SlideShare una empresa de Scribd logo
1 de 8
Descargar para leer sin conexión
SECTION 1.5

LINEAR FIRST-ORDER EQUATIONS

1.               (       )
       ρ = exp ∫ 1 dx = e x ;                          (
                                             Dx y ⋅ e x = 2e x ;       )                       y ⋅ e x = 2e x + C ;         y ( x) = 2 + Ce − x

       y (0) = 0 implies C = − 2 so y ( x) = 2 − 2e − x


2.     ρ = exp   ( ∫ (−2) dx ) = e         −2 x
                                                  ;               (
                                                               Dx y ⋅ e −2 x = 3;     )                 y ⋅ e −2 x = 3 x + C ;     y ( x) = (3 x + C )e2 x

       y (0) = 0 implies C = 0 so y ( x) = 3x e 2 x

3.     ρ = exp   ( ∫ 3 dx ) = e   3x
                                       ;                   (
                                                  Dx y ⋅ e3 x = 2 x;       )                    y ⋅ e3 x = x 2 + C ;         y ( x ) = ( x 2 + C ) e −3 x


4.     ρ = exp   ( ∫ (−2 x) dx ) = e         − x2
                                                      ;                (
                                                                Dx y ⋅ e − x
                                                                                      2

                                                                                          ) = 1;         y ⋅ e− x = x + C;
                                                                                                                2
                                                                                                                                   y ( x ) = ( x + C )e x
                                                                                                                                                            2




5.     ρ = exp   ( ∫ (2 / x) dx ) = e        2ln x
                                                          = x2 ;                  (             )
                                                                               Dx y ⋅ x 2 = 3x 2 ;                  y ⋅ x 2 = x3 + C

       y( x) = x + C / x2 ;                y (1) = 5 implies C = 4 so y ( x) = x + 4 / x 2

6.     ρ = exp   ( ∫ (5 / x) dx ) = e        5ln x
                                                          = x5 ;                  (             )
                                                                               Dx y ⋅ x 5 = 7 x 6 ;                 y ⋅ x5 = x 7 + C

       y( x) = x 2 + C / x5 ;               y (2) = 5 implies C = 32 so y ( x) = x 2 + 32 / x 5

7.     ρ = exp   ( ∫ (1/ 2 x) dx ) = e        (ln x ) / 2
                                                                = x;                       (
                                                                                   Dx y ⋅ x = 5;         )              y ⋅ x = 5x + C

       y( x) = 5 x + C / x

8.     ρ = exp   ( ∫ (1/ 3x) dx ) = e         (ln x ) / 3
                                                               = 3 x;                      (
                                                                                   Dx y ⋅ 3 x = 4 3 x ; )                  y ⋅ 3 x = 3x4 / 3 + C

       y ( x ) = 3 x + Cx −1/ 3

9.     ρ = exp   ( ∫ (−1/ x) dx ) = e             − ln x
                                                           = 1/ x;                Dx ( y ⋅1/ x ) = 1/ x;                 y ⋅1/ x = ln x + C

       y ( x ) = x ln x + C x;              y (1) = 7 implies C = 7 so y ( x) = x ln x + 7 x

10.    ρ = exp   ( ∫ (−3 / 2 x) dx ) = e              ( −3ln x ) / 2
                                                                       = x −3/ 2 ;                  (               )
                                                                                               Dx y ⋅ x −3/ 2 = 9 x1/ 2 / 2;           y ⋅ x −3/ 2 = 3x 3/ 2 + C




Section 1.5                                                                                                                                           1
y ( x) = 3 x 3 + Cx 3/ 2

11.    ρ = exp    ( ∫ (1/ x − 3) dx ) = e               ln x −3 x
                                                                    = x e −3 x ;                      (
                                                                                             Dx y ⋅ x e −3 x = 0; )                 y ⋅ x e −3 x = C

       y ( x ) = C x −1e3 x ;          y (1) = 0 implies C = 0 so y ( x) ≡ 0 (constant)

12.    ρ = exp    ( ∫ (3 / x) dx ) = e          3 ln x
                                                         = x3 ;                  (
                                                                              Dx y ⋅ x3 = 2 x 7 ; )               y ⋅ x 3 = 1 x8 + C
                                                                                                                            4


       y( x) =    1
                  4
                      x 5 + C x −3 ;            y (2) = 1 implies C = 56 so y ( x) =                                            1
                                                                                                                                4
                                                                                                                                    x 5 + 56 x −3

13.               (        )
       ρ = exp ∫ 1 dx = e x ;                            (
                                                Dx y ⋅ e x = e 2 x ; )                       y ⋅ e x = 1 e2 x + C
                                                                                                       2


       y ( x) =   1
                  2
                      e x + C e− x ;            y (0) = 1 implies C =                                 1
                                                                                                      2    so y ( x) =      1
                                                                                                                            2
                                                                                                                                e x + 1 e− x
                                                                                                                                      2



14.    ρ = exp    ( ∫ (−3/ x) dx ) = e            −3ln x
                                                              = x −3 ;               (
                                                                                 Dx y ⋅ x −3 = x −1 ;     )             y ⋅ x −3 = ln x + C

       y ( x) = x 3 ln x + C x 3 ;                 y (1) = 10 implies C = 10 so y ( x ) = x 3 ln x + 10 x 3

