SlideShare una empresa de Scribd logo
1 de 25
http://swot.jpl.nasa.gov SWOT Ground SystemIGARSS – August 2011   Helene Vadon (CNES, Toulouse)  Phil Callahan (Jet Propulsion Lab, California Institute of Technology)
SWOT Ground System   Outline    Introduction SWOT mission Mission phases  Ground segment overview KaRIN Data Acquisition and Products Acquisition characteristics KaRIN processing  Data Products Sizing estimates Joint Ground System Development – Commonality levels and approach for the processing development 2 2011/07/25 s3   psc IGARSS11 - SWOT Ground System
SWOT Mission  Mission  Extraction of water surface heights over ocean and continental water bodies The principal  instrument isKaRIN, a Ka-band interferometric SAR system  Other instruments are a nadir altimeter, radiometer, and precision tracking systems  (classical Jason Altimeter suite)  Main scientific requirements Oceanography: Global coverage (< 78°) of oceans, sea surface height precision < 2 cm at approximately 1 km resolution      LR mode Hydrology: Global inventory of rivers > 100 m (50 m) and lakes > (250 m)2, water surface height precision of the order of 10 cm (averaged over 1 km2), slope precision 1 cm/km (averaged over 10 km); average posting 50 m HR mode 2011/07/25 s3   psc IGARSS11 - SWOT Ground System 3
Mission Phases  Launch and Early Orbit Operations  (~ 3 days)  Launch planned for late 2019  Checkout / Commissioning  (~ 30 - 45 days)  Fast repeat orbit at 3 (or 1) days for ~90 (or 30) days  For ocean sub-mesoscale  Calibration / Validation  (Cal/Val)  (3 – 6 months, covering Fast Repeat and Science Operations)  Transition to Science Orbit, Operations (~ 15 days)  Non-sun-synchronous, 22 day exact repeat, 970 km altitude, 78 deg inclination  Science Observations  (Requirement = 3 years; starts ~4.5 months after launch)  Disposal and Ground System Closeout  (= 3 months)  2011/07/25 s3   psc IGARSS11 - SWOT Ground System 4
SWOT Ground System Challenges   High precision for both ocean (1-2 cm) and hydrology (~10 cm)  Complete, accurate algorithms  Use of instrument and spacecraft calibration data  External corrections; Ancillary information    Large Data Volume – both telemetry and data products  Raw data downlink for land data.  Requires >~ 600 Mbps X-band downlink  Data products posted at fine resolution: LR = 500 m, HR = 50 m (~100 giga-samples per cycle  for LR+HR)   Likely Near Real Time requirements  Ocean from Jason suite similar to Jason series  Hydrology (floods, reservoirs) from KaRIN   2011/07/25 s3   psc IGARSS11 - SWOT Ground System 5
Architecture Diagram  2011/07/25 s3   psc IGARSS11 - SWOT Ground System 6 S/C Bus CNES Elements NASA Elements Joint Elements Karin Nadir Altimeter Payload module Radiometer UPLINK: S/C & P/L Cmd.  DOWNLINK: Jason Suite Sci  Data (Nadir Alt, Rad, GPS)  and All Eng Telem  X band TM TBD  Additional X-band Sta KaRIN  Science Data  CNES S-band Network CNES  X-band Network (also has S-band Uplink)  Science Data Center To JPL: X-band data, TBD[KaRIN Eng]   X-band Network  Center   JPL  Payload  Operations Center  CNES To CNES:  Ack. successful downlink  Payload commands  S/C  Control Center (SCC)    (Contractor) To JPL: X-band data, S-band Sci,  s/c Telemetry, TBD[KaRIN Eng]  Payload Operations Center  JPL  Science Data Processing   Data exchange Science Processing   Archive & Distribution To JPL: Jason Suite L2.  Cal/val.  To CNES: KaRIN TBD[L1b].  POD.  Cal/val.  JPL  Science Data  Archiving & Distribution    Ancillary Data:  Tropo model(s), Iono info, Tide model(s), DEM, SSH
Ground System Elements   (1 of 2)  Tracking Stations  CNES S-band stations: Downlink for Nadir Alt, Radiometer, DORIS, GPS (“Jason Altimeter Suite”, JAS); Engineering.  Uplink commanding   X-band network (620 Mbps (nominal, min)): Downlink for high rate science (KaRIN), and associated Engineering data  Front End Networks  Network from X-band Data Center(s) to JPL and CNES operation centers.  Minimum data rate to return all downlink within approximately 20 mins is >~ 300 Mbps (similar to downlink)   Network from CNES to JPL for S-band science and engineering data  Spacecraft Control Center (SCC, CNES/Contractor)  Real time monitoring of s/c and p/l via S-band housekeeping telemetry  2011/07/25 s3   psc IGARSS11 - SWOT Ground System 7
Ground System Elements   (2 of 2)  Payload Operations Centers (POC)  JPL: Near Real Time health monitoring of KaRIN, GPS, Radiometer.  Determine X-band data quality, need for replay. CNES: Near Real Time health monitoring of Jason Altimeter Suite  Science Processing Centers  JPL: Processing of KaRIN, POD  CNES: Jason Suite, POD   Data Archiving and Distribution Centers  JPL: PODAAC   CNES: AVISO  Project Data Distribution Networks  JPL-CNES link  Science Processing Centers to Archiving/Distribution Centers  2011/07/25 s3   psc IGARSS11 - SWOT Ground System 8
SWOT Ground System   Outline    Introduction SWOT mission Mission phases  Ground segment overview KaRIN Data Acquisition and Products Acquisition characteristics KaRIN processing  Data Products Sizing estimates Joint Ground System Development – Commonality levels and approach for the processing development 9 2011/07/25 s3   psc IGARSS11 - SWOT Ground System
KaRIN Data Acquisition  IGARSS11 - SWOT Ground System 10 Vsat A few km Vsat Classical Nadir Altimetry ,[object Object]
Inter-track at equator ~ 100km6 -10 km 50km 2.5 m 70m max 50km KaRIN  altimetry ,[object Object],(2.5m x 10m to 70m)  <<  ~100km  ,[object Object],20 km 120 km 2011/07/25 s3   psc
KaRIN Processing Steps  SAR processing (range and azimuth compression) Interferometric processing (co-registration, computation of interferometric phase and coherence) Application of acquisition geometry: geolocation, precise orbit determination, correction of roll, baseline variations Propagation corrections: tropospheric, ionospheric delay  Interferogram flattening/correction, land phase unwrapping   Estimation of geophysical parameters: water surface detection (HR only), computation of water surface heights, slopes etc.  Establish/refine floodplain DEM  (annually (goal) or mission)  High-level and multi-temporal processing is a Science Team activity  2011/07/25 s3   psc IGARSS11 - SWOT Ground System 11
