SlideShare una empresa de Scribd logo
1 de 31
Descargar para leer sin conexión
Book club


          Andreas Wagner,
The Origins of Evolutionary Innovations


              Chapter 5

Book club presented by G. M. Dall'Olio,
      Pompeu Fabra, IBE-CEXS
Reminder:
            Genotype network
   A genotype network is a set of genotypes that have the same 
      phenotype, and are connected by single pairwise differences




   Green = same phenotype = a genotype network
   Note: genotype network == neutral network
Chapter 5:
The Origins of Evolutionary
       Innovations
   This chapter makes some conclusions from the 4 
     preceding chapters
   Under which common principle do metabolic 
     networks, regulatory circuits and protein/RNA 
     folds evolve?
   Which are the basics of a theory of Innovation?
Many more genotypes than
      phenotypes
   Metabolic networks: 
          2 ^ S genotypes (S: number of known reactions)
          2 ^ C phenotypes (C: number of carbon sources)
   Regulatory Networks:
          3 ^ N  ^ 2 genotypes (3: activation, repression, no 
             interaction; N: number of reactions)
          2 ^ S phenotypes (S: number of genes)
   Protein molecules:
          20 ^ S genotypes (S: length of sequence)
          10 ^ 4 phenotypes (lattice protein folds)
Genotypes can vary a lot,
      without altering the
          phenotype
   In metabolic networks, organisms can differ for 
      75% of reactions, but still have the same 
      phenotype
   Some regulatory circuits can be completely 
     different but still have the same functions 
     (examples of GAL4 in C.albicans/S.cerevisiae, 
     etc..)
   Proteins with different sequences can have the same 
      fold (e.g. globins, etc..)
Genotypes can vary a lot,
      without altering the
          phenotype
   Same fold but different sequence (genotype 
      Distance = 1.0):




                                           http://eterna.cmu.edu/
The same phenotype can be
     achieved by many
        genotypes
   A corollary of the previous two slides is that the 
     same phenotype can be achieved by many 
     genotypes
   Why should a phenotype be reachable by more than 
     one genotype? (open question)
Robustness of a genotype
            network
   The robustness of a biological system is its ability 
     to withstand changes without altering the 
     phenotype
   Not only within a genotype network. It is also 
     important that the neighbors of points in a 
     genotype network have “neutral” phenotypes
          e.g. the neighbor of a genotype must be viable
The genotype-phenotype
           function
   The genotype­phenotype function is a function that 
     allows to predict the phenotype of certain 
     genotype
          Flux balance analysis in metabolic networks
          Structure prediction in sequence networks
          ...
Definitions: The Genotype-
            Phenotype-Map
      The method of representing all genotypes as a Hamming graph and defining neutral 
         networks is also called “Genotype­Phenotype­Map”
      I am not sure about who invented the method, but it is well described in [1]




[1] Stadler, B.M. et al., 2001. The topology of the possible: formal spaces underlying patterns of evolutionary change.
Journal of theoretical biology, 213(2), pp.241-74.
The genotype space is huge
   For a protein of length 10, there are 20^10 possible 
     sequences
   It is difficult for humans to imagine how much the 
       genotype space is big
Big genotype networks can
be still small compared to
    the genotype space
   A given RNA structure can be generated by 
     5*10^22 sequences
   Yet, this is only a tiny fraction of the genotype 
     space
Big genotype networks are
   favored by evolution
   Imagine that a given biological function can be 
      carried out by two different phenotypes:
          Phenotype 1 has a big genotype network
          Phenotype 2 has a small genotype network
   Selection will be more likely to find Phenotype 1, 
      just because there are more genotypes that 
      produce it
Small and big genotype
            networks
   The two purple 
     phenotypes have a 
     selective advantage 
     over white ones
   However, evolution is 
     more likely to find 
     the light phenotype, 
     because its genotype 
     network is bigger
Phenotypes with small
    genotype networks can be
           important
   We said that big genotype networks are more likely 
     to be found by evolution
   However, in nature we can observe phenotypes 
     with small genotype networks
Phenotypes involved in
 multiple functions can still
have big genotype networks
   Some systems can carry out more than one 
     biological function
          For example, many metabolisms can survive on both 
             glucose and mannose
   The genotype network of these systems would be 
     the intersection of the genotype networks that 
     carry each of the functions
   Yet, these genotype networks are still big
Intersection of genotype
            networks
   Yellow → can          0....0   …..   …..   …..         …..   …..

     survive on           0....1   …..   …..   …..         …..   …..

