SlideShare una empresa de Scribd logo
1 de 24
Descargar para leer sin conexión
Exponents and surds
6Contents:
A Exponent or index notation [1.4, 1.9]
B Exponent or index laws [1.9, 2.4]
C Zero and negative indices [1.9, 2.4]
D Standard form [1.9]
E Surds [1.10]
F Properties of surds [1.10]
G Multiplication of surds [1.10]
H Division by surds [1.10]
Opening problem #endboxedheading
Amadeo Avogadro (1776-1856) established that one gram of
hydrogen contains 6:02 £ 1023
atoms.
Things to think about:
² How can we write this number as an ordinary number?
² How many atoms would be in one tonne of hydrogen gas?
² Can you find the mass of 1030
atoms of hydrogen?
We have seen previously that 2 £ 2 £ 2 £ 2 £ 2, can be written as 25
.
25
reads “two to the power of five” or “two with index five”.
In this case 2 is the base and 5 is the exponent, power or index.
We say that 25
is written in exponent or index notation.
EXPONENT OR INDEX NOTATION [1.4, 1.9]A
25
exponent,
orpower
index
base
The use of also called or , allows us to write products of factors and also to
write very large or very small numbers quickly.
exponents powers indices,
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06123IGCSE01_06.CDR Friday, 14 November 2008 10:52:42 AM PETER
124 Exponents and surds (Chapter 6)
Example 1 Self Tutor
Find the integer equal to: a 34
b 24
£ 32
£ 7
a 34
= 3 £ 3 £ 3 £ 3
= 9 £ 9
= 81
b 24
£ 32
£ 7
= 2 £ 2 £ 2 £ 2 £ 3 £ 3 £ 7
= 16 £ 9 £ 7
= 1008
Example 2 Self Tutor
Write as a product of prime factors in index form:
a 144 b 4312
a 2 144
2 72
2 36
2 18
3 9
3 3
1
) 144 = 24
£ 32
b 2 4312
2 2156
2 1078
7 539
7 77
11 11
1
) 4312 = 23
£ 72
£ 11
EXERCISE 6A.1
1 Find the integer equal to:
a 23
b 33
c 25
d 53
e 22
£ 33
£ 5 f 23
£ 3 £ 72
g 32
£ 52
£ 13 h 24
£ 52
£ 11
2 By dividing continuously by the primes 2, 3, 5, 7, ..... , write as a product of prime factors in index
form:
a 50 b 98 c 108 d 360
e 1128 f 784 g 952 h 6500
3 The following numbers can be written in the form 2n
. Find n.
a 32 b 256 c 4096
4 The following numbers can be written in the form 3n
. Find n.
a 27 b 729 c 59 049
5 By considering 31
, 32
, 33
, 34
, 35
.... and looking for a pattern, find the last digit of 333
.
6 What is the last digit of 777
?
7 Find n if:
a 54
= n b n3
= 343 c 11n
= 161 051 d (0:6)n
= 0:046 656
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06124IGCSE01_06.CDR Wednesday, 17 September 2008 9:33:15 AM PETER
Exponents and surds (Chapter 6) 125
Historical note
#endboxedheading
1 = 13
3 + 5 = 8 = 23
7 + 9 + 11 = 27 = 33
etc.
Nicomachus of Gerasa lived around 100 AD. He discovered
an interesting number pattern involving cubes and sums of odd
numbers:
NEGATIVE BASES
So far we have only considered positive bases raised to a power.
We will now briefly look at negative bases. Consider the statements below:
(¡1)1
= ¡1
(¡1)2
= ¡1 £ ¡1 = 1
(¡1)3
= ¡1 £ ¡1 £ ¡1 = ¡1
(¡1)4
= ¡1 £ ¡1 £ ¡1 £ ¡1 = 1
(¡2)1
= ¡2
(¡2)2
= ¡2 £ ¡2 = 4
(¡2)3
= ¡2 £ ¡2 £ ¡2 = ¡8
(¡2)4
= ¡2 £ ¡2 £ ¡2 £ ¡2 = 16
From the pattern above it can be seen that:
² a negative base raised to an odd power is negative
² a negative base raised to an even power is positive.
Example 3 Self Tutor
Evaluate:
a (¡2)4
b ¡24
c (¡2)5
d ¡(¡2)5
a (¡2)4
= 16
b ¡24
= ¡1 £ 24
= ¡16
c (¡2)5
= ¡32
d ¡(¡2)5
= ¡1 £ (¡2)5
= ¡1 £ ¡32
= 32
CALCULATOR USE
Power keys
x2 squares the number in the display.
^ raises the number in the display to whatever
power is required. On some calculators this
key is yx , ax or xy .
Notice the effect of
the brackets in
these examples.
Not all calculators will
use these key sequences.
If you have problems,
refer to the calculator
instructions on page .12
Different calculators have different keys for entering powers, but in
general they perform raising to powers in a similar manner.
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06125IGCSE01_06.CDR Monday, 15 September 2008 2:30:09 PM PETER
126 Exponents and surds (Chapter 6)
Example 4 Self Tutor
Find, using your calculator: a 65
b (¡5)4
c ¡74
Answer
a Press: 6 ^ 5 ENTER 7776
b Press: ( (¡) 5 ) ^ 4 ENTER 625
c Press: (¡) 7 ^ 4 ENTER ¡2401
EXERCISE 6A.2
1 Simplify:
a (¡1)4
b (¡1)5
c (¡1)10
d (¡1)15
e (¡1)8
f ¡18
g ¡(¡1)8
h (¡3)3
i ¡33
j ¡(¡3)3
k ¡(¡6)2
l ¡(¡4)3
2 Simplify:
a 23
£ 32
£ (¡1)5
b (¡1)4
£ 33
£ 22
c (¡2)3
£ (¡3)4
3 Use your calculator to find the value of the following, recording the entire display:
a 28
b (¡5)4
c ¡35
d 74
e 83
f (¡7)6
g ¡76
h 1:0512
i ¡0:62311
j (¡2:11)17
Notice that: ² 23
£ 24
= 2 £ 2 £ 2 £ 2 £ 2 £ 2 £ 2 = 27
²
25
22
=
2 £ 2 £ 2 £ 2 £ 2
2 £ 2
= 23
² (23
)2
= 2 £ 2 £ 2 £ 2 £ 2 £ 2 = 26
² (3 £ 5)2
= 3 £ 5 £ 3 £ 5 = 3 £ 3 £ 5 £ 5 = 32
52
²
µ
2
5
¶3
=
2
5
£
2
5
£
2
5
=
2 £ 2 £ 2
5 £ 5 £ 5
=
23
53
These examples can be generalised to the exponent or index laws:
² am
£ an
= am+n
To multiply numbers with the same base, keep the base
and add the indices.
²
am
an
= am¡n
, a 6= 0 To divide numbers with the same base, keep the base
and subtract the indices.
² (am
)n
= am£n
When raising a power to a power, keep the base and
multiply the indices.
² (ab)n
= an
bn
The power of a product is the product of the powers.
²
³a
b
´n
=
an
bn
, b 6= 0 The power of a quotient is the quotient of the powers.
EXPONENT OR INDEX LAWS [1.9, 2.4]B
1
1
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06126IGCSE01_06.CDR Thursday, 18 September 2008 12:14:38 PM PETER
Exponents and surds (Chapter 6) 127
Example 5 Self Tutor
Simplify using the laws of indices:
a 23
£ 22
b x4
£ x5
a 23
£ 22
= 23+2
= 25
= 32
b x4
£ x5
= x4+5
= x9
Example 6 Self Tutor
Simplify using the index laws: a
35
33
b
p7
p3
a
35
33
= 35¡3
= 32
= 9
b
p7
p3
= p7¡3
= p4
Example 7 Self Tutor
Simplify using the index laws:
a (23
)2
b (x4
)5
a (23
)2
= 23£2
= 26
= 64
b (x4
)5
= x4£5
= x20
Example 8 Self Tutor
Remove the brackets of:
a (3a)2
b
µ
2x
y
¶3
a (3a)2
= 32
£ a2
= 9a2
b
µ
2x
y
¶3
=
23
£ x3
y3
=
8x3
y3
To multiply, keep
the base and add
the indices.
To divide, keep the
base and subtract
the indices.
To raise a power to
a power, keep the
base and multiply
the indices.
Each factor within the
brackets has to be
raised to the power
outside them.
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06127IGCSE01_06.CDR Monday, 15 September 2008 2:34:48 PM PETER
128 Exponents and surds (Chapter 6)
Example 9 Self Tutor
Express the following in simplest form, without brackets:
a (3a3
b)4
b
µ
x2
2y
¶3
a (3a3
b)4
= 34
£ (a3
)4
£ b4
= 81 £ a3£4
£ b4
= 81a12
b4
b
µ
x2
2y
¶3
=
(x2
)3
23 £ y3
=
x2£3
8 £ y3
=
x6
8y3
EXERCISE 6B
1 Simplify using the index laws:
a 23
£ 21
b 22
£ 22
c 35
£ 34
d 52
£ 53
e x2
£ x4
f a3
£ a g n4
£ n6
h b3
£ b5
2 Simplify using the index laws:
a
24
23
b
35
32
c
57
53
d
49
45
e
x6
x3
f
y7
y4
g a8
¥ a7
h b9
¥ b5
3 Simplify using the index laws:
a (22
)3
b (34
)3
c (23
)6
d (102
)5
e (x3
)2
f (x5
)3
g (a5
)4
h (b6
)4
4 Simplify using the index laws:
a a5
£ a2
b n3
£ n5
c a7
¥ a3
d a5
£ a
e b9
¥ b4
f (a3
)6
g an
£ a5
h (b2
)4
i b6
¥ b3
j m4
£ m3
£ m7
k (a3
)3
£ a l (g2
)4
£ g3
5 Remove the brackets of:
a (ab)3
b (ac)4
c (bc)5
d (abc)3
e (2a)4
f (5b)2
g (3n)4
h (2bc)3
i
µ
2
p
¶3
j
³a
b
´3
k
³m
n
´4
l
µ
2c
d
¶5
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06128IGCSE01_06.CDR Monday, 15 September 2008 3:29:53 PM PETER
Exponents and surds (Chapter 6) 129
6 Express the following in simplest form, without brackets:
a (2b4
)3
b
µ
3
x2y
¶2
c (5a4
b)2
d
µ
m3
2n2
¶4
e
µ
3a3
b5
¶3
f (2m3
n2
)5
g
µ
4a4
b2
¶2
h (5x2
y3
)3
Consider
23
23
which is obviously 1.
Using the exponent law for division,
23
23
= 23¡3
= 20
We therefore conclude that 20
= 1.
In general, we can state the zero index law: a0
= 1 for all a 6= 0.
Now consider
24
27
which is
2 £ 2 £ 2 £ 2
2 £ 2 £ 2 £ 2 £ 2 £ 2 £ 2
=
1
23
Using the exponent law of division,
24
27
= 24¡7
= 2¡3
Consequently, 2¡3
=
1
23
, which means that 2¡3
and 23
are reciprocals of each other.
ZERO AND NEGATIVE INDICES [1.9, 2.4]C
1
1
In general, we can state the negative index law:
If a is any non-zero number and n is an integer, then a¡n
=
1
an
.