 Data Products     (1 of 4)  Level 0  ( ~ 1 TB/day)   Ocean KaRIN: partial interferograms  (Raw to partial interferograms  processing onboard)  Hydro KaRIN: raw data  Nadir altimeter and Radiometer data: instrument raw data  GPSP and DORIS data: POD raw data  Level 1: Nadir Alt, Radiometer, KaRIN  ( ~ 10-12 TB/day)  L1a: Engineering unit conversion, calibration data separated for additional processing   L1b: Final instrument level data with calibrations appended  Ocean: 9-11 onboard interferograms (1km x 1 km), correlations, amplitudes with instrument calibrations and phase variations corrected combined  Hydro (HR): KaRIN phase flattened Interferograms Altimeter, radiometer compliant with Jason-2 Science Data record processing (SGDR) 2011/07/25 s3   psc IGARSS11 - SWOT Ground System 12
High Level Data Products     (2 of 4)  L2A Ocean KaRIN : As L1B + Geophysical corrections. Nadir data merged for cross calibration.  Ocean Crossover Attitude Correction: Estimate attitude errors from ocean crossovers for correcting both ocean and land data.  Intermediate Hydro: L1B + water mask detection; rain, snow, ice/frozen detections  L2B (standard distributed products) Remark:Every field will be associated with an uncertainty estimate Ocean (LR, fixed swath grid, 500 m; ~ 3 G-samples/day):  Sea surface (SS) heights in latitude/longitude grid SS slope at each point of the grid  Sigma 0 Wind speed Ocean Sea Wave Height on same grid (goal) 2011/07/25 s3   psc IGARSS11 - SWOT Ground System 13
High Level Data Products     (3 of 4)  L2B (standard distributed products)  (continued)  Hydrology (HR, regions, network, 50 m; TBD[80] GB/day):  Geo-localized water mask (lakes > (250 m)^2, rivers >100 (50) m) Estimated water elevations (same sampling as mask) -> Triangular interpolated network (+ uncertainties) Topographic map of the flood plain surrounding the water surface and channel cross sections (requirement to be produced by the end of the mission; goal - annually) Ocean Nadir: Similar to current Jason-2 SGDR  NRT (goal) Ocean: as Level 2 products but with lower accuracy (quick-look orbit and calibration using past cross-overs)  Hydro: Level 1 products (SLC + interferogram), no calibration data, use of ancillary DEM for phase flattening  Nadir products:  OGDR/ IGDR products (see Jason-2 OSS) 2011/07/25 s3   psc IGARSS11 - SWOT Ground System 14
High Level Data Products     (4 of 4)  POD – determined from GPS and DORIS  Ancillary Data – updated daily   Atmospheric models: Dry Tropo (surface pressure), Wet Tropo (water vapor)  Input to ionospheric model  Geophysical Models – updated infrequently  Mean Sea Surface, Geoid  DEM, Water mask (a priori, then self derived)   Elastic Ocean Tides, Earth Tides, “Pole Tide”  2011/07/25 s3   psc IGARSS11 - SWOT Ground System 15
Sizing Considerations  Global coverage, continuous acquisition Acquisition hypothesis  Sea 70%, Land 30% =>  In the average orbit, KaRIN will acquire 67 GB of data to be transmitted to ground=> ~1 TB /day  (~ 99% HR data) Archive Plan  Nominal mission duration: 3 years Long term archive of (main contributors in terms of volume) Raw HR,  SLC (L1A), Interferograms + masks (L2A), Geo-localized hydro products (L2B) => ~10 000TBytes  Comparison to other missions   CNES: more than 5 times Pleiades satellite archive  (dual civilian/defense optical imagery, to be launched soon) NASA: similar to proposed DESDynI  (Earth deformation and sea ice from L-band Radar repeat pass interferometer)  2011/07/25 s3   psc IGARSS11 - SWOT Ground System 16
SWOT Ground System   Outline    Introduction SWOT mission Mission phases  Ground segment overview KaRIN Data Acquisition and Products Acquisition characteristics KaRIN processing  Data Products Sizing estimates Joint Ground System Development – Commonality levels and approach for the processing development 17 2011/07/25 s3   psc IGARSS11 - SWOT Ground System
General Levels of Commonality  Commonality between two processing systems may be achieved at different levels Commonality of the full production system (clone, e.g. Jason) Prevents existing systems reuse. Not necessary for SWOT development  Commonality of the algorithms, software, and products Products are guaranteed 100% similar. May be the right level.  Commonality of specification and reference data  Independent developments. Risky because reference data does not cover all cases so products will not be 100% similar. 2011/07/25 s3   psc IGARSS11 - SWOT Ground System 18
General Algorithm Development Approach  Science processing algorithms will be developed primarily by supplier of each instrument  Algorithm flow will be iterated within entire development team  Data product definitions will be iterated with Science Team  Algorithm testbed will be set up and prototype processing developed  Testbed will read and write specified products  Test data will be (or emulate) specified products  After initial development cycle, algorithm specifications will be written for review by System Engineering team and selected subset of Science Team  2011/07/25 s3   psc IGARSS11 - SWOT Ground System 19
CNES  Usual Development Approach  2011/07/25 s3   psc IGARSS11 - SWOT Ground System 20 GS Infrastructure development Operational chain  development Algorithmic prototyping Algorithms prototyping activities and operational chain development are relatively independent ,[object Object]
 But not true the other way: prototypes are needed to build the reference data for the validation of the operational chain ,[object Object]
Commonality Approach for SWOT  Complementary prototyping activities will be conducted by JPL and CNES  The order and nature of the processing steps of the operational LR and HR processing chains will be discussed and agreed on by JPL/NASA and CNES   The detailed work share is not yet defined, but the operational algorithms and related binary code will be common 2011/07/25 s3   psc IGARSS11 - SWOT Ground System 22
Backup  IGARSS11 - SWOT Ground System 2011/07/25 s3   psc 23
SWOT 40 month Mission Timeline  24 Backup or here ?  Mission Phase Launch (02 Dec 2019) EOM  (Mar 2023)  In-Flight Assessment Meeting Initial Phase LEOP ~3 days: nominal s/c state 4 weeks Fast sampling orbit acq Checkout / Commissioning (up to L + ~65 days)  In-Flight Assessment Meeting First Verification Workshop Calibration/     Validation Period ,[object Object]

