SlideShare una empresa de Scribd logo
1 de 22
IGARSS 2011 Vancouver, BC, Canada     July 26, 2011  All-Weather Wind Vector  Measurements from Intercalibrated Active and Passive Microwave Satellite Sensors Thomas Meissner Lucrezia Ricciardulli Frank  Wentz
Outline Passive (radiometer: WindSat) vs active (scatterometer: QuikSCAT) wind speed retrievals:   Surface emissivity versus radar backscatter. Ocean Surface Emissivity Model. Overview: RSS WindSat version 7 ocean products. WindSat all-weather wind speeds. Improved QuikSCAT Ku2011 geophysical model function. Validation. High winds. Rain impact study.   Selected storm case: Hurricane Katrina. Conclusion: active vs passive - strength +weaknesses.
Passive vs Active Wind Speeds Passive (radiometer) Sees change in emissivity of wind roughened sea surface compared with specular surface Low winds: Polarization mixing of large gravity waves. High winds: Emissivity of sea foam. Radiative Transfer Model (RTM) function for wind induced surface  emissivity. Active (scatterometer) Sees backscatter from the Bragg-resonance of small capillary waves. Geophysical Model Function (GMF) for wind induced radar backscatter.  Calibration Ground truth: Buoy, NWP wind speeds
Challenge 1: High Wind Speeds (> 20 m/s) Passive (radiometer) Lack of reliable ground truth. (buoys, NWP) for calibration and validation. Tropical cyclones: High winds correlated with rain (challenge 2). Active (scatterometer) Lack of reliable ground truth. (buoys, NWP) for calibration and validation. Tropical cyclones: High winds correlated with rain (challenge 1). Loss of sensitivity (GMF saturates).
Challenge 2: Wind Speeds in Rain Passive (radiometer) Rainy atmosphere attenuates signal. Emissivity from rainy atmosphere has similar signature than from wind roughened surface. Scattering from rain drops is difficult to model. Active (scatterometer) Rainy atmosphere attenuates signal. Backscatter from rainy atmosphere has similar signature than from wind roughened surface. Scattering from rain drops is difficult to model. Splash effect on surface. Rain flagging difficult for single frequency sensor.
Ocean Surface Emissivity Model Crucial part of Radiative Transfer Model (RTM).  Physical basis of passive wind retrieval algorithm. Dielectric constant of sea water. Wind induced sea surface emissivity. Derived from WindSat and SSM/I TB measurements. Winds < 20 m/s: Buoys. NWP. Scatterometer. Winds > 20 m/s:  HRD wind analysis (hurricanes). SFMR data. T. Meissner + F. Wentz, IEEE TGRS 42(9), 2004, 1836 - 1849  T. Meissner + F. Wentz, IEEE TGRS, under review
Ocean Surface Emissivity Model (cont.) Measured minus computed WindSat TB as function of SST (x-axis) and wind speed (y-axis).
Overview: RSS Version 7 Ocean Products Intercalibrated multi-platform suite. 100 years of combined satellite data. Climate quality. DMSP   SSM/I, SSMIS F8, F10, F11, F13, F14 ,F15, F16, F17 TRMM TMI AMSR-E, AMSR-J WindSat V7 released V7 release in progress QuikSCAT
RSS WindSat Version 7 Ocean Products Optimized swath width by combining forand aft looks at each band.
New in V7 Radiometer : Winds Through Rain Version 6: Rain areas needed to be blocked out. Version 7: Rain areas have wind speeds. C-band (7 GHz) required:  WindSat, AMSR-E, GCOM  Possible with only X-band (11 GHz): TMI, GMI. Residual degradation in rain.