This means that an
and a¡n
are reciprocals of one another.
In particular notice that a¡1
=
1
a
.
Using the negative index law,
¡2
3
¢¡4
=
1
¡2
3
¢4
= 1 ¥
24
34
= 1 £
34
24
=
¡3
2
¢4
So, in general we can see that:
³a
b
´¡n
=
µ
b
a
¶n
provided a 6= 0, b 6= 0.
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06129IGCSE01_06.CDR Thursday, 18 September 2008 12:18:04 PM PETER
130 Exponents and surds (Chapter 6)
Example 10 Self Tutor
Simplify, giving answers in simplest rational form:
a 70
b 3¡2
c 30
¡ 3¡1
d
¡5
3
¢¡2
a 70
= 1 b 3¡2
=
1
32
= 1
9
c 30
¡ 3¡1
= 1 ¡ 1
3 = 2
3 d
¡5
3
¢¡2
=
¡3
5
¢2
= 9
25
EXERCISE 6C
1 Simplify, giving answers in simplest rational form:
a 30
b 6¡1
c 4¡1
d 50
e 32
f 3¡2
g 53
h 5¡3
i 72
j 7¡2
k 103
l 10¡3
2 Simplify, giving answers in simplest rational form:
a (1
2 )0
b
54
54
c 2t0
d (2t)0
e 70
f 3 £ 40
g
53
55
h
26
210
i (1
4 )¡1
j (3
8 )¡1
k (2
3 )¡1
l (1
5 )¡1
m 20
+ 21
n 50
¡ 5¡1
o 30
+ 31
¡ 3¡1
p (1
3 )¡2
q (2
3 )¡3
r (11
2 )¡3
s (4
5 )¡2
t (21
2 )¡2
3 Write the following without brackets or negative indices:
a (3b)¡1
b 3b¡1
c 7a¡1
d (7a)¡1
e
µ
1
t
¶¡2
f (4t)¡2
g (5t)¡2
h (5t¡2
)¡1
i xy¡1
j (xy)¡1
k xy¡3
l (xy)¡3
m (3pq)¡1
n 3(pq)¡1
o 3pq¡1
p
(xy)3
y¡2
4 Write as powers of 2, 3 or 5:
a 25 b 1
25 c 27 d 1
27
e 16 f 1
16 g 2
3 h 3
5
i 9
125 j 32
81 k 22
5 l 93
8
5 Write as powers of 10:
a 1000 b 0:01 c 100 000 d 0:000 001
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06130IGCSE01_06.CDR Monday, 15 September 2008 2:38:27 PM PETER
Exponents and surds (Chapter 6) 131
10 000 = 104
1000 = 103
100 = 102
10 = 101
1 = 100
1
10 = 10¡1
1
100 = 10¡2
1
1000 = 10¡3
Consider the pattern alongside. Notice that each time we divide by
10, the exponent or power of 10 decreases by one.
We can use this pattern to simplify the writing of very large and very small numbers.
For example, 5 000 000
= 5 £ 1 000 000
= 5 £ 106
and 0:000 003
=
3
1 000 000
=
3
1
£
1
1 000 000
= 3 £ 10¡6
STANDARD FORM
Standard form (or scientific notation) involves writing any given number as a number between 1
and 10, multiplied by an integer power of 10,
i.e., a £ 10n
where 1 6 a < 10 and n 2 Z :
Example 11 Self Tutor
Write in standard form: a 37 600 b 0:000 86
a 37 600 = 3:76 £ 10 000
= 3:76 £ 104
fshift decimal point 4 places to the left and £10 000g
b 0:000 86 = 8:6 ¥ 104
= 8:6 £ 10¡4
fshift decimal point 4 places to the right and ¥10 000g
Example 12 Self Tutor
Write as an ordinary number:
a 3:2 £ 102
b 5:76 £ 10¡5
a 3:2 £ 102
= 3:20 £ 100
= 320
b 5:76 £ 10¡5
= 000005:76 ¥ 105
= 0:000 057 6
STANDARD FORM [1.9]D
÷10
÷10
÷10
-1
-1
-1
÷10
÷10
÷10
÷10
-1
-1
-1
-1
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
y:HAESEIGCSE01IG01_06131IGCSE01_06.CDR Friday, 10 October 2008 9:08:28 AM PETER
132 Exponents and surds (Chapter 6)
Example 13 Self Tutor
Simplify the following, giving your answer in standard form:
a (5 £ 104
) £ (4 £ 105
) b (8 £ 105
) ¥ (2 £ 103
)
a (5 £ 104
) £ (4 £ 105
)
= 5 £ 4 £ 104
£ 105
= 20 £ 104+5
= 2 £ 101
£ 109
= 2 £ 1010
b (8 £ 105
) ¥ (2 £ 103
)
=
8 £ 105
2 £ 103
= 8
2 £ 105¡3
= 4 £ 102
To help write numbers in standard form:
² If the original number is > 10, the power of 10 is positive (+).
² If the original number is < 1, the power of 10 is negative (¡).
² If the original number is between 1 and 10, leave it as it is and multiply it by 100
.
EXERCISE 6D.1
1 Write the following as powers of 10:
a 100 b 1000 c 10 d 100 000
e 0:1 f 0:01 g 0:0001 h 100 000 000
2 Express the following in standard form:
a 387 b 38 700 c 3:87 d 0:0387
e 0:003 87 f 20:5 g 205 h 0:205
i 20 500 j 20 500 000 k 0:000 205
3 Express the following in standard form:
a The circumference of the Earth is approximately 40 075 kilometres.
b The distance from the Earth to the Sun is 149 500 000 000 m.
c Bacteria are single cell organisms, some of which have a diameter of 0:0004 mm.
d There are typically 40 million bacteria in a gram of soil.
e The probability that your six numbers will be selected
for Lotto on Saturday night is 0:000 000 141 62.
f Superfine sheep have wool fibres as low as 0:01 mm in
diameter.
4 Write as an ordinary decimal number:
a 3 £ 102
b 2 £ 103
c 3:6 £ 104
d 9:2 £ 105
e 5:6 £ 106
f 3:4 £ 101
g 7:85 £ 106
h 9 £ 108
5 Write as an ordinary decimal number:
a 3 £ 10¡2
b 2 £ 10¡3
c 4:7 £ 10¡4
d 6:3 £ 10¡5
e 1:7 £ 100
f 9:5 £ 10¡4
g 3:49 £ 10¡1
h 7 £ 10¡6
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06132IGCSE01_06.CDR Wednesday, 17 September 2008 9:43:26 AM PETER
Scientific and graphics calculators are able to display very large and very small numbers in standard form.
Likewise, if you perform 0:0024 ¥ 10 000 000 your calculator might display or ,
which actually represent 2:4 £ 10¡10
.
If you perform your calculator might display or or ,
all of which actually represent .
2300000 400000
9 2 10
¡ ¡ ¡ ¡ ¡
¡ ¡
£
£: 11
9.2 11¡ ¡E9.211
2.4-10
9.2 +11¡E¡
2.4 -10¡ ¡E
Exponents and surds (Chapter 6) 133
6 Write as an ordinary decimal number:
a The wavelength of visible light is 9 £ 10¡7
m.
b In 2007, the world population was approximately 6:606 £ 109
.
c The diameter of our galaxy, the Milky Way, is 1 £ 105
light years.
d The smallest viruses are 1 £ 10¡5
mm in size.
e 1 atomic mass unit is approximately 1:66 £ 10¡27
kg.
7 Write in standard form:
a 18:17 £ 106
b 0:934 £ 1011
c 0:041 £ 10¡2
8 Simplify the following, giving your answer in standard form:
a (8 £ 103
) £ (2 £ 104
) b (8 £ 103
) £ (4 £ 105
)
c (5 £ 104
) £ (3 £ 105
) d (2 £ 103
)3
e (6 £ 103
)2
f (7 £ 10¡2
)2
g (9 £ 104
) ¥ (3 £ 103
) h (8 £ 105
) ¥ (4 £ 106
)
STANDARD FORM ON A CALCULATOR
You will find instructions for graphics calculators on page 16.
EXERCISE 6D.2
1 Write each of the following as it would appear on the display of your calculator:
a 4 650 000 b 0:000 051 2 c 5:99 £ 10¡4
d 3:761 £ 1010
e 49 500 000 f 0:000 008 44
2 Calculate each of the following, giving your answers in standard form. The decimal part should be
correct to 2 decimal places:
a 0:06 £ 0:002 ¥ 4000 b 426 £ 760 £ 42 000 c 627 000 £ 74 000
d 320 £ 600 £ 51 400 e 0:004 28 ¥ 120 000 f 0:026 £ 0:00 42 £ 0:08
Example 14 Self Tutor
Use your calculator to find:
a (1:42 £ 104
) £ (2:56 £ 108
) b (4:75 £ 10¡4
) ¥ (2:5 £ 107
)
Instructions are given for the Casio fx-6890G: Answer:
a 1:42 EXP 4 £ 2:56 EXP 8 EXE 3:6352 £ 1012
b 4:75 EXP (¡) 4 ¥ 2:5 EXP 7 EXE 1:9 £ 10¡11
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06133IGCSE01_06.CDR Wednesday, 17 September 2008 9:49:45 AM PETER
134 Exponents and surds (Chapter 6)
3 Find, in standard form, with decimal part correct to 2 places:
a (5:31 £ 104
) £ (4:8 £ 103
) b (2:75 £ 10¡3
)2
c
8:24 £ 10¡6
3 £ 104
d (7:2 £ 10¡5
) ¥ (2:4 £ 10¡6
) e
1
4:1 £ 104
f (3:2 £ 103
)2
4 For the following give answers in standard form correct to 3 significant figures:
a How many millimetres are there in 479:8 kilometres?
b How many seconds are there in one year?
c How many seconds are there in a millennium?
d How many kilograms are there in 0:5 milligrams?
5 If a missile travels at 3600 km/h, how far will it travel in:
a 1 day b 1 week c 2 years?
6 Light travels at a speed of 3 £ 108
metres per second. How far will light travel in:
a 1 minute b 1 day c 1 year?
Give your answers in standard form with decimal part correct to 2 decimal places.
Assume that 1 year = 365 days.
For the remainder of this chapter we consider surds and radicals, which are numbers that are written using
the radical or square root sign
p
:
Surds and radicals occur frequently in mathematics, often as solutions to equations involving squared terms.
We will see a typical example of this in Chapter 8 when we study Pythagoras’ theorem.
RATIONAL AND IRRATIONAL RADICALS
Some radicals are rational, but most are irrational.
For example, some rational radicals include:
p
1 =
p
12 = 1 or 1
1p
4 =
p
22 = 2 or 2
1
q
1
4 =
q¡1
2
¢2
= 1
2
Two examples of irrational radicals are
p
2 ¼ 1:414 214
and
p
3 ¼ 1:732 051:
Strictly speaking, a surd is an irrational radical. However, in this and many other courses, the term surd