Más contenido relacionado

La actualidad más candente

Fundamentals remote sensing land used
Fundamentals remote sensing land usedFundamentals remote sensing land used
Fundamentals remote sensing land usedHidraulica Tymanzo
 
IGARSS_Brown_Aquarius_2011.pptx
IGARSS_Brown_Aquarius_2011.pptxIGARSS_Brown_Aquarius_2011.pptx
IGARSS_Brown_Aquarius_2011.pptxgrssieee
 
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptxIGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptxgrssieee
 
TH4.TO4.2.ppt
TH4.TO4.2.pptTH4.TO4.2.ppt
TH4.TO4.2.pptgrssieee
 
“The strong attraction of gravity at Geoscience Australia” (Richard Lane, Geo...
“The strong attraction of gravity at Geoscience Australia” (Richard Lane, Geo...“The strong attraction of gravity at Geoscience Australia” (Richard Lane, Geo...
“The strong attraction of gravity at Geoscience Australia” (Richard Lane, Geo...Richard Lane
 
PR5 IGARSS_2011_MODIS.ppt
PR5  IGARSS_2011_MODIS.pptPR5  IGARSS_2011_MODIS.ppt
PR5 IGARSS_2011_MODIS.pptgrssieee
 
Adam Lewis–SPEDDEXES 2014
Adam Lewis–SPEDDEXES 2014Adam Lewis–SPEDDEXES 2014
Adam Lewis–SPEDDEXES 2014aceas13tern
 
HRSC Techniques: High-Resolution Hydrogeologic Characterization
HRSC Techniques: High-Resolution Hydrogeologic CharacterizationHRSC Techniques: High-Resolution Hydrogeologic Characterization
HRSC Techniques: High-Resolution Hydrogeologic CharacterizationASC-HRSC
 
HRSC Technologies: Using MiHpt for Rapid In-Situ Contaminant and Hydrostratig...
HRSC Technologies: Using MiHpt for Rapid In-Situ Contaminant and Hydrostratig...HRSC Technologies: Using MiHpt for Rapid In-Situ Contaminant and Hydrostratig...
HRSC Technologies: Using MiHpt for Rapid In-Situ Contaminant and Hydrostratig...ASC-HRSC
 
5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.pptgrssieee
 
ASEG-PESA-AIG_2016_Abstract_North West Shelf 3D Velocity Modeling_ESTIMAGES
ASEG-PESA-AIG_2016_Abstract_North West Shelf 3D Velocity Modeling_ESTIMAGESASEG-PESA-AIG_2016_Abstract_North West Shelf 3D Velocity Modeling_ESTIMAGES
ASEG-PESA-AIG_2016_Abstract_North West Shelf 3D Velocity Modeling_ESTIMAGESLaureline Monteignies
 
Ian Grant_An improved satellite-based long record of Australian vegetation dy...
Ian Grant_An improved satellite-based long record of Australian vegetation dy...Ian Grant_An improved satellite-based long record of Australian vegetation dy...
Ian Grant_An improved satellite-based long record of Australian vegetation dy...TERN Australia
 
2009 Dransfield - conforming falcon gravity and the global gravity anomaly
2009 Dransfield - conforming falcon gravity and the global gravity anomaly2009 Dransfield - conforming falcon gravity and the global gravity anomaly
2009 Dransfield - conforming falcon gravity and the global gravity anomalyBrett Johnson
 
Apec workshop 2 presentation 13 r wright apec-gccsi engineering disclipines...
Apec workshop 2 presentation 13  r wright apec-gccsi  engineering disclipines...Apec workshop 2 presentation 13  r wright apec-gccsi  engineering disclipines...
Apec workshop 2 presentation 13 r wright apec-gccsi engineering disclipines...Global CCS Institute
 
Application of Ground Penetrating Radar in Subsurface mapping
Application of Ground Penetrating Radar in Subsurface mapping Application of Ground Penetrating Radar in Subsurface mapping
Application of Ground Penetrating Radar in Subsurface mapping Dr. Rajesh P Barnwal
 

La actualidad más candente (20)

Fundamentals remote sensing land used
Fundamentals remote sensing land usedFundamentals remote sensing land used
Fundamentals remote sensing land used
 
moscow
moscowmoscow
moscow
 
IGARSS_Brown_Aquarius_2011.pptx
IGARSS_Brown_Aquarius_2011.pptxIGARSS_Brown_Aquarius_2011.pptx
IGARSS_Brown_Aquarius_2011.pptx
 
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptxIGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
 
TH4.TO4.2.ppt
TH4.TO4.2.pptTH4.TO4.2.ppt
TH4.TO4.2.ppt
 
“The strong attraction of gravity at Geoscience Australia” (Richard Lane, Geo...
“The strong attraction of gravity at Geoscience Australia” (Richard Lane, Geo...“The strong attraction of gravity at Geoscience Australia” (Richard Lane, Geo...
“The strong attraction of gravity at Geoscience Australia” (Richard Lane, Geo...
 
