SlideShare una empresa de Scribd logo
1 de 6
Descargar para leer sin conexión
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2436
Mitigation of Current and Voltage Harmonics Using MAF Based UPQC
A.RAJA1, K.N.S.K.SANTHOSH2
1PG Student, Dept of EEE, Kakinada Institute of Engineering & Technology - II, Korangi, India
2Assistant Professor, Dept of EEE, Kakinada Institute of Engineering & Technology - II, Korangi, India
---------------------------------------------------------------------***----------------------------------------------------------------------
Abstract - Today power system demand is increasing. In
recent Year power degraded at distribution side. Power loss
is increasing at consumer side due to more uses of non-
linear load. Power Quality issuescreatedbysensitiveload. In
this paper moving average filter (MAF) based UPQC device
used for reduce voltage and current distortion. Thepvcell is
connected in between shunt and series connected voltage
compensators in UPQC which consists of a series
compensator and a shunt compensator. The compensatorin
series to a source is used to mitigate the voltage harmonics
between the sources and loads. Whereas the shunt active
filter is connected in parallel with the load is used to reduce
and the harmonic currentsproducedbytheloadandreduces
the total harmonic distortion (THD) and extracting power
from PV array, Reactive power compensation. The
Synchronous reference frame based control is used in shunt
and series compensators in UPQC. In this project the power
Quality can be improved by reduction of losses leads to
increase in efficiency of power. The performance of MAF
based-UPQC is verified by simulating the system in Matlab-
Simulink under a nonlinear load.
Key Words: power quality, shunt compensation, series
compensation UPQC ,THD, MAF
1. INTRODUCTION
With the advancement in semiconductortechnology,thereis
an increased penetration of power electronic loads. These
loads such as computer power supplies, adjustable speed
drives, switched mode power supplies etc. have very good
efficiency, andhowever,they drawnonlinearcurrents.These
nonlinear currents cause voltage distortion at point of
common coupling particularlyindistributionsystems.There
is also increasing emphasis on clean energy generation
through installation of rooftop PV systems in small
apartments as well as in commercial buildings [1], [2].
However, due to the intermittent nature of the PV energy
sources, an increased penetration of such systems,
particularly in weak distribution systems leads to voltage
quality problems like voltage sags and swells, which
eventually instability in the grid . These voltage quality
problems also lead to frequent false tripping of power
electronic systems, malfunctioning and false triggering of
electronic systems and increased heating of capacitorbanks
etc. Power quality issues at both load side and grid side are
major problems faced by modern distribution systems. Due
to the demand for clean energy as well as stringent power
quality requirement of sophisticated electronic loads,
There is need for multifunctional systems which can
integrate clean energy generation along with power quality
improvement. A three phase multi-functional solar energy
conversion system, which compensates for load side power
quality issues has been proposed. A single phase solar pv
inverter along with activepowerfilteringcapabilityhasbeen
proposed in. Major research work has been done in
integrating clean energy generation along with shunt active
filtering. Though shunt active filteringhascapabilityforboth
load voltage regulation, it comes at the cause of injecting
reactive power. Thus shunt active filtering cannot regulate
PCC voltage as well as maintain grid current unity power
factor at same time. Recently, due to the stringent voltage
quality requirements for sophisticated electronicsloads,the
use of series active filters has been proposed for use insmall
apartments and commercial buildings. A solar photovoltaic
system integrated along with dynamic voltage restorer has
been proposed. Compared to shunt and series active power
filters, a unified power quality conditioner (UPQC), which
has both series and shunt compensators can perform both
load voltage regulation and maintain grid currentsinusoidal
at unity power factor at same time. Integrating PV array
along with UPQC, gives the dual benefits of clean energy
generation along with universal active. Compared to
conventional grid connected inverters, the solar PV
integrated UPQC has numerous benefits such as improving
power quality of the grid, protecting critical loads from grid
side disturbances apart from increasing the fault ride
through capability of converter during transients. With the
increased emphasis on distributed generation and micro
grids, there is a renewed interest in UPQC systems.
Reference signal generation is a major task in control of PV-
UPQC. Reference signal generation techniques can be
broadly divided into time-domain and frequency domain
techniques. Time domain techniques are commonly used
because of lower computational requirements in real-time
implementation. The commonly used techniques include
instantaneous reactive power theory (p-q theory),
synchronous reference frame theory (d-q theory) and
instantaneous symmetrical component theory. The main
issue in use of synchronous reference frame theory based
method is that during load unbalanced condition, double
harmonic component is present in the d-axis current. Dueto
this, low pass filters with very low cut off frequency is used
to filter out double harmonic component. This results in
poor dynamic performance. In this work, a moving average
filter (MAF) is used to filter the d-axis current to obtain
