SlideShare una empresa de Scribd logo
1 de 51
Metastability and self-oscillations in superconducting microwave resonators integrated with a dc-SQUID Eran Segev Quantum Engineering Laboratory, Technion, Israel
Quantum Measurements of Solid-State Devices V ,[object Object]
Indirect measurements approach:
Resonance Readout  - The quantum device is coupled to a superconducting resonator.
The state of the device modifies the resonance frequencies.
Readout is done by probing these resonance frequencies.Quantum Device Input Probe Output Signal Resonance Curve S12 Input Probe Output Signal Freq
Resonance readout and Thermal Instability hot spot unstable 1µm Resonator ,[object Object],Feed line Weak link : Micro-Bridge ,[object Object],Heat production Cooling power ,[object Object]
Heat transfer to a coolant
Heat production:A. VI. Gurevich and R. G. Mints, Rev. Mod. Phys. 59, 941 (1987)
Self-Oscillations S.C Phase Pres N.C Phase T ,[object Object],SC Threshold NC Threshold Power Oscillation Cycle Energy Buildup + Temperature increase Switching the NC phase at T >= Tc Energy relaxation + Temperature cool down Switching back to the SC phase at T <= Tc
Measurement Setup Synthesizer ~ Spectrum Oscilloscope Analyzer Feed Line ,[object Object]
 E. Segev et al. , J. Phys.: Condense. Matter 19, (2007),[object Object]
Self-Modulation - Time Domain II Time Domain @ -27.85[dBm] Pump Power Time Domain 40 20 |B|2 0 -20 0 2 4 6 8 10 Time [  Sec] Frequency domain ~ Frequency Domain -40 Power [dBm] -60 -80 -50 0 50 Frequency [MHz] Spectrum Oscillo- scope Analyzer
Self-Modulation - Time Domain III Time Domain ~ Frequency Domain Spectrum Oscillo- scope Analyzer Time Domain @ -27.72[dBm] Pump Power 40 20 |B|2 0 -20 0 200 400 600 800 1000 Time [nSec] Frequency domain -30 -40 Power [dBm] -50 -60 -70 -50 0 50 Frequency [MHz]
Self-Modulation - Time Domain IV Time Domain ~ Frequency Domain Spectrum Oscillo- scope Analyzer Time Domain @ -21.81[dBm] Pump Power 40 20 |B|2 0 -20 0 100 200 300 400 500 Time [nSec] Frequency domain -40 Power [dBm] -60 -80 -50 0 50 Frequency [MHz]
Self-Modulation - Time Domain V Time Domain @ -19.35[dBm] Pump Power Time Domain 40 20 |B|2 0 -20 0 100 200 300 400 500 Time [nSec] Frequency domain ~ Frequency Domain -40 Power [dBm] -60 -80 -50 0 50 Frequency [MHz] Spectrum Oscillo- scope Analyzer
Self-Modulation – Power Dependence ~ Spectrum Oscillo- scope Analyzer
System Model cooling power heating power Equations of motion Control parameters Input signal amplitude ,[object Object],Input signal frequency Stored amplitude (energy) Force Internal variables Mode Amplitude Micro-Bridge Temperature ,[object Object],Parameters Coupling rate to environment Coupling rate to losses Resonance frequency Heat capacity of micro-bridge Heat Transfer rate
Stability diagram mono-stable (N) bi-stable unstable mono-stable (S) MB is superconducting MB is normal-conducting MB is either super or normal-conducting. MB oscillates between super and normal-conducting states. bi-stable ,[object Object],[object Object]
Theory vs. Experiment – Time Domain mono-stable (N) bistable bistable Un-s  mono-stable (S) working point  Theoretical Results Experimental Results 0   0.2 0.4 0.6 0.8 1    0  0.2 0.4 0.6 0.8  1  0.2 0.2 (iii) (vii) 0 0 -0.2  [a.u.] -0.2 0   0.1 0.2 0.3 0.4 0.5 0   0.1 0.2 0.3 0.4 0.5 0.4 0.4 (ii) (vi) ref 0.2 P 0.2 0 0 0   0.2 0.4 0.6 0.8 1   0   0.2 0.4 0.6 0.8 1   t  [ m Sec]
Theory vs. Experiment – Threshold phenomenon mono-stable (N) bistable bistable un-stable mono-stable (S) working point Theoretical Results Experimental Results Noise is added to simulation Noise is added to simulation  