     Glucose as sole      0...10 …..     …..   …..         …..   …..
                          0..1.0 …..     …..   …..
     carbon source        0.1..0 …..     …..   …..
   Blue → can survive    0.....   …..   …..   …..

     on Alanine as        …..      …..   …..
                          …..      …..   …..
     sole carbon 
                          …..      …..   …..
     source               …..      …..   …..   …..
   Green →               …..      …..   …..   …..   …..         …..

     intersection         …..      …..   …..   …..   …..         …..
                          …..      …..   …..   …..   …..         …..
Connectivity and broadness
  of genotype networks
   Two important properties of genotype networks are 
     the connectivity and the broadness
   These two properties are important in the search for 
     innovations
A poorly connected
                 genotype set
   Fig a shows a set of not­connected 
       genotype networks
   They all have the same phenotype, 
      but are not connected
   In this situation, populations can not 
        explore the genotype space 
        efficiently, because they don't 
        have a way to “jump” between 
        genotype networks
             (recombination and 
                 chromosomal 
                 arrangements will be 
                 discussed later)
A well connected but
localized genotype network
   Fig b shows a well connected 
       genotype network
   However, this network is clustered, 
      and all its nodes are close
   It is difficult for a population to find 
        Innovations, because there is no 
        way to get close to them
A connected and broad
         genotype network
   Fig c represents a well connected and 
       broad genotype network
   This is the ideal situation for finding 
       innovations
   A population can explore the 
       genotype space without having to 
       “jump”
Connectivity and broadness
Genotype networks are
       highly interwoven
   Genotype networks are usually close in the space
          Many organisms can survive on multiple carbon 
            sources
          It is possible to convert RNA structures by changing 
              few aminoacids
Genotype networks are
       highly interwoven
   Yellow → can          0....0   …..   …..   …..         …..   …..

     survive on           0....1   …..   …..   …..         …..   …..

     Glucose as sole      0...10 …..     …..   …..         …..   …..
                          0..1.0 …..     …..   …..
     carbon source        0.1..0 …..     …..   …..
   Blue → can survive    0.....   …..   …..   …..

     on Alanine as        …..      …..   …..
                          …..      …..   …..
     sole carbon 
                          …..      …..   …..
     source               …..      …..   …..   …..
   Green →               …..      …..   …..   …..   …..         …..

     intersection         …..      …..   …..   …..   …..         …..
                          …..      …..   …..   …..   …..         …..
The theory of innovation
   In this chapter, Wagner formalizes the framework 
      of “genotype­phenotype­maps” for studying how 
      innovations can be found
   It also describe some important properties that a 
       system must have in order to reach innovations
The theory of Innovations
   Innovation is combinatorial in nature
          Genotype­phenotype­maps allow to explore the 
            nature of innovations
   Genotypes have many neighbors with the same 
     phenotype
   Many or all genotypes with the same phenotype are 
     connected in genotype networks
The theory of Innovations
   Genotype networks of different phenotypes are 
     different in size
   Typical genotype networks traverse a large part of 
     genotype space
   Different neighborhoods of a genotype network 
     contain different phenotypes
Pros of this theory of
             innovation
   Genotype networks can explain how population 
     explore the genotype space, without altering the 
     phenotype
   This framework is valid for metabolic networks, 
     regulatory circuits and sequences
   Captures the combinatorial nature of innovation
   It allows to simulate that a problem can be solved 
       through different solutions
          e.g. different metabolic networks can survive on 
             glucose
Cons of this theory of
            Innovation
   Difficult to get to phenotypes that are highly 
     innovative, but have a tiny genotype network
   Difficult to study systems where genotype networks 
     are not connected or localized
   The method doesn't work if there are more 
     phenotypes than genotypes (phenotipic plasticity)
          Immunity systems tend to have more phenotypes 
             than genotypes
Take Home messages
   We have seen some properties that are common for 
     the evolution of metabolic networks, regulatory 
     circuits and sequences
   The framework of genotype­phenotype­maps can 
     be used to explore how innovations are found
There are many more
genotypes than phenotypes
   A common property of the systems studied in the 
     previous chapters is that there are more genotypes 
     than phenotypes

Más contenido relacionado

La actualidad más candente

ASCB2014Phoebe_small
ASCB2014Phoebe_smallASCB2014Phoebe_small
ASCB2014Phoebe_small
Phoebe He
 
Open stax biology (nonmajors) ch06
Open stax biology (nonmajors) ch06Open stax biology (nonmajors) ch06
Open stax biology (nonmajors) ch06
Lumen Learning
 
