SlideShare una empresa de Scribd logo
1 de 31
Works plan
 - Introduction
 - Principal of « Gauss blur » filter
 - Mathematic expression for three techniques (t-f-
z) test.
 -Algorithm
 Results
 Conclusion and perspective
Works plan
 - Principal of « Gauss blur » filter
 - Mathématic expression for three techniques (t-f-
z) test.
 -Algorithm
 The results
 Conclusion & perspective
Introduction
Bokeh (derived from japenese, noun boke, meaning "blur" ) is a photographic term
referring to the aesthetic quality of the out-of-focus areas of an image produced by
a camera lens using a shallow depth of field.
- A Gaussian blur is the result of blurring an image by a Gaussian function . It is a
widely used effect in graphics software, typically to reduce image noise and reduce
detail.
- Mathematically, applying a Gaussian blur has the effect of reducing the image's
high-frequency components ;a Gaussian blur is thus a low pass filter .
INTRODUCTION
Bokeh image.
The problematic : what's the main of gauss
blur filter? Which technique (t, f or z)-
test is more precise ? With or without
gauss blur, the results are more precise?
Works plan
- Introduction
-
-Mathématic expression for three techniques (t-f-z)
test.
-Algorithm
The results
Conclusion & perspective
Principal of « Gauss blur » filter
- The Gaussian blur is a type of image-blurring filter that uses a Gaussian function (which is also used for the
normal distribution in statistics) for calculating the transformation to apply to each pixel in the image.
- In two dimensions, it is the product of two such Gaussians, one per direction:
- Relation between variance & fwhm(full width at half maximum) :
fwhm=2.35482* σ
Principal of GAUSS BLUR
20 40 60 80
20
40
60
80
20 40 60 80
20
40
60
80
Original image Image blurred using Gaussian blur with σ = 5.
Exemples
Original image Image blurred using
Gaussian blur with σ = 2.
Works plan
 Introduction
 - Principal of « Gauss blur » filter

 -Algorithm
 The results
 Conclusion & perspective
mathematic expression for three techniques (t-f-z) test
















+
















×
















=
















nmnn
m
pmpp
m
npnn
p
nmnn
m
eee
e
ee
eee
xxx
x
xx
xxx
yyy
y
yy
yyy












21
31
2221
11211
21
31
2221
11211
21
31
2221
11211
21
31
2221
11211
............................
βββ
β
ββ
βββ
Estimate β by least square method
STATISTIC STUDING FOR LINEAR MODEL
1. Simple Linear Regression
])([ 2^
1
2
YYS
N
j j
T
−=== ∑ =
∧∧
εεε
2
1 1
∑ ∑=
∧
= 















−=
N
i
M
j
jii jXYS β
S is less, for all m :
0.).(2
1 1
=








−−=
∂
∂
∑ ∑= =
∧
∧
N
i
M
j
jiimi jxYx
m
S
β
β
- Minimise quadratic error(by least square) between data :
...
Linear matrix εβ += XY
.
la différence between reel data & estimated data :
YY
∧∧
−=ε
.
1-2 estimateβ
YXXX TT
YX ..).( 1
.ˆˆ −
=+
=β
Where : « + » pseudo-inverse design byMOORE–PENROSE,
( )
( ) 12
12
'
'')ˆ'(
ˆ
ˆ
−
−
=








=








=
XXcVar
XXcVarccVar
T
T
σ
σβ
β
β
pM
X
pM
s pM
T
−
≈
−
=
=
−
2
22
ˆ σ
εε
σ
( ) β
∧
= ... XXY T
T
XWhere
( )j
M
j
ji
N
i
mii
N
i
mi xxYx β
∧
===
∑∑∑ = .
111
- Variance estimation
P: nomber of parameter
M: Nber of observation(scans)
M-P : Freedom
⋅⋅⋅⋅⋅
⋅
==
+
∧
CxxC
C
estimateiance
aramterestimatedpcontrast
t
T
)('
'
var 2
σ
β
* F-FISHER Expression:
DETECTION ACTIVITIES OF ( t & f -test et z test ) equations with ho hypothesis
.
*
statistic form with t-test :
n-m = df=M-P
R2
: variation of data base Y
F: random variable of Fisher-Snedecor with m+1 & n-m degree of freedom.
:mean of sample x
sampleoflongth:n
sampleofvariance:σ
lemeanofsamp:µ
*Equation of Z-test
Works plan
 - Introduction
 - Principal of « Gauss blur » filter
 -Mathematic expression for three techniques (t-f-z)
test.
 The results
 Conclusion & perspective
Algorithm
7-comparaison between graphic results with or without gauss blur & directly on the
pathologic image.
ALGORITHM
1. A picture MRI must be converted by software (DICOM) from "jpg" has to
authorize the language "Matlab" to read.
2. Identification of a sample image by the application of doctor.
3. Filtrate image obtained using gauss blur (convolution between the image and
the real function gauss).
4. Application of the method of Student-t, f-fisher and z- test to see if there is a
significant difference between samples.
5. Comparison between techniques t-test, f-test and z-test to determine which
technique is more accurate and graphically on the pathologic directly.
6. Comparison between a best result with filter or without it.
Works plan
 - Introduction
 - Introduction
 - Principal of « gauss blur « filter
 - Mathematic expression for three techniques (t-f-
z) test.
 -Algorithm

