SlideShare una empresa de Scribd logo
1 de 26
Design of Infinite Impulse
Response Digital Filters
Mr. HIMANSHU DIWAKAR
Assistant Professor
JETGI
Mr. HIMANSHU DIWAKAR JETGI 1
Mr. HIMANSHU DIWAKAR JETGI 2
Infinite Impulse Response (IIR) Filters
Recursive Filters:
y n a y n a y n N b x n b x n NN N( ) ( ) ... ( ) ( ) ... ( )        1 01
with constant coefficients.a bi j, ... ,
Advantages: very selective filters with a few parameters;
Disadvantages: a) in general nonlinear phase,
b) can be unstable.
Mr. HIMANSHU DIWAKAR JETGI 3
Design Techniques: discretization of analog filters
s-plane z-plane







analog digital
H sa ( ) H zd ( )
Problem: we need to map
the derivative operator “s” into the time shift operator “z”,
and make sure that the resulting system is still stable.
Mr. HIMANSHU DIWAKAR JETGI 4
Two major techniques
• Euler Approximation (easiest),
• Bilinear Transformation (best).
 Z y nT
Y z z Y z
T
z
T
Y z( )
( ) ( )
( )








 1 1
1
Euler Approximation of the differential operator:
take the z-Transform of both sides:
( )
( ) ( )
y nT
y nT y nT T
T

 
approximation of “s”
s
z
T

 
1 1
Mr. HIMANSHU DIWAKAR JETGI 5
Example:
take the analog filter with transfer function and discretize it
with a sampling frequency .
By Euler’s approximation
H s
sa ( ) 

2
1
F Hzs  5
H z
z
z
zd ( )
.
.
.






 


2
1
02
1
0333
08331
The filter is implemented by the difference equation
y n y n x n( ) . ( ) . ( )  0833 1 0333
s-plane z-plane

analog digital

Mr. HIMANSHU DIWAKAR JETGI 6
Problem with Euler Approximation:
it maps the whole stable region of the s-plane into a subset of the stable region in the z-plane
s-plane z-plane
since

















T
s
T
s
sT
z
1
1
2
1
2
1
1
1
2
1
1
T
1
T

s
z  
1
2
1
2 if Re[s]<0.
Mr. HIMANSHU DIWAKAR JETGI 7
Bilinear Transformation. It is based on the relationship
 y nT y nT T y t dt y nT y nT T
T
nT T
nT
area ABCD
( ) ( ) ( ) ( ) ( )     
 2      
nT-T nT
A
B
C
D
Take the z-Transform of both sides:
 Y z z Y z
T
Y z z Y z( ) ( ) ( ) ( )   1
1
1
1
2
which yields the bilinear transformation:
s
T
z
z
z
s
T
s
T



  




2 1
1
2
2
1
1
Mr. HIMANSHU DIWAKAR JETGI 8
Main Property of the Bilinear Transformation: it preserves the
stability regions.
s-plane z-plane
| |z
s
T
s
T




2
2
1 2
T
2
T


ssince:
Mr. HIMANSHU DIWAKAR JETGI 9
Mapping of Frequency with the Bilinear Transformation.
| |e
j
T
j
T
j






2
2
1
2
T
2
T
j
2
phase ( ) 2
2
j
T
j
T
   
 
  
     
   
 
j
 j
2
T


Magnitude:
Phase:
where  






tg
T1
2

 






2
2T
tg

 






2
2
1
tg
T

Mr. HIMANSHU DIWAKAR JETGI 10
See the meaning of this:
 






2
2T
tg
 






2
2
1
tg
T

it is a frequency mapping between analog frequency and digital freqiency.
c
0
  0
  
c
cc
Mr. HIMANSHU DIWAKAR JETGI 11
Example: we want to design a digital low pass filter with a bandwith
and a sampling frequency . Use the Bilinear Transformation.
F kHzo  8
F kHzs  24
• Step 1: specs in the digital freq. domain
• Step 2: specs of the analog filter to be digitized:
  c rad ( )(8/ ) /2 24 2 3
Solution:
c s
c
F tg tg rad