PR5 IGARSS_2011_MODIS.ppt
PR5  IGARSS_2011_MODIS.pptPR5  IGARSS_2011_MODIS.ppt
PR5 IGARSS_2011_MODIS.ppt
 
Adam Lewis–SPEDDEXES 2014
Adam Lewis–SPEDDEXES 2014Adam Lewis–SPEDDEXES 2014
Adam Lewis–SPEDDEXES 2014
 
HRSC Techniques: High-Resolution Hydrogeologic Characterization
HRSC Techniques: High-Resolution Hydrogeologic CharacterizationHRSC Techniques: High-Resolution Hydrogeologic Characterization
HRSC Techniques: High-Resolution Hydrogeologic Characterization
 
Presentation
PresentationPresentation
Presentation
 
HRSC Technologies: Using MiHpt for Rapid In-Situ Contaminant and Hydrostratig...
HRSC Technologies: Using MiHpt for Rapid In-Situ Contaminant and Hydrostratig...HRSC Technologies: Using MiHpt for Rapid In-Situ Contaminant and Hydrostratig...
HRSC Technologies: Using MiHpt for Rapid In-Situ Contaminant and Hydrostratig...
 
Tyler A - UEI Day 1 - Kochi Jan18
Tyler A - UEI Day 1 - Kochi Jan18Tyler A - UEI Day 1 - Kochi Jan18
Tyler A - UEI Day 1 - Kochi Jan18
 
5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt
 
Mercator Ocean newsletter 43
Mercator Ocean newsletter 43Mercator Ocean newsletter 43
Mercator Ocean newsletter 43
 
ASEG-PESA-AIG_2016_Abstract_North West Shelf 3D Velocity Modeling_ESTIMAGES
ASEG-PESA-AIG_2016_Abstract_North West Shelf 3D Velocity Modeling_ESTIMAGESASEG-PESA-AIG_2016_Abstract_North West Shelf 3D Velocity Modeling_ESTIMAGES
ASEG-PESA-AIG_2016_Abstract_North West Shelf 3D Velocity Modeling_ESTIMAGES
 
Ian Grant_An improved satellite-based long record of Australian vegetation dy...
Ian Grant_An improved satellite-based long record of Australian vegetation dy...Ian Grant_An improved satellite-based long record of Australian vegetation dy...
Ian Grant_An improved satellite-based long record of Australian vegetation dy...
 
Rehder, Gregor: Making Atmopheric measurements onboard SOOPs
Rehder, Gregor: Making Atmopheric measurements onboard SOOPsRehder, Gregor: Making Atmopheric measurements onboard SOOPs
Rehder, Gregor: Making Atmopheric measurements onboard SOOPs
 
2009 Dransfield - conforming falcon gravity and the global gravity anomaly
2009 Dransfield - conforming falcon gravity and the global gravity anomaly2009 Dransfield - conforming falcon gravity and the global gravity anomaly
2009 Dransfield - conforming falcon gravity and the global gravity anomaly
 
Apec workshop 2 presentation 13 r wright apec-gccsi engineering disclipines...
Apec workshop 2 presentation 13  r wright apec-gccsi  engineering disclipines...Apec workshop 2 presentation 13  r wright apec-gccsi  engineering disclipines...
Apec workshop 2 presentation 13 r wright apec-gccsi engineering disclipines...
 
Application of Ground Penetrating Radar in Subsurface mapping
Application of Ground Penetrating Radar in Subsurface mapping Application of Ground Penetrating Radar in Subsurface mapping
Application of Ground Penetrating Radar in Subsurface mapping
 

Destacado

Tebaldini.pdf
Tebaldini.pdfTebaldini.pdf
Tebaldini.pdfgrssieee
 
TU3.T10_1.pptx
TU3.T10_1.pptxTU3.T10_1.pptx
TU3.T10_1.pptxgrssieee
 
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdfSea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdfgrssieee
 
On_the_development_of_dualfrq_PR_china(Tiger).ppt
On_the_development_of_dualfrq_PR_china(Tiger).pptOn_the_development_of_dualfrq_PR_china(Tiger).ppt
On_the_development_of_dualfrq_PR_china(Tiger).pptgrssieee
 
ChuePoh_IGARSS2011.ppt
ChuePoh_IGARSS2011.pptChuePoh_IGARSS2011.ppt
ChuePoh_IGARSS2011.pptgrssieee
 
Tandem-L-IGARSS-v2-final-2011.pdf
Tandem-L-IGARSS-v2-final-2011.pdfTandem-L-IGARSS-v2-final-2011.pdf
Tandem-L-IGARSS-v2-final-2011.pdfgrssieee
 
IGARSS11_TH2.T04.3_Rott_Larsen.ppt
IGARSS11_TH2.T04.3_Rott_Larsen.pptIGARSS11_TH2.T04.3_Rott_Larsen.ppt
IGARSS11_TH2.T04.3_Rott_Larsen.pptgrssieee
 
SPATIAL VARIATIONS OF L-BAND EMISSIVITY IN ANTARCTICA, FIRST RESULTS FROM THE...
SPATIAL VARIATIONS OF L-BAND EMISSIVITY IN ANTARCTICA, FIRST RESULTS FROM THE...SPATIAL VARIATIONS OF L-BAND EMISSIVITY IN ANTARCTICA, FIRST RESULTS FROM THE...
SPATIAL VARIATIONS OF L-BAND EMISSIVITY IN ANTARCTICA, FIRST RESULTS FROM THE...grssieee
 
Multi-Parameter Thermal Anomalies.ppt
Multi-Parameter Thermal Anomalies.pptMulti-Parameter Thermal Anomalies.ppt
Multi-Parameter Thermal Anomalies.pptgrssieee
 
G.singh.IGARSS-11.pdf
G.singh.IGARSS-11.pdfG.singh.IGARSS-11.pdf
G.singh.IGARSS-11.pdfgrssieee
 
Notarnicola_TU3_TO3.3.ppt
Notarnicola_TU3_TO3.3.pptNotarnicola_TU3_TO3.3.ppt
Notarnicola_TU3_TO3.3.pptgrssieee
 
