgesia.
Renal Effects
• Neuraxial blockade has little effect on the blood flow to the renal system.
• Autoregulation maintains adequate blood flow to the kidneys as long as perfusion
pressure is maintained.
• Neuraxial blockade effectively blocks sympathetic and parasympathetic control of
the bladder at the lumbar and sacral levels.
• Urinary retention can occur due to the loss of autonomic bladder control.
Detrusor function of the bladder is blocked by local anesthetics. Normal function
does not return until sensory function returns to S3.
• Risk factors for prolonged blockade of the detrusor muscle include the use of long
acting local anesthetics, age > 50 years, volume of fluids administered, and surgical
procedure. Prolonged blockade of the detrusor muscle may lead to bladder over
distention and urinary retention. This should be taken into consideration if no
urinary catheter will be placed. If possible, short acting medications should be
used.
• It should be monitor the amount of intravenous fluids administered to prevent over
distention of the bladder.
• patient with a history of an enlarged prostrate is at risk for urinary retention.
Patients should be monitored for urinary retention.
Metabolic and Endocrine Effects
• Surgery produces a host of neuroendocrine responses related to inflammatory
response and activation of somatic and visceral afferent nerve fibers.
• This response results in the release of adrenocorticotropic
hormone, cortisol, epinephrine, norepinephrine, vasopressin, and activation of the
renin-angiotension-aldosterone system.
• release of these substances has the following clinical manifestations:
hypertension, tachycardia, hyperglycemia, protein catabolism, depressed immune
response, and alteration in renal function. As noted earlier, neuraxial blockade can
effectively block this response.
• In intra-abdominal surgery, it may only partially suppress its effects. For lower
extremity surgery, it can totally suppress these effects. The effect of neuraxial
blockade is beneficial by reducing catecholamine release, decreasing stress related
arrhythmias, and decreasing the incidence of ischemia.
caudal Anatomy
• The sacrum results from fusion of the five sacral vertebrae.
• The sacral hiatus, which is failure of the laminae of S5 and usually part of S4 to fuse
in the midline, is the detail of interest.
• It results in a variably shaped and sized inverted V–shaped bony defect covered by
the posterior sacrococcygeal ligament, a functional counterpart to the ligamenta
flava.
• The sacral hiatus is identified by locating the sacral cornua, remnants of the S5
articular processes . This bony defect allows access to the sacral canal, although
needle insertion through this defect may be difficult because of the frequency of
anatomic variation.
• The sacral canal contains the terminal portion of the dural sac, which typically ends
cephalad to a line joining the posterior superior iliac spines, or S2.
caudal Anatomy
• Variation is found in this feature as well, with the termination of the dural
sac being lower in children, ease of palpating the sacral hiatus in children
may make the pediatric caudal technique easier overall.
• In addition to the dural sac, the sacral canal contains a venous
plexus, which is part of the valveless internal vertebral venous plexus.
• It is estimated from magnetic resonance imaging (MRI) studies that the
volume of the caudal canal in adults, excluding the foramina and dural
sac, is about 10 to 27 mL. Perhaps this wide variability in volume accounts
for some of the variation in block height with caudal anesthesia
Thank you for
your attention

Más contenido relacionado

La actualidad más candente

Applied cross sectional anatomy of spinal cord
Applied cross sectional anatomy of spinal cordApplied cross sectional anatomy of spinal cord
Applied cross sectional anatomy of spinal cordTanat Tabtieang
 
Deep cervical fascia of neck
Deep cervical fascia of neckDeep cervical fascia of neck
Deep cervical fascia of neckSupriyaDhoot
 
Anatomy for lumber neuraxial anesthesia
Anatomy for lumber neuraxial anesthesiaAnatomy for lumber neuraxial anesthesia
Anatomy for lumber neuraxial anesthesiaFaizul Hoque
 
Development of the musculoskeletal system
Development of the musculoskeletal systemDevelopment of the musculoskeletal system
Development of the musculoskeletal systemSahar Hafeez
 
Development Of Vertebral Column
Development Of Vertebral ColumnDevelopment Of Vertebral Column
Development Of Vertebral ColumnAnan
 
Deepfasciaofneck by dr.meher
Deepfasciaofneck  by dr.meher Deepfasciaofneck  by dr.meher
Deepfasciaofneck by dr.meher mehermoinkhan
 
Anatomy of spinal cord
Anatomy of spinal cordAnatomy of spinal cord
Anatomy of spinal cordMBBS IMS MSU
 
Paraxial and intermediate mesoderm
Paraxial and intermediate mesodermParaxial and intermediate mesoderm
Paraxial and intermediate mesodermMerlyn Denesia
 
Medial longitudinal bundle
Medial longitudinal bundle Medial longitudinal bundle
Medial longitudinal bundle Idris Siddiqui
 
Appendicular Skeleton- Lower limb
Appendicular Skeleton- Lower limbAppendicular Skeleton- Lower limb
Appendicular Skeleton- Lower limbZENITH PARMAR
 
210 vc-practical-rs
210 vc-practical-rs210 vc-practical-rs
210 vc-practical-rsAHS_anatomy2
 
Lecture 12 the skeleton embryology pdf
Lecture 12 the skeleton embryology pdfLecture 12 the skeleton embryology pdf
Lecture 12 the skeleton embryology pdfMBBS IMS MSU
 
Meninges of brain & Grey matter of Spinal cord
Meninges of brain & Grey matter of Spinal cordMeninges of brain & Grey matter of Spinal cord
Meninges of brain & Grey matter of Spinal cordMehul Tandel
 