15.    ρ = exp    ( ∫ 2 x dx ) = e     x2
                                            ;                 (
                                                     Dx y ⋅ e x
                                                                          2

                                                                              ) = xe     x2
                                                                                              ;           y ⋅ ex = 1 ex + C
                                                                                                              2

                                                                                                                   2
                                                                                                                        2




       y ( x) =       + C e− x ;            y (0) = −2 implies C = − 5 so y ( x ) =                                                  − 5 e− x
                               2                                                                                                                2
                  1                                                                                                             1
                  2                                                  2                                                          2      2



16.    ρ = exp    ( ∫ cos x dx ) = e        sin x
                                                    ;                (               )
                                                              Dx y ⋅ esin x = esin x cos x;                           y ⋅ esin x = esin x + C

       y ( x ) = 1 + C e − sin x ;          y (π ) = 2 implies C = 1 so y ( x ) = 1 + e− sin x

17.               (                     )
       ρ = exp ∫ 1/(1 + x) dx = eln(1+ x ) = 1 + x;                                  Dx ( y ⋅ (1 + x )) = cos x;                       y ⋅ (1 + x ) = sin x + C

                  C + sin x                                                                                             1 + sin x
       y( x) =              ;               y (0) = 1 implies C = 1 so y ( x ) =
                    1+ x                                                                                                  1+ x

18.    ρ = exp    ( ∫ (−2 / x) dx ) = e            −2ln x
                                                              = x −2 ;                   (
                                                                                 Dx y ⋅ x −2 = cos x;     )                 y ⋅ x −2 = sin x + C

       y ( x ) = x 2 (sin x + C )


19.    ρ = exp    ( ∫ cot x dx ) = e        ln(sin x )
                                                             = sin x;            Dx ( y ⋅ sin x ) = sin x cos x

       y ⋅ sin x = 1 sin 2 x + C ;
                   2
                                                   y ( x) =           1
                                                                      2   sin x + C csc x




Section 1.5                                                                                                                                             2
20.    ρ = exp           ( ∫ (−1 − x) dx ) = e              − x − x2 / 2
                                                                           ;                      (
                                                                                        Dx y ⋅ e − x − x
                                                                                                                       2
                                                                                                                            /2
                                                                                                                                    ) = (1 + x) e       − x − x2 / 2




       y ⋅ e− x− x            = − e− x− x            + C;             y ( x) = − 1 + C e − x− x
                     2                      2                                                                                   2
                         /2                     /2                                                                                   /2



       y (0) = 0 implies C = 1 so y ( x ) = − 1 + e − x − x
                                                                                                                            2
                                                                                                                                /2




21.    ρ = exp           ( ∫ (−3 / x) dx ) = e           −3ln x
                                                                      = x −3 ;                            (
                                                                                                  Dx y ⋅ x −3 = cos x;          )                        y ⋅ x −3 = sin x + C

       y ( x) = x 3 sin x + C x 3 ;                           y (2π ) = 0 implies C = 0 so y ( x) = x 3 sin x

22.    ρ = exp           ( ∫ (−2 x) dx ) = e           − x2
                                                              ;                    (
                                                                        Dx y ⋅ e − x
                                                                                                      2

                                                                                                          ) = 3x ;      2
                                                                                                                                          y ⋅ e− x = x3 + C
                                                                                                                                                2




                         (
       y ( x) = x 3 + C e − x ;      )                   y (0) = 5 implies C = 5 so y ( x ) = x 3 + 5 e − x                                                   (        )
                                                2                                                                                                                          2




23.    ρ = exp           ( ∫ (2 − 3 / x) dx ) = e                 2 x −3ln x
                                                                                   = x −3e 2 x ;                                (
                                                                                                                      Dx y ⋅ x −3e 2 x = 4 e 2 x    )
       y ⋅ x −3 e 2 x = 2 e 2 x + C ;                  y ( x ) = 2 x 3 + C x 3 e −2 x

24.    ρ = exp           ( ∫ 3x /( x   2
                                                        )
                                           + 4) dx = e3ln( x
                                                                               2
                                                                                   + 4) / 2
                                                                                              = ( x 2 + 4)3/ 2 ;                               (                       )
                                                                                                                                           Dx y ⋅ ( x 2 + 4)3/ 2 = x ( x 2 + 4)1/ 2

       y ⋅ ( x 2 + 4)3/ 2 = 1 ( x 2 + 4)3/ 2 + C ;
                            3                                                          y ( x) =               1
                                                                                                              3   + C ( x 2 + 4) −3/ 2

       y (0) = 1 implies C = 16 so y ( x) =
                              3
                                                                                                  1
                                                                                                  3   + 16 ( x 2 + 4) −3/ 2
                                                                                                         3


25.   First we calculate

                                   + 3x dx = + 3x − 3x # dx =
                                   , x + 1 , ! x + 1$
                                                3
                                                                                                                                     3 2
                                   -        2
                                             -                                                2
                                                                                                                                     2
                                                                                                                                       x − ln( x 2 + 1) .


      It follows that ρ = ( x 2 + 1) −3/ 2 exp(3x 2 / 2) and thence that

                                           (
                                    Dx y ⋅ ( x 2 + 1) −3/ 2 exp(3x 2 / 2) = 6 x ( x 2 + 4)−5 / 2 ,                )
                                                         −3/ 2
                                    y ⋅ ( x + 1)2
                                                                    exp(3x / 2) = − 2( x 2 + 4) −3/ 2 + C ,
                                                                                        2


                                    y ( x) = − 2 exp(3 x 2 / 2) + C ( x 2 + 1)3/ 2 exp(−3x 2 / 2).