WindSat Wind Speed Algorithms No-rain algorithm (≥10.7 GHz, 32 km res.) Physical algorithm. Trained from Monte Carlo simulated TB.  Based on radiative transfer model (RTM). Wind speed in rain algorithms (≥6.8 GHz, 52 km res.)  Statistical or hybrid algorithms Trained from match-ups between measured TB and ground truth wind speeds in rainy conditions. Utilizes spectral difference (6.8 GHz versus 10.7 GHz) in wind/rain response of measured brightness temperatures. Same method is used by NOAA aircraft step frequency microwave radiometers (SFMR) to measure wind speeds in hurricanes. Radiometer winds in rain:  T. Meissner + F. Wentz, IEEE TGRS 47(9), 2009, 3065 - 3083
WindSat All-Weather Wind Speeds Blending between no-rain, global wind speed in rain and H-wind (tropical cyclones) algorithms.  Depends on SST, wind speed and cloud water. Smooth transitions between zones. L=0.2 mm W=15 m/s H-Wind Algo (tropical cyclones) No-Rain Algo SST=28oC SST Global Rain Algo Wind Speed Liquid Water
WindSat Wind Speed Validation 2-dimensional PDF: WindSat versus CCMP (cross-calibrated multi-platform) wind speed. Rain free and with rain.
WindSat Wind Validation at High Winds (1) Renfrew et al.  QJRMS 135, 2009, 2046 – 2066 Aircraft observations taken during the Greenland Flow Distortion Experiment, Feb + Mar 2007. 150 measurements during 5 missions. Wind vectors measured by turbulence probe. Adjusted to 10m above surface.
Improved QuikSCAT Ku2011 GMF: Purpose Improvement at high wind speeds. When RSS Ku2001 was developed (Wentz and Smith, 1999), validation data at high winds were limited.  GMF at high winds had to be extrapolated.  Analyses showed Ku2001 overestimated high winds.  WindSat wind speeds have been validated. Confident up to 30 – 35 m/s. Emissivity does not saturate at high winds. Good sensitivity. Excellent validation at low and moderate wind speeds < 20 m/s (Buoys, SSM/I, CCMP, NCEP,…), >  20 m/s: Aircraft flights. WindSat can be used as ground truth to calibrate new Ku-band scatterometer GMF. Produce a climate data record of ocean vector winds.  Combining QuikSCAT with other sensors using consistent methodology.
Improved QuikSCAT Ku2011 GMF: Development The GMF relates the observed backscatter ratio σ0 to  wind speed w and direction φat the ocean’s surface. To develop the new GMF we used 7 years of QuikSCAT σ0 collocated with WindSat wind speeds (90 min) and CCMP (Atlas et al, 2009) wind direction.  WindSat also measures rain rate, used to flag QuikSCAT σ0 when developing GMF.  We had hundreds of millions of reliable rain-free collocations, with about 0.2% at  winds greater than 20 m/s.
Ku2001 versus Ku2011 Greenland  Aircraft Flights Ku2001Ku2011 Ku2001Ku2011 A0 A2
Rain Impact: WindSat/QuikSCAT vs Buoys Table shows WindSat/QuikSCAT – Buoy wind speed as function of rain rate (5 years of data)
Rain Impact: WindSat/QuikSCAT/CCMP Figures show WindSat – CCMP and QuikSCAT – WindSat wind speeds as function of wind speed and rain rate. 5 years of data. No rain correction for scatterometer has been applied yet. With only single frequency (SF) scatterometer (QuikSCAT, ASCAT) it is very difficult to  Reliably flag rain events Retrieve rain rate which is needed to perform rain correction
Rain Impact on Scatterometer: Caveat Rain impact depends on rain rate + wind speed: At low  wind speeds:  QuikSCAT wind speeds too high in rain. At high wind speeds:  QuikSCAT wind speeds too low in rain. Important: Correct GMF at high wind speeds. Ku2001 wind speeds too high at high wind speeds. Accidental error cancellation possible in certain cases.
WindSat all-weather wind QuikSCAT Ku 2011 wind Hurricane Katrina08/29/2005  0:00 Z HRD analysis wind WindSat rain rate
Active vs Passive - Strength + Weaknesses WindSat and QuikSCAT V7 Data Sets available on www.remss.com + +very good + slightly degraded strongly degraded / impossible Assessment based on operating instruments: Polarimetric radiometer (WindSat). Single frequency scatterometer (QuikSCAT, ASCAT, Oceansat).

