SlideShare una empresa de Scribd logo
1 de 14
Engenharia de Software Modelo Cascata Antonio Carlos Almir Ramos Eryson Raphael Rafael G. Leitão
O Modelo Cascata ,[object Object]
O Modelo Cascata ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
O Modelo Cascata ,[object Object],[object Object]
O Modelo Cascata ,[object Object],[object Object]
O Modelo Cascata ,[object Object],[object Object]
O Modelo Cascata
 
Vantagens ,[object Object],[object Object],[object Object],[object Object],[object Object]
Desvantagens ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Problemas ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Problemas ,[object Object]
Domínio de aplicações  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Domínio de aplicações  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Más contenido relacionado

La actualidad más candente

A Evolucao dos Processos de Desenvolvimento de Software
A Evolucao dos Processos de Desenvolvimento de SoftwareA Evolucao dos Processos de Desenvolvimento de Software
A Evolucao dos Processos de Desenvolvimento de Software
Robson Silva Espig
 
Processo Unificado(RUP)
Processo Unificado(RUP)Processo Unificado(RUP)
Processo Unificado(RUP)
elliando dias
 
O comparativo de arquiteturas de software monolíticas em relação a arquitetur...
O comparativo de arquiteturas de software monolíticas em relação a arquitetur...O comparativo de arquiteturas de software monolíticas em relação a arquitetur...
O comparativo de arquiteturas de software monolíticas em relação a arquitetur...
Emmanuel Neri
 
Gerência de Configuração
Gerência de ConfiguraçãoGerência de Configuração
Gerência de Configuração
Wagner Zaparoli
 

La actualidad más candente (20)

Ciclo de vida de software
Ciclo de vida de softwareCiclo de vida de software
Ciclo de vida de software
 
Modelos de Processo de Software Parte 1
Modelos de Processo de Software Parte 1Modelos de Processo de Software Parte 1
Modelos de Processo de Software Parte 1
 
Modelos de processos de software
Modelos de processos de softwareModelos de processos de software
Modelos de processos de software
 
Modelo V - Desenvolvimento de Software
Modelo V - Desenvolvimento de SoftwareModelo V - Desenvolvimento de Software
Modelo V - Desenvolvimento de Software
 
Aula - Metodologias Ágeis
Aula - Metodologias ÁgeisAula - Metodologias Ágeis
Aula - Metodologias Ágeis
 
Aula 1 - Introdução a Engenharia de Software
Aula 1 -  Introdução a Engenharia de SoftwareAula 1 -  Introdução a Engenharia de Software
Aula 1 - Introdução a Engenharia de Software
 
Método v
Método vMétodo v
Método v
 
A Evolucao dos Processos de Desenvolvimento de Software
A Evolucao dos Processos de Desenvolvimento de SoftwareA Evolucao dos Processos de Desenvolvimento de Software
A Evolucao dos Processos de Desenvolvimento de Software
 
Modelos de Processo de Software
Modelos de Processo de SoftwareModelos de Processo de Software
Modelos de Processo de Software
 
Aula 1 - Conceitos de TI e PDTI
Aula 1 - Conceitos de TI e PDTIAula 1 - Conceitos de TI e PDTI
Aula 1 - Conceitos de TI e PDTI
 
Modelos de Engenharia de Software
Modelos de Engenharia de SoftwareModelos de Engenharia de Software
Modelos de Engenharia de Software
 
Modelo Espiral
Modelo EspiralModelo Espiral
Modelo Espiral
 
Processo Unificado(RUP)
Processo Unificado(RUP)Processo Unificado(RUP)
Processo Unificado(RUP)
 
Engenharia de Software Pressman
Engenharia de Software PressmanEngenharia de Software Pressman
Engenharia de Software Pressman
 
O comparativo de arquiteturas de software monolíticas em relação a arquitetur...
O comparativo de arquiteturas de software monolíticas em relação a arquitetur...O comparativo de arquiteturas de software monolíticas em relação a arquitetur...
O comparativo de arquiteturas de software monolíticas em relação a arquitetur...
 