IGARSS2011_Gustavsson_v3.ppt
IGARSS2011_Gustavsson_v3.pptIGARSS2011_Gustavsson_v3.ppt
IGARSS2011_Gustavsson_v3.pptgrssieee
 
BioSAR2010-aSARcampaigninsupportofthebiomassmission.ppt
BioSAR2010-aSARcampaigninsupportofthebiomassmission.pptBioSAR2010-aSARcampaigninsupportofthebiomassmission.ppt
BioSAR2010-aSARcampaigninsupportofthebiomassmission.pptgrssieee
 

Destacado (13)

Tebaldini.pdf
Tebaldini.pdfTebaldini.pdf
Tebaldini.pdf
 
TU3.T10_1.pptx
TU3.T10_1.pptxTU3.T10_1.pptx
TU3.T10_1.pptx
 
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdfSea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
 
On_the_development_of_dualfrq_PR_china(Tiger).ppt
On_the_development_of_dualfrq_PR_china(Tiger).pptOn_the_development_of_dualfrq_PR_china(Tiger).ppt
On_the_development_of_dualfrq_PR_china(Tiger).ppt
 
ChuePoh_IGARSS2011.ppt
ChuePoh_IGARSS2011.pptChuePoh_IGARSS2011.ppt
ChuePoh_IGARSS2011.ppt
 
Tandem-L-IGARSS-v2-final-2011.pdf
Tandem-L-IGARSS-v2-final-2011.pdfTandem-L-IGARSS-v2-final-2011.pdf
Tandem-L-IGARSS-v2-final-2011.pdf
 
IGARSS11_TH2.T04.3_Rott_Larsen.ppt
IGARSS11_TH2.T04.3_Rott_Larsen.pptIGARSS11_TH2.T04.3_Rott_Larsen.ppt
IGARSS11_TH2.T04.3_Rott_Larsen.ppt
 
SPATIAL VARIATIONS OF L-BAND EMISSIVITY IN ANTARCTICA, FIRST RESULTS FROM THE...
SPATIAL VARIATIONS OF L-BAND EMISSIVITY IN ANTARCTICA, FIRST RESULTS FROM THE...SPATIAL VARIATIONS OF L-BAND EMISSIVITY IN ANTARCTICA, FIRST RESULTS FROM THE...
SPATIAL VARIATIONS OF L-BAND EMISSIVITY IN ANTARCTICA, FIRST RESULTS FROM THE...
 
Multi-Parameter Thermal Anomalies.ppt
Multi-Parameter Thermal Anomalies.pptMulti-Parameter Thermal Anomalies.ppt
Multi-Parameter Thermal Anomalies.ppt
 
G.singh.IGARSS-11.pdf
G.singh.IGARSS-11.pdfG.singh.IGARSS-11.pdf
G.singh.IGARSS-11.pdf
 
Notarnicola_TU3_TO3.3.ppt
Notarnicola_TU3_TO3.3.pptNotarnicola_TU3_TO3.3.ppt
Notarnicola_TU3_TO3.3.ppt
 
IGARSS2011_Gustavsson_v3.ppt
IGARSS2011_Gustavsson_v3.pptIGARSS2011_Gustavsson_v3.ppt
IGARSS2011_Gustavsson_v3.ppt
 
BioSAR2010-aSARcampaigninsupportofthebiomassmission.ppt
BioSAR2010-aSARcampaigninsupportofthebiomassmission.pptBioSAR2010-aSARcampaigninsupportofthebiomassmission.ppt
BioSAR2010-aSARcampaigninsupportofthebiomassmission.ppt
 

Similar a igarss11swot-vadon-callahan-psc-s3.110725.pptx

FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...
FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...
FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...grssieee
 
THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdf
THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdfTHE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdf
THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdfMuhammadMuhaimin54
 
IGARSSAirSWOTv2.ppt
IGARSSAirSWOTv2.pptIGARSSAirSWOTv2.ppt
IGARSSAirSWOTv2.pptgrssieee
 
1 IGARSS 2011 JPSS Monday Goldberg.pptx
1 IGARSS 2011 JPSS Monday Goldberg.pptx1 IGARSS 2011 JPSS Monday Goldberg.pptx
1 IGARSS 2011 JPSS Monday Goldberg.pptxgrssieee
 
20110728_IGARSS_GDPS(ryu)fin1.pptx
20110728_IGARSS_GDPS(ryu)fin1.pptx20110728_IGARSS_GDPS(ryu)fin1.pptx
20110728_IGARSS_GDPS(ryu)fin1.pptxgrssieee
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORSIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORgrssieee
 
TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the...
TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the...TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the...
TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the...grssieee
 
Validation_SWOT_ground_airborne_Fjortoft.ppt
Validation_SWOT_ground_airborne_Fjortoft.pptValidation_SWOT_ground_airborne_Fjortoft.ppt
Validation_SWOT_ground_airborne_Fjortoft.pptgrssieee
 
WaPOR version 3 - H Pelgrum - eLeaf - 05 May 2023.pdf
WaPOR version 3 - H Pelgrum - eLeaf - 05 May 2023.pdfWaPOR version 3 - H Pelgrum - eLeaf - 05 May 2023.pdf
WaPOR version 3 - H Pelgrum - eLeaf - 05 May 2023.pdfWaPOR
 
TU2.L10 - THE AQUARIUS/SAC-D MISSION OVERVIEW
TU2.L10 - THE AQUARIUS/SAC-D MISSION OVERVIEWTU2.L10 - THE AQUARIUS/SAC-D MISSION OVERVIEW
TU2.L10 - THE AQUARIUS/SAC-D MISSION OVERVIEWgrssieee
 
RCM mission v2.ppt
RCM mission v2.pptRCM mission v2.ppt
RCM mission v2.pptgrssieee
 
1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.pptgrssieee
 
1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.pptgrssieee
 
Thresholds of Detection for Falling Snow from Satellite-Borne Active and Pas...
Thresholds of Detection for Falling Snow  from Satellite-Borne Active and Pas...Thresholds of Detection for Falling Snow  from Satellite-Borne Active and Pas...
Thresholds of Detection for Falling Snow from Satellite-Borne Active and Pas...grssieee
 