Más contenido relacionado

La actualidad más candente

Measuring water from Sky: Basin-wide ET monitoring and application
Measuring water from Sky: Basin-wide ET monitoring and applicationMeasuring water from Sky: Basin-wide ET monitoring and application
Measuring water from Sky: Basin-wide ET monitoring and application
Iwl Pcu
 
EVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONS
EVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONSEVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONS
EVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONS
grssieee
 
igarss11_rudiger.ppt
igarss11_rudiger.pptigarss11_rudiger.ppt
igarss11_rudiger.ppt
grssieee
 
Fukao Plenary.ppt
Fukao Plenary.pptFukao Plenary.ppt
Fukao Plenary.ppt
grssieee
 
GeoTool_2015_Coastal_Data_Application_BWang_Final
GeoTool_2015_Coastal_Data_Application_BWang_FinalGeoTool_2015_Coastal_Data_Application_BWang_Final
GeoTool_2015_Coastal_Data_Application_BWang_Final
Bin Wang
 
MONITORING LONG TERM VARIABILITY IN THE ATMOSPHERIC WATER VAPOUR CONTENT USIN...
MONITORING LONG TERM VARIABILITY IN THE ATMOSPHERIC WATER VAPOUR CONTENT USIN...MONITORING LONG TERM VARIABILITY IN THE ATMOSPHERIC WATER VAPOUR CONTENT USIN...
MONITORING LONG TERM VARIABILITY IN THE ATMOSPHERIC WATER VAPOUR CONTENT USIN...
grssieee
 
TU1.T10.3.ppt
TU1.T10.3.pptTU1.T10.3.ppt
TU1.T10.3.ppt
grssieee
 

La actualidad más candente (18)

IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
 
AtmosphericTurbulence
AtmosphericTurbulenceAtmosphericTurbulence
AtmosphericTurbulence
 
Measuring water from Sky: Basin-wide ET monitoring and application
Measuring water from Sky: Basin-wide ET monitoring and applicationMeasuring water from Sky: Basin-wide ET monitoring and application
Measuring water from Sky: Basin-wide ET monitoring and application
 
EVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONS
EVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONSEVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONS
EVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONS
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
 
#5
#5#5
#5
 
DSD-INT 2016 Data assimilation to improve volcanic ash forecasts using LOTOS-...
DSD-INT 2016 Data assimilation to improve volcanic ash forecasts using LOTOS-...DSD-INT 2016 Data assimilation to improve volcanic ash forecasts using LOTOS-...
DSD-INT 2016 Data assimilation to improve volcanic ash forecasts using LOTOS-...
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
 
The Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model DataThe Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model Data
 
DSD-INT 2016 The eWaterCyle global Hydrological forecasting system - Drost
DSD-INT 2016 The eWaterCyle global Hydrological forecasting system - DrostDSD-INT 2016 The eWaterCyle global Hydrological forecasting system - Drost
DSD-INT 2016 The eWaterCyle global Hydrological forecasting system - Drost
 
igarss11_rudiger.ppt
igarss11_rudiger.pptigarss11_rudiger.ppt
igarss11_rudiger.ppt
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
 
Merging multiple soil moisture products for improving the accuracy in rainfal...
Merging multiple soil moisture products for improving the accuracy in rainfal...Merging multiple soil moisture products for improving the accuracy in rainfal...
Merging multiple soil moisture products for improving the accuracy in rainfal...
 
Fukao Plenary.ppt
Fukao Plenary.pptFukao Plenary.ppt
Fukao Plenary.ppt
 
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
 
GeoTool_2015_Coastal_Data_Application_BWang_Final
GeoTool_2015_Coastal_Data_Application_BWang_FinalGeoTool_2015_Coastal_Data_Application_BWang_Final
GeoTool_2015_Coastal_Data_Application_BWang_Final
 
MONITORING LONG TERM VARIABILITY IN THE ATMOSPHERIC WATER VAPOUR CONTENT USIN...
MONITORING LONG TERM VARIABILITY IN THE ATMOSPHERIC WATER VAPOUR CONTENT USIN...MONITORING LONG TERM VARIABILITY IN THE ATMOSPHERIC WATER VAPOUR CONTENT USIN...
MONITORING LONG TERM VARIABILITY IN THE ATMOSPHERIC WATER VAPOUR CONTENT USIN...
 