 Conclusion & perspective
The results
Our protocol is for a patient with age 46 years who would
feel vomiting and fainting jet, he didn't accept medical
treatment. The patient is made a scanner MRI with
injection of contrast. The machine used radiography with
type "Siemens", and with the field b = 1.5tesla. The
sequences applied in T1 and T2. The results obtained
show us: an attendance tumor in
frontal with three structures :
calcifications eparses, cystic and fleshy .
So presence of a cyst-like extra- cerebral mass effect on
the cortex.
protocol done : 25/03/2010
Analyse data of protocol
RESULTS
Frontal
occipital
parietal
temporal
parietal
Image pathologic with jpg format
Normal Image
Plot l’expression
de gauss
MRI filter with gauss blur for surface
183*183
Exemples: Filtrer of IRM & fMRI images with expression of gauss blur for σ=3
50 100 150
50
100
150
0 50 100 150
0
50
100
150
50 100 150
50
100
150
(X1-X2)=fwhm=8mm
Fmri image
filtre of image
5 10 15 20
0
0.2
0.4
0.6
0.8
1
183*183
Reel Image of brain with png
format .
50 100 150
50
100
150
200
0 5 10 15 20
0
0.2
0.4
0.6
0.8
1
50 100 150
50
100
150
200
35X35
10 20 30
10
20
30
0 10 20 30
0
10
20
30
10 20 30
10
20
30
10 20 30
10
20
30
10 20 30
10
20
30
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
x 10
-3
t:blue
z:green
f:red
-3 -2 -1 0 1 2 3 4 5
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Distribution of (t & f) statistic, N
t&f
Density
Reject if t&f>2.035
Prob = 0.025
zone accepte H0
zone de rejet H0
F-test
Z-test
T-test
-2 -1 0 1 2 3 4 5
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Distribution of (t & f) statistic, N
t&f
Density
Reject if t&f>1.987
Prob = 0.025
zone accepte H0
zone de rejet H0
90X90
20 40 60 80
20
40
60
80
0 20 40 60 80
0
20
40
60
80
-2 -1 0 1 2 3 4 5
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Distribution of z statistic, N
z
Density
Reject if z>1.999
Prob = 0.025
zone accepte H0
zone de rejet H0
f
z
t
0 10 20 30 40 50 60 70 80 90
-8
-6
-4
-2
0
2
4
6
8
10
12
x 10
-3
t:blue
z:green
f:red
20 40 60 80
20
40
60
80
20 40 60 80
20
40
60
80
20 40 60 80
20
40
60
80
20 40 60 80 100
20
40
60
80
100
0 50 100
0
20
40
60
80
100
-2 -1 0 1 2 3 4 5
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Distribution of (t & f) statistic, N
t&f
Density
Reject if t&f>1.981
Prob = 0.025
zone accepte H0
zone de rejet H0
115X115
20 40 60 80 100
20
40
60
80
100
20 40 60 80 100
20
40
60
80
100
20 40 60 80 100
20
40
60
80
100
0 20 40 60 80 100 120
-2
-1
0
1
2
3
4
5
6
7
x 10
-3
50 100 150
50
100
150
0 50 100 150
0
50
100
150
-2 -1 0 1 2 3 4 5
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Distribution of (t & f) statistic, N
t&f
Density
Reject if t&f>1.976
Prob = 0.025
zone accepte H0
zone de rejet H0
-3 -2 -1 0 1 2 3 4 5
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Distribution of z statistic, N
z
Density
Reject if z>2.008
Prob = 0.025
zone accepte H0
zone de rejet H0
155X155
0 20 40 60 80 100 120 140 160
-8
-6
-4
-2
0
2
4
6
x 10
-3
50 100 150
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
0 50 100 150
0
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
160X160
0 20 40 60 80 100 120 140 160
-2
-1
0
1
2
3
4
5
6
x 10
-3
t:blue
z:green
f:red
50 100 150
50
100
150
0 50 100 150
0
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
-2 -1 0 1 2 3 4 5
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Distribution of (t & f) statistic, N
t&f
Density
Reject if t&f>1.973
Prob = 0.025
zone accepte H0
zone de rejet H0
-3 -2 -1 0 1 2 3 4 5
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Distribution of z statistic, N
z
Density
Reject if z>2.074
Prob = 0.025
zone accepte H0
zone de rejet H0
190X190
0 20 40 60 80 100 120 140 160 180 200
-10
-8
-6
-4
-2
0
2
4
x 10
-3
t:blue
z:green
f:red
50 100 150 200
50
100
150
200
0 50 100 150 200
0
50
100
150
200
50 100 150 200
50
100
150
200
50 100 150 200
50
100
150
200
50 100 150 200
50
100
150
200
240X240
-3 -2 -1 0 1 2 3 4 5
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Distribution of z statistic, N
z
Density
Reject if z>2
Prob = 0.025
zone accepte H0
zone de rejet H0
-2 -1 0 1 2 3 4 5
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Distribution of t statistic, N
t
Density
Reject if t>1.97
Prob = 0.025
zone accepte H0
zone de rejet H0
50 100 150
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
160X160
50 100 150
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
155X155
50 100 150
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
190X190
50 100 150
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
50 100 150
50
100
150
20 40 60 80 100 120 140
20
40
60
80
100
120
140
20 40 60 80 100 120 140
20
40
60
80
100
120
140
20 40 60 80 100 120 140
20
40
60
80
100
120
140
145X145
115X115
20 40 60 80 100
20
40
60
80
100
20 40 60 80 100
20
40
60
80
100
20 40 60 80 100
20
40
60
80
100
20 40 60 80 100 120 140
20
40
60
80
100
120
140
20 40 60 80 100 120 140
20
40
60
80
100
120
140
20 40 60 80 100 120 140
20
40
60
80
100
120
140
20 40 60 80 100
20
40
60
80
100
20 40 60 80 100
20
40
60
80
100
20 40 60 80 100
20
40
60
80
100
20 40 60 80
20
40
60
80
20 40 60 80
20
40
60
80
20 40 60 80
20
40
60
80
90X90
20 40 60 80
20
40
60
80
20 40 60 80
20
40
60
80
20 40 60 80
20
40
60
80
10 20 30 40 50
10
20
30
40
50
10 20 30 40 50
10
20
30
40
50
10 20 30 40 50
10
20
30
40
50
50X50
10 20 30
10
20
30
10 20 30
10
20
30
10 20 30
10
20
30
35X35
10 20 30
10
20
30
10 20 30
10
20
30
10 20 30
10
20
30
10 20 30 40 50
10
20
30
40
50
10 20 30 40 50
10
20
30
40
50
10 20 30 40 50
10
20
30
40
50
Works plan
 - Introduction
 - Principal of « Gauss blur » filter
 - Mathematic expression for three techniques (t-f-
z) test.
 -Algorithm
 The results
Conclusion & perspective
From these studies we can distinct:
-To have a precise result we must use the filter spatial with gauss blur.
-From the three techniques we distinct that t & f are applied for little &
middle matrix and z-test is applied for big matrix as the demonstration
of theory study.
-Our study is applied for comparison between two models a new and
old one in different specialty.
-To be sure by your results, we proposed to pass by the three
techniques (t,f&z) in every scan.
CONCLUSION & PERSPECTIVE
P1161211140