Suboccipital region and muscles of back
Suboccipital region and muscles of backSuboccipital region and muscles of back
Suboccipital region and muscles of backDr Laxman Khanal
 

La actualidad más candente (20)

Applied cross sectional anatomy of spinal cord
Applied cross sectional anatomy of spinal cordApplied cross sectional anatomy of spinal cord
Applied cross sectional anatomy of spinal cord
 
Deep cervical fascia of neck
Deep cervical fascia of neckDeep cervical fascia of neck
Deep cervical fascia of neck
 
Anatomy for lumber neuraxial anesthesia
Anatomy for lumber neuraxial anesthesiaAnatomy for lumber neuraxial anesthesia
Anatomy for lumber neuraxial anesthesia
 
Development of the musculoskeletal system
Development of the musculoskeletal systemDevelopment of the musculoskeletal system
Development of the musculoskeletal system
 
Development Of Vertebral Column
Development Of Vertebral ColumnDevelopment Of Vertebral Column
Development Of Vertebral Column
 
Suboccipital triangle
Suboccipital triangle  Suboccipital triangle
Suboccipital triangle
 
Deepfasciaofneck by dr.meher
Deepfasciaofneck  by dr.meher Deepfasciaofneck  by dr.meher
Deepfasciaofneck by dr.meher
 
Anatomy of spinal cord
Anatomy of spinal cordAnatomy of spinal cord
Anatomy of spinal cord
 
Paraxial and intermediate mesoderm
Paraxial and intermediate mesodermParaxial and intermediate mesoderm
Paraxial and intermediate mesoderm
 
Medial longitudinal bundle
Medial longitudinal bundle Medial longitudinal bundle
Medial longitudinal bundle
 
Appendicular Skeleton- Lower limb
Appendicular Skeleton- Lower limbAppendicular Skeleton- Lower limb
Appendicular Skeleton- Lower limb
 
210 vc-practical-rs
210 vc-practical-rs210 vc-practical-rs
210 vc-practical-rs
 
Sibson's fascia
Sibson's fasciaSibson's fascia
Sibson's fascia
 
thorax intercostal space
thorax intercostal spacethorax intercostal space
thorax intercostal space
 
Spinal cord anatomy
Spinal cord anatomySpinal cord anatomy
Spinal cord anatomy
 
Lecture 12 the skeleton embryology pdf
Lecture 12 the skeleton embryology pdfLecture 12 the skeleton embryology pdf
Lecture 12 the skeleton embryology pdf
 
Meninges of brain & Grey matter of Spinal cord
Meninges of brain & Grey matter of Spinal cordMeninges of brain & Grey matter of Spinal cord
Meninges of brain & Grey matter of Spinal cord
 
Suboccipital region and muscles of back
Suboccipital region and muscles of backSuboccipital region and muscles of back
Suboccipital region and muscles of back
 
Caudal anesthesia
Caudal anesthesiaCaudal anesthesia
Caudal anesthesia
 
Suboccipital triangle
Suboccipital triangleSuboccipital triangle
Suboccipital triangle
 

Similar a Spinal Anatomy and Epidural Space

anatomy of vertebral column.pptx
anatomy of vertebral column.pptxanatomy of vertebral column.pptx
anatomy of vertebral column.pptxJaseerAk1
 
spinalanaesthesia-160825144957_-_Copy.pptx
spinalanaesthesia-160825144957_-_Copy.pptxspinalanaesthesia-160825144957_-_Copy.pptx
spinalanaesthesia-160825144957_-_Copy.pptxVIGNESHNAIR23
 
Spinal Anaesthesia - Anatomy & Physiology
Spinal Anaesthesia - Anatomy & PhysiologySpinal Anaesthesia - Anatomy & Physiology
Spinal Anaesthesia - Anatomy & PhysiologyDr.Daber Pareed
 
Contents of vertebral canal .pdf
Contents of vertebral canal .pdfContents of vertebral canal .pdf
Contents of vertebral canal .pdfÖmer aslankan
 
Spinal Cord And Vertebral Canal
Spinal Cord And Vertebral Canal Spinal Cord And Vertebral Canal
Spinal Cord And Vertebral Canal Dr.Faris Muhammed
 
Spinal Cord And Vertebral Canal
Spinal Cord And Vertebral Canal Spinal Cord And Vertebral Canal
Spinal Cord And Vertebral Canal Dr.Faris Muhammed
 
Spinal Cord final.pptx
Spinal Cord final.pptxSpinal Cord final.pptx
Spinal Cord final.pptxSikander Sher
 
Spinal anatomy and anesthesia.
Spinal anatomy and anesthesia. Spinal anatomy and anesthesia.
Spinal anatomy and anesthesia. abasali11
 
[3] The Back and ANS.pptx
[3] The Back and ANS.pptx[3] The Back and ANS.pptx
[3] The Back and ANS.pptxDivinefavour12
 
Vertebral Column And Contents Of The Vertebral Canal
Vertebral Column And Contents Of The Vertebral CanalVertebral Column And Contents Of The Vertebral Canal
Vertebral Column And Contents Of The Vertebral CanalMD Specialclass
 
Epidural Anaesthesia.pptx
Epidural Anaesthesia.pptxEpidural Anaesthesia.pptx
Epidural Anaesthesia.pptxTess Jose
 