is used to describe any radical. It is reasonable to do so because the properties of surds and radicals are the
same.
SURDS [1.10]E
Give your answers in standard form with decimal part
correct to places. Assume that year days.2 1 = 365
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06134IGCSE01_06.CDR Monday, 15 September 2008 2:59:38 PM PETER
Exponents and surds (Chapter 6) 135
Historical note #endboxedheading
The name surd and the radical sign p both had a rather absurd past. Many
centuries after Pythagoras, when the Golden Age of the Greeks was past,
the writings of the Greeks were preserved, translated, and extended by Arab
mathematicians.
The Arabs thought of a square number as growing out of its roots. The roots
had to be extracted. The Latin word for “root” is radix, from which we get
the words radical and radish! The printed symbol for radix was first R, then r,
which was copied by hand as
p
.
The word surd actually came about because of an error of translation by the
Arab mathematician Al-Khwarizmi in the 9th century AD. The Greek word
a-logos means “irrational” but also means “deaf”. So, the Greek a-logos was
interpreted as “deaf” which in Latin is surdus. Hence to this day, irrational
radicals like
p
2 are called surds.
BASIC OPERATIONS WITH SURDS
We have seen square roots and cube roots in previous courses. We can use their properties to help with
some simplifications.
Example 15 Self Tutor
Simplify:
a (
p
5)2
b
µ
1
p
5
¶2
a (
p
5)2
=
p
5 £
p
5
= 5
b
µ
1
p
5
¶2
=
1
p
5
£
1
p
5
= 1
5
Example 16 Self Tutor
Simplify:
a (2
p
5)3
b ¡2
p
5 £ 3
p
5
a (2
p
5)3
= 2
p
5 £ 2
p
5 £ 2
p
5
= 2 £ 2 £ 2 £
p
5 £
p
5 £
p
5
= 8 £ 5 £
p
5
= 40
p
5
b ¡2
p
5 £ 3
p
5
= ¡2 £ 3 £
p
5 £
p
5
= ¡6 £ 5
= ¡30
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06135IGCSE01_06.CDR Monday, 15 September 2008 3:01:23 PM PETER
136 Exponents and surds (Chapter 6)
ADDING AND SUBTRACTING SURDS
‘Like surds’ can be added and subtracted in the same way as ‘like terms’ in algebra.
Consider 2
p
3 + 4
p
3, which has the same form as 2x + 4x.
If we interpret this as 2 ‘lots’ of
p
3 plus 4 ‘lots’ of
p
3, we have 6 ‘lots’ of
p
3.
So, 2
p
3 + 4
p
3 = 6
p
3, and we can compare this with 2x + 4x = 6x.
Example 17 Self Tutor
Simplify:
a 3
p
2 + 4
p
2 b 5
p
3 ¡ 6
p
3
a 3
p
2 + 4
p
2
= 7
p
2
fCompare: 3x + 4x = 7xg
b 5
p
3 ¡ 6
p
3
= ¡1
p
3
= ¡
p
3
fCompare: 5x ¡ 6x = ¡xg
EXERCISE 6E
1 Simplify:
a (
p
7)2
b (
p
13)2
c (
p
15)2
d (
p
24)2
e
µ
1
p
3
¶2
f
µ
1
p
11
¶2
g
µ
1
p
17
¶2
h
µ
1
p
23
¶2
2 Simplify:
a ( 3
p
2)3
b ( 3
p
¡5)3
c
³
1
3p
5
´3
3 Simplify:
a 3
p
2 £ 4
p
2 b ¡2
p
3 £ 5
p
3 c 3
p
5 £ (¡2
p
5)
d ¡2
p
2 £ (¡3
p
2) e (3
p
2)2
f (3
p
2)3
g (2
p
3)2
h (2
p
3)3
i (2
p
2)4
4 Simplify:
a
p
2 +
p
2 b
p
2 ¡
p
2 c 3
p
2 ¡ 2
p
2
d 2
p
3 ¡
p
3 e 5
p
7 + 2
p
7 f 3
p
5 ¡ 6
p
5
g 3
p
2 + 4
p
2 ¡
p
2 h 6
p
2 ¡ 9
p
2 i
p
5 + 7
p
5
j 3
p
2 ¡ 5
p
2 ¡
p
2 k 3
p
3 ¡
p
3 + 2
p
3 l 3
p
5 + 7
p
5 ¡ 10
5 Simplify:
a 3
p
2 + 2
p
3 ¡
p
2 + 5
p
3 b 7
p
2 ¡ 4
p
3 ¡ 2
p
2 + 3
p
3
c ¡6
p
2 ¡ 2
p
3 ¡
p
2 + 6
p
3 d 2
p
5 + 4
p
2 + 9
p
5 ¡ 9
p
2
e 3
p
2 ¡ 5
p
7 ¡
p
2 ¡ 5
p
7 f 3
p
2 + 4
p
11 + 6 ¡
p
2 ¡
p
11 ¡ 3
g 6
p
6 ¡ 2
p
2 ¡
p
2 ¡ 5
p
6 + 4 h 5
p
3 ¡ 6
p
7 ¡ 5 + 4
p
3 +
p
7 ¡ 8
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
y:HAESEIGCSE01IG01_06136IGCSE01_06.CDR Friday, 10 October 2008 9:08:51 AM PETER
Exponents and surds (Chapter 6) 137
Discovery Properties of surds
#endboxedheading
Notice that
p
4 £ 9 =
p
36 = 6 and
p
4 £
p
9 = 2 £ 3 = 6, which suggests that
p
4£
p
9 =
p
4 £ 9:
Also,
r
36
4
=
p
9 = 3 and
p
36
p
4
=
6
2
= 3, which suggests that
p
36
p
4
=
r
36
4
.
What to do:
Test the following possible properties or rules for surds by substituting different values of a and b. Use
your calculator to evaluate the results.
1
p
a £
p
b =
p
ab for all a > 0, b > 0.
2
qa
b
=
p
a
p
b
for all a > 0, b > 0.
3
p
a + b =
p
a +
p
b for all a > 0, b > 0.
4
p
a ¡ b =
p
a ¡
p
b for all a > 0, b > 0.
You should have discovered the following properties of surds:
²
p
a £
p
b =
p
a £ b for a > 0, b > 0
²
p
a
p
b
=
r
a
b
for a > 0, b > 0
However, in general it is not true that
p
a + b =
p
a +
p
b or that
p
a ¡ b =
p
a ¡
p
b:
Example 18 Self Tutor
Write in simplest form:
a
p
3 £
p
2 b 2
p
5 £ 3
p
2
a
p
3 £
p
2
=
p
3 £ 2
=
p
6
b 2
p
5 £ 3
p
2
= 2 £ 3 £
p
5 £
p
2
= 6 £
p
5 £ 2
= 6
p
10
PROPERTIES OF SURDS [1.10]F
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06137IGCSE01_06.CDR Monday, 15 September 2008 3:02:50 PM PETER
138 Exponents and surds (Chapter 6)
Example 19 Self Tutor
Simplify: a
p
32
p
2
b
p
12
2
p
3
a
p
32
p
2
=
q
32
2
=
p
16
= 4
b
p
12
2
p
3
= 1
2
q
12
3 fusing
p
a
p
b
=
r
a
b
g
= 1
2
p
4
= 1
2 £ 2
= 1
Example 20 Self Tutor
Write
p
32 in the form k
p
2.
p
32
=
p
16 £ 2
=
p
16 £
p
2 fusing
p
ab =
p
a £
p
bg
= 4
p
2
SIMPLEST SURD FORM
A surd is in simplest form when the number under the radical sign is the smallest
integer possible.
Example 21 Self Tutor
Write
p
28 in simplest surd form.
p
28
=
p
4 £ 7 f4 is the largest perfect square factor of 28g
=
p
4 £
p
7
= 2
p
7
EXERCISE 6F
1 Simplify:
a
p
2 £
p
5 b
p
3 £
p
7 c
p
3 £
p
11
d
p
7 £
p
7 e
p
3 £ 2
p
3 f 2
p
2 £
p
5
Look for the
largest perfect
square factor.
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06138IGCSE01_06.CDR Monday, 15 September 2008 3:04:28 PM PETER
Exponents and surds (Chapter 6) 139
2 Simplify:
a 3
p
3 £ 2
p
2 b 2
p
3 £ 3
p
5 c
p
2 £
p
3 £
p
5
d
p
3 £
p
2 £ 2
p
2 e ¡3
p
2 £ (
p
2)3
f (3
p
2)3
£ (
p
3)3
3 Simplify:
a
p
8
p
2
b
p
2
p
8
c
p
18
p
2
d
p
2
p
18
e
p
20
p
5
f
p
5
p
20
g
p
27
p
3
h
p
18
p
3
i
p
3
p
30
j
p
50
p
2
k
2
p
6
p
24
l
5
p
75
p
3
4 Write the following in the form k
p
2:
a
p
8 b
p
18 c
p
50 d
p
98
e
p
200 f
p
288 g
p
20 000 h
q
1
2
5 Write the following in the form k
p
3:
a
p
12 b
p
27 c
p
75 d
q
1
3
6 Write the following in the form k
p
5:
a
p
20 b
p
45 c
p
125 d
q
1
5
7 a Find:
i
p
16 +
p
9 ii
p
16 + 9 iii
p
25 ¡
p
9 iv
p
25 ¡ 9
b Copy and complete: In general,
p
a + b 6= :::::: and
p
a ¡ b 6= ::::::
8 Write the following in simplest surd form:
a
p
24 b
p
50 c
p
54 d
p
40 e
p
56 f
p
63
g
p
52 h
p
44 i
p
60 j
p
90 k
p
96 l
p
68
m
p
175 n
p
162 o
p
128 p
p
700
9 Write the following in simplest surd form:
a
q
5
9 b
q
18
4 c
q
12
16 d
q
75
36
The rules for expanding brackets involving surds are identical to those for ordinary algebra.
We can thus use:
a(b + c) = ab + ac
(a + b)(c + d) = ac + ad + bc + bd
(a + b)2
= a2
+ 2ab + b2
(a ¡ b)2
= a2
¡ 2ab + b2
(a + b)(a ¡ b) = a2
¡ b2
MULTIPLICATION OF SURDS [1.10]G
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06139IGCSE01_06.CDR Monday, 15 September 2008 3:06:19 PM PETER
140 Exponents and surds (Chapter 6)
Example 22 Self Tutor
Expand and simplify:
a
p
2(
p
2 +
p
3) b
p
3(6 ¡ 2
p
3)
a
p
2(
p
2 +
p
3)
=
p
2 £
p
2 +
p
2 £
p
3
= 2 +
p
6
b
p
3(6 ¡ 2
p
3)
= (
p
3)(6 + ¡2
p
3)
= (
p
3)(6) + (
p
3)(¡2
p
3)
= 6
p
3 + ¡6
= 6
p
3 ¡ 6
Example 23 Self Tutor
Expand and simplify:
a ¡
p
2(
p
2 + 3) b ¡
p
3(7 ¡ 2
p
3)
a ¡
p
2(
p
2 + 3)
= ¡
p
2 £
p
2 + ¡
p
2 £ 3
= ¡2 ¡ 3
p
2
b ¡
p
3(7 ¡ 2
p
3)
= (¡
p
3)(7 ¡ 2
p
3)
= (¡
p
3)(7) + (¡
p
3)(¡2
p
3)
= ¡7
p
3 + 6
Example 24 Self Tutor
Expand and simplify: (3 ¡
p
2)(4 + 2
p
2)
(3 ¡
p
2)(4 + 2
p
2)
= (3 ¡
p
2)(4) + (3 ¡
p
2)(2
p
2)
= 12 ¡ 4
p
2 + 6
p
2 ¡ 4
= 8 + 2
p
2
Example 25 Self Tutor
Expand and simplify:
a (
p
3 + 2)2
b (
p
3 ¡
p
7)2
a (
p
3 + 2)2
= (
p
3)2
+ 2 £
p
3 £ 2 + 22
= 3 + 4
p
3 + 4
= 7 + 4
p
3
b (
p
3 ¡
p
7)2
= (
p
3)2
¡ 2 £
p
3 £
p
7 + (
p
7)2
= 3 ¡ 2
p
21 + 7
= 10 ¡ 2
p
21
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06140IGCSE01_06.CDR Monday, 15 September 2008 3:21:04 PM PETER
Exponents and surds (Chapter 6) 141
Example 26 Self Tutor
Expand and simplify:
a (3 +
p
2)(3 ¡
p
2) b (2
p
3 ¡ 5)(2
p
3 + 5)
a (3 +
p
2)(3 ¡
p
2)
= 32
¡ (
p
2)2
= 9 ¡ 2
= 7
b (2
p
3 ¡ 5)(2
p
3 + 5)
= (2
p
3)2
¡ 52
= (4 £ 3) ¡ 25
= 12 ¡ 25
= ¡13
EXERCISE 6G
1 Expand and simplify:
a
p
2(
p
5 +
p
2) b
p
2(3 ¡
p
2) c
p
3(
p
3 + 1) d
p
3(1 ¡
p
3)
e
p
7(7 ¡
p
7) f
p
5(2 ¡
p
5) g
p
11(2
p
11 ¡ 1) h
p
6(1 ¡ 2
p
6)
i
p
3(
p
3 +
p
2 ¡ 1) j 2
p
3(
p
3 ¡
p
5) k 2
p