      Finally, y(0) = 1 implies that C = 3 so the desired particular solution is

                                    y ( x ) = − 2 exp(3x 2 / 2) + 3( x 2 + 1)3/ 2 exp(−3 x 2 / 2).




Section 1.5                                                                                                                                                                     3
26.   With x′ = dx / dy , the differential equation is y 3 x′ + 4 y 2 x = 1. Then with y as the
      independent variable we calculate

               ρ ( y ) = exp            ( ∫ (4 / y) dy ) = e                 4ln y
                                                                                          = y4;                  (       )
                                                                                                              Dy x ⋅ y 4 = y

                            1 2                                                   1    C
               x ⋅ y4 =       y + C;                       x( y ) =                 2
                                                                                      + 4
                            2                                                    2y    y

27.   With x′ = dx / dy , the differential equation is x′ − x = y e y . Then with y as the
      independent variable we calculate

               ρ ( y ) = exp            ( ∫ (−1) dy ) = e               −y
                                                                             ;                (
                                                                                          Dy x ⋅ e − y        )=     y

               x ⋅ e− y =       1
                                2   y 2 + C;               x( y ) =           (   1
                                                                                  2   y2 + C ey    )
28.   With x′ = dx / dy , the differential equation is (1 + y 2 ) x′ − 2 y x = 1. Then with y as the
      independent variable we calculate

               ρ ( y ) = exp            ( ∫ (−2 y /(1 + y ) dy ) = e2                         − ln( y 2 +1)
                                                                                                               = (1 + y 2 )−1

                  (                             )
               Dy x ⋅ (1 + y 2 )−1 = (1 + y 2 ) −2

      An integral table (or trigonometric substitution) now yields

                 x     ⌠ dy                                        1 y                      
                     =                                        =             + tan −1 y + C 
               1+ y2                    (              )           2  1+ y
                                                       2                    2
                       ⌡ 1+ y
                              2
                                                                                             

               x( y ) =     1
                            2
                                 y + 1 + y2
                                           (              )( tan      −1
                                                                            y+C 
                                                                                         )

29.    ρ = exp   ( ∫ (−2 x) dx ) = e ;          − x2
                                                                   (
                                                               Dx y ⋅ e − x
                                                                                  2

                                                                                      )=e      − x2
                                                                                                      ;        y ⋅ e − x = C + ∫ e −t dt
                                                                                                                     2          x

                                                                                                                                0
                                                                                                                                    2




       y ( x ) = e (C + erf ( x) )
                 − x2               π
                                    2



30.   After division of the given equation by 2x, multiplication by the integrating factor
      ρ = x–1/2 yields

                                                    x −1/ 2 y ′ − 1 x −3/ 2 y = x −1/ 2 cos x,
                                                                  2

                                                           2            7
                                                    Dx x −1/ 2 y = x −1/ 2 cos x,

                                                    x −1 / 2 y = C +              I
                                                                                  1
                                                                                      x
                                                                                          t −1/ 2 cos t dt.


Section 1.5                                                                                                                                4
The initial condition y(1) = 0 implies that C = 0, so the desired particular solution is

                                  y( x ) = x 1 / 2   I
                                                     1
                                                         x
                                                             t −1/ 2 cos t dt .


              yc = C e ∫ (− P ) = − P yc , so yc + P yc = 0.
                      − P dx
31.   (a)      ′                               ′

                            − P dx                − P dx
              y′p = ( − P) e ∫ ⋅ ⌠  Q e ∫  dx  + e ∫ ⋅ Q e ∫
                                           P dx                  P dx
      (b)                                                          = − Py p + Q
                                   ⌡           

32.   (a)     If y = A cos x + B sin x then

                      y′ + y = ( A + B) cos x + ( B − A)sin x = 2sin x

      provided that A = –1 and B = 1. These coefficient values give the particular solution
      yp(x) = sin x – cos x.

      (b)     The general solution of the equation y′ + y = 0 is y(x) = Ce–x so addition to the
      particular solution found in part (a) gives y(x) = Ce–x + sin x – cos x.

      (c)     The initial condition y(0) = 1 implies that C = 2, so the desired particular
      solution is y(x) = 2e–x + sin x – cos x.

33.   The amount x(t ) of salt (in kg) after t seconds satisfies the differential equation
      x′ = − x / 200, so x(t ) = 100 e− t / 200 . Hence we need only solve the equation
      10 = 100 e − t / 200 for t = 461 sec = 7 min 41 sec (approximately).

34.   Let x(t ) denote the amount of pollutants in the lake after t days, measured in millions of
      cubic feet. Then x(t ) satisfies the linear differential equation dx / dt = 1/ 4 − x /16 with
      solution x(t ) = 4 + 16 e − t /16 satisfying x(0) = 20. The value of t such that x = 8 is
      t = 16 ln 4 ≈ 22.2 days. For a complete solution see Example 4 in Section 7.6 of Edwards
      and Penney, Calculus with Analytic Geometry (5th edition, Prentice-Hall, 1998).