4 ROMAN_IGARSS'11.ppt
4 ROMAN_IGARSS'11.ppt4 ROMAN_IGARSS'11.ppt
4 ROMAN_IGARSS'11.pptgrssieee
 
The Emerging Cyberinfrastructure for Earth and Ocean Sciences
The Emerging Cyberinfrastructure for Earth and Ocean SciencesThe Emerging Cyberinfrastructure for Earth and Ocean Sciences
The Emerging Cyberinfrastructure for Earth and Ocean SciencesLarry Smarr
 
IGARSS11_DESDynI_V2.pptx
IGARSS11_DESDynI_V2.pptxIGARSS11_DESDynI_V2.pptx
IGARSS11_DESDynI_V2.pptxgrssieee
 
Sentinel-3 Future Products Overview - EUMETCast User Forum 2014
Sentinel-3 Future Products Overview - EUMETCast User Forum 2014Sentinel-3 Future Products Overview - EUMETCast User Forum 2014
Sentinel-3 Future Products Overview - EUMETCast User Forum 2014EUMETSAT
 
TU2.L10.1 - THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION
TU2.L10.1	 - THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSIONTU2.L10.1	 - THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION
TU2.L10.1 - THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSIONgrssieee
 

Similar a igarss11swot-vadon-callahan-psc-s3.110725.pptx (20)

FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...
FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...
FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...
 
THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdf
THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdfTHE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdf
THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdf
 
IGARSSAirSWOTv2.ppt
IGARSSAirSWOTv2.pptIGARSSAirSWOTv2.ppt
IGARSSAirSWOTv2.ppt
 
1 IGARSS 2011 JPSS Monday Goldberg.pptx
1 IGARSS 2011 JPSS Monday Goldberg.pptx1 IGARSS 2011 JPSS Monday Goldberg.pptx
1 IGARSS 2011 JPSS Monday Goldberg.pptx
 
20110728_IGARSS_GDPS(ryu)fin1.pptx
20110728_IGARSS_GDPS(ryu)fin1.pptx20110728_IGARSS_GDPS(ryu)fin1.pptx
20110728_IGARSS_GDPS(ryu)fin1.pptx
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORSIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
 
TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the...
TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the...TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the...
TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the...
 
Validation_SWOT_ground_airborne_Fjortoft.ppt
Validation_SWOT_ground_airborne_Fjortoft.pptValidation_SWOT_ground_airborne_Fjortoft.ppt
Validation_SWOT_ground_airborne_Fjortoft.ppt
 
WaPOR version 3 - H Pelgrum - eLeaf - 05 May 2023.pdf
WaPOR version 3 - H Pelgrum - eLeaf - 05 May 2023.pdfWaPOR version 3 - H Pelgrum - eLeaf - 05 May 2023.pdf
WaPOR version 3 - H Pelgrum - eLeaf - 05 May 2023.pdf
 
TU2.L10 - THE AQUARIUS/SAC-D MISSION OVERVIEW
TU2.L10 - THE AQUARIUS/SAC-D MISSION OVERVIEWTU2.L10 - THE AQUARIUS/SAC-D MISSION OVERVIEW
TU2.L10 - THE AQUARIUS/SAC-D MISSION OVERVIEW
 
RCM mission v2.ppt
RCM mission v2.pptRCM mission v2.ppt
RCM mission v2.ppt
 
1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt
 
1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt
 
Thresholds of Detection for Falling Snow from Satellite-Borne Active and Pas...
Thresholds of Detection for Falling Snow  from Satellite-Borne Active and Pas...Thresholds of Detection for Falling Snow  from Satellite-Borne Active and Pas...
Thresholds of Detection for Falling Snow from Satellite-Borne Active and Pas...
 
4 ROMAN_IGARSS'11.ppt
4 ROMAN_IGARSS'11.ppt4 ROMAN_IGARSS'11.ppt
4 ROMAN_IGARSS'11.ppt
 
The Emerging Cyberinfrastructure for Earth and Ocean Sciences
The Emerging Cyberinfrastructure for Earth and Ocean SciencesThe Emerging Cyberinfrastructure for Earth and Ocean Sciences
The Emerging Cyberinfrastructure for Earth and Ocean Sciences
 
IGARSS11_DESDynI_V2.pptx
IGARSS11_DESDynI_V2.pptxIGARSS11_DESDynI_V2.pptx
IGARSS11_DESDynI_V2.pptx
 
Pre-Injection Assessment of Time-Lapse Seismic Repeatability at the Aquistore...
Pre-Injection Assessment of Time-Lapse Seismic Repeatability at the Aquistore...Pre-Injection Assessment of Time-Lapse Seismic Repeatability at the Aquistore...
Pre-Injection Assessment of Time-Lapse Seismic Repeatability at the Aquistore...
 
Sentinel-3 Future Products Overview - EUMETCast User Forum 2014
Sentinel-3 Future Products Overview - EUMETCast User Forum 2014Sentinel-3 Future Products Overview - EUMETCast User Forum 2014
Sentinel-3 Future Products Overview - EUMETCast User Forum 2014
 
TU2.L10.1 - THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION
TU2.L10.1	 - THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSIONTU2.L10.1	 - THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION
TU2.L10.1 - THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION
 

Más de grssieee

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...grssieee
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELgrssieee
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...grssieee
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESgrssieee
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSgrssieee
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERgrssieee
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animationsgrssieee
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdfgrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.pptgrssieee
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptgrssieee
 

Más de grssieee (20)