fundamental load active current. This gives optimal
attenuation and without reducing the bandwidth of the
controller. Recently, MAF has been applied in improving
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2437
performance of DC-link controllers as well as for Grid
synchronization using phase locked loop (PLL).
2. PROPOSED SYSTEM CONFIGURATION
The proposed topology consists of a series and shunt
active power filter. The active filter connected in series to a
source acts as a harmonic isolator between the sources and
loads whereas the shunt active filter is connected in parallel
with a load and suppresses the harmonic current produced
by the load as shown in Figure.1 The series active filter
compensates the harmonic voltage by synchronous
reference frame (SRF)-based controllers. The shunt active
filter compensates the harmonic current by using
synchronous reference frame (SRF) -based controllers.
Fig .1 Series and Shunt compensators (UPQC)
The performance of an active power filter depends
mainly on the technique selected to generate reference
compensating current. The template to generate the
reference current must include amplitude and phase
information to produce the desired compensating current
while keeping the voltage across the DC bus capacitor
constant. The chosen technique must operate satisfactorily
under both steady state and transient conditions. In the
proposed model, the technique chosen for extracting
reference currents and with the synchronous reference
frame (SRF) method.
3. MOVING AVERAGE
As the name implies, the moving average filter operates
by averaging a number of points from the input signal to
produce each point in the output signal.
In equation form, this is written
…………………………(1)
Where x [ ] is the input signal, y [ ] is the output signal, and M
is the number of points in the average. For example, in a 5
point moving average filter, point 80 in the output signal is
given by:
………………(2)
As an alternative, the group of points from the input signal
can be chosen symmetrically around the output point:
Symmetrical averaging requires that M be an odd number.
Programming is slightly easier with the points on only one
side; however, this produces a relative shift between the
input and output signals. You should recognize that the
moving average filter is a convolution using a very simple
filter kernel. That is, the moving average filter is a
convolution of the input signal with a rectangular pulse
having an area of one.
4. SYNCHRONOUS REFERENCE FRAME
SRF-based controller was employed in a hybrid APF
solution for improving passive filter performance in high
power applications,whereasintheSRF-basedcontroller was
used to generate the sinusoidal compensating current
references applied to a three-phase line-interactive UPS
system. In this work, for this purpose, an algorithmbased on
SRF is also used. In theSRF-basedalgorithmthefundamental
terms of voltage and/or current of the abc-phase stationary
reference frame are transformed into continuous quantities
into the dq synchronous axes, in which they rotate at a
synchronous speed in relation to the spatial vectors of
voltage and/or current. In the dq-axes, the harmonic
contents of voltage and/or current can be represented by
alternate quantities, which are superposed on the
continuous components. Therefore the fundamental
component can be easily obtained by means of HPFs. The
estimation of the utility grid phase-angle (θ) can be
performed by using PLL algorithms, allowing thegeneration
of the unit vector coordinates (sin θ and cos θ) used in the
SRF-based algorithm.
5. PROPOSED METHOD
In SRF theory the distorted three phase harmonic load
current ( ILa, Ilb, Ilc)are achieved in a-b-c coordinates by the
three phase measurement block and these quantities are
transformed into d-q coordinates(Rotating referenceframe)
by using equation (3) and cosine and sine functions from
phase locked loop. The extraction of harmonic component
present in the load current is done with the use of SRF
theory
.(3)
After transformation on d-q axes fundamental components
become D.C quantities, 5th, 7th, order harmonics and so on.
For the required compensation high pass filtered d-axis and
q-axis component will be considered reference current. The
d-component of loadcurrent representsactivecomponentof
the current and q-component of load current indicates
capacitive current drawn by the PF and also reactive power
demand by the load. The high pass filter can be realized by a
moving average filter (MAF), whose output is subtracted by
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2438
original
signal. ……………(4)
Fig.2 Block diagram of SRF current control technique with
MAF
The output of MAF extract only dc quantities and
attenuates the ac components corresponding to harmonic
frequency .Since the output of LPF are D.C. so it will not
suffer any magnitude or phase error. Oneoftheadvantageof
using low cut-off frequency of LPF is that it improves closed
loop system stability margin. The output of MAF is and this
output Id*,Iq* is transformed into ICA,ICB ,ICC by using inverse
SRF transformation in and it is used as reference current of
hysteresis controller.
Fig.3 Block diagram of SRF voltage control technique with
MAF
6 HYSTERESIS CURRENT CONTROL METHOD
Hysteresis current control method of generating the
switching signal forthe inverter switches in order to control
the inverter output current. It is adopted in shunt active
filter due to easy implementation and quick current
controllability.
Fig 4 Block diagram of hysteresis current controller
It is a fed back current control methodshowninfigure4,
where the actual current continuously tracks the reference
current in the hysteresis band .The reference and actual