Más contenido relacionado

La actualidad más candente

Hyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDHyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDChristos Kallidonis
 
MediaEval 2016 - UPMC at MediaEval2016 Retrieving Diverse Social Images Task
MediaEval 2016 - UPMC at MediaEval2016 Retrieving Diverse Social Images TaskMediaEval 2016 - UPMC at MediaEval2016 Retrieving Diverse Social Images Task
MediaEval 2016 - UPMC at MediaEval2016 Retrieving Diverse Social Images Taskmultimediaeval
 
Visual Impression Localization of Autonomous Robots_#CASE2015
Visual Impression Localization of Autonomous Robots_#CASE2015Visual Impression Localization of Autonomous Robots_#CASE2015
Visual Impression Localization of Autonomous Robots_#CASE2015Soma Boubou
 
8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces xmath266
 
1 s2.0-s0377042707003664-main
1 s2.0-s0377042707003664-main1 s2.0-s0377042707003664-main
1 s2.0-s0377042707003664-mainsuhaivi suhaivi
 
On approximating the Riemannian 1-center
On approximating the Riemannian 1-centerOn approximating the Riemannian 1-center
On approximating the Riemannian 1-centerFrank Nielsen
 
Application of Integrals
Application of IntegralsApplication of Integrals
Application of Integralssarcia
 
Numerical integration based on the hyperfunction theory
Numerical integration based on the hyperfunction theoryNumerical integration based on the hyperfunction theory
Numerical integration based on the hyperfunction theoryHidenoriOgata
 