Introdução a Gerência de Configuração
Introdução a Gerência de ConfiguraçãoIntrodução a Gerência de Configuração
Introdução a Gerência de Configuração
 
Gerência de Configuração
Gerência de ConfiguraçãoGerência de Configuração
Gerência de Configuração
 
Software Engineering Process Models
Software Engineering Process Models Software Engineering Process Models
Software Engineering Process Models
 
Projeto e Desenvolvimento de Software
Projeto e Desenvolvimento de SoftwareProjeto e Desenvolvimento de Software
Projeto e Desenvolvimento de Software
 
Aula4 levantamento requisitos
Aula4 levantamento requisitosAula4 levantamento requisitos
Aula4 levantamento requisitos
 

Similar a Modelo cascata apresentação

T1 g13.modelo cascata
T1 g13.modelo cascataT1 g13.modelo cascata
T1 g13.modelo cascata
wilsonguns
 
Engenharia de-software-1217199594686494-9
Engenharia de-software-1217199594686494-9Engenharia de-software-1217199594686494-9
Engenharia de-software-1217199594686494-9
wilsonguns
 
Disciplina_Análise de Projeto de Sistema I - Metodologia Cascata e Processos ...
Disciplina_Análise de Projeto de Sistema I - Metodologia Cascata e Processos ...Disciplina_Análise de Projeto de Sistema I - Metodologia Cascata e Processos ...
Disciplina_Análise de Projeto de Sistema I - Metodologia Cascata e Processos ...
Rogério Almeida
 
Aula 2 modelo de processo de software1
Aula 2   modelo de processo de software1Aula 2   modelo de processo de software1
Aula 2 modelo de processo de software1
Tiago Vizoto
 

Similar a Modelo cascata apresentação (20)

T1 g13.modelo cascata
T1 g13.modelo cascataT1 g13.modelo cascata
T1 g13.modelo cascata
 
Processos de software
Processos de softwareProcessos de software
Processos de software
 
Modelos de Processo e Desenvolvimento de Software 1 - Prof.ª Cristiane Fidelix
Modelos de Processo e Desenvolvimento de Software 1 - Prof.ª Cristiane FidelixModelos de Processo e Desenvolvimento de Software 1 - Prof.ª Cristiane Fidelix
Modelos de Processo e Desenvolvimento de Software 1 - Prof.ª Cristiane Fidelix
 
Processo de software individual
Processo de software individualProcesso de software individual
Processo de software individual
 
Engenharia De Software
Engenharia De SoftwareEngenharia De Software
Engenharia De Software
 
Aula 7 - Modelos de Ciclo de Vida.pptx
Aula 7 - Modelos de Ciclo de Vida.pptxAula 7 - Modelos de Ciclo de Vida.pptx
Aula 7 - Modelos de Ciclo de Vida.pptx
 
Ciclo de vida de software
Ciclo de vida de softwareCiclo de vida de software
Ciclo de vida de software
 
vantagens e desvantagens do ciclo de vida de software
vantagens e desvantagens do ciclo de vida de softwarevantagens e desvantagens do ciclo de vida de software
vantagens e desvantagens do ciclo de vida de software
 
O_Ciclo_de_Vida_do_Desenvolvimento_de_Sistemas.pdf
O_Ciclo_de_Vida_do_Desenvolvimento_de_Sistemas.pdfO_Ciclo_de_Vida_do_Desenvolvimento_de_Sistemas.pdf
O_Ciclo_de_Vida_do_Desenvolvimento_de_Sistemas.pdf
 
Aula - Modelos de Processos de Desenvolvimento de Software / Mobile App
Aula - Modelos de Processos de Desenvolvimento de Software / Mobile AppAula - Modelos de Processos de Desenvolvimento de Software / Mobile App
Aula - Modelos de Processos de Desenvolvimento de Software / Mobile App
 
Engenharia de-software-1217199594686494-9
Engenharia de-software-1217199594686494-9Engenharia de-software-1217199594686494-9
Engenharia de-software-1217199594686494-9
 
Analise aula2
Analise aula2Analise aula2
Analise aula2
 
Aula2 processos sw
Aula2 processos swAula2 processos sw
Aula2 processos sw
 
Rational Unified Process (RUP)
Rational Unified Process (RUP)Rational Unified Process (RUP)
Rational Unified Process (RUP)
 
Desenvolvimento ágil de software: análise sintética a partir de KANBAN
Desenvolvimento ágil de software: análise sintética a partir de KANBANDesenvolvimento ágil de software: análise sintética a partir de KANBAN
Desenvolvimento ágil de software: análise sintética a partir de KANBAN
 
IBM Rational Unified Process
IBM Rational Unified ProcessIBM Rational Unified Process
IBM Rational Unified Process
 