current is compared with respect to hysteresis band which
decides switching pulse of voltage source inverter. As the
current crosses a set hysteresis band,theupperswitch inthe
half-bridge is turned off and the lower switch is turned on.
As the current exceeds the lower band limit, the upper
switch is turned on and the lower switch is turned off.
Fig 5 Hysteresis tolerance band
The switching frequency depends on how fast the
current changes from upper limit to lower limit and vice
versa. This, in turn depends on voltage vd and load
inductance. When the error reaches an upper limit, theIGBT
are switched to force the current down. When the error
reaches a lower limit the current is forced to increase. The
range of the error signal directly controls the amount of
ripple in the output current from the inverter and this is
called the Hysteresis Band. The Hysteresis limits relate
directly to an offset from the reference signal and are
referred to as the Lower Hysteresis Limit and the Upper
Hysteresis Limit. The current is forced to stay within these
limits even while the reference current is changing.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2439
7. SIMULATION AND RESULTS
7.1 PV MODULE WITH BOOST CONVERTER
Fig 6 PV Module with Boost Converter
7.2 MODEL FOR CONTROL OF HARMONICS
Fig 7 SRF Control for Series Converter
Fig 8 SRF Control for Shunt Converte
7.3 SHUNT AND SERIES CONVERTERS INTEGRATED
WITH PV
Fig 9 Unified Power Quality Condition
7.4 MODEL FOR MAF BASED UPQC
Fig 10 Simulink model for MAF BASED-UPQC
7.5 Mitigation of Voltage Harmonics under a Non-linear
load
Mitigation of Voltage HarmonicsUsingUPQCisshownin
fig 11, 12 and 13. The signs indicated are Source Voltage of
phase-a (Vsa), Source Voltage of phase-b (Vsb), Source
Voltage of phase-c (Vsc), and Load Voltage of phase-a (Vla),
Load Voltage of phase-b (Vlb), Load Voltage of phase-c (Vlc),
and Compensating voltages of phase-a, b, c are V*ca, V*cb,
V*cc respectively.
The fig 11 shows Load Voltage signals which are
distorted in manner due to Harmonics produced by Non-
linear load. The produced harmonics distorted the source
signals.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2440
Fig 11 Load voltage waveforms
The fig 11 shows Compensating Voltage signals which
are injected into source voltage signal by SeriesConverterin
order to mitigate the harmonics.
Fig 12 Compensating Voltage waveforms
The fig 10 shows Source Voltage signals which are in
sinusoidal waveforms due to mitigation of Harmonics by
UPQC.
Fig 13 Source Voltage waveforms
7.6 Mitigation of Current Harmonics under a Non-linear
load
Mitigation of CurrentHarmonicsUsingUPQCisshownin
fig 11, 12, and 13. The signs indicated are Source Current of
phase-a (Isa), Source Current of phase-b (Isb), Source
Current of phase-c (Isc), and Load Current of phase-a (Ila),
Load Current of phase-b (Ilb), Load Current of phase-c (Ilc),
and Compensating Current signals of phase-a, b, c are I*ca,
I*cb, I*cc respectively.
The fig 11 shows Load Current signals which are
distorted due to Harmonics produced by Non-linear load.
The produced harmonics distorted the source signals.
Fig 14 Load current waveforms
The fig 14 shows Compensating Current signals which
are injected into sourcecurrentsignalsbyShuntconverterin
order to mitigate the harmonics.
Fig 15 Compensating current waveforms
The fig 15 shows the Source Current waveforms which
are in sinusoidal due to mitigation of harmonics by UPQC.
Fig 16 Source Current waveforms
7.7 Comparison of %THD
A. Control
strategy
B. Load side C. Source side
D. Voltage
(%THD)
E. 9.2% F. 0.5%
G. Current
(%THD)
H. 20.6% I. 2.8%
Table 1 Comparison of %THD
8. CONCLUSION AND FUTURE SCOPE
8.1 Conclusion
In this project, mitigation of current and voltage
harmonics using MAF based UPQC has been presented and
tested under a non-linear load. Introduction of PV system in
UPQC at DC link fed the supply voltage to link capacitors as
well as fed power to the loads. The performance of SRF
control particularly in nonlinear load condition has been
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2441
improved through the use of MAF. IntroductionofSRFbased
controlling for MAF based UPQC reduces the harmonics,
increases the power factor of the system and also maintains
the percentage of THD under the limits of IEEE-519
standards.
9. REFERENCES
[1]. Sachin Devassy & Bhim Singh “Dynamic
Performance of Solar PV Integrated UPQC for Critical
Loads”, IEEE INDICON 2015 1570197603.
[2]. “IEEE recommended practice forevaluatingelectric
power system compatibility with electronic process
equipment,” IEEE Std 1346-1998, pp. 1–43, 1998.
[3]. Ismael Molina-Moreno,AurelioMedina andRafeael,
Olimpo Anaya-Lara “Noise Mitigation in Voltage and
Current Waveforms in Harmonic DistortionEstimation”
IEEE std ROPEC 2017.
[4]. Nenceey Jain, Amit Guptha “Comparison between
Two Compensation Current Control Methods of Shunt
Active Power filter” International Journal of Research
and General Science vol-2, 2014
[5]. Vivek Tamrakar, S.C Guptha and Yashwant Sawle
“Single-diode PV cell Modeling and Study of
Characteristics of Single and Two-diode Equivalent
circuit” ELELIJ vol-4, 2015
[6]. S.srinivasa rao, P.Siva Rama Krishna, Dr. sai babu
“Mitigation of voltage sag, swell andTHDusingDynamic
voltage restorer with Photovoltaic system”
[7]. Muneer V, Avik Bhattacharya “Investigation on
Reduced DC link voltage Based UPQC for Harmonic
compensation under Unbalanced load” IEEE std , 2017
[8]. Sudeer Vinnakoti “SRF-based control of unified
power quality conditioner for power quality
enhancement”
[9]. M.Suneetha, B.N.Kartheek “Elimination of
Harmonics using active power filter based on DQ
reference frame theory” IJETT vol-4, 2013