ANATOMY OF VERTEBRAL COLUMN AND SPINAL CORD.pptx
ANATOMY OF VERTEBRAL COLUMN AND SPINAL CORD.pptxANATOMY OF VERTEBRAL COLUMN AND SPINAL CORD.pptx
ANATOMY OF VERTEBRAL COLUMN AND SPINAL CORD.pptxranjitharadhakrishna3
 
Anatomy of brain steam midbrain pons and medulla
Anatomy of brain steam midbrain pons and medullaAnatomy of brain steam midbrain pons and medulla
Anatomy of brain steam midbrain pons and medullaDr.Jitendra Patel
 
Fascia of neck .ppt
Fascia of neck .pptFascia of neck .ppt
Fascia of neck .pptDrMohammed43
 
Spinal cord Gross anatomy with Clinical Anatomy.pptx
Spinal cord Gross anatomy with Clinical Anatomy.pptxSpinal cord Gross anatomy with Clinical Anatomy.pptx
Spinal cord Gross anatomy with Clinical Anatomy.pptxsiddharthroy26587
 

Similar a Spinal Anatomy and Epidural Space (20)

anatomy of vertebral column.pptx
anatomy of vertebral column.pptxanatomy of vertebral column.pptx
anatomy of vertebral column.pptx
 
spinalanaesthesia-160825144957_-_Copy.pptx
spinalanaesthesia-160825144957_-_Copy.pptxspinalanaesthesia-160825144957_-_Copy.pptx
spinalanaesthesia-160825144957_-_Copy.pptx
 
Spinal Anaesthesia - Anatomy & Physiology
Spinal Anaesthesia - Anatomy & PhysiologySpinal Anaesthesia - Anatomy & Physiology
Spinal Anaesthesia - Anatomy & Physiology
 
Contents of vertebral canal .pdf
Contents of vertebral canal .pdfContents of vertebral canal .pdf
Contents of vertebral canal .pdf
 
Brachial plexus block
Brachial plexus blockBrachial plexus block
Brachial plexus block
 
Spinal Cord And Vertebral Canal
Spinal Cord And Vertebral Canal Spinal Cord And Vertebral Canal
Spinal Cord And Vertebral Canal
 
Spinal Cord And Vertebral Canal
Spinal Cord And Vertebral Canal Spinal Cord And Vertebral Canal
Spinal Cord And Vertebral Canal
 
Spinal Cord final.pptx
Spinal Cord final.pptxSpinal Cord final.pptx
Spinal Cord final.pptx
 
Spinal anatomy and anesthesia.
Spinal anatomy and anesthesia. Spinal anatomy and anesthesia.
Spinal anatomy and anesthesia.
 
Meninges
MeningesMeninges
Meninges
 
[3] The Back and ANS.pptx
[3] The Back and ANS.pptx[3] The Back and ANS.pptx
[3] The Back and ANS.pptx
 
Vertebral Column And Contents Of The Vertebral Canal
Vertebral Column And Contents Of The Vertebral CanalVertebral Column And Contents Of The Vertebral Canal
Vertebral Column And Contents Of The Vertebral Canal
 
Epidural Anaesthesia.pptx
Epidural Anaesthesia.pptxEpidural Anaesthesia.pptx
Epidural Anaesthesia.pptx
 
ANATOMY OF VERTEBRAL COLUMN AND SPINAL CORD.pptx
ANATOMY OF VERTEBRAL COLUMN AND SPINAL CORD.pptxANATOMY OF VERTEBRAL COLUMN AND SPINAL CORD.pptx
ANATOMY OF VERTEBRAL COLUMN AND SPINAL CORD.pptx
 
anatomy of spine
anatomy of spineanatomy of spine
anatomy of spine
 
Anatomy of brain steam midbrain pons and medulla
Anatomy of brain steam midbrain pons and medullaAnatomy of brain steam midbrain pons and medulla
Anatomy of brain steam midbrain pons and medulla
 
Fascia of neck .ppt
Fascia of neck .pptFascia of neck .ppt
Fascia of neck .ppt
 
Meninges - Anatomy of the Meninges & CSF
Meninges - Anatomy of the Meninges & CSFMeninges - Anatomy of the Meninges & CSF
Meninges - Anatomy of the Meninges & CSF
 
Spinal cord Gross anatomy with Clinical Anatomy.pptx
Spinal cord Gross anatomy with Clinical Anatomy.pptxSpinal cord Gross anatomy with Clinical Anatomy.pptx
Spinal cord Gross anatomy with Clinical Anatomy.pptx
 
The Neck
The NeckThe Neck
The Neck
 

Más de DrUday Pratap Singh

Perioperative management of hypertension
Perioperative management of hypertensionPerioperative management of hypertension
Perioperative management of hypertensionDrUday Pratap Singh
 
Respiratory function and importance to anesthesia final
Respiratory function and importance to anesthesia  finalRespiratory function and importance to anesthesia  final
Respiratory function and importance to anesthesia finalDrUday Pratap Singh
 
anaesthesia for liver transplantation
anaesthesia for liver transplantationanaesthesia for liver transplantation
anaesthesia for liver transplantationDrUday Pratap Singh
 
Role of anaesthesiologist in management of cancer pain
Role of anaesthesiologist in management of cancer painRole of anaesthesiologist in management of cancer pain
Role of anaesthesiologist in management of cancer painDrUday Pratap Singh
 
Problem facing in pediatrics anasthesia
Problem facing in pediatrics anasthesiaProblem facing in pediatrics anasthesia
Problem facing in pediatrics anasthesiaDrUday Pratap Singh
 