Aula Modelos de Processos Tradicionais para Desenvolvimento de Software
Aula Modelos de Processos Tradicionais para Desenvolvimento de Software Aula Modelos de Processos Tradicionais para Desenvolvimento de Software
Aula Modelos de Processos Tradicionais para Desenvolvimento de Software
 
ES4.ppt
ES4.pptES4.ppt
ES4.ppt
 
Disciplina_Análise de Projeto de Sistema I - Metodologia Cascata e Processos ...
Disciplina_Análise de Projeto de Sistema I - Metodologia Cascata e Processos ...Disciplina_Análise de Projeto de Sistema I - Metodologia Cascata e Processos ...
Disciplina_Análise de Projeto de Sistema I - Metodologia Cascata e Processos ...
 
Aula 2 modelo de processo de software1
Aula 2   modelo de processo de software1Aula 2   modelo de processo de software1
Aula 2 modelo de processo de software1
 

Modelo cascata apresentação

Notas del editor

  1. Primeira Revolução Industrial the mechanization of manufacturing changed an agrarian into an urban industrial society The cotton textile industry was the first to be fully mechanized. The crucial inventions were John KAY's flying shuttle (invented in 1733 but not widely used until the 1760s), James HARGREAVES's spinning jenny (1765), Richard ARKWRIGHT's water frame (1769), Samuel CROMPTON's mule (1779), and Edmund CARTWRIGHT's machine LOOM (1785, but delayed in its general use). n 1709 the ironmaster Abraham DARBY I succeeded in producing sound cast iron in a blast furnace charged with iron ore and coal (and soon afterward with coke, derived from coal). In 1712 another Englishman engaged in the iron trade, Thomas NEWCOMEN, invented the STEAM ENGINE The first factories were driven by water, but James WATT's improved Newcomen STEAM ENGINE (1769; especially his "sun and planet" adaptation converting linear into circular motion) made steam-driven machinery and modern factories possible from the 1780s. This use of steam power led, in turn, to increased demand for coal and iron. Each development spawned new technological breakthroughs, as, for example, Sir Henry BESSEMER's process for making steel (1856). Other industries such as chemicals and mining and the engineering professions also developed rapidly Segunda Revolução Industrial From 1830 on, the development of steam-driven LOCOMOTIVES brought the advent of RAILROADS, extending the transportation network In the 20th century the United States also dominated the new automobile industry, which Henry Ford (see FORD family) revolutionized by introducing a system of coordinated ASSEMBLY-LINE operations. Ford's success led to the widespread adoption of MASS PRODUCTION techniques in industry If the engineer was instrumental in making the Industrial Revolution, it can equally be said that the Industrial Revolution gave rise to the ENGINEERING profession as it is recognized today. Where previously engineers had risen through the ranks of craftsmen, in the 18th century it was becoming apparent that the act of design could be codified in the form of technical training, and the military services began to seek such training for their officer corps. In the 1740s the British government established a military academy at Woolwich at which cadets were instructed in the application of elementary mathematics and statics to gunnery and the design of fortifications. Later in the century John SMEATON coined the term "civil engineer" to distinguish civilian engineers from the increasing number of military engineers being graduated from Woolwich. A short-lived fraternity that called itself the Society of Civil Engineers (the "Smeatonians") formed around Smeaton; the first true professional organization in the field of engineering, however, was the Institution of Civil Engineers, founded in London in 1818 Experiments with the INTERNAL-COMBUSTION ENGINE began early in the century but without success until Jean Joseph Etienne LENOIR built an operational if inefficient two-cycle engine (1860) and the first AUTOMOBILE with this type of engine in 1862. The critical breakthrough in designing an efficient internal-combustion engine came in 1876, when Nikolaus August OTTO marketed the "Silent Otto" gas engine, having four cycles: intake, compression, stroke, and exhaust. In the 1880s the engine was adopted by Karl BENZ and Gottlieb DAIMLER to power motor vehicles. Rudolf DIESEL's engine, in which combustion is produced by high pressure in the cylinder, was exhibited in 1897. INDUSTRIAL REVOLUTION, which began in Great Britain in the 18th century, spread to the rest of western Europe and North America during the 19th century. The pattern of diffusion was quite uniform, beginning with textiles, coal, and iron. In textiles such improvements as the Jacquard LOOM (France, 1801) were developed, which allowed fabrics with woven patterns to be produced cheaply. The SEWING MACHINE was invented (1846) in the United States by Elias HOWE and mass-marketed (1851) by Isaac Merrit SINGER. Iron was the basic metal of industry until after the discovery by Henry BESSEMER (British patent, 1856) and William Kelly (U.S. patent, 1847) of a process for making large amounts of steel cheaply (see IRON AND STEEL INDUSTRY). The superior Siemens-Martin open-hearth process for making high-quality steel was first demonstrated in France in 1863