35.   The only difference from the Example 4 solution in the textbook is that V = 1640 km3
      and r = 410 km3/yr for Lake Ontario, so the time required is

                                  V
                            t =     ln 4 = 4 ln 4 ≈ 5.5452 years.
                                  r

36.   (a)    The volume of brine in the tank after t min is V(t) = 60 – t gal, so the initial
      value problem is




Section 1.5                                                                               5
dx       3x
                                      = 2−        ,                   x (0 ) = 0.
                                   dt      60 − t
      The solution is
                                                             (60 − t )3
                                        x (t ) = (60 − t ) −            .
                                                               3600

      (b)     The maximum amount ever in the tank is 40 / 3 ≈ 23.09 lb. This occurs after
      t = 60 − 20 3 ≈ 25 / 36 min.

37.   The volume of brine in the tank after t min is V(t) = 100 + 2t gal, so the initial value
      problem is
                            dx            3x
                                = 5−           ,      x (0) = 50.
                            dt        100 + 2t

      The integrating factor ρ (t ) = (100 + 2t)3/2 leads to the solution

                                                                   50000
                                    x(t ) = (100 + 2t ) −                       .
                                                                (100 + 2t )3/ 2

      such that x(0) = 50. The tank is full after t = 150 min, at which time
      x(150) = 393.75 lb.

38.   (a)     dx / dt = − x / 20 and x(0) = 50 so x(t ) = 50 e− t / 20 .

      (b)     The solution of the linear differential equation

                                  dy    5x   5y  5             1
                                     =     −    = e − t / 20 −    y
                                  dt   100 200   2             40

      with y(0) = 50 is
                                       y(t ) = 150 e − t / 40 − 100 e − t / 20 .

      (c)     The maximum value of y occurs when

              y′(t ) = −
                           15 − t / 40
                            4
                              e
                                                        5
                                                                  (                )
                                       + 5e − t / 20 = − e − t / 40 3 − 4e − t / 40 = 0 .
                                                        4

      We find that ymax = 56.25 lb when t = 40 ln(4/3) ≈ 11.51 min.

39.   (a)     The initial value problem

                                     dx     x
                                        = − ,                   x (0) = 100
                                     dt    10




Section 1.5                                                                                 6
for Tank 1 has solution x (t ) = 100 e − t /10 . Then the initial value problem

                            dy    x   y                  y
                               =    −   = 10 e − t /10 − ,                     y( 0 ) = 0
                            dt   10 10                  10

      for Tank 2 has solution y (t ) = 10t e − t /10 .

      (b)     The maximum value of y occurs when

                        y′(t ) = 10 e − t /10 − t e − t /10 = 0

      and thus when t = 10. We find that ymax = y(10) = 100e–1 ≈ 36.79 gal.

40.   (b)                                                               2 7
              Assuming inductively that xn = t n e − t / 2 / n ! 2 n , the equation for xn+1 is

                               dxn +1  1    1        t n e−t / 2 1
                                      = xn − xn +1 =            − xn +1 .
                                dt     2    2        n ! 2 n +1 2

      We easily solve this first–order equation with x n+1 ( 0) = 0 and find that

                                                          t n +1 e − t / 2
                                             x n +1 =                      ,
                                                        (n + 1)! 2 n +1

      thereby completing the proof by induction.

41.   (a)     A'(t) = 0.06A + 0.12S = 0.06 A + 3.6 e0.05t

      (b)     The solution with A(0) = 0 is

                                           A(t) = 360(e0.06 t – e0.05 t),

      so A(40) ≈ 1308.283 thousand dollars.

42.   The mass of the hailstone at time t is m = ( 4 / 3)πr 3 = ( 4 / 3)πk 3t 3 . Then the equation
      d(mv)/dt = mg simplifies to

                                           tv' + 3v = gt.

      The solution satisfying the initial condition v(0) = 0 is v(t) = gt/4, so v'(t) = g/4.

43.   The solution of the initial value problem y ′ = x − y, y( −5) = y0 is

                                       y( x ) = x − 1 + ( y0 + 6)e − x − 5 .



Section 1.5                                                                                   7
Substituting x = 5, we therefore solve the equation 4 + ( y0 + 6)e −10 = y1
      with y1 = 3.998, 3.999, 4, 4.001, 4.002 for the desired initial values
      y0 = –50.0529, –28.0265, –6.0000, 16.0265, 38.0529, respectively.

44.   The solution of the initial value problem y ′ = x + y, y( −5) = y0 is

                                 y( x ) = − x − 1 + ( y0 − 4)e x + 5 .

      Substituting x = 5, we therefore solve the equation −6 + ( y0 − 4)e10 = y1
      with y1 = –10, –5, 0, 5, 10 for the desired initial values
      y0 = 3.99982, 4.00005, 4.00027, 4.00050, 4.00073, respectively.