Obg emergency DR. UDAY PRATAP SINGH , M.L.B. M.C. JHANSI
Obg emergency   DR. UDAY PRATAP SINGH , M.L.B. M.C. JHANSIObg emergency   DR. UDAY PRATAP SINGH , M.L.B. M.C. JHANSI
Obg emergency DR. UDAY PRATAP SINGH , M.L.B. M.C. JHANSIDrUday Pratap Singh
 

Más de DrUday Pratap Singh (19)

Icu
IcuIcu
Icu
 
Chronic pain mx
Chronic pain mxChronic pain mx
Chronic pain mx
 
Monitoring in critical care
Monitoring in critical careMonitoring in critical care
Monitoring in critical care
 
Perioperative management of hypertension
Perioperative management of hypertensionPerioperative management of hypertension
Perioperative management of hypertension
 
Perioprative monitoring
Perioprative monitoringPerioprative monitoring
Perioprative monitoring
 
Vaporizers
VaporizersVaporizers
Vaporizers
 
565855 634221219170496250
565855 634221219170496250565855 634221219170496250
565855 634221219170496250
 
Respiratory function and importance to anesthesia final
Respiratory function and importance to anesthesia  finalRespiratory function and importance to anesthesia  final
Respiratory function and importance to anesthesia final
 
Obesity & anaesthesia
Obesity & anaesthesiaObesity & anaesthesia
Obesity & anaesthesia
 
anaesthesia for liver transplantation
anaesthesia for liver transplantationanaesthesia for liver transplantation
anaesthesia for liver transplantation
 
Role of anaesthesiologist in management of cancer pain
Role of anaesthesiologist in management of cancer painRole of anaesthesiologist in management of cancer pain
Role of anaesthesiologist in management of cancer pain
 
Trauma anaesthesia dr.abhishek
Trauma anaesthesia dr.abhishekTrauma anaesthesia dr.abhishek
Trauma anaesthesia dr.abhishek
 
Periphral neural block uday
Periphral neural block udayPeriphral neural block uday
Periphral neural block uday
 
Obstetric analgesia...sushil
Obstetric analgesia...sushilObstetric analgesia...sushil
Obstetric analgesia...sushil
 
Reginol anasth. uday
Reginol anasth. udayReginol anasth. uday
Reginol anasth. uday
 
Problem facing in pediatrics anasthesia
Problem facing in pediatrics anasthesiaProblem facing in pediatrics anasthesia
Problem facing in pediatrics anasthesia
 
Obg emergency DR. UDAY PRATAP SINGH , M.L.B. M.C. JHANSI
Obg emergency   DR. UDAY PRATAP SINGH , M.L.B. M.C. JHANSIObg emergency   DR. UDAY PRATAP SINGH , M.L.B. M.C. JHANSI
Obg emergency DR. UDAY PRATAP SINGH , M.L.B. M.C. JHANSI
 
Reginol anasth. uday feb
Reginol anasth. uday febReginol anasth. uday feb
Reginol anasth. uday feb
 
Open heart surgery uday
Open heart surgery udayOpen heart surgery uday
Open heart surgery uday
 

Último

Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiNehru place Escorts
 
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
See the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformSee the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformKweku Zurek
 
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingCall Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingNehru place Escorts
 
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000aliya bhat
 
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...Miss joya
 
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowKolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowNehru place Escorts
 
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safenarwatsonia7
 
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...narwatsonia7
 
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service LucknowCall Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknownarwatsonia7
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...narwatsonia7
 
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking ModelsMumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Modelssonalikaur4
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Miss joya
 
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfHemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfMedicoseAcademics
 
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...narwatsonia7
 
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...narwatsonia7
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...Miss joya
 

Último (20)

Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
 
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
 
See the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformSee the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy Platform
 
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingCall Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
 
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
 
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
Russian Call Girls in Pune Riya 9907093804 Short 1500 Night 6000 Best call gi...
 
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowKolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
 
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
 
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
 
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service LucknowCall Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
 
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking ModelsMumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
 
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Servicesauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
 
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfHemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
 