Studentmitosis
StudentmitosisStudentmitosis
Studentmitosis
guest93618
 
Avila et al 2010 wnt 3
Avila et al 2010 wnt 3Avila et al 2010 wnt 3
Avila et al 2010 wnt 3
Jorge Parodi
 

La actualidad más candente (20)

Tutorial mitosis
Tutorial mitosisTutorial mitosis
Tutorial mitosis
 
Hereditas
HereditasHereditas
Hereditas
 
Sortase Paper
Sortase PaperSortase Paper
Sortase Paper
 
Synonymous mutations as drivers in human cancer genomes.
Synonymous mutations as drivers in human cancer genomes.Synonymous mutations as drivers in human cancer genomes.
Synonymous mutations as drivers in human cancer genomes.
 
Cell division best
Cell division bestCell division best
Cell division best
 
Biology Finals Study Guide
Biology Finals Study GuideBiology Finals Study Guide
Biology Finals Study Guide
 
Protocols for genomics and proteomics
Protocols for genomics and proteomics Protocols for genomics and proteomics
Protocols for genomics and proteomics
 
NSMB_2008
NSMB_2008NSMB_2008
NSMB_2008
 
Khyber medical university bio informatics
Khyber medical university bio informaticsKhyber medical university bio informatics
Khyber medical university bio informatics
 
20081217 05邵彥春 與紅麴菌菌絲發育相關基因的克隆及序列分析
20081217 05邵彥春 與紅麴菌菌絲發育相關基因的克隆及序列分析20081217 05邵彥春 與紅麴菌菌絲發育相關基因的克隆及序列分析
20081217 05邵彥春 與紅麴菌菌絲發育相關基因的克隆及序列分析
 
ASCB2014Phoebe_small
ASCB2014Phoebe_smallASCB2014Phoebe_small
ASCB2014Phoebe_small
 
Cell Structure and Function
Cell Structure and FunctionCell Structure and Function
Cell Structure and Function
 
Meiosis Reduction Division
Meiosis Reduction Division Meiosis Reduction Division
Meiosis Reduction Division
 
Gene families and clusters
Gene families and clusters Gene families and clusters
Gene families and clusters
 
Grindberg - PNAS
Grindberg - PNASGrindberg - PNAS
Grindberg - PNAS
 
JIpdf
JIpdfJIpdf
JIpdf
 
Open stax biology (nonmajors) ch06
Open stax biology (nonmajors) ch06Open stax biology (nonmajors) ch06
Open stax biology (nonmajors) ch06
 
Studentmitosis
StudentmitosisStudentmitosis
Studentmitosis
 
Avila et al 2010 wnt 3
Avila et al 2010 wnt 3Avila et al 2010 wnt 3
Avila et al 2010 wnt 3
 
Gogarten issol2014 version4
Gogarten issol2014 version4Gogarten issol2014 version4
Gogarten issol2014 version4
 

Similar a Wagner chapter 5

Nuclear Genomes(Short Answers and questions)
Nuclear Genomes(Short Answers and questions)Nuclear Genomes(Short Answers and questions)
Nuclear Genomes(Short Answers and questions)
Zohaib HUSSAIN
 
Working with Chromosomes
Working with ChromosomesWorking with Chromosomes
Working with Chromosomes
Ioanna Leontiou
 
2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...
2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...
2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...
c.titus.brown
 
1. Genomics is the study ofa. The structure and function   of m.docx
1. Genomics is the study ofa. The structure and function   of m.docx1. Genomics is the study ofa. The structure and function   of m.docx
1. Genomics is the study ofa. The structure and function   of m.docx
blondellchancy
 

Similar a Wagner chapter 5 (20)

Genome Curation using Apollo
Genome Curation using ApolloGenome Curation using Apollo
Genome Curation using Apollo
 
2014 sage-talk
2014 sage-talk2014 sage-talk
2014 sage-talk
 
2014 ucl
2014 ucl2014 ucl
2014 ucl
 
Nuclear Genomes(Short Answers and questions)
Nuclear Genomes(Short Answers and questions)Nuclear Genomes(Short Answers and questions)
Nuclear Genomes(Short Answers and questions)
 
Apolo Taller en BIOS
Apolo Taller en BIOS Apolo Taller en BIOS
Apolo Taller en BIOS
 
Cells Bio 116
Cells Bio 116Cells Bio 116
Cells Bio 116
 
Working with Chromosomes
Working with ChromosomesWorking with Chromosomes
Working with Chromosomes
 
2014 naples
2014 naples2014 naples
2014 naples
 
2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...
2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...
2014 talk at NYU CUSP: "Biology Caught the Bus: Now what? Sequencing, Big Dat...
 