TU1.T10.3.ppt
TU1.T10.3.pptTU1.T10.3.ppt
TU1.T10.3.ppt
 

Destacado (9)

judge_110724.pptx
judge_110724.pptxjudge_110724.pptx
judge_110724.pptx
 
4 Nalli-Barnet-Zhou-etal oral - JPSS EDR Val - IGARSS Jul-2011 v1.pdf
4 Nalli-Barnet-Zhou-etal oral - JPSS EDR Val - IGARSS Jul-2011 v1.pdf4 Nalli-Barnet-Zhou-etal oral - JPSS EDR Val - IGARSS Jul-2011 v1.pdf
4 Nalli-Barnet-Zhou-etal oral - JPSS EDR Val - IGARSS Jul-2011 v1.pdf
 
Bouvet_IGARSS2011.ppt
Bouvet_IGARSS2011.pptBouvet_IGARSS2011.ppt
Bouvet_IGARSS2011.ppt
 
YellowIGARSS.ppt
YellowIGARSS.pptYellowIGARSS.ppt
YellowIGARSS.ppt
 
4 ROMAN_IGARSS'11.ppt
4 ROMAN_IGARSS'11.ppt4 ROMAN_IGARSS'11.ppt
4 ROMAN_IGARSS'11.ppt
 
pres_IGARSS_2011_LFF_poltom.pdf
pres_IGARSS_2011_LFF_poltom.pdfpres_IGARSS_2011_LFF_poltom.pdf
pres_IGARSS_2011_LFF_poltom.pdf
 
How to #Twitter?
How to #Twitter?How to #Twitter?
How to #Twitter?
 
IGARSS-wj.pptx
IGARSS-wj.pptxIGARSS-wj.pptx
IGARSS-wj.pptx
 
FR4.T05.1.ppt
FR4.T05.1.pptFR4.T05.1.ppt
FR4.T05.1.ppt
 

Similar a presentation_meissner.pptx

igarss_2011_cfosat.ppt
igarss_2011_cfosat.pptigarss_2011_cfosat.ppt
igarss_2011_cfosat.ppt
grssieee
 
TU1.T10.2.pptx
TU1.T10.2.pptxTU1.T10.2.pptx
TU1.T10.2.pptx
grssieee
 
Publication_Draft_09Aug
Publication_Draft_09AugPublication_Draft_09Aug
Publication_Draft_09Aug
Kevin Schmidt
 
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
grssieee
 
igarss11stiles_ver3.pptx
igarss11stiles_ver3.pptxigarss11stiles_ver3.pptx
igarss11stiles_ver3.pptx
grssieee
 
TU3.T10.5.ppt
TU3.T10.5.pptTU3.T10.5.ppt
TU3.T10.5.ppt
grssieee
 
Thresholds of Detection for Falling Snow from Satellite-Borne Active and Pas...
Thresholds of Detection for Falling Snow  from Satellite-Borne Active and Pas...Thresholds of Detection for Falling Snow  from Satellite-Borne Active and Pas...
Thresholds of Detection for Falling Snow from Satellite-Borne Active and Pas...
grssieee
 
5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt
grssieee
 
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
grssieee
 
TU4.T10.4.pptx
TU4.T10.4.pptxTU4.T10.4.pptx
TU4.T10.4.pptx
grssieee
 
TRACKING ANALYSIS OF HURRICANE GONZALO USING AIRBORNE MICROWAVE RADIOMETER
TRACKING ANALYSIS OF HURRICANE GONZALO USING AIRBORNE MICROWAVE RADIOMETERTRACKING ANALYSIS OF HURRICANE GONZALO USING AIRBORNE MICROWAVE RADIOMETER
TRACKING ANALYSIS OF HURRICANE GONZALO USING AIRBORNE MICROWAVE RADIOMETER
jmicro
 