Thermal instability as sensitive detection mechanism mono-stable (N) bistable bistable un-stable mono-stable (S) ~ Oscilloscope Spectrum Analyzer The thermal non-linearity in our device has two advantages in terms of detection. The response of the system to a detectable stimulation is fast and strong. The system has a natural feedback mechanism that drives it back to its original state once the response to the stimulation is ended. Weak AM modulation ,[object Object],x x
Amplification mechanism un-s x Pref [dBm] Pref [a.u.] ms Experiments Simulation Strongest amplification at the threshold of self-oscillations ,[object Object],[object Object]
E. Segev et al., IEEE Trans. Appl. Supercond., 17 (2007). ,[object Object],[object Object]
Low noise non-linearity ,[object Object],Input Probe Output Signal ,[object Object]
 Self-Oscillations.
 Strong non-linear amplification and detection
But – Thermal noise creates a major drawback.Solution – Inductive nonlinearity Input Probe Output Signal ,[object Object]
 In practice – SQUID dynamics might be hysteretic and dissipative.,[object Object]
Resonance Frequency Tuning  Input Probe Output Signal S11 vs. magnetic field Magnetic Flux [a.u.] ,[object Object],[object Object]
Simulation of flux dependant self-oscillations ~ Spectrum Analyzer ,[object Object]
Thermal balance EOMExperiment Simulation
Physical model of DC-SQUID Squid Potential: Sine Term Quadric Term Source Internal variable Control parameters Parameters_______________________
DC-SQUID Potential – Roll of Hysteresis Parameter  Sine Term Quadric Term Source Hysteretic parameter that control the degree of metastability.
DC-SQUID Potential – Roll of control parameters Tilt by Current Control parameters Tilt by magnetic Flux
DC-SQUID Equations of Motions DC-SQUID Circuit Model Circuit model includes: ,[object Object]
CJ – JJ capacitance.
L – Self-inductance.Control parameters Kirchhoff  Equations Internal variable DC-SQUID EOM Parameters JJ Current Coupling
Stability boundaries – Phase space Hessian Local Stable Zones Local Extremum Points Stability Diagram in the plane of Stability Diagram in the plane of  Local stability zones
Stability boundaries – Alternating excitation 6 2 1 4 0 -1 2 -2 0 F / 0 x F -2 -4 -6 -1 0 1 I /I x c $ $ $ $ Stability Diagram in the plane of Stability Diagram in the plane of  $ $ $ $ $ $ $ $ $ $ $ $ $ Periodic dissipative zone – Static stability zones were dissipation of energy occurs under periodic excitation.
Numerical results Periodic dissipative static zones
Periodic dissipative static zone 2 1 0 F / 0 x F -1 -2 0.96 0.97 0.98 0.99 1 I /I x C Periodic non-dissipative static zone Free running zone Periodic dissipative static zone Periodic dissipative static zone E38 Parameters:
Periodic dissipative static zone Experimental data Vs. Simulation Experiment Simulation ,[object Object],[object Object]
Double Threshold to Oscillatory Zone  Experimental Results Simulation Results Split Threshold
Hybrid zones Experimental Results SQUID Voltage Noise Level TD Statistics
Parametric Excitation Of Superconducting Resonator Synthesizer ~ ~ Spectrum Analyzer ,[object Object],Current Sources ,[object Object]
The reflected power has many sidebands originated by the nonlinear mixing,[object Object]
 Only flux excitation: Stability diagram in the plane of________ Periodic dissipative static zone Periodic non-dissipative static zone 0 ,[object Object],[object Object]
Boundaries between local stable zones are observed in the periodic non-dissipative zone.
The variance of the  SQUID inductance within a local stable state is observed.Stability diagram in the plane of Simulation results PDSZ PNDSZ PDSZ PNDSZ
Parametric excitation – Experimental results ,[object Object]