    2
2
2 24 10 3 8313 103 3
( )( ) ( / ) . / sec
or equivalently F kHzc  1323.
• Step 3: design an analog low pass filter (more later) with a bandwith ;
• Step 4: apply Bilinear Transformation to obtain desired digital filter.
F kHzc  1323.
Mr. HIMANSHU DIWAKAR JETGI 12
Design of Analog Filters
Specifications:
p c
s
1
1 2
 
1
2
2
2
| ( )|H  2
pass
band
transition
band
stop
band
Mr. HIMANSHU DIWAKAR JETGI 13
Two Major Techniques: Butterworth, Chebychev
Butterworth:
| ( )|H
c
N
p
N




2
2
2
2
1
1
1
1
















Specify from passband, determine N from stopband: , p
| ( )|H s
s
p
N


2
2
2 2
21
1










  N
s
p













log
log
1
2
2
2
2
2
2

 


Mr. HIMANSHU DIWAKAR JETGI 14
Poles of Butterworth Filter:
| ( )| ( ) ( )H H s H s s j
 
2
   H s H s
c
N
s
j
( ) ( ) 








1
1
2











1
1
2
2
s
c
N

which yields the poles as solutions
 

 
s
c
N
2
2
1
1
  s j e e ec
j
k
N
c
j j k
N
 


 
   2
2 2
2 1
2
( )
, ,...,k N 0 2 1
and choose the N poles in the stable region.
s-plane
poles
++
+ +
N=2
Mr. HIMANSHU DIWAKAR JETGI 15
Example: design a low pass filter, Butterworth, with 3dB bandwith of 500Hz and 40dB
attenuation at 1000Hz.
Solution:
 c s 1000 2000 ; ,
solve for N from the expression
1
1
1
1 2
0012 2
2












s
c
N N .
N N

  
log( )
log( )
.
10 1
2 2
6 64 7
4
poles at
s e kk
j k
  
1000 0 62 2 1 14
  ( / ( ) / )
, ,...,
| ( )|H dB

Mr. HIMANSHU DIWAKAR JETGI 16
Chebychev Filters.
Based on Chebychev Polynomials: T x NtN x t
( ) cos( ) cos( )
 
T x
T x t x
T x t t x
T x xT x T x
x t
x t
N N N
0
1
2
2 2
1 1
0 1
2 2 1 2 1
2
( ) cos( ) ,
( ) cos( ) ,
( ) cos( ) cos ( ) ,
( ) ( ) ( )
cos( )
cos( )
 
 
    
 


 

T x3 ( )
x
Property of Chenychev Polynomials:
within the interval Chebychev polynomials have least maximum deviation
from 0 compared to polynomials of the same degree and same highest order coefficient
   1 1x
T x x x3
3
4 3( )  
P x x ax bx c( )    4 3 2
x
Mr. HIMANSHU DIWAKAR JETGI 17
Why? Suppose there exists with smaller deviation thenP x x ax bx c( )    4 3 2
T x3( )
T x3 ( )
P x( )
P x T x( ) ( ) 3
P T  3 1
P T  3 1
P T  3 1
A
B
P T  3 1
D
A
B
C
C
D




rootroot root
But: has degree 2 …
… and it cannot have three roots!!!
P x T x x ax bx c x x( ) ( )      3
3 2 3
4 4 3
So: you cannot find a P(x) which does better (in terms of deviation from 0) then the
Chebychev polynomial.
Mr. HIMANSHU DIWAKAR JETGI 18
Chebychev Filter:
| ( )|H
TN
p