5(3 ¡
p
5) l 3
p
5(2
p
5 +
p
2)
2 Expand and simplify:
a ¡
p
2(3 ¡
p
2) b ¡
p
2(
p
2 +
p
3) c ¡
p
2(4 ¡
p
2) d ¡
p
3(1 +
p
3)
e ¡
p
3(
p
3 + 2) f ¡
p
5(2 +
p
5) g ¡(
p
2 + 3) h ¡
p
5(
p
5 ¡ 4)
i ¡(3 ¡
p
7) j ¡
p
11(2 ¡
p
11) k ¡(
p
3 ¡
p
7) l ¡2
p
2(1 ¡
p
2)
m ¡3
p
3(5 ¡
p
3) n ¡7
p
2(
p
2 +
p
6) o (¡
p
2)3
(3 ¡
p
2)
3 Expand and simplify:
a (1 +
p
2)(2 +
p
2) b (2 +
p
3)(2 +
p
3) c (
p
3 + 2)(
p
3 ¡ 1)
d (4 ¡
p
2)(3 +
p
2) e (1 +
p
3)(1 ¡
p
3) f (5 +
p
7)(2 ¡
p
7)
g (
p
5 + 2)(
p
5 ¡ 3) h (
p
7 ¡
p
3)(
p
7 +
p
3) i (2
p
2 +
p
3)(2
p
2 ¡
p
3)
j (4 ¡
p
2)(3 ¡
p
2)
4 Expand and simplify:
a (1 +
p
2)2
b (2 ¡
p
3)2
c (
p
3 + 2)2
d (1 +
p
5)2
e (
p
2 ¡
p
3)2
f (5 ¡
p
2)2
g (
p
2 +
p
7)2
h (4 ¡
p
6)2
i (
p
6 ¡
p
2)2
j (
p
5 + 2
p
2)2
k (
p
5 ¡ 2
p
2)2
l (6 +
p
8)2
m (5
p
2 ¡ 1)2
n (3 ¡ 2
p
2)2
o (1 + 3
p
2)2
5 Expand and simplify:
a (4 +
p
3)(4 ¡
p
3) b (5 ¡
p
2)(5 +
p
2) c (
p
5 ¡ 2)(
p
5 + 2)
d (
p
7 + 4)(
p
7 ¡ 4) e (3
p
2 + 2)(3
p
2 ¡ 2) f (2
p
5 ¡ 1)(2
p
5 + 1)
g (5 ¡ 3
p
3)(5 + 3
p
3) h (2 ¡ 4
p
2)(2 + 4
p
2) i (1 + 5
p
7)(1 ¡ 5
p
7)
6 Expand and simplify:
a (
p
3 +
p
2)(
p
3 ¡
p
2) b (
p
7 +
p
11)(
p
7 ¡
p
11) c (
p
x ¡
p
y)(
p
y +
p
x)
Did you notice that
these answers are
?integers
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06141IGCSE01_06.CDR Monday, 15 September 2008 3:11:33 PM PETER
142 Exponents and surds (Chapter 6)
When an expression involves division by a surd, we can write the expression with an integer denominator
which does not contain surds.
If the denominator contains a simple surd such as
p
a then we use the rule
p
a £
p
a = a:
For example:
6
p
3
can be written as
6
p
3
£
p
3
p
3
since we are really just multiplying
the original fraction by 1.
6
p
3
£
p
3
p
3
then simplifies to
6
p
3
3
or 2
p
3.
Example 27 Self Tutor
Express with integer denominator: a
7
p
3
b
10
p
5
c
10
2
p
2
a
7
p
3
=
7
p
3
£
p
3
p
3
=
7
p
3
3
b
10
p
5
=
10
p
5
£
p
5
p
5
= 10
5
p
5
= 2
p
5
c
10
2
p
2
=
10
2
p
2
£
p
2
p
2
=
10
p
2
4
=
5
p
2
2
Example 28 Self Tutor
Express
1
3 +
p
2
with integer denominator.
1
3 +
p
2
=
µ
1
3 +
p
2
¶ µ
3 ¡
p
2
3 ¡
p
2
¶
=
3 ¡
p
2
32 ¡ (
p
2)2
fusing (a + b)(a ¡ b) = a2
¡ b2
g
=
3 ¡
p
2
7
DIVISION BY SURDS [1.10]H
We are really
multiplying by one,
which does not change
the value of the
original expression.
If the denominator has the form a +
p
b then we can remove the surd from the denominator by multiplying
both the numerator and the denominator by its radical conjugate a ¡
p
b. This produces a rational
denominator, so the process is called rationalisation of the denominator.
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
y:HAESEIGCSE01IG01_06142IGCSE01_06.CDR Friday, 10 October 2008 9:10:01 AM PETER
Exponents and surds (Chapter 6) 143
Example 29 Self Tutor
Write
1 ¡ 2
p
3
1 +
p
3
in simplest form.
1 ¡ 2
p
3
1 +
p
3
=
µ
1 ¡ 2
p
3
1 +
p
3
¶ µ
1 ¡
p
3
1 ¡
p
3
¶
=
1 ¡
p
3 ¡ 2
p
3 + 6
1 ¡ 3
=
7 ¡ 3
p
3
¡2
=
3
p
3 ¡ 7
2
EXERCISE 6H
1 Express with integer denominator:
a
1
p
2
b
2
p
2
c
4
p
2
d
10
p
2
e
p
7
p
2
f
1
p
3
g
3
p
3
h
4
p
3
i
18
p
3
j
p
11
p
3
k
1
p
5
l
3
p
5
m
p
3
p
5
n
15
p
5
o
125
p
5
p
p
10
p
2
q
1
2
p
3
r
2
p
2
p
3
s
15
2
p
5
t
1
(
p
2)3
2 Rationalise the denominator:
a
1
3 ¡
p
5
b
1
2 +
p
3
c
1
4 ¡
p
11
d
p
2
5 +
p
2
e
p
3
3 +
p
3
f
5
2 ¡ 3
p
2
g
¡
p
5
3 + 2
p
5
h
3 ¡
p
7
2 +
p
7
3 Write in the form a + b
p
2 where a, b 2 Q :
a
4
2 ¡
p
2
b
¡5
1 +
p
2
c
1 ¡
p
2
1 +
p
2
d
p
2 ¡ 2
3 ¡
p
2
e
1p
2
1 ¡ 1p
2
f
1 + 1p
2
1 ¡ 1p
2
g
1
1 ¡
p
2
3
h
p
2
2 + 1
1 ¡
p
2
4
Review set 6A #endboxedheading
1 Find the integer equal to: a 34
b 5 £ 23
2 Write as a product of primes in index form: a 36 b 242
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06143IGCSE01_06.CDR Monday, 15 September 2008 3:24:16 PM PETER
144 Exponents and surds (Chapter 6)
3 Simplify:
a (¡2)3
b ¡(¡1)8
c (¡1)3
£ (¡2)2
£ ¡33
4 Simplify, giving your answers in simplest rational form:
a 3¡3
b
¡4
3
¢¡2
c 30
¡ 31
5 Write 1
16 as a power of 2.
6 Simplify, using the exponent laws:
a 56
£ 5 b b7
¥ b2
c (x4
)3
7 Express in simplest form, without brackets:
a (4c3
)2
b (2a2
b)3
c
³ s
3t2
´4
8 Write in standard form:
a 9 b 34 900 c 0:0075
9 Write as an ordinary decimal number:
a 2:81 £ 106
b 2:81 £ 100
c 2:81 £ 10¡3
10 Simplify, giving your answer in standard form:
a (6 £ 103
) £ (7:1 £ 104
) b (2:4 £ 106
) ¥ (4 £ 102
)
11 The Earth orbits around the Sun at a speed of approximately 1:07 £ 105
km/h. How far does the
Earth move, relative to the Sun, in:
a 1 day b 1 week c 1 year?
Give your answers in standard form with decimal part correct to 2 decimal places. Assume that
1 year = 365 days.
12 a Simplify (3
p
2)2
: b Simplify ¡2
p
3 £ 4
p
3:
c Simplify 3
p
2 ¡
p
8: d Write
p
48 in simplest surd form.
13 Expand and simplify:
a 2
p
3(4 ¡
p
3) b (3 ¡
p
7)2
c (2 ¡
p
3)(2 +
p
3)
d (3 + 2
p
5)(2 ¡
p
5) e (4 ¡
p
2)(3 + 2
p
2)
14 Rationalise the denominator:
a
8
p
2
b
15
p
3
c
p
3
p
2
d
5
6 ¡
p
3
15 Write
q
1
7 in the form k
p
7.
16 Write in the form a + b
p
3 where a, b 2 Q :
a
p
3
2 + 1
1 ¡
p
3
2
b
2 +
p
3
2 ¡
p
3
¡
2
p
3
2 +
p
3
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06144IGCSE01_06.CDR Monday, 15 September 2008 3:25:03 PM PETER
Exponents and surds (Chapter 6) 145
Review set 6B #endboxedheading
1 Find the integer equal to: a 73
b 32
£ 52
2 Write as a product of primes in index form: a 42 b 144
3 Simplify:
a ¡(¡1)7
b ¡43
c (¡2)5
£ (¡3)2
4 Simplify, giving your answers in simplest rational form:
a 6¡2
b
¡
11
2
¢¡1
c
¡3
5
¢¡2
5 Simplify, using the exponent laws:
a 32
£ 36
b a5
¥ a5
c (y3
)5
6 Write as powers of 2, 3 or 5:
a 16
25 b 40
81 c 180 d 111
9
7 Express in simplest form, without brackets or negative indices:
a (5c)¡1
b 7k¡2
c (4d2
)¡3
8 Write in standard form:
a 263:57 b 0:000 511 c 863 400 000
9 Write as an ordinary decimal number:
a 2:78 £ 100
b 3:99 £ 107
c 2:081 £ 10¡3
10 Simplify, giving your answer in standard form:
a (8 £ 103
)2
b (3:6 £ 105
) ¥ (6 £ 10¡2
)
11 How many kilometres are there in 0:21 millimetres? Give your answer in standard form.
12 Simplify:
a 2
p
3 £ 3
p
5 b (2
p
5)3
c 5
p
2 ¡ 7
p
2
d ¡
p
2(2 ¡
p
2) e (
p
3)4
f
p
3 £
p
5 £
p
15
13 Write in simplest surd form: a
p
75 b
q
20
9
14 Expand and simplify:
a (5 ¡
p
3)(5 +
p
3) b ¡(2 ¡
p
5)2
c 2
p
3(
p
3 ¡ 1) ¡ 2
p
3 d (2
p
2 ¡ 5)(1 ¡
p
2)
15 Express with integer denominator:
a
14
p
2
b
p
2
p
3
c
p
2
3 +
p
2
d
¡5
4 ¡
p
3
16 Write in the form a + b
p
5 where a, b 2 Q :
a
1 +
p
5
2 ¡
p
5
b
3 ¡
p
5
3 +
p
5
¡
4
3 ¡
p
5
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06145IGCSE01_06.CDR Wednesday, 5 November 2008 2:15:20 PM PETER
Challenge #endboxedheading
146 Exponents and surds (Chapter 6)
Discovery Continued square roots#endboxedheading
X =
s
2 +
r
2 +
q
2 +
p
2 +
p
2 + :::::: is an example of a
continued square root.
Some continued square roots have actual values which are integers.
1 Use your calculator to show that
p
2 ¼ 1:41421
p
2 +
p
2 ¼ 1:84776
q
2 +
p
2 +
p
2 ¼ 1:96157:
2 Find the values, correct to 6 decimal places, of:
a
r
2 +
q
2 +
p
2 +
p
2 b
s
2 +
r
2 +
q
2 +
p
2 +
p
2
3 Continue the process and hence predict the actual value of X.
4 Use algebra to find the exact value of X.
Hint: Find X2
in terms of X, and solve by inspection.
5 Can you find a continued square root whose actual value is 3?
1 Find
s
3 + 2
p
2
3 ¡ 2
p
2
giving your answer in the form a + b
p
2 where a, b 2 Q .
2 If x =
p
5 ¡
p
3, find x2
and x4
. Hence find the value of x4
¡ 16x2
.
Copy and complete: x =
p
5 ¡
p
3 is one of the solutions of the equation x4
¡ 16x2
= 0
3 a We know that in general,
p
a + b 6=
p
a +
p
b
Deduce that if
p
a + b =
p
a +
p
b then at least one of a or b is 0.
b What can be deduced about a and b if
p
a ¡ b =
p
a ¡
p
b?
4 a Find the value of
µ
1 +
p
5
2
¶n
¡
µ
1 ¡
p
5
2
¶n
for n = 1, 2, 3 and 4.
b What do you suspect about
µ
1 +
p
5
2
¶n
¡
µ
1 ¡
p
5
2
¶n
for all n 2 Z +
?
What to do:
IGCSE01
magentacyan yellow black
0
0
5
5
25
25
75
75
50
50
95
95
100
100
0
0
5
5
25
25
75
75
50
50
95
95
100
100
Y:HAESEIGCSE01IG01_06146IGCSE01_06.cdr Friday, 31 October 2008 9:51:20 AM PETER