Más contenido relacionado

La actualidad más candente

RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2Analog Devices, Inc.
 
Measurement of partial discharges
Measurement of partial dischargesMeasurement of partial discharges
Measurement of partial dischargesDonald Stephen
 
Masters Thesis Presentation Octavio Lora 2016
Masters Thesis Presentation Octavio Lora 2016Masters Thesis Presentation Octavio Lora 2016
Masters Thesis Presentation Octavio Lora 2016Octavio Lora Aranda
 
Topic 2a ac_circuits_analysis
Topic 2a ac_circuits_analysisTopic 2a ac_circuits_analysis
Topic 2a ac_circuits_analysisGabriel O'Brien
 
Original N-Channel Mosfet UTC7N65L-TF1-T 7N65 7.4A 650V TO-220F New Techcod
Original N-Channel Mosfet UTC7N65L-TF1-T 7N65 7.4A 650V TO-220F New TechcodOriginal N-Channel Mosfet UTC7N65L-TF1-T 7N65 7.4A 650V TO-220F New Techcod
Original N-Channel Mosfet UTC7N65L-TF1-T 7N65 7.4A 650V TO-220F New TechcodAUTHELECTRONIC
 
Avalanche photodiode (APD) for OTDR
Avalanche photodiode (APD) for OTDR Avalanche photodiode (APD) for OTDR
Avalanche photodiode (APD) for OTDR Vivi Anita
 
Datasheet
DatasheetDatasheet
Datasheetolvit
 
Coherent systems
Coherent systemsCoherent systems
Coherent systemsCKSunith1
 
Concurrent Triple Band Low Noise Amplifier Design
Concurrent Triple Band Low Noise Amplifier DesignConcurrent Triple Band Low Noise Amplifier Design
Concurrent Triple Band Low Noise Amplifier DesignHalil Kayıhan
 
Electromagnetically actuated cantilevers
Electromagnetically actuated cantileversElectromagnetically actuated cantilevers
Electromagnetically actuated cantileversDaniel Kopiec
 
Cable sizing to withstand short-circuit current - Example
Cable sizing to withstand short-circuit current - ExampleCable sizing to withstand short-circuit current - Example
Cable sizing to withstand short-circuit current - ExampleLeonardo ENERGY
 

La actualidad más candente (20)

Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
 
Measurement of partial discharges
Measurement of partial dischargesMeasurement of partial discharges
Measurement of partial discharges
 
Transistores
TransistoresTransistores
Transistores
 
Masters Thesis Presentation Octavio Lora 2016
Masters Thesis Presentation Octavio Lora 2016Masters Thesis Presentation Octavio Lora 2016
Masters Thesis Presentation Octavio Lora 2016
 
Ftc600
Ftc600Ftc600
Ftc600
 
EMI Unit IV
EMI Unit IVEMI Unit IV
EMI Unit IV
 
000700
000700000700
000700
 
Topic 2a ac_circuits_analysis
Topic 2a ac_circuits_analysisTopic 2a ac_circuits_analysis
Topic 2a ac_circuits_analysis
 
Original N-Channel Mosfet UTC7N65L-TF1-T 7N65 7.4A 650V TO-220F New Techcod
Original N-Channel Mosfet UTC7N65L-TF1-T 7N65 7.4A 650V TO-220F New TechcodOriginal N-Channel Mosfet UTC7N65L-TF1-T 7N65 7.4A 650V TO-220F New Techcod
Original N-Channel Mosfet UTC7N65L-TF1-T 7N65 7.4A 650V TO-220F New Techcod
 