Volume of Prisms
Volume of PrismsVolume of Prisms
Volume of Prismsbujols
 
Numerical differentation with c
Numerical differentation with cNumerical differentation with c
Numerical differentation with cYagya Dev Bhardwaj
 
exceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice modelsexceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice modelsMauritz van den Worm
 
Statistics for Economics Midterm 2 Cheat Sheet
Statistics for Economics Midterm 2 Cheat SheetStatistics for Economics Midterm 2 Cheat Sheet
Statistics for Economics Midterm 2 Cheat SheetLaurel Ayuyao
 

La actualidad más candente (19)

Hyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDHyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCD
 
Pixel relationships
Pixel relationshipsPixel relationships
Pixel relationships
 
Finite frequency H∞ control for wind turbine systems in T-S form
Finite frequency H∞ control for wind turbine systems in T-S formFinite frequency H∞ control for wind turbine systems in T-S form
Finite frequency H∞ control for wind turbine systems in T-S form
 
MediaEval 2016 - UPMC at MediaEval2016 Retrieving Diverse Social Images Task
MediaEval 2016 - UPMC at MediaEval2016 Retrieving Diverse Social Images TaskMediaEval 2016 - UPMC at MediaEval2016 Retrieving Diverse Social Images Task
MediaEval 2016 - UPMC at MediaEval2016 Retrieving Diverse Social Images Task
 
Project Paper
Project PaperProject Paper
Project Paper
 
Visual Impression Localization of Autonomous Robots_#CASE2015
Visual Impression Localization of Autonomous Robots_#CASE2015Visual Impression Localization of Autonomous Robots_#CASE2015
Visual Impression Localization of Autonomous Robots_#CASE2015
 
8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces x
 
Lagrange multiplier
 Lagrange multiplier Lagrange multiplier
Lagrange multiplier
 
1 s2.0-s0377042707003664-main
1 s2.0-s0377042707003664-main1 s2.0-s0377042707003664-main
1 s2.0-s0377042707003664-main
 
On approximating the Riemannian 1-center
On approximating the Riemannian 1-centerOn approximating the Riemannian 1-center
On approximating the Riemannian 1-center
 
Application of Integrals
Application of IntegralsApplication of Integrals
Application of Integrals
 
Numerical integration based on the hyperfunction theory
Numerical integration based on the hyperfunction theoryNumerical integration based on the hyperfunction theory
Numerical integration based on the hyperfunction theory
 
Statistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient DescentStatistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient Descent
 
Volume of Prisms
Volume of PrismsVolume of Prisms
Volume of Prisms
 
Numerical differentation with c
Numerical differentation with cNumerical differentation with c
Numerical differentation with c
 
Chapter 03 drill_solution
Chapter 03 drill_solutionChapter 03 drill_solution
Chapter 03 drill_solution
 
exceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice modelsexceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice models
 
Statistics for Economics Midterm 2 Cheat Sheet
Statistics for Economics Midterm 2 Cheat SheetStatistics for Economics Midterm 2 Cheat Sheet
Statistics for Economics Midterm 2 Cheat Sheet
 
azEssay2
azEssay2azEssay2
azEssay2
 

Destacado

Ssp notes
Ssp notesSsp notes
Ssp notesbalu902
 
Opeb cost control siia may 2008
Opeb cost control   siia may 2008Opeb cost control   siia may 2008
Opeb cost control siia may 2008Jim van Iwaarden
 
Prof.Arshad Cheema
Prof.Arshad CheemaProf.Arshad Cheema
Prof.Arshad CheemaPk Doctors
 
Industrial Revolution 7th Grade
Industrial Revolution 7th Grade Industrial Revolution 7th Grade
Industrial Revolution 7th Grade EMS
 
Drug Addiction NICE Guidelines
Drug Addiction NICE GuidelinesDrug Addiction NICE Guidelines
Drug Addiction NICE GuidelinesPk Doctors
 
Quality stories - september
Quality stories - septemberQuality stories - september
Quality stories - septembersamsungmena
 
Brunel Engineering
Brunel EngineeringBrunel Engineering
Brunel Engineeringwouterarts
 
24symbols - Walk-through for Publishers
24symbols - Walk-through for Publishers24symbols - Walk-through for Publishers
24symbols - Walk-through for Publishers24Symbols
 
Dengue fever algorithm and charts
Dengue fever algorithm and chartsDengue fever algorithm and charts
Dengue fever algorithm and chartsPk Doctors
 
Hall of fame december
Hall of fame   decemberHall of fame   december
Hall of fame decembersamsungmena
 
Carol A Johnson Pbr Spresentation
Carol A Johnson Pbr SpresentationCarol A Johnson Pbr Spresentation
Carol A Johnson Pbr Spresentationcarol_johnson
 