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
 
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
 

Spinal Anatomy and Epidural Space

  • 1. Co-ordinator:- Dr. Chavi sethi (M.D) Speaker:- Dr. Sushil kr. patel
  • 2. Anatomy • The key to safe and effective administration of an CNB blockade begins with a thorough understanding of the anatomy of the vertebral column, ligaments, and blood supply, the epidural space, spinal canal, and associated structure. Vertebral Column-The vertebral column consists of 7 cervical, 12 thoracic, and 5 lumbar vertebrae. At the caudal end, the 5 sacral vertebrae are fused to form the sacrum, and the 4 coccygeal vertebrae are fused to form the coccyx . The primary functions of the vertebral column are to maintain erect posture, to encase and protect the spinal cord, and to provide attachment sites for the muscles responsible for movements of the head and trunk. The normal spinal column is straight when viewed dorsally or ventrally.When viewed from the side, there are two ventrally convex curvatures in the cervical and lumbar regions, giving the spinal column the appearance of a double C. Structure of Vertebrae-Each vertebra is composed of a vertebral body and a bony arch. The arch consists of two anterior pedicles and two posterior laminae. The transverse processes are located at the junction of the pedicles and lamina, and the spinous process is located at the junction of the laminae. The spinous processes vary in their angulation in the cervical, thoracic, and lumbar regions. The spinous processes are almost horizontal in the cervical, lower thoracic, and lumbar regions, but become significantly more sharply angled in the midthoracic region. The greatest degree of angulation is found between the T3 and T7 vertebrae, making insertion of an epidural needle in the midline more difficult.
  • 7. Joints of the Vertebral Column • vertebrae articulate at the intervertebral and facet joints. • intervertebral joints are located between adjacent vertebral bodies. They maintain the strength of attachment between vertebrae. • facet joints form between articular processes. The facet joints are heavily innervated by the medial branch of the dorsal ramus of the spinal nerves. This innervation serves to direct contraction of muscle that moves the vertebral column
  • 8. Ligaments • Vertebrae are joined together by a series of ligaments and disks. vertebral bodies are separated by the intervertebral disks. The ligament connecting them runs from the base of the skull to the sacrum and is called the anterior longitudinal ligament. • posterior surface of the vertebral bodies is connected by the posterior longitudinal ligament, which also forms the anterior wall of the vertebral canal. The other ligaments of importance : • Intertransverse ligaments: connects transverse processes • Supraspinous ligaments: attaches to the apices of the spinous processes, extends from sacrum to skull where it becomes the ligamentum nuchae • Interspinous ligaments: connects spinous processes • Ligamentum flavum: thick, elastic ligament, connects the laminae, composed of a right and left ligament that joins in the middle forming an acute angle; narrows toward the articular processes
  • 10. A and P Longitudinal Ligament
  • 11. Spinal Cord • Runs through the vertebral canal • Extends from foramen magnum to second lumbar vertebra or lower end of 1st vertebrae • Regions – Cervical – Thoracic – Lumbar – Sacral – Coccygeal • Gives rise to 31 pairs of spinal nerves – All are mixed nerves • Not uniform in diameter – Cervical enlargement: supplies upper limbs – Lumbar enlargement: supplies lower limbs • Conus medullaris- tapered inferior end – Ends between L1 and L2 • Cauda equina - origin of spinal nerves extending inferiorly from conus medullaris.
  • 12. spinal cord, which is continuous cephalad with the brainstem through the foramen magnum and terminates distally in the conus medullaris. This distal termination, because of differential growth rates between the bony vertebral canal and the central nervous system (CNS), varies from L3 in infants to the lower border of L1 in adults. • Most of us develop the impression that the spinal nerve roots are uniform in size and structure, but that there is large interindividual variability in nerve root size. These differences may help explain the interpatient differences in neuraxial block quality when equivalent techniques are used on seemingly similar patients. • Another anatomic relationship may affect neuraxial blocks; although the dorsal (sensory) roots are generally larger than the anterior (motor) roots, the dorsal roots are often blocked more easily. • This seeming paradox is explained by organization of the dorsal roots into component bundles, which creates a much larger surface area on which the local anesthetics act, thus explaining why larger sensory nerves are blocked more easily than smaller motor nerves.
  • 13. Meninges • Connective tissue membranes – Dura mater: outermost layer; continuous with epineurium of the spinal nerves – Arachnoid mater: thin and wispy – Pia mater: bound tightly to surface • Forms the filum terminale – anchors spinal cord to coccyx • Forms the denticulate ligaments that attach the spinal cord to the dura • Spaces – Epidural: external to the dura • Drug injected here in epidural block • Fat-fill – Subdural space: serous fluid – Subarachnoid: between pia and arachnoid • Filled with CSF
  • 14. Spinal Cord and its membrane . • From the spinal cord extends a series of dorsal and ventral roots that converge to form mixed spinal nerves. The mixed nerves contains motor, sensory, and in many cases, autonomic fibers. • There are eight cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal pairs of spinal nerves. • The roots inferior to the conus medullaris become the cauda equina before exiting through the lumbar and sacral foramina. After the spinal nerves leave the spinal canal through the intervertebral foramina, they divide into the anterior and posterior primary rami. • The posterior primary rami innervate the skin and muscles of the back. The anterior rami supply the rest of the trunk and the limbs. Each spinal nerve supplies a specific region of skin referred to as a dermatome . • There is overlap between adjacent segmental nerves. Loss of a single spinal nerve will produce an area of altered sensation, but won’t result in total sensory loss. For instance, destruction of at least three consecutive spinal nerves is required to produce a total sensory loss of the dermatome supplied by the middle nerve of the three.
  • 16.