Avalanche photodiode (APD) for OTDR
Avalanche photodiode (APD) for OTDR Avalanche photodiode (APD) for OTDR
Avalanche photodiode (APD) for OTDR
 
Datasheet
DatasheetDatasheet
Datasheet
 
Coherent systems
Coherent systemsCoherent systems
Coherent systems
 
Concurrent Triple Band Low Noise Amplifier Design
Concurrent Triple Band Low Noise Amplifier DesignConcurrent Triple Band Low Noise Amplifier Design
Concurrent Triple Band Low Noise Amplifier Design
 
Eeg machine filters
Eeg machine  filtersEeg machine  filters
Eeg machine filters
 
Electromagnetically actuated cantilevers
Electromagnetically actuated cantileversElectromagnetically actuated cantilevers
Electromagnetically actuated cantilevers
 
Cable sizing to withstand short-circuit current - Example
Cable sizing to withstand short-circuit current - ExampleCable sizing to withstand short-circuit current - Example
Cable sizing to withstand short-circuit current - Example
 
Noise
NoiseNoise
Noise
 
Onyx Group Hv Test Report
Onyx Group   Hv Test ReportOnyx Group   Hv Test Report
Onyx Group Hv Test Report
 

Similar a Metastability and self-oscillations in superconducting microwave resonators integrated with a dc-SQUID

Ee201 -revision_contigency_plan
Ee201  -revision_contigency_planEe201  -revision_contigency_plan
Ee201 -revision_contigency_planSporsho
 
Aeav 311 lecture 25 26- inst.amp+noise
Aeav 311 lecture 25 26- inst.amp+noiseAeav 311 lecture 25 26- inst.amp+noise
Aeav 311 lecture 25 26- inst.amp+noise0mehdi
 
RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Finalimranbashir
 
ION IMPLANTATION
ION IMPLANTATIONION IMPLANTATION
ION IMPLANTATIONAJAL A J
 
Generator protection gers
Generator protection gersGenerator protection gers
Generator protection gersHabudin Hassan
 
Av335 instrumentation lab report
Av335 instrumentation lab reportAv335 instrumentation lab report
Av335 instrumentation lab reportGaurav Vaibhav
 
Study of AC Power Loss of High Frequency Gapped Inductors
Study of AC Power Loss of High Frequency Gapped InductorsStudy of AC Power Loss of High Frequency Gapped Inductors
Study of AC Power Loss of High Frequency Gapped InductorsYoussef Kandeel
 
Ecd302 unit 04 (analysis)
Ecd302 unit 04 (analysis)Ecd302 unit 04 (analysis)
Ecd302 unit 04 (analysis)Xi Qiu
 
Amitec RF and Microwave Product catalog
Amitec RF and Microwave Product catalogAmitec RF and Microwave Product catalog
Amitec RF and Microwave Product catalogSumit Sharma
 
20GHz DQPSK Optical Modulator Electrical Bias Optimiser
20GHz DQPSK Optical Modulator Electrical Bias Optimiser20GHz DQPSK Optical Modulator Electrical Bias Optimiser
20GHz DQPSK Optical Modulator Electrical Bias OptimiserBen Larcombe
 
Noiseken ins220 Impulse Noise Simulator denkei
Noiseken ins220 Impulse Noise Simulator denkeiNoiseken ins220 Impulse Noise Simulator denkei
Noiseken ins220 Impulse Noise Simulator denkeiNIHON DENKEI SINGAPORE
 
Noiseken ins220 Impulse Noise Simulator denkei
Noiseken ins220 Impulse Noise Simulator denkeiNoiseken ins220 Impulse Noise Simulator denkei
Noiseken ins220 Impulse Noise Simulator denkeiNIHON DENKEI SINGAPORE
 
Electrical measurement & measuring instruments [emmi (nee-302) -unit-5]
Electrical measurement & measuring instruments [emmi  (nee-302) -unit-5]Electrical measurement & measuring instruments [emmi  (nee-302) -unit-5]
Electrical measurement & measuring instruments [emmi (nee-302) -unit-5]Md Irshad Ahmad
 