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
Test
TestTest
Test
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animations
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.ppt
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.ppt
 

igarss11swot-vadon-callahan-psc-s3.110725.pptx

  • 1. http://swot.jpl.nasa.gov SWOT Ground SystemIGARSS – August 2011 Helene Vadon (CNES, Toulouse) Phil Callahan (Jet Propulsion Lab, California Institute of Technology)
  • 2. SWOT Ground System Outline Introduction SWOT mission Mission phases Ground segment overview KaRIN Data Acquisition and Products Acquisition characteristics KaRIN processing Data Products Sizing estimates Joint Ground System Development – Commonality levels and approach for the processing development 2 2011/07/25 s3 psc IGARSS11 - SWOT Ground System
  • 3. SWOT Mission Mission Extraction of water surface heights over ocean and continental water bodies The principal instrument isKaRIN, a Ka-band interferometric SAR system Other instruments are a nadir altimeter, radiometer, and precision tracking systems (classical Jason Altimeter suite) Main scientific requirements Oceanography: Global coverage (< 78°) of oceans, sea surface height precision < 2 cm at approximately 1 km resolution  LR mode Hydrology: Global inventory of rivers > 100 m (50 m) and lakes > (250 m)2, water surface height precision of the order of 10 cm (averaged over 1 km2), slope precision 1 cm/km (averaged over 10 km); average posting 50 m HR mode 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 3
  • 4. Mission Phases Launch and Early Orbit Operations (~ 3 days) Launch planned for late 2019 Checkout / Commissioning (~ 30 - 45 days) Fast repeat orbit at 3 (or 1) days for ~90 (or 30) days For ocean sub-mesoscale Calibration / Validation (Cal/Val) (3 – 6 months, covering Fast Repeat and Science Operations) Transition to Science Orbit, Operations (~ 15 days) Non-sun-synchronous, 22 day exact repeat, 970 km altitude, 78 deg inclination Science Observations (Requirement = 3 years; starts ~4.5 months after launch) Disposal and Ground System Closeout (= 3 months) 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 4
  • 5. SWOT Ground System Challenges High precision for both ocean (1-2 cm) and hydrology (~10 cm) Complete, accurate algorithms Use of instrument and spacecraft calibration data External corrections; Ancillary information Large Data Volume – both telemetry and data products Raw data downlink for land data. Requires >~ 600 Mbps X-band downlink Data products posted at fine resolution: LR = 500 m, HR = 50 m (~100 giga-samples per cycle for LR+HR) Likely Near Real Time requirements Ocean from Jason suite similar to Jason series Hydrology (floods, reservoirs) from KaRIN 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 5
  • 6. Architecture Diagram 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 6 S/C Bus CNES Elements NASA Elements Joint Elements Karin Nadir Altimeter Payload module Radiometer UPLINK: S/C & P/L Cmd. DOWNLINK: Jason Suite Sci Data (Nadir Alt, Rad, GPS) and All Eng Telem X band TM TBD Additional X-band Sta KaRIN Science Data CNES S-band Network CNES X-band Network (also has S-band Uplink) Science Data Center To JPL: X-band data, TBD[KaRIN Eng] X-band Network Center JPL Payload Operations Center CNES To CNES: Ack. successful downlink Payload commands S/C Control Center (SCC) (Contractor) To JPL: X-band data, S-band Sci, s/c Telemetry, TBD[KaRIN Eng] Payload Operations Center JPL Science Data Processing Data exchange Science Processing Archive & Distribution To JPL: Jason Suite L2. Cal/val. To CNES: KaRIN TBD[L1b]. POD. Cal/val. JPL Science Data Archiving & Distribution Ancillary Data: Tropo model(s), Iono info, Tide model(s), DEM, SSH
  • 7. Ground System Elements (1 of 2) Tracking Stations CNES S-band stations: Downlink for Nadir Alt, Radiometer, DORIS, GPS (“Jason Altimeter Suite”, JAS); Engineering. Uplink commanding X-band network (620 Mbps (nominal, min)): Downlink for high rate science (KaRIN), and associated Engineering data Front End Networks Network from X-band Data Center(s) to JPL and CNES operation centers. Minimum data rate to return all downlink within approximately 20 mins is >~ 300 Mbps (similar to downlink) Network from CNES to JPL for S-band science and engineering data Spacecraft Control Center (SCC, CNES/Contractor) Real time monitoring of s/c and p/l via S-band housekeeping telemetry 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 7
  • 8. Ground System Elements (2 of 2) Payload Operations Centers (POC) JPL: Near Real Time health monitoring of KaRIN, GPS, Radiometer. Determine X-band data quality, need for replay. CNES: Near Real Time health monitoring of Jason Altimeter Suite Science Processing Centers JPL: Processing of KaRIN, POD CNES: Jason Suite, POD Data Archiving and Distribution Centers JPL: PODAAC CNES: AVISO Project Data Distribution Networks JPL-CNES link Science Processing Centers to Archiving/Distribution Centers 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 8
  • 9. SWOT Ground System Outline Introduction SWOT mission Mission phases Ground segment overview KaRIN Data Acquisition and Products Acquisition characteristics KaRIN processing Data Products Sizing estimates Joint Ground System Development – Commonality levels and approach for the processing development 9 2011/07/25 s3 psc IGARSS11 - SWOT Ground System
  • 10.
  • 11.
  • 12. KaRIN Processing Steps SAR processing (range and azimuth compression) Interferometric processing (co-registration, computation of interferometric phase and coherence) Application of acquisition geometry: geolocation, precise orbit determination, correction of roll, baseline variations Propagation corrections: tropospheric, ionospheric delay Interferogram flattening/correction, land phase unwrapping Estimation of geophysical parameters: water surface detection (HR only), computation of water surface heights, slopes etc. Establish/refine floodplain DEM (annually (goal) or mission) High-level and multi-temporal processing is a Science Team activity 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 11
  • 13. Data Products (1 of 4) Level 0 ( ~ 1 TB/day) Ocean KaRIN: partial interferograms (Raw to partial interferograms processing onboard) Hydro KaRIN: raw data Nadir altimeter and Radiometer data: instrument raw data GPSP and DORIS data: POD raw data Level 1: Nadir Alt, Radiometer, KaRIN ( ~ 10-12 TB/day) L1a: Engineering unit conversion, calibration data separated for additional processing L1b: Final instrument level data with calibrations appended Ocean: 9-11 onboard interferograms (1km x 1 km), correlations, amplitudes with instrument calibrations and phase variations corrected combined Hydro (HR): KaRIN phase flattened Interferograms Altimeter, radiometer compliant with Jason-2 Science Data record processing (SGDR) 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 12