2
2 2
1
1








Since (easy to show from the definition), thenTN ( )1 1 | ( )|H p 2
2
1
1

 

 p
| ( )|H  2 1
1 2
 
Mr. HIMANSHU DIWAKAR JETGI 19
Design of Chebychev Filters:
Formulas are tedious to derive. Just give the results:
Given: the passband, and
which determines the ripple in the passband,
compute the poles from the formulae
p





 







1 12
1
N
r1 2
2
1
2, 


s-plane

 
k k
N
k N    
2
2 1
2
0 1( ) , ,...,
Mr. HIMANSHU DIWAKAR JETGI 20
Example: design a Chebychev low pass filter with the following specs:
• passband with a 1dB ripple,
• stopband with attenuation of at least 40dB.
F Hzp  500 ,
F Hzs  1000 ,
Step 1: determine . The passband frequency
For 1dB ripple,
 , p
20
1
1
10 1 12
1
2
2
log log( )






     

 dB    05088.
p  1000
Step 2: determine the order N. Use the formula
  
 
N
s p s p

   
 
log ( /
log ( / ) ( / )
1 1 1
1
2
2
2
2 2
2
2
   
   
with , to obtain2 0 01 . N  4
| ( )|H 

 p
Mr. HIMANSHU DIWAKAR JETGI 21
Frequency Transformations
We can design high pass, bandpass, bandstop filters from transformations of low pass filters.
Low Pass to High Pass:

| ( )|H 
H
j
c

2






c
c c
 c
same value at c
H
j
H
j
H jc
c
c
c




2





 





  ( )
s
s
c

 2
Mr. HIMANSHU DIWAKAR JETGI 22
Low Pass to Band Pass:
c c
ul l u
s
s
sc
l u
u l




 
 
2
( )
The tranformation
maps
s j
j
j
s j
j
j
l c
l l u
l u l
c
u c
u l u
u u l
c
 
 

 
 
 

 
 
  
  

 
  
  

2
2
( )
( )
Mr. HIMANSHU DIWAKAR JETGI 23
Low Pass to Band Stop
c c
l u
 l u
s
s
sc
u l
c l




 
 
( )
2
Mr. HIMANSHU DIWAKAR JETGI 24
How to make the transformation:
Consider the transfer function
H s
K s z s z s z
s p s p s p
m nm
n
( )
( )( )...( )
( )( )...( )
,
  
  
1 2
1 2
then with we obtains F s ( )  
   
   
H s H F s
K F s z F s z
F s p F s p
T
m
n
( ) ( )
( ) ... ( )
( ) ... ( )
 
 
 
1
1
with zeros and poles solutions of
F s z k m
F s p j n
k
j
( ) , ,...,
( ) , ,...,
 
 
1
1






also n-m extra zeros at s where F s( )  
Mr. HIMANSHU DIWAKAR JETGI 25
Mr. HIMANSHU DIWAKAR JETGI 26
THANK YOU

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Filter design techniques ch7 iir
Filter design techniques ch7 iirFilter design techniques ch7 iir
Filter design techniques ch7 iir
 
Fir filter_utkarsh_kulshrestha
Fir filter_utkarsh_kulshresthaFir filter_utkarsh_kulshrestha
Fir filter_utkarsh_kulshrestha
 
Warping Concept (iir filters-bilinear transformation method)
Warping Concept  (iir filters-bilinear transformation method)Warping Concept  (iir filters-bilinear transformation method)
Warping Concept (iir filters-bilinear transformation method)
 
B tech
B techB tech
B tech
 
Basics of Analogue Filters
Basics of Analogue FiltersBasics of Analogue Filters
Basics of Analogue Filters
 
Filter- IIR - Digital signal processing(DSP)
Filter- IIR - Digital signal processing(DSP)Filter- IIR - Digital signal processing(DSP)
Filter- IIR - Digital signal processing(DSP)
 
Design of Filters PPT
Design of Filters PPTDesign of Filters PPT
Design of Filters PPT
 
Dsp lecture vol 5 design of iir
Dsp lecture vol 5 design of iirDsp lecture vol 5 design of iir
Dsp lecture vol 5 design of iir
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
 