STSN1132 Radiation Detection #3.pptx
STSN1132 Radiation Detection #3.pptxSTSN1132 Radiation Detection #3.pptx
STSN1132 Radiation Detection #3.pptxNurmaizatulAtikah
 
signal processing in software and electric field sensing
signal processing in software and electric field sensingsignal processing in software and electric field sensing
signal processing in software and electric field sensingomidsalangi1
 
UWB Antenna for Cogntive Radio Application
UWB Antenna for Cogntive Radio ApplicationUWB Antenna for Cogntive Radio Application
UWB Antenna for Cogntive Radio ApplicationBhanwar Singh Meena
 
EMVT 12 september - Pavol Bauer - TU Delft
EMVT 12 september - Pavol Bauer - TU DelftEMVT 12 september - Pavol Bauer - TU Delft
EMVT 12 september - Pavol Bauer - TU DelftDutch Power
 
新加坡国立大学 硅共振加速度计
新加坡国立大学 硅共振加速度计新加坡国立大学 硅共振加速度计
新加坡国立大学 硅共振加速度计文峰 贾
 

Similar a Metastability and self-oscillations in superconducting microwave resonators integrated with a dc-SQUID (20)

Ee201 -revision_contigency_plan
Ee201  -revision_contigency_planEe201  -revision_contigency_plan
Ee201 -revision_contigency_plan
 
Aeav 311 lecture 25 26- inst.amp+noise
Aeav 311 lecture 25 26- inst.amp+noiseAeav 311 lecture 25 26- inst.amp+noise
Aeav 311 lecture 25 26- inst.amp+noise
 
RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Final
 
ION IMPLANTATION
ION IMPLANTATIONION IMPLANTATION
ION IMPLANTATION
 
Generator protection gers
Generator protection gersGenerator protection gers
Generator protection gers
 
UNIT- I.pptx
UNIT- I.pptxUNIT- I.pptx
UNIT- I.pptx
 
Av335 instrumentation lab report
Av335 instrumentation lab reportAv335 instrumentation lab report
Av335 instrumentation lab report
 
Study of AC Power Loss of High Frequency Gapped Inductors
Study of AC Power Loss of High Frequency Gapped InductorsStudy of AC Power Loss of High Frequency Gapped Inductors
Study of AC Power Loss of High Frequency Gapped Inductors
 
Unit iii
Unit iiiUnit iii
Unit iii
 
Ecd302 unit 04 (analysis)
Ecd302 unit 04 (analysis)Ecd302 unit 04 (analysis)
Ecd302 unit 04 (analysis)
 
Amitec RF and Microwave Product catalog
Amitec RF and Microwave Product catalogAmitec RF and Microwave Product catalog
Amitec RF and Microwave Product catalog
 
20GHz DQPSK Optical Modulator Electrical Bias Optimiser
20GHz DQPSK Optical Modulator Electrical Bias Optimiser20GHz DQPSK Optical Modulator Electrical Bias Optimiser
20GHz DQPSK Optical Modulator Electrical Bias Optimiser
 
Noiseken ins220 Impulse Noise Simulator denkei
Noiseken ins220 Impulse Noise Simulator denkeiNoiseken ins220 Impulse Noise Simulator denkei
Noiseken ins220 Impulse Noise Simulator denkei
 
Noiseken ins220 Impulse Noise Simulator denkei
Noiseken ins220 Impulse Noise Simulator denkeiNoiseken ins220 Impulse Noise Simulator denkei
Noiseken ins220 Impulse Noise Simulator denkei
 
Electrical measurement & measuring instruments [emmi (nee-302) -unit-5]
Electrical measurement & measuring instruments [emmi  (nee-302) -unit-5]Electrical measurement & measuring instruments [emmi  (nee-302) -unit-5]
Electrical measurement & measuring instruments [emmi (nee-302) -unit-5]
 