  • 17. Spinal Cord and its membrane • pia mater is a highly vascular membrane that closely invests the spinal cord . • arachnoid mater is a delicate, nonvascular membrane closely attached to the outermost layer, the dura. • Of these two membranes, it is thought that the arachnoid functions as the principal barrier to drugs crossing in and out of the CSF and is estimated to account for 90% of the resistance to drug migration. • In the subarachnoid space -- CSF, spinal nerves, a trabecular network between the two membranes, and blood vessels that supply the spinal cord and lateral extensions of the pia mater and dentate ligaments, which provide lateral support from the spinal cord to the dura mater . • Although the spinal cord ends at the lower border of L1 in adults, the subarachnoid space continues to S2.
  • 18. Membrane...... • Third and outermost membrane in the spinal canal is a randomly organized fibroelastic membrane, the dura mater (or theca). • This layer is a direct extension of the cranial dura mater and extends as the spinal dura mater from the foramen magnum to S2, where the filum terminale (an extension of the pia mater beginning at the conus medullaris) blends with the periosteum on the coccyx . • There is a potential space between the dura mater and the arachnoid, the subdural space, that contains only small amounts of serous fluid and thus allows the dura and arachnoid to move over each other. • This space is not intentionally used by anesthesiologists, although injection into it during spinal anesthesia may explain the occasional failed spinal anesthesia and the rare “total spinal” after epidural anesthesia when there is no indication of errant injection of local anesthetic into CSF.
  • 19. •Surrounding the dura mater is another space , epidural space. The spinal epidural space extends from the foramen magnum to the sacral hiatus and surrounds the dura mater anteriorly, laterally, and more usefully, posteriorly. •The epidural space is bounded anteriorly by the posterior longitudinal ligaments, laterally by the pedicles and intervertebral foramina, and posteriorly by the ligamentum flavum. •Contents of the epidural space include the nerve roots that traverse it from foramina to peripheral locations, as well as fat, areolar tissue, lymphatics, and blood vessels, including the well-organized Batson venous plexus. • • lack of epidural space uniformity extends to age-related differences. There is evidence that adipose tissue in the epidural space diminishes with age. • Another anatomic change in epidural space anatomy that has long been promoted is that the intervertebral foramina decrease in size with increasing age. •This decrease has been linked conceptually to higher block levels for similar epidural doses of local anesthetic. considered together, it may be that the decrease in epidural space adipose tissue with age may dominate the age-related changes in epidural dose reqirement
  • 20. 13-20 Meninges of Vertebra and Spinal Cord
  • 21. conti....... • Posterior to the epidural space is the ligamentum flavum (the so-called yellow ligament), which also extends from the foramen magnum to the sacral hiatus. Although classically portrayed as a single ligament, it is really composed of two ligamenta flava, the right and the left, which join in the middle and form an acute angle with a ventral opening . • The ligamentum flavum is not uniform from skull to sacrum, nor even within an intervertebral space. Ligament thickness, distance to the dura, and skin-to- dura distance vary with the area of the vertebral canal . The two ligamenta flava are variably joined (fused) in the midline, and this fusion or lack of fusion of the ligamenta flava even occurs at different vertebral levels in individual patients. • Immediately posterior to the ligamentum flavum are the lamina and spinous processes of vertebral bodies or the interspinous ligaments. Extending from the external occipital protuberance to the coccyx posterior to these structures is the supraspinous ligament, which joins the vertebral spines .
  • 22. Surface Anatomy • Surface structures assist in determining the level of entry into the epidural and subarach space. The spinous processes help define the location of the midline as they are usually midline structures. The cervical and lumbar spinous processes are horizontally directed whereas the T4 to T9 thoracic spinous processes have a sharp caudal angulation . • Needle entry into the cervical and lumbar regions should be directed horizontally with a slight upward angulation, whereas in the upper thoracic region, a midline approach to the epidural space is more difficult because of the angulation of the spinous processes. A paramedian approach is usually more successful • safest point of entry into the epidural space is below the level of the spinal cord. In adults, this corresponds to the lower border of the L1 vertebrae, and in children, at the lower border of the L3 vertebrae. Epidural insertion in adults is commonly introduced at either the L3-4 interspinous space or one higher, L2-3. A line drawn between the superior aspect of the iliac crests crosses either the spinous process of L4 or the L4-5 interspace. • Interspinous space above this point (L3-4 interspinous space) or one higher (L2-3) can safely be chosen for needle entry into the epidural space of adults. Some research has challenged the accuracy of the iliac crest in assessing the level, but this is still a generally accepted surface landmark. By approximately the age of 8 years, the same interspaces can be chosen for children; however, under the age of 7, to avoid accidental cord injury the caudal approach to the epidural space is safer.
  • 23. Anatomic Landmarks to Identify Vertebral Levels Before Epidural Injection Anatomic Landmark Features C7 Vertebral prominence, the most prominent process in the neck T3 Root of the spine of the scapula T7 Inferior angle of the scapula L4 Line connecting iliac crests S2 Line connecting the posterior inferior iliac spines Sacral hiatus Groove or depression just above or between the gluteal clefts above the coccyx
  • 24. Dermatomal Levels of Spinal Anesthesia for Common Surgical Procedures Procedure Dermatomal Level Upper abdominal surgery T4 Intestinal, gynecologic, and urologic surgery T6 Transurethral resection of the prostate T8 Vaginal delivery of a fetus, and hip surgery T10 Thigh surgery and lower leg amputations L1 Foot and ankle surgery L2 Perineal and anal surgery S2 to S5 (saddle block)
  • 25. Anatomical and physiological differences in children • There are certain features of paediatric anatomy and physiology which are different from the adult and thus make the central neuraxial blockade a good alter-native anaesthetic technique. • spinal cord ends at L3 level at birth and reaches L-1 by 6-12 months. • The dural sac is at the S4 level at birth and reaches S2 by the end of the first year. The line joining the two supe-rior iliac crests (inter-cristal line) crosses at L5-S1 in-terspace at birth, L5 vertebra in young children and L3/4 interspace in adults. • It is for this reason that the lumbar puncture be done at a level below which the cord ends, safest being at or below the inter cristal line. • bones of the sacrum are not fused posteriorly in children enabling an access to the subarachnoid space even at this level. • Another feature which is unique in infants is that there is only one anterior concave curvature of the vertebral column at birth. The cervical lordosis begins in the first 3 months of life with the child's ability to hold the head upright. The lumbar lordosis starts as the child begins to walk at the age of 6-9 months. Therefore, the spread of isobaric local anaesthetic is different in infants particularly as compared to adults.