Más contenido relacionado

La actualidad más candente

Absolute value functions
Absolute value functionsAbsolute value functions
Absolute value functions
Alexander Nwatu
 
Equations of a line ppt
Equations of a line pptEquations of a line ppt
Equations of a line ppt
chriscline1979
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equations
swartzje
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functions
Njabulo Nkabinde
 
5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions
hisema01
 
5.2 Solving Quadratic Equations by Factoring
5.2 Solving Quadratic Equations by Factoring5.2 Solving Quadratic Equations by Factoring
5.2 Solving Quadratic Equations by Factoring
hisema01
 
Roots of real numbers and radical expressions
Roots of real numbers and radical expressionsRoots of real numbers and radical expressions
Roots of real numbers and radical expressions
Jessica Garcia
 

La actualidad más candente (20)

Operations on Polynomials
Operations on PolynomialsOperations on Polynomials
Operations on Polynomials
 
Absolute value functions
Absolute value functionsAbsolute value functions
Absolute value functions
 
Equations of a line ppt
Equations of a line pptEquations of a line ppt
Equations of a line ppt
 
Stair on slope of a line
Stair on slope of a lineStair on slope of a line
Stair on slope of a line
 
Evaluating algebraic expressions with substitution (answers)
Evaluating algebraic expressions with substitution (answers)Evaluating algebraic expressions with substitution (answers)
Evaluating algebraic expressions with substitution (answers)
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equations
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functions
 
1.5 Factoring Polynomials
1.5 Factoring Polynomials1.5 Factoring Polynomials
1.5 Factoring Polynomials
 
Matrix and It's Applications
Matrix and It's ApplicationsMatrix and It's Applications
Matrix and It's Applications
 
Algebra Rules - Addition and Subtraction
Algebra Rules - Addition and SubtractionAlgebra Rules - Addition and Subtraction
Algebra Rules - Addition and Subtraction
 
5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions
 
Bearings Math Presentation
Bearings Math PresentationBearings Math Presentation
Bearings Math Presentation
 
Chapter 5 Slope-Intercept Form
Chapter 5 Slope-Intercept FormChapter 5 Slope-Intercept Form
Chapter 5 Slope-Intercept Form
 
Standard form solve equations
Standard form solve equationsStandard form solve equations
Standard form solve equations
 
Combined variation
Combined variationCombined variation
Combined variation
 
Radicals
RadicalsRadicals
Radicals
 
Graphing Quadratic Functions in Standard Form
Graphing Quadratic Functions in Standard FormGraphing Quadratic Functions in Standard Form
Graphing Quadratic Functions in Standard Form
 
Sum and product of the roots of a
Sum and product  of the roots of aSum and product  of the roots of a
Sum and product of the roots of a
 
5.2 Solving Quadratic Equations by Factoring
5.2 Solving Quadratic Equations by Factoring5.2 Solving Quadratic Equations by Factoring
5.2 Solving Quadratic Equations by Factoring
 
Roots of real numbers and radical expressions
Roots of real numbers and radical expressionsRoots of real numbers and radical expressions
Roots of real numbers and radical expressions
 

Destacado

Usage of logarithms
Usage of logarithmsUsage of logarithms
Usage of logarithms
Murali Burra
 
Exponential and logarithmic_functions
Exponential and logarithmic_functionsExponential and logarithmic_functions
Exponential and logarithmic_functions
PheebMich
 
Ib maths sl logarithms definition
Ib maths sl logarithms definitionIb maths sl logarithms definition
Ib maths sl logarithms definition
estelav
 
Ib maths sl log change of base
Ib maths sl log change of baseIb maths sl log change of base
Ib maths sl log change of base
estelav
 
Properties of logarithms
Properties of logarithmsProperties of logarithms
Properties of logarithms
Jessica Garcia
 

Destacado (20)

Chapter 31 logarithms
Chapter 31 logarithmsChapter 31 logarithms
Chapter 31 logarithms
 
Ratio and Proportion, Indices and Logarithm Part 2
Ratio and Proportion, Indices and Logarithm Part 2Ratio and Proportion, Indices and Logarithm Part 2
Ratio and Proportion, Indices and Logarithm Part 2
 
Usage of logarithms
Usage of logarithmsUsage of logarithms
Usage of logarithms
 
Chapter 1 representation and summary of data & ANSWERS
Chapter 1   representation and summary of data & ANSWERSChapter 1   representation and summary of data & ANSWERS
Chapter 1 representation and summary of data & ANSWERS
 
4) logarithms laws
4) logarithms laws4) logarithms laws
4) logarithms laws
 
Exponential and logarithmic_functions
Exponential and logarithmic_functionsExponential and logarithmic_functions
Exponential and logarithmic_functions
 
Chapter 3 exponential and logarithmic functions
Chapter 3 exponential and logarithmic functionsChapter 3 exponential and logarithmic functions
Chapter 3 exponential and logarithmic functions
 
Standard deviation and variance
Standard deviation and varianceStandard deviation and variance
Standard deviation and variance
 
Core maths for a level 3rd edition by l.bostock, s.chandler
Core maths for a level 3rd edition by l.bostock, s.chandlerCore maths for a level 3rd edition by l.bostock, s.chandler
Core maths for a level 3rd edition by l.bostock, s.chandler
 
Logarithm exercise
Logarithm exerciseLogarithm exercise
Logarithm exercise
 
Ib maths sl logarithms definition
Ib maths sl logarithms definitionIb maths sl logarithms definition
Ib maths sl logarithms definition
 
Chapter 2 surds indicies logarithms
Chapter 2   surds indicies logarithmsChapter 2   surds indicies logarithms
Chapter 2 surds indicies logarithms
 
7 5 properties of logarithms (1)
7 5 properties of logarithms (1)7 5 properties of logarithms (1)
7 5 properties of logarithms (1)
 
Ib maths sl log change of base
Ib maths sl log change of baseIb maths sl log change of base
Ib maths sl log change of base
 