STSN1132 Radiation Detection #3.pptx
STSN1132 Radiation Detection #3.pptxSTSN1132 Radiation Detection #3.pptx
STSN1132 Radiation Detection #3.pptx
 
signal processing in software and electric field sensing
signal processing in software and electric field sensingsignal processing in software and electric field sensing
signal processing in software and electric field sensing
 
UWB Antenna for Cogntive Radio Application
UWB Antenna for Cogntive Radio ApplicationUWB Antenna for Cogntive Radio Application
UWB Antenna for Cogntive Radio Application
 
EMVT 12 september - Pavol Bauer - TU Delft
EMVT 12 september - Pavol Bauer - TU DelftEMVT 12 september - Pavol Bauer - TU Delft
EMVT 12 september - Pavol Bauer - TU Delft
 
新加坡国立大学 硅共振加速度计
新加坡国立大学 硅共振加速度计新加坡国立大学 硅共振加速度计
新加坡国立大学 硅共振加速度计
 

Metastability and self-oscillations in superconducting microwave resonators integrated with a dc-SQUID

  • 1. Metastability and self-oscillations in superconducting microwave resonators integrated with a dc-SQUID Eran Segev Quantum Engineering Laboratory, Technion, Israel
  • 2.
  • 4. Resonance Readout - The quantum device is coupled to a superconducting resonator.
  • 5. The state of the device modifies the resonance frequencies.
  • 6. Readout is done by probing these resonance frequencies.Quantum Device Input Probe Output Signal Resonance Curve S12 Input Probe Output Signal Freq
  • 7.
  • 8. Heat transfer to a coolant
  • 9. Heat production:A. VI. Gurevich and R. G. Mints, Rev. Mod. Phys. 59, 941 (1987)
  • 10.
  • 11.
  • 12.
  • 13. Self-Modulation - Time Domain II Time Domain @ -27.85[dBm] Pump Power Time Domain 40 20 |B|2 0 -20 0 2 4 6 8 10 Time [  Sec] Frequency domain ~ Frequency Domain -40 Power [dBm] -60 -80 -50 0 50 Frequency [MHz] Spectrum Oscillo- scope Analyzer
  • 14. Self-Modulation - Time Domain III Time Domain ~ Frequency Domain Spectrum Oscillo- scope Analyzer Time Domain @ -27.72[dBm] Pump Power 40 20 |B|2 0 -20 0 200 400 600 800 1000 Time [nSec] Frequency domain -30 -40 Power [dBm] -50 -60 -70 -50 0 50 Frequency [MHz]
  • 15. Self-Modulation - Time Domain IV Time Domain ~ Frequency Domain Spectrum Oscillo- scope Analyzer Time Domain @ -21.81[dBm] Pump Power 40 20 |B|2 0 -20 0 100 200 300 400 500 Time [nSec] Frequency domain -40 Power [dBm] -60 -80 -50 0 50 Frequency [MHz]
  • 16. Self-Modulation - Time Domain V Time Domain @ -19.35[dBm] Pump Power Time Domain 40 20 |B|2 0 -20 0 100 200 300 400 500 Time [nSec] Frequency domain ~ Frequency Domain -40 Power [dBm] -60 -80 -50 0 50 Frequency [MHz] Spectrum Oscillo- scope Analyzer
  • 17. Self-Modulation – Power Dependence ~ Spectrum Oscillo- scope Analyzer
  • 18.
  • 19.
  • 20. Theory vs. Experiment – Time Domain mono-stable (N) bistable bistable Un-s  mono-stable (S) working point  Theoretical Results Experimental Results 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0.2 0.2 (iii) (vii) 0 0 -0.2 [a.u.] -0.2 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.4 0.4 (ii) (vi) ref 0.2 P 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 t [ m Sec]
  • 21. Theory vs. Experiment – Threshold phenomenon mono-stable (N) bistable bistable un-stable mono-stable (S) working point Theoretical Results Experimental Results Noise is added to simulation Noise is added to simulation  
  • 22.
  • 23.
  • 24.