Section 1.5                                                                         8

Más contenido relacionado

La actualidad más candente

01 derivadas
01   derivadas01   derivadas
01 derivadasklorofila
 
Matematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhanaMatematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhanalia170494
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencialSIGIFREDO12222
 
Example triple integral
Example triple integralExample triple integral
Example triple integralZulaikha Ahmad
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009akabaka12
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integrationKamel Attar
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553Destiny Nooppynuchy
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)yustar1026
 

La actualidad más candente (20)

Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
01 derivadas
01   derivadas01   derivadas
01 derivadas
 
整卷
整卷整卷
整卷
 
Lesson 15: The Chain Rule
Lesson 15: The Chain RuleLesson 15: The Chain Rule
Lesson 15: The Chain Rule
 
Matematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhanaMatematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhana
 
Simultaneous eqn2
Simultaneous eqn2Simultaneous eqn2
Simultaneous eqn2
 
Week 2
Week 2 Week 2
Week 2
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
 
Example triple integral
Example triple integralExample triple integral
Example triple integral
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009
 
Função afim resumo teórico e exercícios - celso brasil
Função afim   resumo teórico e exercícios - celso brasilFunção afim   resumo teórico e exercícios - celso brasil
Função afim resumo teórico e exercícios - celso brasil
 
Chapter 09
Chapter 09Chapter 09
Chapter 09
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integration
 
Chapter 07
Chapter 07Chapter 07
Chapter 07
 
Derivadas
DerivadasDerivadas
Derivadas
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)
 

Similar a Sect1 5

Math refresher
Math refresherMath refresher
Math refresherdelilahnan
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Matthew Leingang
 
01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdfRajuSingh806014
 
4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functionsdicosmo178
 
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2Breno Costa
 
Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010akabaka12
 
Per de matematica listo.
Per de matematica listo.Per de matematica listo.
Per de matematica listo.nohelicordero
 
Lesson 4 Nov 17 09
Lesson 4 Nov 17 09Lesson 4 Nov 17 09
Lesson 4 Nov 17 09ingroy
 
Pde unit 1
Pde unit 1Pde unit 1
Pde unit 1Rajini10
 
Bahan ajar kalkulus integral
Bahan ajar kalkulus integralBahan ajar kalkulus integral
Bahan ajar kalkulus integralgrand_livina_good
 
Engr 213 final sol 2009
Engr 213 final sol 2009Engr 213 final sol 2009
Engr 213 final sol 2009akabaka12
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010akabaka12
 
11X1 T09 03 second derivative
11X1 T09 03 second derivative11X1 T09 03 second derivative
11X1 T09 03 second derivativeNigel Simmons
 
Integral table
Integral tableIntegral table
Integral tablebags07
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010akabaka12
 

Similar a Sect1 5 (20)

Math refresher
Math refresherMath refresher
Math refresher
 
125 5.2
125 5.2125 5.2
125 5.2
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
 
01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf
 
4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions
 
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
 
Linear Differential Equations1
Linear Differential Equations1Linear Differential Equations1
Linear Differential Equations1
 
Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010
 
Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1
 
Tam 2nd
Tam 2ndTam 2nd
Tam 2nd
 
Nts
NtsNts
Nts
 
Per de matematica listo.
Per de matematica listo.Per de matematica listo.
Per de matematica listo.
 
Lesson 4 Nov 17 09
Lesson 4 Nov 17 09Lesson 4 Nov 17 09
Lesson 4 Nov 17 09
 
Pde unit 1
Pde unit 1Pde unit 1
Pde unit 1
 
Bahan ajar kalkulus integral
Bahan ajar kalkulus integralBahan ajar kalkulus integral
Bahan ajar kalkulus integral
 
Engr 213 final sol 2009
Engr 213 final sol 2009Engr 213 final sol 2009
Engr 213 final sol 2009
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
 
11X1 T09 03 second derivative
11X1 T09 03 second derivative11X1 T09 03 second derivative
11X1 T09 03 second derivative
 
Integral table
Integral tableIntegral table
Integral table
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010
 

Más de inKFUPM (20)