  • 26. conti..... • The subarachnoid space is incompletely divided by the denticulate ligament laterally, and the subarachnoid septum medially. • The volume of cerebrospinal fluid CSF is 4 ml.kg -1 which is double the adult volume. Moreover, in infants half of this volume is in the spinal space whereas adults have only one-fourth. This significantly affects the pharmocokinetics of intrathecal drugs. • The spinal fluid hydrostatic pressure of 30-40mm H 2 O in horizontal position is also much less than that in adults. • The neck can be in extension for lateral positioning while performing a lumbar puncture as cervical flexion is of no benefit in children and in fact, may obstruct the airway during the procedure. It can also be performed in sitting position with the head extended. • The physiological impact of sympathectomy is minimal or none in smaller age groups. • fall in blood pressure and a drop in the heart rate are practically not seen in children less than five years. Therefore there is no role of preloading with fluids before a subarachnoid block.
  • 27. conti..... • This may be due to the immature sympathetic nervous system in children younger than five-eight years or a result of the relatively small intravascular volume in the lower extremities and splanchnic system limiting venous pooling and relatively vasodilated peripheral blood vessels. • Infants respond to high thoracic spinal anaesthesia by reflex withdrawal of vagal parasympathetic tone to the heart. It is one of the reasons why spinal anaesthesia has been the technique of choice in critically ill and moribund neonates who present for surgery in grave haemodynamic instability. • most important concern with the use of intrathecal local anaesthetics in infants and young children is the risk of toxicity. This age group is particularly prone to direct toxicity to the spinal cord when administered in large doses. • Neonates with immature hepatic metabolism and decreased plasma proteins like albumin and alpha 1 acid glycoprotein have higher serum levels of unbound amide local anaesthetics, which are normally highly protein bound (90%). • A relatively higher cardiac output and regional blood flow in infants also increases the drug uptake from neuraxial spaces and can predispose them to local anaesthetic toxicity besides decreasing the duration of action. Infants may have decreased levels of plasma pseudocholinesterase which may augment local anaesthetic toxicity especially with the ester group.
  • 28. Physiologic Effects of Neuraxial Blockade
  • 29. Somatic Blockade • Neuraxial anesthesia effectively stops the transmission of painful sensation and abolishes the tone of skeletal muscle, enhancing operating conditions for the surgeon. • Sensory blockade involves somatic and visceral painful stimulation. • Motor blockade involves skeletal muscles. Neuraxial anesthesia results in a phenomenon known as differential blockade. • This effect is due to the activity of local anesthetics and anatomical factors. Local anesthetic factors include the concentration and duration of contact with the spinal nerve root. • As the local anesthetic spreads out from the site of injection the concentration becomes less, which may in turn effect which nerve fibers are susceptible to blockade. Anatomical factors are related to various fiber types found within each nerve root. • Small myelinated fibers are easier to block than large unmyelinated fibers. In general, the differential blockade found after neuraxial blockade is as follows: sympathetic blockade is 2-6 dermatome segments higher than sensory and sensory blockade is generally 2 dermatome levels higher than motor.
  • 30. Autonomic Blockade • Neuraxial blockade effectively blocks efferent autonomic transmission of the spinal nerve roots, producing a sympathetic block and a partial parasympathetic block. • Sympathetic fibers are small, myelinated, and easily blocked. During neuraxial blockade, sympathetic block occour prior to sensory, followed by motor. • sympathetic nervous system (SNS) is described as thoracolumbar since sympathetic fibers exit the spinal cord from T1 to L2. • The parasympathetic nervous system (PNS) has been described as craniosacral since parasympathetic fibers exit in the cranial and sacral regions of the CNS. It should be noted that neuraxial blockade does not affect the vagus nerve (10th cranial nerve). • End result of neuraxial blockade is a decreased sympathetic tone with an unopposed parasympathetic tone. This imbalance will result in many of the expected alterations of normal homeostasis noted with the administration of epidural and spinal anesthesia.
  • 31. Cardiovascular Effects • Neuraxial blockade can impact the cardiovascular system by causing the following changes: 1. Decrease in blood pressure (33% incidence of hypotension in non-obstetric populations) 2. Decrease in heart rate (13% incidence of bradycardia in non-obstetric populations) 3. Decrease in cardiac contractility • Sympathectomy is the term used to describe blockade of sympathetic outflow. Nerve fibers that affect vasomotor tone of the arterial and venous vessels arise from provider wants to block with neuraxial blockade. • The sympathetic dermatome ranges from 2-6 levels higher than the sensory dermatome level. Sympathectomy is directly related to the height of the block and results in venous and arterial vasodilatation. • The venous system contains about 75% of the total blood volume while the arterial system contains about 25%. Dilation of the venous system is predominantly responsible for decreases in blood pressure since the arterial system is able to maintain much of its vascular tone. T5-L1, which is generally within the area that the anesthesia
  • 32. •Total peripheral vascular resistance in the normal patient (normal cardiac output and normovolemic) will decrease 15-18%. •In the elderly the systemic vascular resistance may decrease as much as 25% with a 10% decrease in cardiac output. •Heart rate may decrease during a high block due to blockade of the cardioaccelerator fibers (T1-T4). Heart rate may also decline as a result of a decrease in SVR, decreased right atrial filling, and decreases in the intrinsic chronotropic stretch receptor response. • that epidural and spinal anesthesia differ in their effect on arterial blood pressure? A common concept is that the decrease in arterial blood pressure is more gradual and of less magnitude with epidural than with spinal anesthesia of comparable levels. During the T10 block, there was no significant change in organ blood flow; during the T1 block, with a 22% decrease in mean arterial pressure, cerebral and myocardial blood flow was insignificantly altered