  • 25.
  • 27. Strong non-linear amplification and detection
  • 28.
  • 29.
  • 30.
  • 31.
  • 33. Physical model of DC-SQUID Squid Potential: Sine Term Quadric Term Source Internal variable Control parameters Parameters_______________________
  • 34. DC-SQUID Potential – Roll of Hysteresis Parameter Sine Term Quadric Term Source Hysteretic parameter that control the degree of metastability.
  • 35. DC-SQUID Potential – Roll of control parameters Tilt by Current Control parameters Tilt by magnetic Flux
  • 36.
  • 37. CJ – JJ capacitance.
  • 38. L – Self-inductance.Control parameters Kirchhoff Equations Internal variable DC-SQUID EOM Parameters JJ Current Coupling
  • 39. Stability boundaries – Phase space Hessian Local Stable Zones Local Extremum Points Stability Diagram in the plane of Stability Diagram in the plane of Local stability zones
  • 40. Stability boundaries – Alternating excitation 6 2 1 4 0 -1 2 -2 0 F / 0 x F -2 -4 -6 -1 0 1 I /I x c $ $ $ $ Stability Diagram in the plane of Stability Diagram in the plane of $ $ $ $ $ $ $ $ $ $ $ $ $ Periodic dissipative zone – Static stability zones were dissipation of energy occurs under periodic excitation.
  • 41. Numerical results Periodic dissipative static zones
  • 42. Periodic dissipative static zone 2 1 0 F / 0 x F -1 -2 0.96 0.97 0.98 0.99 1 I /I x C Periodic non-dissipative static zone Free running zone Periodic dissipative static zone Periodic dissipative static zone E38 Parameters:
  • 43.
  • 44. Double Threshold to Oscillatory Zone Experimental Results Simulation Results Split Threshold
  • 45. Hybrid zones Experimental Results SQUID Voltage Noise Level TD Statistics
  • 46.
  • 47.
  • 48.
  • 49. Boundaries between local stable zones are observed in the periodic non-dissipative zone.
  • 50. The variance of the SQUID inductance within a local stable state is observed.Stability diagram in the plane of Simulation results PDSZ PNDSZ PDSZ PNDSZ
  • 51.
  • 52. Location and shape of PDSZ threshold is different.
  • 53. Different βL fits the PNDSZ and the PDSZ.Experimental results Simulation results Exc. Heat Production Location and shape of threshold is different
  • 54. Different βL fits the PNDSZ and the PDSZ. Only heat degree of Freedom Can explain this change Heat relaxation rates are comparable to the excitation frequency! Threshold point to PDSZ
  • 55. DC-SQUID Model inc. heat balance equation EOM for the Josephson junction phases JJ Current Coupling represents the dependence of the kth JJ critical current of the temperature. Heat balance EOMs Parameters Heat Production Heat transfer to coolant
  • 56. Numerical results inc. Heat production Stability diagram in the plane of + Stability Diagram in the plane of First Cycle Additional Cycles Time domain simulation Legend PDSZ PNDSZ
  • 57.
  • 58.
  • 59. Question – Does stress or strain in Nano-beams affects material coherency ?
  • 60. Method – Study the effect of a mechanical degree of freedom on the Aharonov-Bohm effect. 1um2 AB rings, 30x90nm2 cross section. I V Side electrode Side electrode 1um 30nm-thick Aluminum 100nm I V
  • 61.
  • 62.