Διερεύνηση της Γεωμετρικής Σκέψης των Αποφοίτων του Δημοτικού
Διερεύνηση της Γεωμετρικής Σκέψης των Αποφοίτων του ΔημοτικούΔιερεύνηση της Γεωμετρικής Σκέψης των Αποφοίτων του Δημοτικού
Διερεύνηση της Γεωμετρικής Σκέψης των Αποφοίτων του ΔημοτικούChristos Skarkos
 
Moon over star reading
Moon over star readingMoon over star reading
Moon over star readingChad
 
Interactive Marketing 2010
Interactive Marketing 2010Interactive Marketing 2010
Interactive Marketing 2010The Loud Few
 

Destacado (19)

Ssp notes
Ssp notesSsp notes
Ssp notes
 
Opeb cost control siia may 2008
Opeb cost control   siia may 2008Opeb cost control   siia may 2008
Opeb cost control siia may 2008
 
Prof.Arshad Cheema
Prof.Arshad CheemaProf.Arshad Cheema
Prof.Arshad Cheema
 
Industrial Revolution 7th Grade
Industrial Revolution 7th Grade Industrial Revolution 7th Grade
Industrial Revolution 7th Grade
 
Drug Addiction NICE Guidelines
Drug Addiction NICE GuidelinesDrug Addiction NICE Guidelines
Drug Addiction NICE Guidelines
 
Quality stories - september
Quality stories - septemberQuality stories - september
Quality stories - september
 
Brunel Engineering
Brunel EngineeringBrunel Engineering
Brunel Engineering
 
P1121352313
P1121352313P1121352313
P1121352313
 
24symbols - Walk-through for Publishers
24symbols - Walk-through for Publishers24symbols - Walk-through for Publishers
24symbols - Walk-through for Publishers
 
Dengue fever algorithm and charts
Dengue fever algorithm and chartsDengue fever algorithm and charts
Dengue fever algorithm and charts
 
Hall of fame december
Hall of fame   decemberHall of fame   december
Hall of fame december
 
Carol A Johnson Pbr Spresentation
Carol A Johnson Pbr SpresentationCarol A Johnson Pbr Spresentation
Carol A Johnson Pbr Spresentation
 
Διερεύνηση της Γεωμετρικής Σκέψης των Αποφοίτων του Δημοτικού
Διερεύνηση της Γεωμετρικής Σκέψης των Αποφοίτων του ΔημοτικούΔιερεύνηση της Γεωμετρικής Σκέψης των Αποφοίτων του Δημοτικού
Διερεύνηση της Γεωμετρικής Σκέψης των Αποφοίτων του Δημοτικού
 
Moon over star reading
Moon over star readingMoon over star reading
Moon over star reading
 
Can zam
Can zamCan zam
Can zam
 
Interactive Marketing 2010
Interactive Marketing 2010Interactive Marketing 2010
Interactive Marketing 2010
 
E C G Part 4
E C G  Part 4E C G  Part 4
E C G Part 4
 
P1111146028
P1111146028P1111146028
P1111146028
 
Creative Classroom
Creative ClassroomCreative Classroom
Creative Classroom
 

Similar a P1161211140

Gaussian filtering 1up
Gaussian filtering 1upGaussian filtering 1up
Gaussian filtering 1upPham Hanh
 
ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)
ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)
ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)Shajun Nisha
 
imagetransforms1-210417050321.pptx
imagetransforms1-210417050321.pptximagetransforms1-210417050321.pptx
imagetransforms1-210417050321.pptxMrsSDivyaBME
 
A successful maximum likelihood parameter estimation in skewed distributions ...
A successful maximum likelihood parameter estimation in skewed distributions ...A successful maximum likelihood parameter estimation in skewed distributions ...
A successful maximum likelihood parameter estimation in skewed distributions ...Hideo Hirose
 
12 ch ken black solution
12 ch ken black solution12 ch ken black solution
12 ch ken black solutionKrunal Shah
 
25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuous25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuousJyoti Parange
 
DIP_Lecture6.pdf. jdowjwdieehekehdjejrejwhehr
DIP_Lecture6.pdf. jdowjwdieehekehdjejrejwhehrDIP_Lecture6.pdf. jdowjwdieehekehdjejrejwhehr
DIP_Lecture6.pdf. jdowjwdieehekehdjejrejwhehrstudyd133
 
05_Spatial_Filtering.ppt
05_Spatial_Filtering.ppt05_Spatial_Filtering.ppt
05_Spatial_Filtering.pptpawankamal3
 
EENG512FinalPresentation_DanielKuntz
EENG512FinalPresentation_DanielKuntzEENG512FinalPresentation_DanielKuntz
EENG512FinalPresentation_DanielKuntzDaniel K
 
Introduction to Probability and Statistics 13th Edition Mendenhall Solutions ...
Introduction to Probability and Statistics 13th Edition Mendenhall Solutions ...Introduction to Probability and Statistics 13th Edition Mendenhall Solutions ...
Introduction to Probability and Statistics 13th Edition Mendenhall Solutions ...MaxineBoyd
 