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptxIGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
grssieee
 

Similar a presentation_meissner.pptx (20)

igarss_2011_cfosat.ppt
igarss_2011_cfosat.pptigarss_2011_cfosat.ppt
igarss_2011_cfosat.ppt
 
TU1.T10.2.pptx
TU1.T10.2.pptxTU1.T10.2.pptx
TU1.T10.2.pptx
 
Publication_Draft_09Aug
Publication_Draft_09AugPublication_Draft_09Aug
Publication_Draft_09Aug
 
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
 
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
 
igarss11stiles_ver3.pptx
igarss11stiles_ver3.pptxigarss11stiles_ver3.pptx
igarss11stiles_ver3.pptx
 
The Aerial Wetted Path of Geostationary Transmission
The Aerial Wetted Path of Geostationary TransmissionThe Aerial Wetted Path of Geostationary Transmission
The Aerial Wetted Path of Geostationary Transmission
 
The Aerial Wetted Path of Geostationary Transmission
The Aerial Wetted Path of Geostationary TransmissionThe Aerial Wetted Path of Geostationary Transmission
The Aerial Wetted Path of Geostationary Transmission
 
TU3.T10.5.ppt
TU3.T10.5.pptTU3.T10.5.ppt
TU3.T10.5.ppt
 
Thresholds of Detection for Falling Snow from Satellite-Borne Active and Pas...
Thresholds of Detection for Falling Snow  from Satellite-Borne Active and Pas...Thresholds of Detection for Falling Snow  from Satellite-Borne Active and Pas...
Thresholds of Detection for Falling Snow from Satellite-Borne Active and Pas...
 
EGU21-11075_presentation.pptx
EGU21-11075_presentation.pptxEGU21-11075_presentation.pptx
EGU21-11075_presentation.pptx
 
5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt
 
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
 
TU4.T10.4.pptx
TU4.T10.4.pptxTU4.T10.4.pptx
TU4.T10.4.pptx
 
Ll3519561960
Ll3519561960Ll3519561960
Ll3519561960
 
AGU2014-SA31B-4098
AGU2014-SA31B-4098AGU2014-SA31B-4098
AGU2014-SA31B-4098
 
TRACKING ANALYSIS OF HURRICANE GONZALO USING AIRBORNE MICROWAVE RADIOMETER
TRACKING ANALYSIS OF HURRICANE GONZALO USING AIRBORNE MICROWAVE RADIOMETERTRACKING ANALYSIS OF HURRICANE GONZALO USING AIRBORNE MICROWAVE RADIOMETER
TRACKING ANALYSIS OF HURRICANE GONZALO USING AIRBORNE MICROWAVE RADIOMETER
 
Mercator Ocean newsletter 10
Mercator Ocean newsletter 10Mercator Ocean newsletter 10
Mercator Ocean newsletter 10
 
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptxIGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
 
Microwave remote sensing
Microwave remote sensingMicrowave remote sensing
Microwave remote sensing
 

Más de grssieee

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
grssieee
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
grssieee
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
grssieee
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
grssieee
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
grssieee
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
grssieee
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animations
grssieee
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf
grssieee
 
DLR open house
DLR open houseDLR open house
DLR open house
grssieee
 
DLR open house
DLR open houseDLR open house
DLR open house
grssieee
 
DLR open house
DLR open houseDLR open house
DLR open house
grssieee
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.ppt
grssieee
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.ppt
grssieee
 

Más de grssieee (20)

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
Test
TestTest
Test
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animations
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.ppt
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.ppt
 

Último

Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Último (20)

Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 

presentation_meissner.pptx

  • 1. IGARSS 2011 Vancouver, BC, Canada July 26, 2011 All-Weather Wind Vector Measurements from Intercalibrated Active and Passive Microwave Satellite Sensors Thomas Meissner Lucrezia Ricciardulli Frank Wentz
  • 2. Outline Passive (radiometer: WindSat) vs active (scatterometer: QuikSCAT) wind speed retrievals: Surface emissivity versus radar backscatter. Ocean Surface Emissivity Model. Overview: RSS WindSat version 7 ocean products. WindSat all-weather wind speeds. Improved QuikSCAT Ku2011 geophysical model function. Validation. High winds. Rain impact study. Selected storm case: Hurricane Katrina. Conclusion: active vs passive - strength +weaknesses.
  • 3. Passive vs Active Wind Speeds Passive (radiometer) Sees change in emissivity of wind roughened sea surface compared with specular surface Low winds: Polarization mixing of large gravity waves. High winds: Emissivity of sea foam. Radiative Transfer Model (RTM) function for wind induced surface emissivity. Active (scatterometer) Sees backscatter from the Bragg-resonance of small capillary waves. Geophysical Model Function (GMF) for wind induced radar backscatter. Calibration Ground truth: Buoy, NWP wind speeds
  • 4. Challenge 1: High Wind Speeds (> 20 m/s) Passive (radiometer) Lack of reliable ground truth. (buoys, NWP) for calibration and validation. Tropical cyclones: High winds correlated with rain (challenge 2). Active (scatterometer) Lack of reliable ground truth. (buoys, NWP) for calibration and validation. Tropical cyclones: High winds correlated with rain (challenge 1). Loss of sensitivity (GMF saturates).
  • 5. Challenge 2: Wind Speeds in Rain Passive (radiometer) Rainy atmosphere attenuates signal. Emissivity from rainy atmosphere has similar signature than from wind roughened surface. Scattering from rain drops is difficult to model. Active (scatterometer) Rainy atmosphere attenuates signal. Backscatter from rainy atmosphere has similar signature than from wind roughened surface. Scattering from rain drops is difficult to model. Splash effect on surface. Rain flagging difficult for single frequency sensor.
  • 6. Ocean Surface Emissivity Model Crucial part of Radiative Transfer Model (RTM). Physical basis of passive wind retrieval algorithm. Dielectric constant of sea water. Wind induced sea surface emissivity. Derived from WindSat and SSM/I TB measurements. Winds < 20 m/s: Buoys. NWP. Scatterometer. Winds > 20 m/s: HRD wind analysis (hurricanes). SFMR data. T. Meissner + F. Wentz, IEEE TGRS 42(9), 2004, 1836 - 1849 T. Meissner + F. Wentz, IEEE TGRS, under review
  • 7. Ocean Surface Emissivity Model (cont.) Measured minus computed WindSat TB as function of SST (x-axis) and wind speed (y-axis).
  • 8. Overview: RSS Version 7 Ocean Products Intercalibrated multi-platform suite. 100 years of combined satellite data. Climate quality. DMSP SSM/I, SSMIS F8, F10, F11, F13, F14 ,F15, F16, F17 TRMM TMI AMSR-E, AMSR-J WindSat V7 released V7 release in progress QuikSCAT
  • 9. RSS WindSat Version 7 Ocean Products Optimized swath width by combining forand aft looks at each band.
  • 10. New in V7 Radiometer : Winds Through Rain Version 6: Rain areas needed to be blocked out. Version 7: Rain areas have wind speeds. C-band (7 GHz) required: WindSat, AMSR-E, GCOM Possible with only X-band (11 GHz): TMI, GMI. Residual degradation in rain.