Core mathematics for advanced level - Functions
Core mathematics for advanced level - FunctionsCore mathematics for advanced level - Functions
Core mathematics for advanced level - Functions
 
Bostock and Chandler chapter3 functions
Bostock and Chandler chapter3 functionsBostock and Chandler chapter3 functions
Bostock and Chandler chapter3 functions
 
matemáticas puras understanding-pure-mathematics
matemáticas puras  understanding-pure-mathematicsmatemáticas puras  understanding-pure-mathematics
matemáticas puras understanding-pure-mathematics
 
Quant01. Ratio & Proportion, Indices, Logarithms
Quant01. Ratio & Proportion, Indices, LogarithmsQuant01. Ratio & Proportion, Indices, Logarithms
Quant01. Ratio & Proportion, Indices, Logarithms
 
Ppt On Lcm & Hcf Questions For Cat Preparation
Ppt On Lcm & Hcf Questions For Cat PreparationPpt On Lcm & Hcf Questions For Cat Preparation
Ppt On Lcm & Hcf Questions For Cat Preparation
 
Properties of logarithms
Properties of logarithmsProperties of logarithms
Properties of logarithms
 

Similar a Chapter 6 exponents and surds

Chapter4.3
Chapter4.3Chapter4.3
Chapter4.3
nglaze10
 
Chapter2.6
Chapter2.6Chapter2.6
Chapter2.6
nglaze10
 
Semana 27 funciones exponenciales álgebra uni ccesa007
Semana 27 funciones exponenciales álgebra uni ccesa007Semana 27 funciones exponenciales álgebra uni ccesa007
Semana 27 funciones exponenciales álgebra uni ccesa007
Demetrio Ccesa Rayme
 

Similar a Chapter 6 exponents and surds (20)

Indices
IndicesIndices
Indices
 
M112rev
M112revM112rev
M112rev
 
0.5 Rational Expressions
0.5 Rational Expressions0.5 Rational Expressions
0.5 Rational Expressions
 
1.6 Rational Expressions
1.6 Rational Expressions1.6 Rational Expressions
1.6 Rational Expressions
 
Precalculus 1 chapter 2
Precalculus 1 chapter 2Precalculus 1 chapter 2
Precalculus 1 chapter 2
 
lemh2sm.pdf
lemh2sm.pdflemh2sm.pdf
lemh2sm.pdf
 
Chapter4.3
Chapter4.3Chapter4.3
Chapter4.3
 
Module 1 similarity
Module 1 similarityModule 1 similarity
Module 1 similarity
 
determinants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfdeterminants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdf
 
determinants-160504230830.pdf
determinants-160504230830.pdfdeterminants-160504230830.pdf
determinants-160504230830.pdf
 
Additional mathematics
Additional mathematicsAdditional mathematics
Additional mathematics
 
0.6 Rational Exponents
0.6 Rational Exponents0.6 Rational Exponents
0.6 Rational Exponents
 
Multiplication on radicals.pptx
Multiplication on radicals.pptxMultiplication on radicals.pptx
Multiplication on radicals.pptx
 
Determinants
DeterminantsDeterminants
Determinants
 
PEA 305.pdf
PEA 305.pdfPEA 305.pdf
PEA 305.pdf
 
Chapter2.6
Chapter2.6Chapter2.6
Chapter2.6
 
Semana 27 funciones exponenciales álgebra uni ccesa007
Semana 27 funciones exponenciales álgebra uni ccesa007Semana 27 funciones exponenciales álgebra uni ccesa007
Semana 27 funciones exponenciales álgebra uni ccesa007
 
Jeancarlos freitez
Jeancarlos freitezJeancarlos freitez
Jeancarlos freitez
 
123a ppt-all-2
123a ppt-all-2123a ppt-all-2
123a ppt-all-2
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths Note
 

Más de Sarah Sue Calbio

The Understanding by Design Guide to Creating high-quality units forms and FAQs
The Understanding by Design Guide to Creating high-quality units forms and FAQsThe Understanding by Design Guide to Creating high-quality units forms and FAQs
The Understanding by Design Guide to Creating high-quality units forms and FAQs
Sarah Sue Calbio
 

Más de Sarah Sue Calbio (20)

Solar System Models
Solar System ModelsSolar System Models
Solar System Models
 
Newton's Second Law - The Effect of Force
Newton's Second Law - The Effect of ForceNewton's Second Law - The Effect of Force
Newton's Second Law - The Effect of Force
 
3
33
3
 
2
22
2
 
1
11
1
 
Which law review worksheet
Which law review worksheetWhich law review worksheet
Which law review worksheet
 
Newton’s laws of motion practice
Newton’s laws of motion practiceNewton’s laws of motion practice
Newton’s laws of motion practice
 
Newton's third law
Newton's third lawNewton's third law
Newton's third law
 
Newton's second law
Newton's second lawNewton's second law
Newton's second law
 
Seat belts and air bags
Seat belts and air bagsSeat belts and air bags
Seat belts and air bags
 
Sir isaac newton's first law
Sir isaac newton's first lawSir isaac newton's first law
Sir isaac newton's first law
 
Primary Programs Framework - Curriculum Integration: Making Connections
Primary Programs Framework - Curriculum Integration: Making ConnectionsPrimary Programs Framework - Curriculum Integration: Making Connections
Primary Programs Framework - Curriculum Integration: Making Connections
 
Planning Resources for Teachers in small high schools. Summer 2003
Planning Resources for Teachers in small high schools. Summer 2003Planning Resources for Teachers in small high schools. Summer 2003
Planning Resources for Teachers in small high schools. Summer 2003
 
The Understanding by Design Guide to Creating high-quality units forms and FAQs
The Understanding by Design Guide to Creating high-quality units forms and FAQsThe Understanding by Design Guide to Creating high-quality units forms and FAQs
The Understanding by Design Guide to Creating high-quality units forms and FAQs
 
Chapter16openstax
Chapter16openstaxChapter16openstax
Chapter16openstax
 
Ap2 unit6 open stax notes wave optics
Ap2 unit6 open stax notes wave opticsAp2 unit6 open stax notes wave optics
Ap2 unit6 open stax notes wave optics
 
Ap2 unit6 open stax notes geometric optics
Ap2 unit6 open stax notes geometric opticsAp2 unit6 open stax notes geometric optics
Ap2 unit6 open stax notes geometric optics
 
Ap2 unit6 open stax notes electromagnetic waves
Ap2 unit6 open stax notes electromagnetic wavesAp2 unit6 open stax notes electromagnetic waves
Ap2 unit6 open stax notes electromagnetic waves
 
Ap2 unit5 open stax notes
Ap2 unit5 open stax notesAp2 unit5 open stax notes
Ap2 unit5 open stax notes
 
College Physics for AP courses
College Physics for AP coursesCollege Physics for AP courses
College Physics for AP courses
 

Último

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
SoniaTolstoy
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Krashi Coaching
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
fonyou31
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 

Último (20)