  • 14. High Level Data Products (2 of 4) L2A Ocean KaRIN : As L1B + Geophysical corrections. Nadir data merged for cross calibration. Ocean Crossover Attitude Correction: Estimate attitude errors from ocean crossovers for correcting both ocean and land data. Intermediate Hydro: L1B + water mask detection; rain, snow, ice/frozen detections L2B (standard distributed products) Remark:Every field will be associated with an uncertainty estimate Ocean (LR, fixed swath grid, 500 m; ~ 3 G-samples/day): Sea surface (SS) heights in latitude/longitude grid SS slope at each point of the grid Sigma 0 Wind speed Ocean Sea Wave Height on same grid (goal) 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 13
  • 15. High Level Data Products (3 of 4) L2B (standard distributed products) (continued) Hydrology (HR, regions, network, 50 m; TBD[80] GB/day): Geo-localized water mask (lakes > (250 m)^2, rivers >100 (50) m) Estimated water elevations (same sampling as mask) -> Triangular interpolated network (+ uncertainties) Topographic map of the flood plain surrounding the water surface and channel cross sections (requirement to be produced by the end of the mission; goal - annually) Ocean Nadir: Similar to current Jason-2 SGDR NRT (goal) Ocean: as Level 2 products but with lower accuracy (quick-look orbit and calibration using past cross-overs) Hydro: Level 1 products (SLC + interferogram), no calibration data, use of ancillary DEM for phase flattening Nadir products: OGDR/ IGDR products (see Jason-2 OSS) 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 14
  • 16. High Level Data Products (4 of 4) POD – determined from GPS and DORIS Ancillary Data – updated daily Atmospheric models: Dry Tropo (surface pressure), Wet Tropo (water vapor) Input to ionospheric model Geophysical Models – updated infrequently Mean Sea Surface, Geoid DEM, Water mask (a priori, then self derived) Elastic Ocean Tides, Earth Tides, “Pole Tide” 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 15
  • 17. Sizing Considerations Global coverage, continuous acquisition Acquisition hypothesis Sea 70%, Land 30% => In the average orbit, KaRIN will acquire 67 GB of data to be transmitted to ground=> ~1 TB /day (~ 99% HR data) Archive Plan Nominal mission duration: 3 years Long term archive of (main contributors in terms of volume) Raw HR, SLC (L1A), Interferograms + masks (L2A), Geo-localized hydro products (L2B) => ~10 000TBytes Comparison to other missions CNES: more than 5 times Pleiades satellite archive (dual civilian/defense optical imagery, to be launched soon) NASA: similar to proposed DESDynI (Earth deformation and sea ice from L-band Radar repeat pass interferometer) 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 16
  • 18. SWOT Ground System Outline Introduction SWOT mission Mission phases Ground segment overview KaRIN Data Acquisition and Products Acquisition characteristics KaRIN processing Data Products Sizing estimates Joint Ground System Development – Commonality levels and approach for the processing development 17 2011/07/25 s3 psc IGARSS11 - SWOT Ground System
  • 19. General Levels of Commonality Commonality between two processing systems may be achieved at different levels Commonality of the full production system (clone, e.g. Jason) Prevents existing systems reuse. Not necessary for SWOT development Commonality of the algorithms, software, and products Products are guaranteed 100% similar. May be the right level. Commonality of specification and reference data Independent developments. Risky because reference data does not cover all cases so products will not be 100% similar. 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 18
  • 20. General Algorithm Development Approach Science processing algorithms will be developed primarily by supplier of each instrument Algorithm flow will be iterated within entire development team Data product definitions will be iterated with Science Team Algorithm testbed will be set up and prototype processing developed Testbed will read and write specified products Test data will be (or emulate) specified products After initial development cycle, algorithm specifications will be written for review by System Engineering team and selected subset of Science Team 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 19
  • 21.
  • 22.
  • 23. Commonality Approach for SWOT Complementary prototyping activities will be conducted by JPL and CNES The order and nature of the processing steps of the operational LR and HR processing chains will be discussed and agreed on by JPL/NASA and CNES The detailed work share is not yet defined, but the operational algorithms and related binary code will be common 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 22
  • 24. Backup IGARSS11 - SWOT Ground System 2011/07/25 s3 psc 23
  • 25.
  • 26. (Sci Team meeting at L + 12 months Cal/Val Science Observation (36 months) Decommissioning ( ~ 30 days) ~ 2-4 weeks Nominal Orbit Acquisition Orbit Injection Science Processing Closeout Fast Repeat TBD[3, 1 day; near 22 day] Operational Phase 22-day repeat, 78 deg, 970 km (non-sun-sync) Science Disposal Eclipse Season (illustration only) Calendar Years 2020 2021 2022 2019 2023 2011/07/25 s3 psc IGARSS11 - SWOT Ground System
  • 27. Science Operations (1 of 1) Science data collection phase starts ~ 4.5 months after launch. Collect data for 3 full years in observational orbit Full validation period: 6 months of data in science orbit + 2 months processing, internal review Science Team meeting to assess initial data products ~ 12 months after launch Processing update based on Science Team assessment implemented ~ 2 months after meeting Ready to reprocess all data with updated system ~ 16 months after launch. Science Requirements on Reprocessing (assume “caught up” at 24 months) puts requirements on total Processing Center throughput (Suggest project aggregate > 5x). Budget/scenario: Cal/val data (~3 months) – as science phase starts Initial science phase data (~12 months +3 months cal/val) – within TBD [< 3] months. Result: at ~20 months after launch version 2 of all usable data available. Support Science Team meeting at ~24 months to validate data End of nominal mission: Reprocess all data a second time with SDS update done from ~ 30 – 36 months after launch; takes 6 – 8 months (runs until 3 months after end of mission [assumes no extended mission]) 2011/07/25 s3 psc IGARSS11 - SWOT Ground System 25

Notas del editor

  1. ----- Meeting Notes (2011/02/24 12:51) -----Sci Req is 3 yr in final orbit.