Newton Raphson Of Root Equation
Newton Raphson Of Root EquationNewton Raphson Of Root Equation
Newton Raphson Of Root EquationShirishChaudhari
 
Numerical integration
Numerical integration Numerical integration
Numerical integration Dhyey Shukla
 

Similar a P1161211140 (20)

Input analysis
Input analysisInput analysis
Input analysis
 
Gaussian filtering 1up
Gaussian filtering 1upGaussian filtering 1up
Gaussian filtering 1up
 
ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)
ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)
ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)
 
imagetransforms1-210417050321.pptx
imagetransforms1-210417050321.pptximagetransforms1-210417050321.pptx
imagetransforms1-210417050321.pptx
 
A successful maximum likelihood parameter estimation in skewed distributions ...
A successful maximum likelihood parameter estimation in skewed distributions ...A successful maximum likelihood parameter estimation in skewed distributions ...
A successful maximum likelihood parameter estimation in skewed distributions ...
 
Chapter07.pdf
Chapter07.pdfChapter07.pdf
Chapter07.pdf
 
12 ch ken black solution
12 ch ken black solution12 ch ken black solution
12 ch ken black solution
 
Image segmentation
Image segmentationImage segmentation
Image segmentation
 
LINEAR PROGRAMMING
LINEAR PROGRAMMINGLINEAR PROGRAMMING
LINEAR PROGRAMMING
 
25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuous25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuous
 
DIP_Lecture6.pdf. jdowjwdieehekehdjejrejwhehr
DIP_Lecture6.pdf. jdowjwdieehekehdjejrejwhehrDIP_Lecture6.pdf. jdowjwdieehekehdjejrejwhehr
DIP_Lecture6.pdf. jdowjwdieehekehdjejrejwhehr
 
05_Spatial_Filtering.ppt
05_Spatial_Filtering.ppt05_Spatial_Filtering.ppt
05_Spatial_Filtering.ppt
 
EENG512FinalPresentation_DanielKuntz
EENG512FinalPresentation_DanielKuntzEENG512FinalPresentation_DanielKuntz
EENG512FinalPresentation_DanielKuntz
 
Advantage of HRAM
Advantage of HRAMAdvantage of HRAM
Advantage of HRAM
 
Histogram processing
Histogram processingHistogram processing
Histogram processing
 
Introduction to Probability and Statistics 13th Edition Mendenhall Solutions ...
Introduction to Probability and Statistics 13th Edition Mendenhall Solutions ...Introduction to Probability and Statistics 13th Edition Mendenhall Solutions ...
Introduction to Probability and Statistics 13th Edition Mendenhall Solutions ...
 
Newton Raphson Of Root Equation
Newton Raphson Of Root EquationNewton Raphson Of Root Equation
Newton Raphson Of Root Equation
 
Presentation_Tan
Presentation_TanPresentation_Tan
Presentation_Tan
 
Image transforms
Image transformsImage transforms
Image transforms
 
Numerical integration
Numerical integration Numerical integration
Numerical integration
 

Más de Ashraf Aboshosha (20)