Más contenido relacionado

La actualidad más candente

Power Quality Improvement in Power System using UPFC
Power Quality Improvement in Power System using UPFCPower Quality Improvement in Power System using UPFC
Power Quality Improvement in Power System using UPFC
ijtsrd
 
Mitigation of Power Quality Issues by Nine Switches UPQC Using PI & ANN with ...
Mitigation of Power Quality Issues by Nine Switches UPQC Using PI & ANN with ...Mitigation of Power Quality Issues by Nine Switches UPQC Using PI & ANN with ...
Mitigation of Power Quality Issues by Nine Switches UPQC Using PI & ANN with ...
MABUSUBANI SHAIK
 
Improved Power Quality by using STATCOM Under Various Loading Conditions
Improved Power Quality by using STATCOM Under Various Loading ConditionsImproved Power Quality by using STATCOM Under Various Loading Conditions
Improved Power Quality by using STATCOM Under Various Loading Conditions
IJMTST Journal
 

La actualidad más candente (20)

Power Quality Improvement in Power System using UPFC
Power Quality Improvement in Power System using UPFCPower Quality Improvement in Power System using UPFC
Power Quality Improvement in Power System using UPFC
 
Improvement of Power Quality by using Injection Super Capacitor UPQC for BLDC...
Improvement of Power Quality by using Injection Super Capacitor UPQC for BLDC...Improvement of Power Quality by using Injection Super Capacitor UPQC for BLDC...
Improvement of Power Quality by using Injection Super Capacitor UPQC for BLDC...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
E021203026035
E021203026035E021203026035
E021203026035
 
Newdd
NewddNewdd
Newdd
 
Design & Simulation of Energy Storage Unified Power Quality Conditioner (EUPQ...
Design & Simulation of Energy Storage Unified Power Quality Conditioner (EUPQ...Design & Simulation of Energy Storage Unified Power Quality Conditioner (EUPQ...
Design & Simulation of Energy Storage Unified Power Quality Conditioner (EUPQ...
 
Mitigation of Power Quality Issues by Nine Switches UPQC Using PI & ANN with ...
Mitigation of Power Quality Issues by Nine Switches UPQC Using PI & ANN with ...Mitigation of Power Quality Issues by Nine Switches UPQC Using PI & ANN with ...
Mitigation of Power Quality Issues by Nine Switches UPQC Using PI & ANN with ...
 
IRJET- STATCOM Enabled Modified iUPQC Controller
IRJET- STATCOM Enabled Modified iUPQC ControllerIRJET- STATCOM Enabled Modified iUPQC Controller
IRJET- STATCOM Enabled Modified iUPQC Controller
 
TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (...
TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (...TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (...
TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (...
 
POWER QUQLITY IMPROVEMENT WITH UPQC
POWER QUQLITY IMPROVEMENT WITH UPQCPOWER QUQLITY IMPROVEMENT WITH UPQC
POWER QUQLITY IMPROVEMENT WITH UPQC
 
Improved Power Quality by using STATCOM Under Various Loading Conditions
Improved Power Quality by using STATCOM Under Various Loading ConditionsImproved Power Quality by using STATCOM Under Various Loading Conditions
Improved Power Quality by using STATCOM Under Various Loading Conditions
 
Enhancement in Power Quality With Grid Interconnection of Renewable Energy So...
Enhancement in Power Quality With Grid Interconnection of Renewable Energy So...Enhancement in Power Quality With Grid Interconnection of Renewable Energy So...
Enhancement in Power Quality With Grid Interconnection of Renewable Energy So...
 
Me2420192024
Me2420192024Me2420192024
Me2420192024
 
Optimal Placement of FACTS Controller
Optimal Placement of FACTS ControllerOptimal Placement of FACTS Controller
Optimal Placement of FACTS Controller
 
1.compensation of reactive power using d statcom in grid interfaced pv system
1.compensation of reactive power using d statcom in grid interfaced pv system1.compensation of reactive power using d statcom in grid interfaced pv system
1.compensation of reactive power using d statcom in grid interfaced pv system
 
Power Quality Improvement of Grid Interconnection of renewable Energy Based D...
Power Quality Improvement of Grid Interconnection of renewable Energy Based D...Power Quality Improvement of Grid Interconnection of renewable Energy Based D...
Power Quality Improvement of Grid Interconnection of renewable Energy Based D...
 
B04931120
B04931120B04931120
B04931120
 
A New Approach to Powerflow Management in Transmission System Using Interline...
A New Approach to Powerflow Management in Transmission System Using Interline...A New Approach to Powerflow Management in Transmission System Using Interline...
A New Approach to Powerflow Management in Transmission System Using Interline...
 