IIR Filters
IIR FiltersIIR Filters
IIR Filters
 
Design of FIR filters
Design of FIR filtersDesign of FIR filters
Design of FIR filters
 
Design and realization of fir filter using chebyshev window
Design and realization of fir filter using chebyshev windowDesign and realization of fir filter using chebyshev window
Design and realization of fir filter using chebyshev window
 
Fir filter design using windows
Fir filter design using windowsFir filter design using windows
Fir filter design using windows
 
Butterworth filter
Butterworth filterButterworth filter
Butterworth filter
 
DSP_FOEHU - Lec 11 - IIR Filter Design
DSP_FOEHU - Lec 11 - IIR Filter DesignDSP_FOEHU - Lec 11 - IIR Filter Design
DSP_FOEHU - Lec 11 - IIR Filter Design
 
Design of IIR filters
Design of IIR filtersDesign of IIR filters
Design of IIR filters
 
IIR filter
IIR filterIIR filter
IIR filter
 
Dsp U Lec09 Iir Filter Design
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Design
 
digital filter design
digital filter designdigital filter design
digital filter design
 
Design of FIR Filters
Design of FIR FiltersDesign of FIR Filters
Design of FIR Filters
 

Similar a Design of infinite impulse response digital filters 2

An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transforms
Lily Rose
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
manish katara
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
Elisée Ndjabu
 
Digital filters (FIR).ppt
Digital filters (FIR).pptDigital filters (FIR).ppt
Digital filters (FIR).ppt
DevipriyaS21
 

Similar a Design of infinite impulse response digital filters 2 (20)

Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open Channel
 
An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transforms
 
6-Digital filters (FIR).ppt
6-Digital filters (FIR).ppt6-Digital filters (FIR).ppt
6-Digital filters (FIR).ppt
 
Ec gate'13
Ec gate'13Ec gate'13
Ec gate'13
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
 
DSP.ppt
DSP.pptDSP.ppt
DSP.ppt
 
Ec gate 13
Ec gate 13Ec gate 13
Ec gate 13
 
Filters.pdf
Filters.pdfFilters.pdf
Filters.pdf
 
lecture_37.pptx
lecture_37.pptxlecture_37.pptx
lecture_37.pptx
 
DSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter DesignDSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter Design
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
 
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
 
DSP-UNIT-V-PPT-1.pptx
DSP-UNIT-V-PPT-1.pptxDSP-UNIT-V-PPT-1.pptx
DSP-UNIT-V-PPT-1.pptx
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
 
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
 
Filter_Designs
Filter_DesignsFilter_Designs
Filter_Designs
 
1-Digital filters (FIR).pdf
1-Digital filters (FIR).pdf1-Digital filters (FIR).pdf
1-Digital filters (FIR).pdf
 
DIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.ppt
DIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.pptDIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.ppt
DIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.ppt
 
Digital filters (FIR).ppt
Digital filters (FIR).pptDigital filters (FIR).ppt
Digital filters (FIR).ppt
 
01analog filters
01analog filters01analog filters
01analog filters
 

Más de HIMANSHU DIWAKAR

Más de HIMANSHU DIWAKAR (20)

741 Integrated circuit (IC)
741 Integrated circuit (IC)741 Integrated circuit (IC)
741 Integrated circuit (IC)
 
Radio wave propagation
Radio wave propagationRadio wave propagation
Radio wave propagation
 
Current mirrors (using BJT & MOSFET)
Current mirrors (using BJT & MOSFET)Current mirrors (using BJT & MOSFET)
Current mirrors (using BJT & MOSFET)
 
Phase Lock Loop (PLL)
Phase Lock Loop (PLL)Phase Lock Loop (PLL)
Phase Lock Loop (PLL)
 
Waveform genrators (comparators schmitt trigger)
Waveform genrators (comparators schmitt trigger)Waveform genrators (comparators schmitt trigger)
Waveform genrators (comparators schmitt trigger)
 