P1151351311
P1151351311P1151351311
P1151351311
 
P1151345302
P1151345302P1151345302
P1151345302
 
P1121340296
P1121340296P1121340296
P1121340296
 
P1121340294
P1121340294P1121340294
P1121340294
 
P1121327289
P1121327289P1121327289
P1121327289
 
P1151442348
P1151442348P1151442348
P1151442348
 
P1151442347
P1151442347P1151442347
P1151442347
 
P1151439345
P1151439345P1151439345
P1151439345
 
P1151424332
P1151424332P1151424332
P1151424332
 
P1151423331
P1151423331P1151423331
P1151423331
 
P1151420328
P1151420328P1151420328
P1151420328
 
P1151418327
P1151418327P1151418327
P1151418327
 
P1151404314
P1151404314P1151404314
P1151404314
 
P1111351312
P1111351312P1111351312
P1111351312
 
P1111444352
P1111444352P1111444352
P1111444352
 
P1111440346
P1111440346P1111440346
P1111440346
 
P1111431335
P1111431335P1111431335
P1111431335
 
P1111410320
P1111410320P1111410320
P1111410320
 
P1111410321
P1111410321P1111410321
P1111410321
 
P1111350310
P1111350310P1111350310
P1111350310
 

P1161211140

  • 1.
  • 2. Works plan  - Introduction  - Principal of « Gauss blur » filter  - Mathematic expression for three techniques (t-f- z) test.  -Algorithm  Results  Conclusion and perspective
  • 3. Works plan  - Principal of « Gauss blur » filter  - Mathématic expression for three techniques (t-f- z) test.  -Algorithm  The results  Conclusion & perspective Introduction
  • 4. Bokeh (derived from japenese, noun boke, meaning "blur" ) is a photographic term referring to the aesthetic quality of the out-of-focus areas of an image produced by a camera lens using a shallow depth of field. - A Gaussian blur is the result of blurring an image by a Gaussian function . It is a widely used effect in graphics software, typically to reduce image noise and reduce detail. - Mathematically, applying a Gaussian blur has the effect of reducing the image's high-frequency components ;a Gaussian blur is thus a low pass filter . INTRODUCTION Bokeh image.
  • 5. The problematic : what's the main of gauss blur filter? Which technique (t, f or z)- test is more precise ? With or without gauss blur, the results are more precise?
  • 6. Works plan - Introduction - -Mathématic expression for three techniques (t-f-z) test. -Algorithm The results Conclusion & perspective Principal of « Gauss blur » filter
  • 7. - The Gaussian blur is a type of image-blurring filter that uses a Gaussian function (which is also used for the normal distribution in statistics) for calculating the transformation to apply to each pixel in the image. - In two dimensions, it is the product of two such Gaussians, one per direction: - Relation between variance & fwhm(full width at half maximum) : fwhm=2.35482* σ Principal of GAUSS BLUR
  • 8. 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 Original image Image blurred using Gaussian blur with σ = 5. Exemples Original image Image blurred using Gaussian blur with σ = 2.
  • 9. Works plan  Introduction  - Principal of « Gauss blur » filter   -Algorithm  The results  Conclusion & perspective mathematic expression for three techniques (t-f-z) test
  • 11. ])([ 2^ 1 2 YYS N j j T −=== ∑ = ∧∧ εεε 2 1 1 ∑ ∑= ∧ =                 −= N i M j jii jXYS β S is less, for all m : 0.).(2 1 1 =         −−= ∂ ∂ ∑ ∑= = ∧ ∧ N i M j jiimi jxYx m S β β - Minimise quadratic error(by least square) between data : ... Linear matrix εβ += XY . la différence between reel data & estimated data : YY ∧∧ −=ε .
  • 12. 1-2 estimateβ YXXX TT YX ..).( 1 .ˆˆ − =+ =β Where : « + » pseudo-inverse design byMOORE–PENROSE, ( ) ( ) 12 12 ' '')ˆ'( ˆ ˆ − − =         =         = XXcVar XXcVarccVar T T σ σβ β β pM X pM s pM T − ≈ − = = − 2 22 ˆ σ εε σ ( ) β ∧ = ... XXY T T XWhere ( )j M j ji N i mii N i mi xxYx β ∧ === ∑∑∑ = . 111 - Variance estimation P: nomber of parameter M: Nber of observation(scans) M-P : Freedom
  • 13. ⋅⋅⋅⋅⋅ ⋅ == + ∧ CxxC C estimateiance aramterestimatedpcontrast t T )(' ' var 2 σ β * F-FISHER Expression: DETECTION ACTIVITIES OF ( t & f -test et z test ) equations with ho hypothesis . * statistic form with t-test : n-m = df=M-P R2 : variation of data base Y F: random variable of Fisher-Snedecor with m+1 & n-m degree of freedom. :mean of sample x sampleoflongth:n sampleofvariance:σ lemeanofsamp:µ *Equation of Z-test
  • 14. Works plan  - Introduction  - Principal of « Gauss blur » filter  -Mathematic expression for three techniques (t-f-z) test.  The results  Conclusion & perspective Algorithm
  • 15. 7-comparaison between graphic results with or without gauss blur & directly on the pathologic image. ALGORITHM 1. A picture MRI must be converted by software (DICOM) from "jpg" has to authorize the language "Matlab" to read. 2. Identification of a sample image by the application of doctor. 3. Filtrate image obtained using gauss blur (convolution between the image and the real function gauss). 4. Application of the method of Student-t, f-fisher and z- test to see if there is a significant difference between samples. 5. Comparison between techniques t-test, f-test and z-test to determine which technique is more accurate and graphically on the pathologic directly. 6. Comparison between a best result with filter or without it.
  • 16. Works plan  - Introduction  - Introduction  - Principal of « gauss blur « filter  - Mathematic expression for three techniques (t-f- z) test.  -Algorithm   Conclusion & perspective The results