Tb10
Tb10Tb10
Tb10
 
Tb18
Tb18Tb18
Tb18
 
Tb14
Tb14Tb14
Tb14
 
Tb13
Tb13Tb13
Tb13
 
Tb17
Tb17Tb17
Tb17
 
Tb16
Tb16Tb16
Tb16
 
Tb15
Tb15Tb15
Tb15
 
Tb12
Tb12Tb12
Tb12
 
Tb11
Tb11Tb11
Tb11
 
Tb09
Tb09Tb09
Tb09
 
Tb05
Tb05Tb05
Tb05
 
Tb07
Tb07Tb07
Tb07
 
Tb04
Tb04Tb04
Tb04
 
Tb02
Tb02Tb02
Tb02
 
Tb03
Tb03Tb03
Tb03
 
Tb06
Tb06Tb06
Tb06
 
Tb01
Tb01Tb01
Tb01
 
Tb08
Tb08Tb08
Tb08
 
21221
2122121221
21221
 
Sect5 6
Sect5 6Sect5 6
Sect5 6
 

Sect1 5

  • 1. SECTION 1.5 LINEAR FIRST-ORDER EQUATIONS 1. ( ) ρ = exp ∫ 1 dx = e x ; ( Dx y ⋅ e x = 2e x ; ) y ⋅ e x = 2e x + C ; y ( x) = 2 + Ce − x y (0) = 0 implies C = − 2 so y ( x) = 2 − 2e − x 2. ρ = exp ( ∫ (−2) dx ) = e −2 x ; ( Dx y ⋅ e −2 x = 3; ) y ⋅ e −2 x = 3 x + C ; y ( x) = (3 x + C )e2 x y (0) = 0 implies C = 0 so y ( x) = 3x e 2 x 3. ρ = exp ( ∫ 3 dx ) = e 3x ; ( Dx y ⋅ e3 x = 2 x; ) y ⋅ e3 x = x 2 + C ; y ( x ) = ( x 2 + C ) e −3 x 4. ρ = exp ( ∫ (−2 x) dx ) = e − x2 ; ( Dx y ⋅ e − x 2 ) = 1; y ⋅ e− x = x + C; 2 y ( x ) = ( x + C )e x 2 5. ρ = exp ( ∫ (2 / x) dx ) = e 2ln x = x2 ; ( ) Dx y ⋅ x 2 = 3x 2 ; y ⋅ x 2 = x3 + C y( x) = x + C / x2 ; y (1) = 5 implies C = 4 so y ( x) = x + 4 / x 2 6. ρ = exp ( ∫ (5 / x) dx ) = e 5ln x = x5 ; ( ) Dx y ⋅ x 5 = 7 x 6 ; y ⋅ x5 = x 7 + C y( x) = x 2 + C / x5 ; y (2) = 5 implies C = 32 so y ( x) = x 2 + 32 / x 5 7. ρ = exp ( ∫ (1/ 2 x) dx ) = e (ln x ) / 2 = x; ( Dx y ⋅ x = 5; ) y ⋅ x = 5x + C y( x) = 5 x + C / x 8. ρ = exp ( ∫ (1/ 3x) dx ) = e (ln x ) / 3 = 3 x; ( Dx y ⋅ 3 x = 4 3 x ; ) y ⋅ 3 x = 3x4 / 3 + C y ( x ) = 3 x + Cx −1/ 3 9. ρ = exp ( ∫ (−1/ x) dx ) = e − ln x = 1/ x; Dx ( y ⋅1/ x ) = 1/ x; y ⋅1/ x = ln x + C y ( x ) = x ln x + C x; y (1) = 7 implies C = 7 so y ( x) = x ln x + 7 x 10. ρ = exp ( ∫ (−3 / 2 x) dx ) = e ( −3ln x ) / 2 = x −3/ 2 ; ( ) Dx y ⋅ x −3/ 2 = 9 x1/ 2 / 2; y ⋅ x −3/ 2 = 3x 3/ 2 + C Section 1.5 1
  • 2. y ( x) = 3 x 3 + Cx 3/ 2 11. ρ = exp ( ∫ (1/ x − 3) dx ) = e ln x −3 x = x e −3 x ; ( Dx y ⋅ x e −3 x = 0; ) y ⋅ x e −3 x = C y ( x ) = C x −1e3 x ; y (1) = 0 implies C = 0 so y ( x) ≡ 0 (constant) 12. ρ = exp ( ∫ (3 / x) dx ) = e 3 ln x = x3 ; ( Dx y ⋅ x3 = 2 x 7 ; ) y ⋅ x 3 = 1 x8 + C 4 y( x) = 1 4 x 5 + C x −3 ; y (2) = 1 implies C = 56 so y ( x) = 1 4 x 5 + 56 x −3 13. ( ) ρ = exp ∫ 1 dx = e x ; ( Dx y ⋅ e x = e 2 x ; ) y ⋅ e x = 1 e2 x + C 2 y ( x) = 1 2 e x + C e− x ; y (0) = 1 implies C = 1 2 so y ( x) = 1 2 e x + 1 e− x 2 14. ρ = exp ( ∫ (−3/ x) dx ) = e −3ln x = x −3 ; ( Dx y ⋅ x −3 = x −1 ; ) y ⋅ x −3 = ln x + C y ( x) = x 3 ln x + C x 3 ; y (1) = 10 implies C = 10 so y ( x ) = x 3 ln x + 10 x 3 15. ρ = exp ( ∫ 2 x dx ) = e x2 ; ( Dx y ⋅ e x 2 ) = xe x2 ; y ⋅ ex = 1 ex + C 2 2 2 y ( x) = + C e− x ; y (0) = −2 implies C = − 5 so y ( x ) = − 5 e− x 2 2 1 1 2 2 2 2 16. ρ = exp ( ∫ cos x dx ) = e sin x ; ( ) Dx y ⋅ esin x = esin x cos x; y ⋅ esin x = esin x + C y ( x ) = 1 + C e − sin x ; y (π ) = 2 implies C = 1 so y ( x ) = 1 + e− sin x 17. ( ) ρ = exp ∫ 1/(1 + x) dx = eln(1+ x ) = 1 + x; Dx ( y ⋅ (1 + x )) = cos x; y ⋅ (1 + x ) = sin x + C C + sin x 1 + sin x y( x) = ; y (0) = 1 implies C = 1 so y ( x ) = 1+ x 1+ x 18. ρ = exp ( ∫ (−2 / x) dx ) = e −2ln x = x −2 ; ( Dx y ⋅ x −2 = cos x; ) y ⋅ x −2 = sin x + C y ( x ) = x 2 (sin x + C ) 19. ρ = exp ( ∫ cot x dx ) = e ln(sin x ) = sin x; Dx ( y ⋅ sin x ) = sin x cos x y ⋅ sin x = 1 sin 2 x + C ; 2 y ( x) = 1 2 sin x + C csc x Section 1.5 2