555 timer & applications
555 timer & applications555 timer & applications
555 timer & applications
 
DACs &ADCs
DACs &ADCsDACs &ADCs
DACs &ADCs
 
MOS transistor 13
MOS transistor 13MOS transistor 13
MOS transistor 13
 
MOSFET fabrication 12
MOSFET fabrication 12MOSFET fabrication 12
MOSFET fabrication 12
 
Vlsi design 11
Vlsi design 11Vlsi design 11
Vlsi design 11
 
Attenuators and phase shifters 24
Attenuators and phase shifters 24Attenuators and phase shifters 24
Attenuators and phase shifters 24
 
Microwave propagation in ferrites 23
Microwave propagation in ferrites 23Microwave propagation in ferrites 23
Microwave propagation in ferrites 23
 
Directional couplers 22
Directional couplers 22Directional couplers 22
Directional couplers 22
 
Microwave linear beam 31
Microwave linear beam 31Microwave linear beam 31
Microwave linear beam 31
 
Microwave hybrid circuits 2nd 1
Microwave hybrid circuits 2nd 1Microwave hybrid circuits 2nd 1
Microwave hybrid circuits 2nd 1
 
Microwave waveguides 1st 1
Microwave waveguides 1st 1Microwave waveguides 1st 1
Microwave waveguides 1st 1
 
Microstrip TL 1st 3
Microstrip TL 1st 3Microstrip TL 1st 3
Microstrip TL 1st 3
 
Microwave cavity 1st 4
Microwave cavity 1st 4Microwave cavity 1st 4
Microwave cavity 1st 4
 
Tem mode 1st 2
Tem mode 1st 2Tem mode 1st 2
Tem mode 1st 2
 
Fourier transforms of discrete signals (DSP) 5
Fourier transforms of discrete signals (DSP) 5Fourier transforms of discrete signals (DSP) 5
Fourier transforms of discrete signals (DSP) 5
 

Último

VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 

Último (20)

Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 

Design of infinite impulse response digital filters 2

  • 1. Design of Infinite Impulse Response Digital Filters Mr. HIMANSHU DIWAKAR Assistant Professor JETGI Mr. HIMANSHU DIWAKAR JETGI 1
  • 3. Infinite Impulse Response (IIR) Filters Recursive Filters: y n a y n a y n N b x n b x n NN N( ) ( ) ... ( ) ( ) ... ( )        1 01 with constant coefficients.a bi j, ... , Advantages: very selective filters with a few parameters; Disadvantages: a) in general nonlinear phase, b) can be unstable. Mr. HIMANSHU DIWAKAR JETGI 3
  • 4. Design Techniques: discretization of analog filters s-plane z-plane        analog digital H sa ( ) H zd ( ) Problem: we need to map the derivative operator “s” into the time shift operator “z”, and make sure that the resulting system is still stable. Mr. HIMANSHU DIWAKAR JETGI 4
  • 5. Two major techniques • Euler Approximation (easiest), • Bilinear Transformation (best).  Z y nT Y z z Y z T z T Y z( ) ( ) ( ) ( )          1 1 1 Euler Approximation of the differential operator: take the z-Transform of both sides: ( ) ( ) ( ) y nT y nT y nT T T    approximation of “s” s z T    1 1 Mr. HIMANSHU DIWAKAR JETGI 5
  • 6. Example: take the analog filter with transfer function and discretize it with a sampling frequency . By Euler’s approximation H s sa ( )   2 1 F Hzs  5 H z z z zd ( ) . . .           2 1 02 1 0333 08331 The filter is implemented by the difference equation y n y n x n( ) . ( ) . ( )  0833 1 0333 s-plane z-plane  analog digital  Mr. HIMANSHU DIWAKAR JETGI 6
  • 7. Problem with Euler Approximation: it maps the whole stable region of the s-plane into a subset of the stable region in the z-plane s-plane z-plane since                  T s T s sT z 1 1 2 1 2 1 1 1 2 1 1 T 1 T  s z   1 2 1 2 if Re[s]<0. Mr. HIMANSHU DIWAKAR JETGI 7
  • 8. Bilinear Transformation. It is based on the relationship  y nT y nT T y t dt y nT y nT T T nT T nT area ABCD ( ) ( ) ( ) ( ) ( )       2       nT-T nT A B C D Take the z-Transform of both sides:  Y z z Y z T Y z z Y z( ) ( ) ( ) ( )   1 1 1 1 2 which yields the bilinear transformation: s T z z z s T s T           2 1 1 2 2 1 1 Mr. HIMANSHU DIWAKAR JETGI 8
  • 9. Main Property of the Bilinear Transformation: it preserves the stability regions. s-plane z-plane | |z s T s T     2 2 1 2 T 2 T   ssince: Mr. HIMANSHU DIWAKAR JETGI 9
  • 10. Mapping of Frequency with the Bilinear Transformation. | |e j T j T j       2 2 1 2 T 2 T j 2 phase ( ) 2 2 j T j T                      j  j 2 T   Magnitude: Phase: where         tg T1 2          2 2T tg          2 2 1 tg T  Mr. HIMANSHU DIWAKAR JETGI 10
  • 11. See the meaning of this:         2 2T tg         2 2 1 tg T  it is a frequency mapping between analog frequency and digital freqiency. c 0   0    c cc Mr. HIMANSHU DIWAKAR JETGI 11
  • 12. Example: we want to design a digital low pass filter with a bandwith and a sampling frequency . Use the Bilinear Transformation. F kHzo  8 F kHzs  24 • Step 1: specs in the digital freq. domain • Step 2: specs of the analog filter to be digitized:   c rad ( )(8/ ) /2 24 2 3 Solution: c s c F tg tg rad          2 2 2 24 10 3 8313 103 3 ( )( ) ( / ) . / sec or equivalently F kHzc  1323. • Step 3: design an analog low pass filter (more later) with a bandwith ; • Step 4: apply Bilinear Transformation to obtain desired digital filter. F kHzc  1323. Mr. HIMANSHU DIWAKAR JETGI 12
  • 13. Design of Analog Filters Specifications: p c s 1 1 2   1 2 2 2 | ( )|H  2 pass band transition band stop band Mr. HIMANSHU DIWAKAR JETGI 13
  • 14. Two Major Techniques: Butterworth, Chebychev Butterworth: | ( )|H c N p N     2 2 2 2 1 1 1 1                 Specify from passband, determine N from stopband: , p | ( )|H s s p N   2 2 2 2 21 1             N s p              log log 1 2 2 2 2 2 2      Mr. HIMANSHU DIWAKAR JETGI 14