  • 17. Our protocol is for a patient with age 46 years who would feel vomiting and fainting jet, he didn't accept medical treatment. The patient is made a scanner MRI with injection of contrast. The machine used radiography with type "Siemens", and with the field b = 1.5tesla. The sequences applied in T1 and T2. The results obtained show us: an attendance tumor in frontal with three structures : calcifications eparses, cystic and fleshy . So presence of a cyst-like extra- cerebral mass effect on the cortex. protocol done : 25/03/2010 Analyse data of protocol RESULTS Frontal occipital parietal temporal parietal
  • 18. Image pathologic with jpg format Normal Image Plot l’expression de gauss MRI filter with gauss blur for surface 183*183 Exemples: Filtrer of IRM & fMRI images with expression of gauss blur for σ=3 50 100 150 50 100 150 0 50 100 150 0 50 100 150 50 100 150 50 100 150 (X1-X2)=fwhm=8mm Fmri image filtre of image 5 10 15 20 0 0.2 0.4 0.6 0.8 1 183*183 Reel Image of brain with png format . 50 100 150 50 100 150 200 0 5 10 15 20 0 0.2 0.4 0.6 0.8 1 50 100 150 50 100 150 200
  • 19. 35X35 10 20 30 10 20 30 0 10 20 30 0 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 x 10 -3 t:blue z:green f:red -3 -2 -1 0 1 2 3 4 5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Distribution of (t & f) statistic, N t&f Density Reject if t&f>2.035 Prob = 0.025 zone accepte H0 zone de rejet H0 F-test Z-test T-test
  • 20. -2 -1 0 1 2 3 4 5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Distribution of (t & f) statistic, N t&f Density Reject if t&f>1.987 Prob = 0.025 zone accepte H0 zone de rejet H0 90X90 20 40 60 80 20 40 60 80 0 20 40 60 80 0 20 40 60 80 -2 -1 0 1 2 3 4 5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Distribution of z statistic, N z Density Reject if z>1.999 Prob = 0.025 zone accepte H0 zone de rejet H0 f z t 0 10 20 30 40 50 60 70 80 90 -8 -6 -4 -2 0 2 4 6 8 10 12 x 10 -3 t:blue z:green f:red 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
  • 21. 20 40 60 80 100 20 40 60 80 100 0 50 100 0 20 40 60 80 100 -2 -1 0 1 2 3 4 5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Distribution of (t & f) statistic, N t&f Density Reject if t&f>1.981 Prob = 0.025 zone accepte H0 zone de rejet H0 115X115 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 0 20 40 60 80 100 120 -2 -1 0 1 2 3 4 5 6 7 x 10 -3
  • 22. 50 100 150 50 100 150 0 50 100 150 0 50 100 150 -2 -1 0 1 2 3 4 5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Distribution of (t & f) statistic, N t&f Density Reject if t&f>1.976 Prob = 0.025 zone accepte H0 zone de rejet H0 -3 -2 -1 0 1 2 3 4 5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Distribution of z statistic, N z Density Reject if z>2.008 Prob = 0.025 zone accepte H0 zone de rejet H0 155X155 0 20 40 60 80 100 120 140 160 -8 -6 -4 -2 0 2 4 6 x 10 -3 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150
  • 23. 50 100 150 50 100 150 0 50 100 150 0 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 160X160 0 20 40 60 80 100 120 140 160 -2 -1 0 1 2 3 4 5 6 x 10 -3 t:blue z:green f:red
  • 24. 50 100 150 50 100 150 0 50 100 150 0 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 -2 -1 0 1 2 3 4 5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Distribution of (t & f) statistic, N t&f Density Reject if t&f>1.973 Prob = 0.025 zone accepte H0 zone de rejet H0 -3 -2 -1 0 1 2 3 4 5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Distribution of z statistic, N z Density Reject if z>2.074 Prob = 0.025 zone accepte H0 zone de rejet H0 190X190 0 20 40 60 80 100 120 140 160 180 200 -10 -8 -6 -4 -2 0 2 4 x 10 -3 t:blue z:green f:red
  • 25. 50 100 150 200 50 100 150 200 0 50 100 150 200 0 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 240X240 -3 -2 -1 0 1 2 3 4 5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Distribution of z statistic, N z Density Reject if z>2 Prob = 0.025 zone accepte H0 zone de rejet H0 -2 -1 0 1 2 3 4 5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Distribution of t statistic, N t Density Reject if t>1.97 Prob = 0.025 zone accepte H0 zone de rejet H0
  • 26. 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 160X160 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 155X155 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 190X190 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150
  • 27. 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140 145X145 115X115 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
  • 28. 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 90X90 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 50X50 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 35X35 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
  • 29. Works plan  - Introduction  - Principal of « Gauss blur » filter  - Mathematic expression for three techniques (t-f- z) test.  -Algorithm  The results Conclusion & perspective
  • 30. From these studies we can distinct: -To have a precise result we must use the filter spatial with gauss blur. -From the three techniques we distinct that t & f are applied for little & middle matrix and z-test is applied for big matrix as the demonstration of theory study. -Our study is applied for comparison between two models a new and old one in different specialty. -To be sure by your results, we proposed to pass by the three techniques (t,f&z) in every scan. CONCLUSION & PERSPECTIVE