  • 3. 20. ρ = exp ( ∫ (−1 − x) dx ) = e − x − x2 / 2 ; ( Dx y ⋅ e − x − x 2 /2 ) = (1 + x) e − x − x2 / 2 y ⋅ e− x− x = − e− x− x + C; y ( x) = − 1 + C e − x− x 2 2 2 /2 /2 /2 y (0) = 0 implies C = 1 so y ( x ) = − 1 + e − x − x 2 /2 21. ρ = exp ( ∫ (−3 / x) dx ) = e −3ln x = x −3 ; ( Dx y ⋅ x −3 = cos x; ) y ⋅ x −3 = sin x + C y ( x) = x 3 sin x + C x 3 ; y (2π ) = 0 implies C = 0 so y ( x) = x 3 sin x 22. ρ = exp ( ∫ (−2 x) dx ) = e − x2 ; ( Dx y ⋅ e − x 2 ) = 3x ; 2 y ⋅ e− x = x3 + C 2 ( y ( x) = x 3 + C e − x ; ) y (0) = 5 implies C = 5 so y ( x ) = x 3 + 5 e − x ( ) 2 2 23. ρ = exp ( ∫ (2 − 3 / x) dx ) = e 2 x −3ln x = x −3e 2 x ; ( Dx y ⋅ x −3e 2 x = 4 e 2 x ) y ⋅ x −3 e 2 x = 2 e 2 x + C ; y ( x ) = 2 x 3 + C x 3 e −2 x 24. ρ = exp ( ∫ 3x /( x 2 ) + 4) dx = e3ln( x 2 + 4) / 2 = ( x 2 + 4)3/ 2 ; ( ) Dx y ⋅ ( x 2 + 4)3/ 2 = x ( x 2 + 4)1/ 2 y ⋅ ( x 2 + 4)3/ 2 = 1 ( x 2 + 4)3/ 2 + C ; 3 y ( x) = 1 3 + C ( x 2 + 4) −3/ 2 y (0) = 1 implies C = 16 so y ( x) = 3 1 3 + 16 ( x 2 + 4) −3/ 2 3 25. First we calculate + 3x dx = + 3x − 3x # dx = , x + 1 , ! x + 1$ 3 3 2 - 2 - 2 2 x − ln( x 2 + 1) . It follows that ρ = ( x 2 + 1) −3/ 2 exp(3x 2 / 2) and thence that ( Dx y ⋅ ( x 2 + 1) −3/ 2 exp(3x 2 / 2) = 6 x ( x 2 + 4)−5 / 2 , ) −3/ 2 y ⋅ ( x + 1)2 exp(3x / 2) = − 2( x 2 + 4) −3/ 2 + C , 2 y ( x) = − 2 exp(3 x 2 / 2) + C ( x 2 + 1)3/ 2 exp(−3x 2 / 2). Finally, y(0) = 1 implies that C = 3 so the desired particular solution is y ( x ) = − 2 exp(3x 2 / 2) + 3( x 2 + 1)3/ 2 exp(−3 x 2 / 2). Section 1.5 3
  • 4. 26. With x′ = dx / dy , the differential equation is y 3 x′ + 4 y 2 x = 1. Then with y as the independent variable we calculate ρ ( y ) = exp ( ∫ (4 / y) dy ) = e 4ln y = y4; ( ) Dy x ⋅ y 4 = y 1 2 1 C x ⋅ y4 = y + C; x( y ) = 2 + 4 2 2y y 27. With x′ = dx / dy , the differential equation is x′ − x = y e y . Then with y as the independent variable we calculate ρ ( y ) = exp ( ∫ (−1) dy ) = e −y ; ( Dy x ⋅ e − y )= y x ⋅ e− y = 1 2 y 2 + C; x( y ) = ( 1 2 y2 + C ey ) 28. With x′ = dx / dy , the differential equation is (1 + y 2 ) x′ − 2 y x = 1. Then with y as the independent variable we calculate ρ ( y ) = exp ( ∫ (−2 y /(1 + y ) dy ) = e2 − ln( y 2 +1) = (1 + y 2 )−1 ( ) Dy x ⋅ (1 + y 2 )−1 = (1 + y 2 ) −2 An integral table (or trigonometric substitution) now yields x ⌠ dy 1 y  =  =  + tan −1 y + C  1+ y2 ( ) 2  1+ y 2 2 ⌡ 1+ y 2  x( y ) = 1 2  y + 1 + y2  ( )( tan −1 y+C   ) 29. ρ = exp ( ∫ (−2 x) dx ) = e ; − x2 ( Dx y ⋅ e − x 2 )=e − x2 ; y ⋅ e − x = C + ∫ e −t dt 2 x 0 2 y ( x ) = e (C + erf ( x) ) − x2 π 2 30. After division of the given equation by 2x, multiplication by the integrating factor ρ = x–1/2 yields x −1/ 2 y ′ − 1 x −3/ 2 y = x −1/ 2 cos x, 2 2 7 Dx x −1/ 2 y = x −1/ 2 cos x, x −1 / 2 y = C + I 1 x t −1/ 2 cos t dt. Section 1.5 4
  • 5. The initial condition y(1) = 0 implies that C = 0, so the desired particular solution is y( x ) = x 1 / 2 I 1 x t −1/ 2 cos t dt . yc = C e ∫ (− P ) = − P yc , so yc + P yc = 0. − P dx 31. (a) ′ ′ − P dx   − P dx y′p = ( − P) e ∫ ⋅ ⌠  Q e ∫  dx  + e ∫ ⋅ Q e ∫ P dx P dx (b)   = − Py p + Q ⌡    32. (a) If y = A cos x + B sin x then y′ + y = ( A + B) cos x + ( B − A)sin x = 2sin x provided that A = –1 and B = 1. These coefficient values give the particular solution yp(x) = sin x – cos x. (b) The general solution of the equation y′ + y = 0 is y(x) = Ce–x so addition to the particular solution found in part (a) gives y(x) = Ce–x + sin x – cos x. (c) The initial condition y(0) = 1 implies that C = 2, so the desired particular solution is y(x) = 2e–x + sin x – cos x. 33. The amount x(t ) of salt (in kg) after t seconds satisfies the differential equation x′ = − x / 200, so x(t ) = 100 e− t / 200 . Hence we need only solve the equation 10 = 100 e − t / 200 for t = 461 sec = 7 min 41 sec (approximately). 