  • 11. WindSat Wind Speed Algorithms No-rain algorithm (≥10.7 GHz, 32 km res.) Physical algorithm. Trained from Monte Carlo simulated TB. Based on radiative transfer model (RTM). Wind speed in rain algorithms (≥6.8 GHz, 52 km res.) Statistical or hybrid algorithms Trained from match-ups between measured TB and ground truth wind speeds in rainy conditions. Utilizes spectral difference (6.8 GHz versus 10.7 GHz) in wind/rain response of measured brightness temperatures. Same method is used by NOAA aircraft step frequency microwave radiometers (SFMR) to measure wind speeds in hurricanes. Radiometer winds in rain: T. Meissner + F. Wentz, IEEE TGRS 47(9), 2009, 3065 - 3083
  • 12. WindSat All-Weather Wind Speeds Blending between no-rain, global wind speed in rain and H-wind (tropical cyclones) algorithms. Depends on SST, wind speed and cloud water. Smooth transitions between zones. L=0.2 mm W=15 m/s H-Wind Algo (tropical cyclones) No-Rain Algo SST=28oC SST Global Rain Algo Wind Speed Liquid Water
  • 13. WindSat Wind Speed Validation 2-dimensional PDF: WindSat versus CCMP (cross-calibrated multi-platform) wind speed. Rain free and with rain.
  • 14. WindSat Wind Validation at High Winds (1) Renfrew et al. QJRMS 135, 2009, 2046 – 2066 Aircraft observations taken during the Greenland Flow Distortion Experiment, Feb + Mar 2007. 150 measurements during 5 missions. Wind vectors measured by turbulence probe. Adjusted to 10m above surface.
  • 15. Improved QuikSCAT Ku2011 GMF: Purpose Improvement at high wind speeds. When RSS Ku2001 was developed (Wentz and Smith, 1999), validation data at high winds were limited. GMF at high winds had to be extrapolated. Analyses showed Ku2001 overestimated high winds. WindSat wind speeds have been validated. Confident up to 30 – 35 m/s. Emissivity does not saturate at high winds. Good sensitivity. Excellent validation at low and moderate wind speeds < 20 m/s (Buoys, SSM/I, CCMP, NCEP,…), > 20 m/s: Aircraft flights. WindSat can be used as ground truth to calibrate new Ku-band scatterometer GMF. Produce a climate data record of ocean vector winds. Combining QuikSCAT with other sensors using consistent methodology.
  • 16. Improved QuikSCAT Ku2011 GMF: Development The GMF relates the observed backscatter ratio σ0 to wind speed w and direction φat the ocean’s surface. To develop the new GMF we used 7 years of QuikSCAT σ0 collocated with WindSat wind speeds (90 min) and CCMP (Atlas et al, 2009) wind direction. WindSat also measures rain rate, used to flag QuikSCAT σ0 when developing GMF. We had hundreds of millions of reliable rain-free collocations, with about 0.2% at winds greater than 20 m/s.
  • 17. Ku2001 versus Ku2011 Greenland Aircraft Flights Ku2001Ku2011 Ku2001Ku2011 A0 A2
  • 18. Rain Impact: WindSat/QuikSCAT vs Buoys Table shows WindSat/QuikSCAT – Buoy wind speed as function of rain rate (5 years of data)
  • 19. Rain Impact: WindSat/QuikSCAT/CCMP Figures show WindSat – CCMP and QuikSCAT – WindSat wind speeds as function of wind speed and rain rate. 5 years of data. No rain correction for scatterometer has been applied yet. With only single frequency (SF) scatterometer (QuikSCAT, ASCAT) it is very difficult to Reliably flag rain events Retrieve rain rate which is needed to perform rain correction
  • 20. Rain Impact on Scatterometer: Caveat Rain impact depends on rain rate + wind speed: At low wind speeds: QuikSCAT wind speeds too high in rain. At high wind speeds: QuikSCAT wind speeds too low in rain. Important: Correct GMF at high wind speeds. Ku2001 wind speeds too high at high wind speeds. Accidental error cancellation possible in certain cases.
  • 21. WindSat all-weather wind QuikSCAT Ku 2011 wind Hurricane Katrina08/29/2005 0:00 Z HRD analysis wind WindSat rain rate
  • 22. Active vs Passive - Strength + Weaknesses WindSat and QuikSCAT V7 Data Sets available on www.remss.com + +very good + slightly degraded strongly degraded / impossible Assessment based on operating instruments: Polarimetric radiometer (WindSat). Single frequency scatterometer (QuikSCAT, ASCAT, Oceansat).