  • 63. Publication List E. Segev, B. Abdo, O. Shtempluck, and E. Buks, 'Fast Resonance Frequency Modulation in Superconducting Stripline Resonator', IEEE Trans. Appl. Sup., 16 (3), P. 1943 (2006). E. Segev, B. Abdo, O. Shtempluck, and E. Buks 'Novel Self-Sustained Modulation in Superconducting Stripline Resonators', Europhys. Lett. 78, 57002 (2007). E. Segev, B. Abdo, O. Shtempluck, and E. Buks 'Thermal Instability and Self-Sustained Modulation in Superconducting NbN Stripline Resonators', J. Phys. Cond. Matt. 19, 096206 (2007). E. Segev, B. Abdo, O. Shtempluck, and E. Buks 'Extreme Nonlinear Phenomena in NbN Superconducting Stripline Resonators', Phys. Lett. A 366, pp. 160-164 (2007). E. Segev, B. Abdo, O. Shtempluck, E. Buks, and B. Yurke'Prospects of Employing Superconducting Stripline Resonators for Studying the Dynamical Casimir Effect Experimentally', Phys. Lett. A 370, pp. 202-206 (2007). E. Segev, B. Abdo, O. Shtempluck, and E. Buks 'Utilizing Nonlinearity in a Superconducting NbN Stripline Resonator for Radiation Detection' , IEEE Trans. Appl. Sup., 17, pp. 271-274 (2007). E. Segev, B. Abdo, O. Shtempluck, and E. Buks 'Stochastic Resonance with a Single Metastable State: Thermal instability in NbN superconducting stripline resonators', Phys. Rev. B 77, 012501 (2008). E. Segev, O. Suchoi, O. Shtempluck, and E. Buks ‘Self-oscillations in a superconducting stripline resonator integrated with a dc superconducting quantum interference device', Appl. Phys. Lett. 95, 152509  (2009). E. Segev, O. Suchoi, O. Shtempluck, Fei Xue, and E. Buks ‘Metastability in a nano-bridge based hysteretic DC-SQUID embedded in superconducting microwave resonator, arXiv:1007.5225v1 (2010).
  • 64. Publication List E. Buks, S. Zaitsev, E. Segev, B. Abdo, and M. P. Blencowe, ‘Displacement Detection with a Vibrating RF SQUID: Beating the Standard Linear Limit’, Phys. Rev. E 76, 026217 (2007). E. Buks,  E. Segev, S. Zaitsev, B. Abdo, and M. P. Blencowe, ‘Quantum Nondemolition Measurement of Discrete Fock States of a Nanomechanical Resonator’, EuroPhys. Lett., 81 10001 (2008). B. Abdo, E. Segev, O. Shtempluck, and E. Buks, ‘Observation of Bifurcations and Hysteresis in Nonlinear NbN Superconducting Microwave Resonators’, IEEE Trans. Appl. Sup., 16 (4), p. 1976, (2006). B. Abdo, E. Segev, O. Shtempluck, and E. Buks, ‘Nonlinear dynamics in the resonance line-shape of NbN superconducting resonators’,  Phys. Rev. B 73, 134513 (2006). B. Abdo, E. Segev, O. Shtempluck, and E. Buks,‘Intermodulation gain in nonlinear NbN superconducting microwave resonators’,App. Phys. Lett. 88 , 022508 (2006). B. Abdo, E. Segev, O. Shtempluck, and E. Buks, ‘Escape rate of metastable states in a driven NbN superconducting microwave resonator’, J. App. Phys., 101, 083909 (2007). B. Abdo, E. Segev, O. Shtempluck, and E. Buks, ‘Signal Amplification in NbN superconducting resonators via Stochastic Resonance’, Phys. Lett. A 370, p. 449 (2007). B. Abdo, O. Suchoi, E. Segev, O. Shtempluck, M. Blencowe and E. Buks, ‘Intermodulation and parametric amplification in a superconducting stripline resonator integrated with a dc-SQUID’, Europhys. Lett. 85, 68001 (2009). G. Bachar, E. Segev, O. Shtempluck, S. W. Shaw and E. Buks, ‘Noise Induced Intermittency in a Superconducting Microwave Resonator’, Europhys. Lett. 89, 17003 (2009). Oren Suchoi, BaleeghAbdo, Eran Segev, Oleg Shtempluck, Miles Blencowe and Eyal Buks, ‘IntermodeDephasing in a Superconducting Stripline Resonator’, Phys. Rev. B 81, 174525 (2010).