Ijetr021134
Ijetr021134Ijetr021134
Ijetr021134
 
power quality improvement in distrution system using D statcom
power quality improvement in distrution system using D statcompower quality improvement in distrution system using D statcom
power quality improvement in distrution system using D statcom
 

Similar a IRJET- Mitigation of Current and Voltage Harmonics using MAF based UPQC

Similar a IRJET- Mitigation of Current and Voltage Harmonics using MAF based UPQC (20)

IRJET- UPQC System for Improved Control Method
IRJET- UPQC System for Improved Control MethodIRJET- UPQC System for Improved Control Method
IRJET- UPQC System for Improved Control Method
 
u.pdf
u.pdfu.pdf
u.pdf
 
High_reactive_power_DOC.docx
High_reactive_power_DOC.docxHigh_reactive_power_DOC.docx
High_reactive_power_DOC.docx
 
IRJET- A Comparison of Power Quality Improvement based on Controls of UPQC
IRJET- A Comparison of Power Quality Improvement based on Controls of UPQCIRJET- A Comparison of Power Quality Improvement based on Controls of UPQC
IRJET- A Comparison of Power Quality Improvement based on Controls of UPQC
 
A Grid-Tied Solar Power System with Harmonic Filter to Enhance Power Quality
A Grid-Tied Solar Power System with Harmonic Filter to Enhance Power QualityA Grid-Tied Solar Power System with Harmonic Filter to Enhance Power Quality
A Grid-Tied Solar Power System with Harmonic Filter to Enhance Power Quality
 
Comparative Analysis of Power Quality Enhancement of Distribution System usin...
Comparative Analysis of Power Quality Enhancement of Distribution System usin...Comparative Analysis of Power Quality Enhancement of Distribution System usin...
Comparative Analysis of Power Quality Enhancement of Distribution System usin...
 
A Review on Unified Power Quality Conditioner for 3P4W System
A Review on Unified Power Quality Conditioner for 3P4W SystemA Review on Unified Power Quality Conditioner for 3P4W System
A Review on Unified Power Quality Conditioner for 3P4W System
 
IRJET- Generalized UPQC System with an Improved Control Method under Distorte...
IRJET- Generalized UPQC System with an Improved Control Method under Distorte...IRJET- Generalized UPQC System with an Improved Control Method under Distorte...
IRJET- Generalized UPQC System with an Improved Control Method under Distorte...
 
Mitigation of Voltage and Current Harmonics using UPQC Base on Synchronous Re...
Mitigation of Voltage and Current Harmonics using UPQC Base on Synchronous Re...Mitigation of Voltage and Current Harmonics using UPQC Base on Synchronous Re...
Mitigation of Voltage and Current Harmonics using UPQC Base on Synchronous Re...
 
IRJET- PI Controller based Shunt Connected Three Phase Active Power Filter
IRJET- PI Controller based Shunt Connected Three Phase Active Power FilterIRJET- PI Controller based Shunt Connected Three Phase Active Power Filter
IRJET- PI Controller based Shunt Connected Three Phase Active Power Filter
 
Review on Different Time Domain Controlling Technique for UPQC
Review on Different Time Domain Controlling Technique for UPQCReview on Different Time Domain Controlling Technique for UPQC
Review on Different Time Domain Controlling Technique for UPQC
 
IRJET- Design and Performance Analysis of Three-Phase Solar PV Integrated UPQC
IRJET- Design and Performance Analysis of Three-Phase Solar PV Integrated UPQCIRJET- Design and Performance Analysis of Three-Phase Solar PV Integrated UPQC
IRJET- Design and Performance Analysis of Three-Phase Solar PV Integrated UPQC
 
Power Quality Improvement by SRF Based Control using D-STATCOM
Power Quality Improvement by  SRF Based Control using D-STATCOMPower Quality Improvement by  SRF Based Control using D-STATCOM
Power Quality Improvement by SRF Based Control using D-STATCOM
 
IRJET- Review: Active Power Filtering Techniques for Power System
IRJET- Review: Active Power Filtering Techniques for Power SystemIRJET- Review: Active Power Filtering Techniques for Power System
IRJET- Review: Active Power Filtering Techniques for Power System
 
POWER QUALITY ENHANCEMENT USING UPQC
POWER QUALITY ENHANCEMENT USING UPQCPOWER QUALITY ENHANCEMENT USING UPQC
POWER QUALITY ENHANCEMENT USING UPQC
 
Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc
Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using IupqcMitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc
Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc
 
B360614
B360614B360614
B360614
 
report of Improvement of the Electric Power Quality Using Series Active and S...
report of Improvement of the Electric Power Quality Using Series Active and S...report of Improvement of the Electric Power Quality Using Series Active and S...
report of Improvement of the Electric Power Quality Using Series Active and S...
 
IRJET- Impact of UPQC on Protection of Distributed Generation Integrated Dist...
IRJET- Impact of UPQC on Protection of Distributed Generation Integrated Dist...IRJET- Impact of UPQC on Protection of Distributed Generation Integrated Dist...
IRJET- Impact of UPQC on Protection of Distributed Generation Integrated Dist...
 