  • 33. Respiratory Effects • Neuraxial blockade plays a very minor role in altering pulmonary function. Even with high thoracic levels of blockade, tidal volume is unchanged. There is a slight decrease in vital capacity. • This is the result of relaxation of the abdominal muscles during exhalation. • phrenic nerve is innervated by C3-C5 and is responsible for the diaphragm. phrenic nerve is extremely hard to block, even with a high spinal. • In fact, apnea associated with a high spinal is thought to be related to brainstem hypoperfusion and not blockade of the phrenic nerve. This is based on the fact that spontaneous respiration resumes after hemodynamic resuscitation has occurre. • risk and benefits of neuraxial anesthesia should be carefully weighed for the patient with severe lung disease. • Patients with chronic lung disease depend on intercostal and abdominal muscles to aid their inspiration and exhalation. • Neuraxial blockade may reduce the function of these muscles, having a detrimental impact on the patient’s ability to breathe, as well as affect the ability to clear secretions and cough. • For procedures above the umbilicus, a pure regional anesthetic may not be beneficial for the patient with chronic lung disease. • However, postoperative analgesia with thoracic epidurals has been found to be helpful to the patient with severe lung disease undergoing a thoracic or abdominal procedure. • .
  • 34. • Thoracic and abdominal surgical procedures are associated with decreased phrenic nerve activity resulting in decreased diaphragmatic function and FRC (functional reserve capacity). This can lead to atelectasis and hypoxia due to ventilation/perfusion mismatching. • Thoracic epidural analgesia has been found to decrease the incidence of pneumonia, respiratory failure, improve oxygenation, and decrease the amount of time that the patient may require for postoperative ventilation •
  • 35. Gastrointestinal Effects •Another organ system affected during neuraxial blockade is the gastrointestinal tract. •Nausea and vomiting may be associated with neuraxial block in up to 20% of patients and are primarily related to gastrointestinal hyperperistalsis caused by unopposed parasympathetic (vagal) activity. •Atropine is effective in treating nausea associated with high (T5) subarachnoid anesthesia. • This gastrointestinal hyperperistalsis has the advantage of providing excellent surgical conditions because of a contracted gut. • An often-cited advantage of regional anesthesia in patients with compromised gastrointestinal function (e.g., hepatic dysfunction) is that less physiologic impairment is possible than with general anesthesia. • decrease in hepatic blood flow during spinal anesthesia parallels the decrease in mean arterial blood pressure.When epidural analgesia is continued into the postoperative period, there may be a protective effect on the gastric mucosa because intramucosal pH is higher during postoperative epidural analgesia than during systemic analgesia.
  • 36. Renal Effects • Neuraxial blockade has little effect on the blood flow to the renal system. • Autoregulation maintains adequate blood flow to the kidneys as long as perfusion pressure is maintained. • Neuraxial blockade effectively blocks sympathetic and parasympathetic control of the bladder at the lumbar and sacral levels. • Urinary retention can occur due to the loss of autonomic bladder control. Detrusor function of the bladder is blocked by local anesthetics. Normal function does not return until sensory function returns to S3. • Risk factors for prolonged blockade of the detrusor muscle include the use of long acting local anesthetics, age > 50 years, volume of fluids administered, and surgical procedure. Prolonged blockade of the detrusor muscle may lead to bladder over distention and urinary retention. This should be taken into consideration if no urinary catheter will be placed. If possible, short acting medications should be used. • It should be monitor the amount of intravenous fluids administered to prevent over distention of the bladder. • patient with a history of an enlarged prostrate is at risk for urinary retention. Patients should be monitored for urinary retention.
  • 37. Metabolic and Endocrine Effects • Surgery produces a host of neuroendocrine responses related to inflammatory response and activation of somatic and visceral afferent nerve fibers. • This response results in the release of adrenocorticotropic hormone, cortisol, epinephrine, norepinephrine, vasopressin, and activation of the renin-angiotension-aldosterone system. • release of these substances has the following clinical manifestations: hypertension, tachycardia, hyperglycemia, protein catabolism, depressed immune response, and alteration in renal function. As noted earlier, neuraxial blockade can effectively block this response. • In intra-abdominal surgery, it may only partially suppress its effects. For lower extremity surgery, it can totally suppress these effects. The effect of neuraxial blockade is beneficial by reducing catecholamine release, decreasing stress related arrhythmias, and decreasing the incidence of ischemia.
  • 38. caudal Anatomy • The sacrum results from fusion of the five sacral vertebrae. • The sacral hiatus, which is failure of the laminae of S5 and usually part of S4 to fuse in the midline, is the detail of interest. • It results in a variably shaped and sized inverted V–shaped bony defect covered by the posterior sacrococcygeal ligament, a functional counterpart to the ligamenta flava. • The sacral hiatus is identified by locating the sacral cornua, remnants of the S5 articular processes . This bony defect allows access to the sacral canal, although needle insertion through this defect may be difficult because of the frequency of anatomic variation. • The sacral canal contains the terminal portion of the dural sac, which typically ends cephalad to a line joining the posterior superior iliac spines, or S2.
  • 39. caudal Anatomy • Variation is found in this feature as well, with the termination of the dural sac being lower in children, ease of palpating the sacral hiatus in children may make the pediatric caudal technique easier overall. • In addition to the dural sac, the sacral canal contains a venous plexus, which is part of the valveless internal vertebral venous plexus. • It is estimated from magnetic resonance imaging (MRI) studies that the volume of the caudal canal in adults, excluding the foramina and dural sac, is about 10 to 27 mL. Perhaps this wide variability in volume accounts for some of the variation in block height with caudal anesthesia
  • 40. Thank you for your attention