NetBioSIG2012 chrisevelo
NetBioSIG2012 chriseveloNetBioSIG2012 chrisevelo
NetBioSIG2012 chrisevelo
 
Genome Curation using Apollo - Workshop at UTK
Genome Curation using Apollo - Workshop at UTKGenome Curation using Apollo - Workshop at UTK
Genome Curation using Apollo - Workshop at UTK
 
ORGANELLAR GENOME AND ORGANELLAR INHERITENCE
ORGANELLAR GENOME AND ORGANELLAR INHERITENCEORGANELLAR GENOME AND ORGANELLAR INHERITENCE
ORGANELLAR GENOME AND ORGANELLAR INHERITENCE
 
Outcrossing
OutcrossingOutcrossing
Outcrossing
 
Bioinformatics
BioinformaticsBioinformatics
Bioinformatics
 
Epigenetic Analysis Sequencing
Epigenetic Analysis SequencingEpigenetic Analysis Sequencing
Epigenetic Analysis Sequencing
 
metagenomicsanditsapplications-161222180924.pdf
metagenomicsanditsapplications-161222180924.pdfmetagenomicsanditsapplications-161222180924.pdf
metagenomicsanditsapplications-161222180924.pdf
 
2014 villefranche
2014 villefranche2014 villefranche
2014 villefranche
 
Metagenomics and it’s applications
Metagenomics and it’s applicationsMetagenomics and it’s applications
Metagenomics and it’s applications
 
1. Genomics is the study ofa. The structure and function   of m.docx
1. Genomics is the study ofa. The structure and function   of m.docx1. Genomics is the study ofa. The structure and function   of m.docx
1. Genomics is the study ofa. The structure and function   of m.docx
 
Introduction to Apollo: A webinar for the i5K Research Community
Introduction to Apollo: A webinar for the i5K Research CommunityIntroduction to Apollo: A webinar for the i5K Research Community
Introduction to Apollo: A webinar for the i5K Research Community
 

Más de Giovanni Marco Dall'Olio

The true story behind the annotation of a pathway
The true story behind the annotation of a pathwayThe true story behind the annotation of a pathway
The true story behind the annotation of a pathway
Giovanni Marco Dall'Olio
 
(draft) perl e bioinformatica - presentazione per ipw2008
(draft) perl e bioinformatica - presentazione per ipw2008(draft) perl e bioinformatica - presentazione per ipw2008
(draft) perl e bioinformatica - presentazione per ipw2008
Giovanni Marco Dall'Olio
 

Más de Giovanni Marco Dall'Olio (19)

Fehrman Nat Gen 2014 - Journal Club
Fehrman Nat Gen 2014 - Journal ClubFehrman Nat Gen 2014 - Journal Club
Fehrman Nat Gen 2014 - Journal Club
 
Agile bioinf
Agile bioinfAgile bioinf
Agile bioinf
 
Version control
Version controlVersion control
Version control
 
Linux intro 5 extra: awk
Linux intro 5 extra: awkLinux intro 5 extra: awk
Linux intro 5 extra: awk
 
Linux intro 5 extra: makefiles
Linux intro 5 extra: makefilesLinux intro 5 extra: makefiles
Linux intro 5 extra: makefiles
 
Linux intro 4 awk + makefile
Linux intro 4  awk + makefileLinux intro 4  awk + makefile
Linux intro 4 awk + makefile
 
Linux intro 3 grep + Unix piping
Linux intro 3 grep + Unix pipingLinux intro 3 grep + Unix piping
Linux intro 3 grep + Unix piping
 
Linux intro 2 basic terminal
Linux intro 2   basic terminalLinux intro 2   basic terminal
Linux intro 2 basic terminal
 
Linux intro 1 definitions
Linux intro 1  definitionsLinux intro 1  definitions
Linux intro 1 definitions
 
Hg for bioinformatics, second part
Hg for bioinformatics, second partHg for bioinformatics, second part
Hg for bioinformatics, second part
 
Hg version control bioinformaticians
Hg version control bioinformaticiansHg version control bioinformaticians
Hg version control bioinformaticians
 
The true story behind the annotation of a pathway
The true story behind the annotation of a pathwayThe true story behind the annotation of a pathway
The true story behind the annotation of a pathway
 