  • 15. Poles of Butterworth Filter: | ( )| ( ) ( )H H s H s s j   2    H s H s c N s j ( ) ( )          1 1 2            1 1 2 2 s c N  which yields the poles as solutions      s c N 2 2 1 1   s j e e ec j k N c j j k N          2 2 2 2 1 2 ( ) , ,...,k N 0 2 1 and choose the N poles in the stable region. s-plane poles ++ + + N=2 Mr. HIMANSHU DIWAKAR JETGI 15
  • 16. Example: design a low pass filter, Butterworth, with 3dB bandwith of 500Hz and 40dB attenuation at 1000Hz. Solution:  c s 1000 2000 ; , solve for N from the expression 1 1 1 1 2 0012 2 2             s c N N . N N     log( ) log( ) . 10 1 2 2 6 64 7 4 poles at s e kk j k    1000 0 62 2 1 14   ( / ( ) / ) , ,..., | ( )|H dB  Mr. HIMANSHU DIWAKAR JETGI 16
  • 17. Chebychev Filters. Based on Chebychev Polynomials: T x NtN x t ( ) cos( ) cos( )   T x T x t x T x t t x T x xT x T x x t x t N N N 0 1 2 2 2 1 1 0 1 2 2 1 2 1 2 ( ) cos( ) , ( ) cos( ) , ( ) cos( ) cos ( ) , ( ) ( ) ( ) cos( ) cos( )                 T x3 ( ) x Property of Chenychev Polynomials: within the interval Chebychev polynomials have least maximum deviation from 0 compared to polynomials of the same degree and same highest order coefficient    1 1x T x x x3 3 4 3( )   P x x ax bx c( )    4 3 2 x Mr. HIMANSHU DIWAKAR JETGI 17
  • 18. Why? Suppose there exists with smaller deviation thenP x x ax bx c( )    4 3 2 T x3( ) T x3 ( ) P x( ) P x T x( ) ( ) 3 P T  3 1 P T  3 1 P T  3 1 A B P T  3 1 D A B C C D     rootroot root But: has degree 2 … … and it cannot have three roots!!! P x T x x ax bx c x x( ) ( )      3 3 2 3 4 4 3 So: you cannot find a P(x) which does better (in terms of deviation from 0) then the Chebychev polynomial. Mr. HIMANSHU DIWAKAR JETGI 18
  • 19. Chebychev Filter: | ( )|H TN p    2 2 2 1 1         Since (easy to show from the definition), thenTN ( )1 1 | ( )|H p 2 2 1 1      p | ( )|H  2 1 1 2   Mr. HIMANSHU DIWAKAR JETGI 19
  • 20. Design of Chebychev Filters: Formulas are tedious to derive. Just give the results: Given: the passband, and which determines the ripple in the passband, compute the poles from the formulae p               1 12 1 N r1 2 2 1 2,    s-plane    k k N k N     2 2 1 2 0 1( ) , ,..., Mr. HIMANSHU DIWAKAR JETGI 20
  • 21. Example: design a Chebychev low pass filter with the following specs: • passband with a 1dB ripple, • stopband with attenuation of at least 40dB. F Hzp  500 , F Hzs  1000 , Step 1: determine . The passband frequency For 1dB ripple,  , p 20 1 1 10 1 12 1 2 2 log log( )               dB    05088. p  1000 Step 2: determine the order N. Use the formula      N s p s p        log ( / log ( / ) ( / ) 1 1 1 1 2 2 2 2 2 2 2         with , to obtain2 0 01 . N  4 | ( )|H    p Mr. HIMANSHU DIWAKAR JETGI 21
  • 22. Frequency Transformations We can design high pass, bandpass, bandstop filters from transformations of low pass filters. Low Pass to High Pass:  | ( )|H  H j c  2       c c c  c same value at c H j H j H jc c c c     2               ( ) s s c   2 Mr. HIMANSHU DIWAKAR JETGI 22
  • 23. Low Pass to Band Pass: c c ul l u s s sc l u u l         2 ( ) The tranformation maps s j j j s j j j l c l l u l u l c u c u l u u u l c                                 2 2 ( ) ( ) Mr. HIMANSHU DIWAKAR JETGI 23
  • 24. Low Pass to Band Stop c c l u  l u s s sc u l c l         ( ) 2 Mr. HIMANSHU DIWAKAR JETGI 24
  • 25. How to make the transformation: Consider the transfer function H s K s z s z s z s p s p s p m nm n ( ) ( )( )...( ) ( )( )...( ) ,       1 2 1 2 then with we obtains F s ( )           H s H F s K F s z F s z F s p F s p T m n ( ) ( ) ( ) ... ( ) ( ) ... ( )       1 1 with zeros and poles solutions of F s z k m F s p j n k j ( ) , ,..., ( ) , ,...,     1 1       also n-m extra zeros at s where F s( )   Mr. HIMANSHU DIWAKAR JETGI 25
  • 26. Mr. HIMANSHU DIWAKAR JETGI 26 THANK YOU