Grid fault Control Scheme for Peak Current Reduction in Photovoltaic Inverte...
Grid fault Control Scheme for Peak Current Reduction in  Photovoltaic Inverte...Grid fault Control Scheme for Peak Current Reduction in  Photovoltaic Inverte...
Grid fault Control Scheme for Peak Current Reduction in Photovoltaic Inverte...
 

Más de IRJET Journal

Más de IRJET Journal (20)

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil Characteristics
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADAS
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare System
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridges
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web application
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
 

Último

"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Último (20)

Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 

IRJET- Mitigation of Current and Voltage Harmonics using MAF based UPQC

  • 1. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2436 Mitigation of Current and Voltage Harmonics Using MAF Based UPQC A.RAJA1, K.N.S.K.SANTHOSH2 1PG Student, Dept of EEE, Kakinada Institute of Engineering & Technology - II, Korangi, India 2Assistant Professor, Dept of EEE, Kakinada Institute of Engineering & Technology - II, Korangi, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract - Today power system demand is increasing. In recent Year power degraded at distribution side. Power loss is increasing at consumer side due to more uses of non- linear load. Power Quality issuescreatedbysensitiveload. In this paper moving average filter (MAF) based UPQC device used for reduce voltage and current distortion. Thepvcell is connected in between shunt and series connected voltage compensators in UPQC which consists of a series compensator and a shunt compensator. The compensatorin series to a source is used to mitigate the voltage harmonics between the sources and loads. Whereas the shunt active filter is connected in parallel with the load is used to reduce and the harmonic currentsproducedbytheloadandreduces the total harmonic distortion (THD) and extracting power from PV array, Reactive power compensation. The Synchronous reference frame based control is used in shunt and series compensators in UPQC. In this project the power Quality can be improved by reduction of losses leads to increase in efficiency of power. The performance of MAF based-UPQC is verified by simulating the system in Matlab- Simulink under a nonlinear load. Key Words: power quality, shunt compensation, series compensation UPQC ,THD, MAF 1. INTRODUCTION With the advancement in semiconductortechnology,thereis an increased penetration of power electronic loads. These loads such as computer power supplies, adjustable speed drives, switched mode power supplies etc. have very good efficiency, andhowever,they drawnonlinearcurrents.These nonlinear currents cause voltage distortion at point of common coupling particularlyindistributionsystems.There is also increasing emphasis on clean energy generation through installation of rooftop PV systems in small apartments as well as in commercial buildings [1], [2]. However, due to the intermittent nature of the PV energy sources, an increased penetration of such systems, particularly in weak distribution systems leads to voltage quality problems like voltage sags and swells, which eventually instability in the grid . These voltage quality problems also lead to frequent false tripping of power electronic systems, malfunctioning and false triggering of electronic systems and increased heating of capacitorbanks etc. Power quality issues at both load side and grid side are major problems faced by modern distribution systems. Due to the demand for clean energy as well as stringent power quality requirement of sophisticated electronic loads, There is need for multifunctional systems which can integrate clean energy generation along with power quality improvement. A three phase multi-functional solar energy conversion system, which compensates for load side power quality issues has been proposed. A single phase solar pv inverter along with activepowerfilteringcapabilityhasbeen proposed in. Major research work has been done in integrating clean energy generation along with shunt active filtering. Though shunt active filteringhascapabilityforboth load voltage regulation, it comes at the cause of injecting reactive power. Thus shunt active filtering cannot regulate PCC voltage as well as maintain grid current unity power factor at same time. Recently, due to the stringent voltage quality requirements for sophisticated electronicsloads,the use of series active filters has been proposed for use insmall apartments and commercial buildings. A solar photovoltaic system integrated along with dynamic voltage restorer has been proposed. Compared to shunt and series active power filters, a unified power quality conditioner (UPQC), which has both series and shunt compensators can perform both load voltage regulation and maintain grid currentsinusoidal at unity power factor at same time. Integrating PV array along with UPQC, gives the dual benefits of clean energy generation along with universal active. Compared to conventional grid connected inverters, the solar PV integrated UPQC has numerous benefits such as improving power quality of the grid, protecting critical loads from grid side disturbances apart from increasing the fault ride through capability of converter during transients. With the increased emphasis on distributed generation and micro grids, there is a renewed interest in UPQC systems. Reference signal generation is a major task in control of PV- UPQC. Reference signal generation techniques can be broadly divided into time-domain and frequency domain techniques. Time domain techniques are commonly used because of lower computational requirements in real-time implementation. The commonly used techniques include instantaneous reactive power theory (p-q theory), synchronous reference frame theory (d-q theory) and instantaneous symmetrical component theory. The main issue in use of synchronous reference frame theory based method is that during load unbalanced condition, double harmonic component is present in the d-axis current. Dueto this, low pass filters with very low cut off frequency is used to filter out double harmonic component. This results in poor dynamic performance. In this work, a moving average filter (MAF) is used to filter the d-axis current to obtain fundamental load active current. This gives optimal attenuation and without reducing the bandwidth of the controller. Recently, MAF has been applied in improving