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 

Chapter 6 exponents and surds

  • 1. Exponents and surds 6Contents: A Exponent or index notation [1.4, 1.9] B Exponent or index laws [1.9, 2.4] C Zero and negative indices [1.9, 2.4] D Standard form [1.9] E Surds [1.10] F Properties of surds [1.10] G Multiplication of surds [1.10] H Division by surds [1.10] Opening problem #endboxedheading Amadeo Avogadro (1776-1856) established that one gram of hydrogen contains 6:02 £ 1023 atoms. Things to think about: ² How can we write this number as an ordinary number? ² How many atoms would be in one tonne of hydrogen gas? ² Can you find the mass of 1030 atoms of hydrogen? We have seen previously that 2 £ 2 £ 2 £ 2 £ 2, can be written as 25 . 25 reads “two to the power of five” or “two with index five”. In this case 2 is the base and 5 is the exponent, power or index. We say that 25 is written in exponent or index notation. EXPONENT OR INDEX NOTATION [1.4, 1.9]A 25 exponent, orpower index base The use of also called or , allows us to write products of factors and also to write very large or very small numbers quickly. exponents powers indices, IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06123IGCSE01_06.CDR Friday, 14 November 2008 10:52:42 AM PETER
  • 2. 124 Exponents and surds (Chapter 6) Example 1 Self Tutor Find the integer equal to: a 34 b 24 £ 32 £ 7 a 34 = 3 £ 3 £ 3 £ 3 = 9 £ 9 = 81 b 24 £ 32 £ 7 = 2 £ 2 £ 2 £ 2 £ 3 £ 3 £ 7 = 16 £ 9 £ 7 = 1008 Example 2 Self Tutor Write as a product of prime factors in index form: a 144 b 4312 a 2 144 2 72 2 36 2 18 3 9 3 3 1 ) 144 = 24 £ 32 b 2 4312 2 2156 2 1078 7 539 7 77 11 11 1 ) 4312 = 23 £ 72 £ 11 EXERCISE 6A.1 1 Find the integer equal to: a 23 b 33 c 25 d 53 e 22 £ 33 £ 5 f 23 £ 3 £ 72 g 32 £ 52 £ 13 h 24 £ 52 £ 11 2 By dividing continuously by the primes 2, 3, 5, 7, ..... , write as a product of prime factors in index form: a 50 b 98 c 108 d 360 e 1128 f 784 g 952 h 6500 3 The following numbers can be written in the form 2n . Find n. a 32 b 256 c 4096 4 The following numbers can be written in the form 3n . Find n. a 27 b 729 c 59 049 5 By considering 31 , 32 , 33 , 34 , 35 .... and looking for a pattern, find the last digit of 333 . 6 What is the last digit of 777 ? 7 Find n if: a 54 = n b n3 = 343 c 11n = 161 051 d (0:6)n = 0:046 656 IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06124IGCSE01_06.CDR Wednesday, 17 September 2008 9:33:15 AM PETER
  • 3. Exponents and surds (Chapter 6) 125 Historical note #endboxedheading 1 = 13 3 + 5 = 8 = 23 7 + 9 + 11 = 27 = 33 etc. Nicomachus of Gerasa lived around 100 AD. He discovered an interesting number pattern involving cubes and sums of odd numbers: NEGATIVE BASES So far we have only considered positive bases raised to a power. We will now briefly look at negative bases. Consider the statements below: (¡1)1 = ¡1 (¡1)2 = ¡1 £ ¡1 = 1 (¡1)3 = ¡1 £ ¡1 £ ¡1 = ¡1 (¡1)4 = ¡1 £ ¡1 £ ¡1 £ ¡1 = 1 (¡2)1 = ¡2 (¡2)2 = ¡2 £ ¡2 = 4 (¡2)3 = ¡2 £ ¡2 £ ¡2 = ¡8 (¡2)4 = ¡2 £ ¡2 £ ¡2 £ ¡2 = 16 From the pattern above it can be seen that: ² a negative base raised to an odd power is negative ² a negative base raised to an even power is positive. Example 3 Self Tutor Evaluate: a (¡2)4 b ¡24 c (¡2)5 d ¡(¡2)5 a (¡2)4 = 16 b ¡24 = ¡1 £ 24 = ¡16 c (¡2)5 = ¡32 d ¡(¡2)5 = ¡1 £ (¡2)5 = ¡1 £ ¡32 = 32 CALCULATOR USE Power keys x2 squares the number in the display. ^ raises the number in the display to whatever power is required. On some calculators this key is yx , ax or xy . Notice the effect of the brackets in these examples. Not all calculators will use these key sequences. If you have problems, refer to the calculator instructions on page .12 Different calculators have different keys for entering powers, but in general they perform raising to powers in a similar manner. IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06125IGCSE01_06.CDR Monday, 15 September 2008 2:30:09 PM PETER
  • 4. 126 Exponents and surds (Chapter 6) Example 4 Self Tutor Find, using your calculator: a 65 b (¡5)4 c ¡74 Answer a Press: 6 ^ 5 ENTER 7776 b Press: ( (¡) 5 ) ^ 4 ENTER 625 c Press: (¡) 7 ^ 4 ENTER ¡2401 EXERCISE 6A.2 1 Simplify: a (¡1)4 b (¡1)5 c (¡1)10 d (¡1)15 e (¡1)8 f ¡18 g ¡(¡1)8 h (¡3)3 i ¡33 j ¡(¡3)3 k ¡(¡6)2 l ¡(¡4)3 2 Simplify: a 23 £ 32 £ (¡1)5 b (¡1)4 £ 33 £ 22 c (¡2)3 £ (¡3)4 3 Use your calculator to find the value of the following, recording the entire display: a 28 b (¡5)4 c ¡35 d 74 e 83 f (¡7)6 g ¡76 h 1:0512 i ¡0:62311 j (¡2:11)17 Notice that: ² 23 £ 24 = 2 £ 2 £ 2 £ 2 £ 2 £ 2 £ 2 = 27 ² 25 22 = 2 £ 2 £ 2 £ 2 £ 2 2 £ 2 = 23 ² (23 )2 = 2 £ 2 £ 2 £ 2 £ 2 £ 2 = 26 ² (3 £ 5)2 = 3 £ 5 £ 3 £ 5 = 3 £ 3 £ 5 £ 5 = 32 52 ² µ 2 5 ¶3 = 2 5 £ 2 5 £ 2 5 = 2 £ 2 £ 2 5 £ 5 £ 5 = 23 53 These examples can be generalised to the exponent or index laws: ² am £ an = am+n To multiply numbers with the same base, keep the base and add the indices. ² am an = am¡n , a 6= 0 To divide numbers with the same base, keep the base and subtract the indices. ² (am )n = am£n When raising a power to a power, keep the base and multiply the indices. ² (ab)n = an bn The power of a product is the product of the powers. ² ³a b ´n = an bn , b 6= 0 The power of a quotient is the quotient of the powers. EXPONENT OR INDEX LAWS [1.9, 2.4]B 1 1 IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06126IGCSE01_06.CDR Thursday, 18 September 2008 12:14:38 PM PETER
  • 5. Exponents and surds (Chapter 6) 127 Example 5 Self Tutor Simplify using the laws of indices: a 23 £ 22 b x4 £ x5 a 23 £ 22 = 23+2 = 25 = 32 b x4 £ x5 = x4+5 = x9 Example 6 Self Tutor Simplify using the index laws: a 35 33 b p7 p3 a 35 33 = 35¡3 = 32 = 9 b p7 p3 = p7¡3 = p4 Example 7 Self Tutor Simplify using the index laws: a (23 )2 b (x4 )5 a (23 )2 = 23£2 = 26 = 64 b (x4 )5 = x4£5 = x20 Example 8 Self Tutor Remove the brackets of: a (3a)2 b µ 2x y ¶3 a (3a)2 = 32 £ a2 = 9a2 b µ 2x y ¶3 = 23 £ x3 y3 = 8x3 y3 To multiply, keep the base and add the indices. To divide, keep the base and subtract the indices. To raise a power to a power, keep the base and multiply the indices. Each factor within the brackets has to be raised to the power outside them. IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06127IGCSE01_06.CDR Monday, 15 September 2008 2:34:48 PM PETER
  • 6. 128 Exponents and surds (Chapter 6) Example 9 Self Tutor Express the following in simplest form, without brackets: a (3a3 b)4 b µ x2 2y ¶3 a (3a3 b)4 = 34 £ (a3 )4 £ b4 = 81 £ a3£4 £ b4 = 81a12 b4 b µ x2 2y ¶3 = (x2 )3 23 £ y3 = x2£3 8 £ y3 = x6 8y3 EXERCISE 6B 1 Simplify using the index laws: a 23 £ 21 b 22 £ 22 c 35 £ 34 d 52 £ 53 e x2 £ x4 f a3 £ a g n4 £ n6 h b3 £ b5 2 Simplify using the index laws: a 24 23 b 35 32 c 57 53 d 49 45 e x6 x3 f y7 y4 g a8 ¥ a7 h b9 ¥ b5 3 Simplify using the index laws: a (22 )3 b (34 )3 c (23 )6 d (102 )5 e (x3 )2 f (x5 )3 g (a5 )4 h (b6 )4 4 Simplify using the index laws: a a5 £ a2 b n3 £ n5 c a7 ¥ a3 d a5 £ a e b9 ¥ b4 f (a3 )6 g an £ a5 h (b2 )4 i b6 ¥ b3 j m4 £ m3 £ m7 k (a3 )3 £ a l (g2 )4 £ g3 5 Remove the brackets of: a (ab)3 b (ac)4 c (bc)5 d (abc)3 e (2a)4 f (5b)2 g (3n)4 h (2bc)3 i µ 2 p ¶3 j ³a b ´3 k ³m n ´4 l µ 2c d ¶5 IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06128IGCSE01_06.CDR Monday, 15 September 2008 3:29:53 PM PETER
  • 7. Exponents and surds (Chapter 6) 129 6 Express the following in simplest form, without brackets: a (2b4 )3 b µ 3 x2y ¶2 c (5a4 b)2 d µ m3 2n2 ¶4 e µ 3a3 b5 ¶3 f (2m3 n2 )5 g µ 4a4 b2 ¶2 h (5x2 y3 )3 Consider 23 23 which is obviously 1. Using the exponent law for division, 23 23 = 23¡3 = 20 We therefore conclude that 20 = 1. In general, we can state the zero index law: a0 = 1 for all a 6= 0. Now consider 24 27 which is 2 £ 2 £ 2 £ 2 2 £ 2 £ 2 £ 2 £ 2 £ 2 £ 2 = 1 23 Using the exponent law of division, 24 27 = 24¡7 = 2¡3 Consequently, 2¡3 = 1 23 , which means that 2¡3 and 23 are reciprocals of each other. ZERO AND NEGATIVE INDICES [1.9, 2.4]C 1 1 In general, we can state the negative index law: If a is any non-zero number and n is an integer, then a¡n = 1 an . This means that an and a¡n are reciprocals of one another. In particular notice that a¡1 = 1 a . Using the negative index law, ¡2 3 ¢¡4 = 1 ¡2 3 ¢4 = 1 ¥ 24 34 = 1 £ 34 24 = ¡3 2 ¢4 So, in general we can see that: ³a b ´¡n = µ b a ¶n provided a 6= 0, b 6= 0. IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06129IGCSE01_06.CDR Thursday, 18 September 2008 12:18:04 PM PETER
  • 8. 130 Exponents and surds (Chapter 6) Example 10 Self Tutor Simplify, giving answers in simplest rational form: a 70 b 3¡2 c 30 ¡ 3¡1 d ¡5 3 ¢¡2 a 70 = 1 b 3¡2 = 1 32 = 1 9 c 30 ¡ 3¡1 = 1 ¡ 1 3 = 2 3 d ¡5 3 ¢¡2 = ¡3 5 ¢2 = 9 25 EXERCISE 6C 1 Simplify, giving answers in simplest rational form: a 30 b 6¡1 c 4¡1 d 50 e 32 f 3¡2 g 53 h 5¡3 i 72 j 7¡2 k 103 l 10¡3 2 Simplify, giving answers in simplest rational form: a (1 2 )0 b 54 54 c 2t0 d (2t)0 e 70 f 3 £ 40 g 53 55 h 26 210 i (1 4 )¡1 j (3 8 )¡1 k (2 3 )¡1 l (1 5 )¡1 m 20 + 21 n 50 ¡ 5¡1 o 30 + 31 ¡ 3¡1 p (1 3 )¡2 q (2 3 )¡3 r (11 2 )¡3 s (4 5 )¡2 t (21 2 )¡2 3 Write the following without brackets or negative indices: a (3b)¡1 b 3b¡1 c 7a¡1 d (7a)¡1 e µ 1 t ¶¡2 f (4t)¡2 g (5t)¡2 h (5t¡2 )¡1 i xy¡1 j (xy)¡1 k xy¡3 l (xy)¡3 m (3pq)¡1 n 3(pq)¡1 o 3pq¡1 p (xy)3 y¡2 4 Write as powers of 2, 3 or 5: a 25 b 1 25 c 27 d 1 27 e 16 f 1 16 g 2 3 h 3 5 i 9 125 j 32 81 k 22 5 l 93 8 5 Write as powers of 10: a 1000 b 0:01 c 100 000 d 0:000 001 IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06130IGCSE01_06.CDR Monday, 15 September 2008 2:38:27 PM PETER