Plotting data with python and pylab
Plotting data with python and pylabPlotting data with python and pylab
Plotting data with python and pylab
 
Pycon
PyconPycon
Pycon
 
Makefiles Bioinfo
Makefiles BioinfoMakefiles Bioinfo
Makefiles Bioinfo
 
biopython, doctest and makefiles
biopython, doctest and makefilesbiopython, doctest and makefiles
biopython, doctest and makefiles
 
Web 2.0 e ricerca scientifica - Web 2.0 and scientific research
Web 2.0 e ricerca scientifica - Web 2.0 and scientific researchWeb 2.0 e ricerca scientifica - Web 2.0 and scientific research
Web 2.0 e ricerca scientifica - Web 2.0 and scientific research
 
Perl Bioinfo
Perl BioinfoPerl Bioinfo
Perl Bioinfo
 
(draft) perl e bioinformatica - presentazione per ipw2008
(draft) perl e bioinformatica - presentazione per ipw2008(draft) perl e bioinformatica - presentazione per ipw2008
(draft) perl e bioinformatica - presentazione per ipw2008
 

Último

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Último (20)

Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 

Wagner chapter 5

  • 1. Book club Andreas Wagner, The Origins of Evolutionary Innovations Chapter 5 Book club presented by G. M. Dall'Olio, Pompeu Fabra, IBE-CEXS
  • 2. Reminder: Genotype network  A genotype network is a set of genotypes that have the same  phenotype, and are connected by single pairwise differences  Green = same phenotype = a genotype network  Note: genotype network == neutral network
  • 3. Chapter 5: The Origins of Evolutionary Innovations  This chapter makes some conclusions from the 4  preceding chapters  Under which common principle do metabolic  networks, regulatory circuits and protein/RNA  folds evolve?  Which are the basics of a theory of Innovation?
  • 4. Many more genotypes than phenotypes  Metabolic networks:   2 ^ S genotypes (S: number of known reactions)  2 ^ C phenotypes (C: number of carbon sources)  Regulatory Networks:  3 ^ N  ^ 2 genotypes (3: activation, repression, no  interaction; N: number of reactions)  2 ^ S phenotypes (S: number of genes)  Protein molecules:  20 ^ S genotypes (S: length of sequence)  10 ^ 4 phenotypes (lattice protein folds)
  • 5. Genotypes can vary a lot, without altering the phenotype  In metabolic networks, organisms can differ for  75% of reactions, but still have the same  phenotype  Some regulatory circuits can be completely  different but still have the same functions  (examples of GAL4 in C.albicans/S.cerevisiae,  etc..)  Proteins with different sequences can have the same  fold (e.g. globins, etc..)
  • 6. Genotypes can vary a lot, without altering the phenotype  Same fold but different sequence (genotype  Distance = 1.0): http://eterna.cmu.edu/
  • 7. The same phenotype can be achieved by many genotypes  A corollary of the previous two slides is that the  same phenotype can be achieved by many  genotypes  Why should a phenotype be reachable by more than  one genotype? (open question)
  • 8. Robustness of a genotype network  The robustness of a biological system is its ability  to withstand changes without altering the  phenotype  Not only within a genotype network. It is also  important that the neighbors of points in a  genotype network have “neutral” phenotypes  e.g. the neighbor of a genotype must be viable
  • 9. The genotype-phenotype function  The genotype­phenotype function is a function that  allows to predict the phenotype of certain  genotype  Flux balance analysis in metabolic networks  Structure prediction in sequence networks  ...
  • 10. Definitions: The Genotype- Phenotype-Map  The method of representing all genotypes as a Hamming graph and defining neutral  networks is also called “Genotype­Phenotype­Map”  I am not sure about who invented the method, but it is well described in [1] [1] Stadler, B.M. et al., 2001. The topology of the possible: formal spaces underlying patterns of evolutionary change. Journal of theoretical biology, 213(2), pp.241-74.
  • 11. The genotype space is huge  For a protein of length 10, there are 20^10 possible  sequences  It is difficult for humans to imagine how much the  genotype space is big
  • 12. Big genotype networks can be still small compared to the genotype space  A given RNA structure can be generated by  5*10^22 sequences  Yet, this is only a tiny fraction of the genotype  space
  • 13. Big genotype networks are favored by evolution  Imagine that a given biological function can be  carried out by two different phenotypes:  Phenotype 1 has a big genotype network  Phenotype 2 has a small genotype network  Selection will be more likely to find Phenotype 1,  just because there are more genotypes that  produce it
  • 14. Small and big genotype networks  The two purple  phenotypes have a  selective advantage  over white ones  However, evolution is  more likely to find  the light phenotype,  because its genotype  network is bigger