  • 2. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2437 performance of DC-link controllers as well as for Grid synchronization using phase locked loop (PLL). 2. PROPOSED SYSTEM CONFIGURATION The proposed topology consists of a series and shunt active power filter. The active filter connected in series to a source acts as a harmonic isolator between the sources and loads whereas the shunt active filter is connected in parallel with a load and suppresses the harmonic current produced by the load as shown in Figure.1 The series active filter compensates the harmonic voltage by synchronous reference frame (SRF)-based controllers. The shunt active filter compensates the harmonic current by using synchronous reference frame (SRF) -based controllers. Fig .1 Series and Shunt compensators (UPQC) The performance of an active power filter depends mainly on the technique selected to generate reference compensating current. The template to generate the reference current must include amplitude and phase information to produce the desired compensating current while keeping the voltage across the DC bus capacitor constant. The chosen technique must operate satisfactorily under both steady state and transient conditions. In the proposed model, the technique chosen for extracting reference currents and with the synchronous reference frame (SRF) method. 3. MOVING AVERAGE As the name implies, the moving average filter operates by averaging a number of points from the input signal to produce each point in the output signal. In equation form, this is written …………………………(1) Where x [ ] is the input signal, y [ ] is the output signal, and M is the number of points in the average. For example, in a 5 point moving average filter, point 80 in the output signal is given by: ………………(2) As an alternative, the group of points from the input signal can be chosen symmetrically around the output point: Symmetrical averaging requires that M be an odd number. Programming is slightly easier with the points on only one side; however, this produces a relative shift between the input and output signals. You should recognize that the moving average filter is a convolution using a very simple filter kernel. That is, the moving average filter is a convolution of the input signal with a rectangular pulse having an area of one. 4. SYNCHRONOUS REFERENCE FRAME SRF-based controller was employed in a hybrid APF solution for improving passive filter performance in high power applications,whereasintheSRF-basedcontroller was used to generate the sinusoidal compensating current references applied to a three-phase line-interactive UPS system. In this work, for this purpose, an algorithmbased on SRF is also used. In theSRF-basedalgorithmthefundamental terms of voltage and/or current of the abc-phase stationary reference frame are transformed into continuous quantities into the dq synchronous axes, in which they rotate at a synchronous speed in relation to the spatial vectors of voltage and/or current. In the dq-axes, the harmonic contents of voltage and/or current can be represented by alternate quantities, which are superposed on the continuous components. Therefore the fundamental component can be easily obtained by means of HPFs. The estimation of the utility grid phase-angle (θ) can be performed by using PLL algorithms, allowing thegeneration of the unit vector coordinates (sin θ and cos θ) used in the SRF-based algorithm. 5. PROPOSED METHOD In SRF theory the distorted three phase harmonic load current ( ILa, Ilb, Ilc)are achieved in a-b-c coordinates by the three phase measurement block and these quantities are transformed into d-q coordinates(Rotating referenceframe) by using equation (3) and cosine and sine functions from phase locked loop. The extraction of harmonic component present in the load current is done with the use of SRF theory .(3) After transformation on d-q axes fundamental components become D.C quantities, 5th, 7th, order harmonics and so on. For the required compensation high pass filtered d-axis and q-axis component will be considered reference current. The d-component of loadcurrent representsactivecomponentof the current and q-component of load current indicates capacitive current drawn by the PF and also reactive power demand by the load. The high pass filter can be realized by a moving average filter (MAF), whose output is subtracted by
  • 3. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2438 original signal. ……………(4) Fig.2 Block diagram of SRF current control technique with MAF The output of MAF extract only dc quantities and attenuates the ac components corresponding to harmonic frequency .Since the output of LPF are D.C. so it will not suffer any magnitude or phase error. Oneoftheadvantageof using low cut-off frequency of LPF is that it improves closed loop system stability margin. The output of MAF is and this output Id*,Iq* is transformed into ICA,ICB ,ICC by using inverse SRF transformation in and it is used as reference current of hysteresis controller. Fig.3 Block diagram of SRF voltage control technique with MAF 6 HYSTERESIS CURRENT CONTROL METHOD Hysteresis current control method of generating the switching signal forthe inverter switches in order to control the inverter output current. It is adopted in shunt active filter due to easy