34. Let x(t ) denote the amount of pollutants in the lake after t days, measured in millions of cubic feet. Then x(t ) satisfies the linear differential equation dx / dt = 1/ 4 − x /16 with solution x(t ) = 4 + 16 e − t /16 satisfying x(0) = 20. The value of t such that x = 8 is t = 16 ln 4 ≈ 22.2 days. For a complete solution see Example 4 in Section 7.6 of Edwards and Penney, Calculus with Analytic Geometry (5th edition, Prentice-Hall, 1998). 35. The only difference from the Example 4 solution in the textbook is that V = 1640 km3 and r = 410 km3/yr for Lake Ontario, so the time required is V t = ln 4 = 4 ln 4 ≈ 5.5452 years. r 36. (a) The volume of brine in the tank after t min is V(t) = 60 – t gal, so the initial value problem is Section 1.5 5
  • 6. dx 3x = 2− , x (0 ) = 0. dt 60 − t The solution is (60 − t )3 x (t ) = (60 − t ) − . 3600 (b) The maximum amount ever in the tank is 40 / 3 ≈ 23.09 lb. This occurs after t = 60 − 20 3 ≈ 25 / 36 min. 37. The volume of brine in the tank after t min is V(t) = 100 + 2t gal, so the initial value problem is dx 3x = 5− , x (0) = 50. dt 100 + 2t The integrating factor ρ (t ) = (100 + 2t)3/2 leads to the solution 50000 x(t ) = (100 + 2t ) − . (100 + 2t )3/ 2 such that x(0) = 50. The tank is full after t = 150 min, at which time x(150) = 393.75 lb. 38. (a) dx / dt = − x / 20 and x(0) = 50 so x(t ) = 50 e− t / 20 . (b) The solution of the linear differential equation dy 5x 5y 5 1 = − = e − t / 20 − y dt 100 200 2 40 with y(0) = 50 is y(t ) = 150 e − t / 40 − 100 e − t / 20 . (c) The maximum value of y occurs when y′(t ) = − 15 − t / 40 4 e 5 ( ) + 5e − t / 20 = − e − t / 40 3 − 4e − t / 40 = 0 . 4 We find that ymax = 56.25 lb when t = 40 ln(4/3) ≈ 11.51 min. 39. (a) The initial value problem dx x = − , x (0) = 100 dt 10 Section 1.5 6
  • 7. for Tank 1 has solution x (t ) = 100 e − t /10 . Then the initial value problem dy x y y = − = 10 e − t /10 − , y( 0 ) = 0 dt 10 10 10 for Tank 2 has solution y (t ) = 10t e − t /10 . (b) The maximum value of y occurs when y′(t ) = 10 e − t /10 − t e − t /10 = 0 and thus when t = 10. We find that ymax = y(10) = 100e–1 ≈ 36.79 gal. 40. (b) 2 7 Assuming inductively that xn = t n e − t / 2 / n ! 2 n , the equation for xn+1 is dxn +1 1 1 t n e−t / 2 1 = xn − xn +1 = − xn +1 . dt 2 2 n ! 2 n +1 2 We easily solve this first–order equation with x n+1 ( 0) = 0 and find that t n +1 e − t / 2 x n +1 = , (n + 1)! 2 n +1 thereby completing the proof by induction. 41. (a) A'(t) = 0.06A + 0.12S = 0.06 A + 3.6 e0.05t (b) The solution with A(0) = 0 is A(t) = 360(e0.06 t – e0.05 t), so A(40) ≈ 1308.283 thousand dollars. 42. The mass of the hailstone at time t is m = ( 4 / 3)πr 3 = ( 4 / 3)πk 3t 3 . Then the equation d(mv)/dt = mg simplifies to tv' + 3v = gt. The solution satisfying the initial condition v(0) = 0 is v(t) = gt/4, so v'(t) = g/4. 43. The solution of the initial value problem y ′ = x − y, y( −5) = y0 is y( x ) = x − 1 + ( y0 + 6)e − x − 5 . Section 1.5 7
  • 8. Substituting x = 5, we therefore solve the equation 4 + ( y0 + 6)e −10 = y1 with y1 = 3.998, 3.999, 4, 4.001, 4.002 for the desired initial values y0 = –50.0529, –28.0265, –6.0000, 16.0265, 38.0529, respectively. 44. The solution of the initial value problem y ′ = x + y, y( −5) = y0 is y( x ) = − x − 1 + ( y0 − 4)e x + 5 . Substituting x = 5, we therefore solve the equation −6 + ( y0 − 4)e10 = y1 with y1 = –10, –5, 0, 5, 10 for the desired initial values y0 = 3.99982, 4.00005, 4.00027, 4.00050, 4.00073, respectively. Section 1.5 8