  • 15. Phenotypes with small genotype networks can be important  We said that big genotype networks are more likely  to be found by evolution  However, in nature we can observe phenotypes  with small genotype networks
  • 16. Phenotypes involved in multiple functions can still have big genotype networks  Some systems can carry out more than one  biological function  For example, many metabolisms can survive on both  glucose and mannose  The genotype network of these systems would be  the intersection of the genotype networks that  carry each of the functions  Yet, these genotype networks are still big
  • 17. Intersection of genotype networks  Yellow → can  0....0 ….. ….. ….. ….. ….. survive on  0....1 ….. ….. ….. ….. ….. Glucose as sole  0...10 ….. ….. ….. ….. ….. 0..1.0 ….. ….. ….. carbon source 0.1..0 ….. ….. …..  Blue → can survive  0..... ….. ….. ….. on Alanine as  ….. ….. ….. ….. ….. ….. sole carbon  ….. ….. ….. source ….. ….. ….. …..  Green →  ….. ….. ….. ….. ….. ….. intersection  ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
  • 18. Connectivity and broadness of genotype networks  Two important properties of genotype networks are  the connectivity and the broadness  These two properties are important in the search for  innovations
  • 19. A poorly connected genotype set  Fig a shows a set of not­connected  genotype networks  They all have the same phenotype,  but are not connected  In this situation, populations can not  explore the genotype space  efficiently, because they don't  have a way to “jump” between  genotype networks  (recombination and  chromosomal  arrangements will be  discussed later)
  • 20. A well connected but localized genotype network  Fig b shows a well connected  genotype network  However, this network is clustered,  and all its nodes are close  It is difficult for a population to find  Innovations, because there is no  way to get close to them
  • 21. A connected and broad genotype network  Fig c represents a well connected and  broad genotype network  This is the ideal situation for finding  innovations  A population can explore the  genotype space without having to  “jump”
  • 23. Genotype networks are highly interwoven  Genotype networks are usually close in the space  Many organisms can survive on multiple carbon  sources  It is possible to convert RNA structures by changing  few aminoacids
  • 24. Genotype networks are highly interwoven  Yellow → can  0....0 ….. ….. ….. ….. ….. survive on  0....1 ….. ….. ….. ….. ….. Glucose as sole  0...10 ….. ….. ….. ….. ….. 0..1.0 ….. ….. ….. carbon source 0.1..0 ….. ….. …..  Blue → can survive  0..... ….. ….. ….. on Alanine as  ….. ….. ….. ….. ….. ….. sole carbon  ….. ….. ….. source ….. ….. ….. …..  Green →  ….. ….. ….. ….. ….. ….. intersection  ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
  • 25. The theory of innovation  In this chapter, Wagner formalizes the framework  of “genotype­phenotype­maps” for studying how  innovations can be found  It also describe some important properties that a  system must have in order to reach innovations
  • 26. The theory of Innovations  Innovation is combinatorial in nature  Genotype­phenotype­maps allow to explore the  nature of innovations  Genotypes have many neighbors with the same  phenotype  Many or all genotypes with the same phenotype are  connected in genotype networks
  • 27. The theory of Innovations  Genotype networks of different phenotypes are  different in size  Typical genotype networks traverse a large part of  genotype space  Different neighborhoods of a genotype network  contain different phenotypes
  • 28. Pros of this theory of innovation  Genotype networks can explain how population  explore the genotype space, without altering the  phenotype  This framework is valid for metabolic networks,  regulatory circuits and sequences  Captures the combinatorial nature of innovation  It allows to simulate that a problem can be solved  through different solutions  e.g. different metabolic networks can survive on  glucose
  • 29. Cons of this theory of Innovation  Difficult to get to phenotypes that are highly  innovative, but have a tiny genotype network  Difficult to study systems where genotype networks  are not connected or localized  The method doesn't work if there are more  phenotypes than genotypes (phenotipic plasticity)  Immunity systems tend to have more phenotypes  than genotypes
  • 30. Take Home messages  We have seen some properties that are common for  the evolution of metabolic networks, regulatory  circuits and sequences  The framework of genotype­phenotype­maps can  be used to explore how innovations are found
  • 31. There are many more genotypes than phenotypes  A common property of the systems studied in the  previous chapters is that there are more genotypes  than phenotypes