implementation and quick current controllability. Fig 4 Block diagram of hysteresis current controller It is a fed back current control methodshowninfigure4, where the actual current continuously tracks the reference current in the hysteresis band .The reference and actual current is compared with respect to hysteresis band which decides switching pulse of voltage source inverter. As the current crosses a set hysteresis band,theupperswitch inthe half-bridge is turned off and the lower switch is turned on. As the current exceeds the lower band limit, the upper switch is turned on and the lower switch is turned off. Fig 5 Hysteresis tolerance band The switching frequency depends on how fast the current changes from upper limit to lower limit and vice versa. This, in turn depends on voltage vd and load inductance. When the error reaches an upper limit, theIGBT are switched to force the current down. When the error reaches a lower limit the current is forced to increase. The range of the error signal directly controls the amount of ripple in the output current from the inverter and this is called the Hysteresis Band. The Hysteresis limits relate directly to an offset from the reference signal and are referred to as the Lower Hysteresis Limit and the Upper Hysteresis Limit. The current is forced to stay within these limits even while the reference current is changing.
  • 4. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2439 7. SIMULATION AND RESULTS 7.1 PV MODULE WITH BOOST CONVERTER Fig 6 PV Module with Boost Converter 7.2 MODEL FOR CONTROL OF HARMONICS Fig 7 SRF Control for Series Converter Fig 8 SRF Control for Shunt Converte 7.3 SHUNT AND SERIES CONVERTERS INTEGRATED WITH PV Fig 9 Unified Power Quality Condition 7.4 MODEL FOR MAF BASED UPQC Fig 10 Simulink model for MAF BASED-UPQC 7.5 Mitigation of Voltage Harmonics under a Non-linear load Mitigation of Voltage HarmonicsUsingUPQCisshownin fig 11, 12 and 13. The signs indicated are Source Voltage of phase-a (Vsa), Source Voltage of phase-b (Vsb), Source Voltage of phase-c (Vsc), and Load Voltage of phase-a (Vla), Load Voltage of phase-b (Vlb), Load Voltage of phase-c (Vlc), and Compensating voltages of phase-a, b, c are V*ca, V*cb, V*cc respectively. The fig 11 shows Load Voltage signals which are distorted in manner due to Harmonics produced by Non- linear load. The produced harmonics distorted the source signals.
  • 5. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2440 Fig 11 Load voltage waveforms The fig 11 shows Compensating Voltage signals which are injected into source voltage signal by SeriesConverterin order to mitigate the harmonics. Fig 12 Compensating Voltage waveforms The fig 10 shows Source Voltage signals which are in sinusoidal waveforms due to mitigation of Harmonics by UPQC. Fig 13 Source Voltage waveforms 7.6 Mitigation of Current Harmonics under a Non-linear load Mitigation of CurrentHarmonicsUsingUPQCisshownin fig 11, 12, and 13. The signs indicated are Source Current of phase-a (Isa), Source Current of phase-b (Isb), Source Current of phase-c (Isc), and Load Current of phase-a (Ila), Load Current of phase-b (Ilb), Load Current of phase-c (Ilc), and Compensating Current signals of phase-a, b, c are I*ca, I*cb, I*cc respectively. The fig 11 shows Load Current signals which are distorted due to Harmonics produced by Non-linear load. The produced harmonics distorted the source signals. Fig 14 Load current waveforms The fig 14 shows Compensating Current signals which are injected into sourcecurrentsignalsbyShuntconverterin order to mitigate the harmonics. Fig 15 Compensating current waveforms The fig 15 shows the Source Current waveforms which are in sinusoidal due to mitigation of harmonics by UPQC. Fig 16 Source Current waveforms 7.7 Comparison of %THD A. Control strategy B. Load side C. Source side D. Voltage (%THD) E. 9.2% F. 0.5% G. Current (%THD) H. 20.6% I. 2.8% Table 1 Comparison of %THD 8. CONCLUSION AND FUTURE SCOPE 8.1 Conclusion In this project, mitigation of current and voltage harmonics using MAF based UPQC has been presented and tested under a non-linear load. Introduction of PV system in UPQC at DC link fed the supply voltage to link capacitors as well as fed power to the loads. The performance of SRF control particularly in nonlinear load condition has been
  • 6. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2441 improved through the use of MAF. IntroductionofSRFbased controlling for MAF based UPQC reduces the harmonics, increases the power factor of the system and also maintains the percentage of THD under the limits of IEEE-519 standards. 9. REFERENCES [1]. Sachin Devassy & Bhim Singh “Dynamic Performance of Solar PV Integrated UPQC for Critical Loads”, IEEE INDICON 2015 1570197603. [2]. “IEEE recommended practice forevaluatingelectric power system compatibility with electronic process equipment,” IEEE Std 1346-1998, pp. 1–43, 1998. [3]. Ismael Molina-Moreno,AurelioMedina andRafeael, Olimpo Anaya-Lara “Noise Mitigation in Voltage and Current Waveforms in Harmonic DistortionEstimation” IEEE std ROPEC 2017. [4]. Nenceey Jain, Amit Guptha “Comparison between Two Compensation Current Control Methods of Shunt Active Power filter” International Journal of Research and General Science vol-2, 2014 [5]. Vivek Tamrakar, S.C Guptha and Yashwant Sawle “Single-diode PV cell Modeling and Study of Characteristics of Single and Two-diode Equivalent circuit” ELELIJ vol-4, 2015 [6]. S.srinivasa rao, P.Siva Rama Krishna, Dr. sai babu “Mitigation of voltage sag, swell andTHDusingDynamic voltage restorer with Photovoltaic system” [7]. Muneer V, Avik Bhattacharya “Investigation on Reduced DC link voltage Based UPQC for Harmonic compensation under Unbalanced load” IEEE std , 2017 [8]. Sudeer Vinnakoti “SRF-based control of unified power quality conditioner for power quality enhancement” [9]. M.Suneetha, B.N.Kartheek “Elimination of Harmonics using active power filter based on DQ reference frame theory” IJETT vol-4, 2013