  2. Primeira Revolução Industrial the mechanization of manufacturing changed an agrarian into an urban industrial society The cotton textile industry was the first to be fully mechanized. The crucial inventions were John KAY's flying shuttle (invented in 1733 but not widely used until the 1760s), James HARGREAVES's spinning jenny (1765), Richard ARKWRIGHT's water frame (1769), Samuel CROMPTON's mule (1779), and Edmund CARTWRIGHT's machine LOOM (1785, but delayed in its general use). n 1709 the ironmaster Abraham DARBY I succeeded in producing sound cast iron in a blast furnace charged with iron ore and coal (and soon afterward with coke, derived from coal). In 1712 another Englishman engaged in the iron trade, Thomas NEWCOMEN, invented the STEAM ENGINE The first factories were driven by water, but James WATT's improved Newcomen STEAM ENGINE (1769; especially his "sun and planet" adaptation converting linear into circular motion) made steam-driven machinery and modern factories possible from the 1780s. This use of steam power led, in turn, to increased demand for coal and iron. Each development spawned new technological breakthroughs, as, for example, Sir Henry BESSEMER's process for making steel (1856). Other industries such as chemicals and mining and the engineering professions also developed rapidly Segunda Revolução Industrial From 1830 on, the development of steam-driven LOCOMOTIVES brought the advent of RAILROADS, extending the transportation network In the 20th century the United States also dominated the new automobile industry, which Henry Ford (see FORD family) revolutionized by introducing a system of coordinated ASSEMBLY-LINE operations. Ford's success led to the widespread adoption of MASS PRODUCTION techniques in industry If the engineer was instrumental in making the Industrial Revolution, it can equally be said that the Industrial Revolution gave rise to the ENGINEERING profession as it is recognized today. Where previously engineers had risen through the ranks of craftsmen, in the 18th century it was becoming apparent that the act of design could be codified in the form of technical training, and the military services began to seek such training for their officer corps. In the 1740s the British government established a military academy at Woolwich at which cadets were instructed in the application of elementary mathematics and statics to gunnery and the design of fortifications. Later in the century John SMEATON coined the term "civil engineer" to distinguish civilian engineers from the increasing number of military engineers being graduated from Woolwich. A short-lived fraternity that called itself the Society of Civil Engineers (the "Smeatonians") formed around Smeaton; the first true professional organization in the field of engineering, however, was the Institution of Civil Engineers, founded in London in 1818 Experiments with the INTERNAL-COMBUSTION ENGINE began early in the century but without success until Jean Joseph Etienne LENOIR built an operational if inefficient two-cycle engine (1860) and the first AUTOMOBILE with this type of engine in 1862. The critical breakthrough in designing an efficient internal-combustion engine came in 1876, when Nikolaus August OTTO marketed the "Silent Otto" gas engine, having four cycles: intake, compression, stroke, and exhaust. In the 1880s the engine was adopted by Karl BENZ and Gottlieb DAIMLER to power motor vehicles. Rudolf DIESEL's engine, in which combustion is produced by high pressure in the cylinder, was exhibited in 1897. INDUSTRIAL REVOLUTION, which began in Great Britain in the 18th century, spread to the rest of western Europe and North America during the 19th century. The pattern of diffusion was quite uniform, beginning with textiles, coal, and iron. In textiles such improvements as the Jacquard LOOM (France, 1801) were developed, which allowed fabrics with woven patterns to be produced cheaply. The SEWING MACHINE was invented (1846) in the United States by Elias HOWE and mass-marketed (1851) by Isaac Merrit SINGER. Iron was the basic metal of industry until after the discovery by Henry BESSEMER (British patent, 1856) and William Kelly (U.S. patent, 1847) of a process for making large amounts of steel cheaply (see IRON AND STEEL INDUSTRY). The superior Siemens-Martin open-hearth process for making high-quality steel was first demonstrated in France in 1863