  • 9. Exponents and surds (Chapter 6) 131 10 000 = 104 1000 = 103 100 = 102 10 = 101 1 = 100 1 10 = 10¡1 1 100 = 10¡2 1 1000 = 10¡3 Consider the pattern alongside. Notice that each time we divide by 10, the exponent or power of 10 decreases by one. We can use this pattern to simplify the writing of very large and very small numbers. For example, 5 000 000 = 5 £ 1 000 000 = 5 £ 106 and 0:000 003 = 3 1 000 000 = 3 1 £ 1 1 000 000 = 3 £ 10¡6 STANDARD FORM Standard form (or scientific notation) involves writing any given number as a number between 1 and 10, multiplied by an integer power of 10, i.e., a £ 10n where 1 6 a < 10 and n 2 Z : Example 11 Self Tutor Write in standard form: a 37 600 b 0:000 86 a 37 600 = 3:76 £ 10 000 = 3:76 £ 104 fshift decimal point 4 places to the left and £10 000g b 0:000 86 = 8:6 ¥ 104 = 8:6 £ 10¡4 fshift decimal point 4 places to the right and ¥10 000g Example 12 Self Tutor Write as an ordinary number: a 3:2 £ 102 b 5:76 £ 10¡5 a 3:2 £ 102 = 3:20 £ 100 = 320 b 5:76 £ 10¡5 = 000005:76 ¥ 105 = 0:000 057 6 STANDARD FORM [1.9]D ÷10 ÷10 ÷10 -1 -1 -1 ÷10 ÷10 ÷10 ÷10 -1 -1 -1 -1 IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 y:HAESEIGCSE01IG01_06131IGCSE01_06.CDR Friday, 10 October 2008 9:08:28 AM PETER
  • 10. 132 Exponents and surds (Chapter 6) Example 13 Self Tutor Simplify the following, giving your answer in standard form: a (5 £ 104 ) £ (4 £ 105 ) b (8 £ 105 ) ¥ (2 £ 103 ) a (5 £ 104 ) £ (4 £ 105 ) = 5 £ 4 £ 104 £ 105 = 20 £ 104+5 = 2 £ 101 £ 109 = 2 £ 1010 b (8 £ 105 ) ¥ (2 £ 103 ) = 8 £ 105 2 £ 103 = 8 2 £ 105¡3 = 4 £ 102 To help write numbers in standard form: ² If the original number is > 10, the power of 10 is positive (+). ² If the original number is < 1, the power of 10 is negative (¡). ² If the original number is between 1 and 10, leave it as it is and multiply it by 100 . EXERCISE 6D.1 1 Write the following as powers of 10: a 100 b 1000 c 10 d 100 000 e 0:1 f 0:01 g 0:0001 h 100 000 000 2 Express the following in standard form: a 387 b 38 700 c 3:87 d 0:0387 e 0:003 87 f 20:5 g 205 h 0:205 i 20 500 j 20 500 000 k 0:000 205 3 Express the following in standard form: a The circumference of the Earth is approximately 40 075 kilometres. b The distance from the Earth to the Sun is 149 500 000 000 m. c Bacteria are single cell organisms, some of which have a diameter of 0:0004 mm. d There are typically 40 million bacteria in a gram of soil. e The probability that your six numbers will be selected for Lotto on Saturday night is 0:000 000 141 62. f Superfine sheep have wool fibres as low as 0:01 mm in diameter. 4 Write as an ordinary decimal number: a 3 £ 102 b 2 £ 103 c 3:6 £ 104 d 9:2 £ 105 e 5:6 £ 106 f 3:4 £ 101 g 7:85 £ 106 h 9 £ 108 5 Write as an ordinary decimal number: a 3 £ 10¡2 b 2 £ 10¡3 c 4:7 £ 10¡4 d 6:3 £ 10¡5 e 1:7 £ 100 f 9:5 £ 10¡4 g 3:49 £ 10¡1 h 7 £ 10¡6 IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06132IGCSE01_06.CDR Wednesday, 17 September 2008 9:43:26 AM PETER
  • 11. Scientific and graphics calculators are able to display very large and very small numbers in standard form. Likewise, if you perform 0:0024 ¥ 10 000 000 your calculator might display or , which actually represent 2:4 £ 10¡10 . If you perform your calculator might display or or , all of which actually represent . 2300000 400000 9 2 10 ¡ ¡ ¡ ¡ ¡ ¡ ¡ £ £: 11 9.2 11¡ ¡E9.211 2.4-10 9.2 +11¡E¡ 2.4 -10¡ ¡E Exponents and surds (Chapter 6) 133 6 Write as an ordinary decimal number: a The wavelength of visible light is 9 £ 10¡7 m. b In 2007, the world population was approximately 6:606 £ 109 . c The diameter of our galaxy, the Milky Way, is 1 £ 105 light years. d The smallest viruses are 1 £ 10¡5 mm in size. e 1 atomic mass unit is approximately 1:66 £ 10¡27 kg. 7 Write in standard form: a 18:17 £ 106 b 0:934 £ 1011 c 0:041 £ 10¡2 8 Simplify the following, giving your answer in standard form: a (8 £ 103 ) £ (2 £ 104 ) b (8 £ 103 ) £ (4 £ 105 ) c (5 £ 104 ) £ (3 £ 105 ) d (2 £ 103 )3 e (6 £ 103 )2 f (7 £ 10¡2 )2 g (9 £ 104 ) ¥ (3 £ 103 ) h (8 £ 105 ) ¥ (4 £ 106 ) STANDARD FORM ON A CALCULATOR You will find instructions for graphics calculators on page 16. EXERCISE 6D.2 1 Write each of the following as it would appear on the display of your calculator: a 4 650 000 b 0:000 051 2 c 5:99 £ 10¡4 d 3:761 £ 1010 e 49 500 000 f 0:000 008 44 2 Calculate each of the following, giving your answers in standard form. The decimal part should be correct to 2 decimal places: a 0:06 £ 0:002 ¥ 4000 b 426 £ 760 £ 42 000 c 627 000 £ 74 000 d 320 £ 600 £ 51 400 e 0:004 28 ¥ 120 000 f 0:026 £ 0:00 42 £ 0:08 Example 14 Self Tutor Use your calculator to find: a (1:42 £ 104 ) £ (2:56 £ 108 ) b (4:75 £ 10¡4 ) ¥ (2:5 £ 107 ) Instructions are given for the Casio fx-6890G: Answer: a 1:42 EXP 4 £ 2:56 EXP 8 EXE 3:6352 £ 1012 b 4:75 EXP (¡) 4 ¥ 2:5 EXP 7 EXE 1:9 £ 10¡11 IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06133IGCSE01_06.CDR Wednesday, 17 September 2008 9:49:45 AM PETER
  • 12. 134 Exponents and surds (Chapter 6) 3 Find, in standard form, with decimal part correct to 2 places: a (5:31 £ 104 ) £ (4:8 £ 103 ) b (2:75 £ 10¡3 )2 c 8:24 £ 10¡6 3 £ 104 d (7:2 £ 10¡5 ) ¥ (2:4 £ 10¡6 ) e 1 4:1 £ 104 f (3:2 £ 103 )2 4 For the following give answers in standard form correct to 3 significant figures: a How many millimetres are there in 479:8 kilometres? b How many seconds are there in one year? c How many seconds are there in a millennium? d How many kilograms are there in 0:5 milligrams? 5 If a missile travels at 3600 km/h, how far will it travel in: a 1 day b 1 week c 2 years? 6 Light travels at a speed of 3 £ 108 metres per second. How far will light travel in: a 1 minute b 1 day c 1 year? Give your answers in standard form with decimal part correct to 2 decimal places. Assume that 1 year = 365 days. For the remainder of this chapter we consider surds and radicals, which are numbers that are written using the radical or square root sign p : Surds and radicals occur frequently in mathematics, often as solutions to equations involving squared terms. We will see a typical example of this in Chapter 8 when we study Pythagoras’ theorem. RATIONAL AND IRRATIONAL RADICALS Some radicals are rational, but most are irrational. For example, some rational radicals include: p 1 = p 12 = 1 or 1 1p 4 = p 22 = 2 or 2 1 q 1 4 = q¡1 2 ¢2 = 1 2 Two examples of irrational radicals are p 2 ¼ 1:414 214 and p 3 ¼ 1:732 051: Strictly speaking, a surd is an irrational radical. However, in this and many other courses, the term surd is used to describe any radical. It is reasonable to do so because the properties of surds and radicals are the same. SURDS [1.10]E Give your answers in standard form with decimal part correct to places. Assume that year days.2 1 = 365 IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06134IGCSE01_06.CDR Monday, 15 September 2008 2:59:38 PM PETER
  • 13. Exponents and surds (Chapter 6) 135 Historical note #endboxedheading The name surd and the radical sign p both had a rather absurd past. Many centuries after Pythagoras, when the Golden Age of the Greeks was past, the writings of the Greeks were preserved, translated, and extended by Arab mathematicians. The Arabs thought of a square number as growing out of its roots. The roots had to be extracted. The Latin word for “root” is radix, from which we get the words radical and radish! The printed symbol for radix was first R, then r, which was copied by hand as p . The word surd actually came about because of an error of translation by the Arab mathematician Al-Khwarizmi in the 9th century AD. The Greek word a-logos means “irrational” but also means “deaf”. So, the Greek a-logos was interpreted as “deaf” which in Latin is surdus. Hence to this day, irrational radicals like p 2 are called surds. BASIC OPERATIONS WITH SURDS We have seen square roots and cube roots in previous courses. We can use their properties to help with some simplifications. Example 15 Self Tutor Simplify: a ( p 5)2 b µ 1 p 5 ¶2 a ( p 5)2 = p 5 £ p 5 = 5 b µ 1 p 5 ¶2 = 1 p 5 £ 1 p 5 = 1 5 Example 16 Self Tutor Simplify: a (2 p 5)3 b ¡2 p 5 £ 3 p 5 a (2 p 5)3 = 2 p 5 £ 2 p 5 £ 2 p 5 = 2 £ 2 £ 2 £ p 5 £ p 5 £ p 5 = 8 £ 5 £ p 5 = 40 p 5 b ¡2 p 5 £ 3 p 5 = ¡2 £ 3 £ p 5 £ p 5 = ¡6 £ 5 = ¡30 IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06135IGCSE01_06.CDR Monday, 15 September 2008 3:01:23 PM PETER
  • 14. 136 Exponents and surds (Chapter 6) ADDING AND SUBTRACTING SURDS ‘Like surds’ can be added and subtracted in the same way as ‘like terms’ in algebra. Consider 2 p 3 + 4 p 3, which has the same form as 2x + 4x. If we interpret this as 2 ‘lots’ of p 3 plus 4 ‘lots’ of p 3, we have 6 ‘lots’ of p 3. So, 2 p 3 + 4 p 3 = 6 p 3, and we can compare this with 2x + 4x = 6x. Example 17 Self Tutor Simplify: a 3 p 2 + 4 p 2 b 5 p 3 ¡ 6 p 3 a 3 p 2 + 4 p 2 = 7 p 2 fCompare: 3x + 4x = 7xg b 5 p 3 ¡ 6 p 3 = ¡1 p 3 = ¡ p 3 fCompare: 5x ¡ 6x = ¡xg EXERCISE 6E 1 Simplify: a ( p 7)2 b ( p 13)2 c ( p 15)2 d ( p 24)2 e µ 1 p 3 ¶2 f µ 1 p 11 ¶2 g µ 1 p 17 ¶2 h µ 1 p 23 ¶2 2 Simplify: a ( 3 p 2)3 b ( 3 p ¡5)3 c ³ 1 3p 5 ´3 3 Simplify: a 3 p 2 £ 4 p 2 b ¡2 p 3 £ 5 p 3 c 3 p 5 £ (¡2 p 5) d ¡2 p 2 £ (¡3 p 2) e (3 p 2)2 f (3 p 2)3 g (2 p 3)2 h (2 p 3)3 i (2 p 2)4 4 Simplify: a p 2 + p 2 b p 2 ¡ p 2 c 3 p 2 ¡ 2 p 2 d 2 p 3 ¡ p 3 e 5 p 7 + 2 p 7 f 3 p 5 ¡ 6 p 5 g 3 p 2 + 4 p 2 ¡ p 2 h 6 p 2 ¡ 9 p 2 i p 5 + 7 p 5 j 3 p 2 ¡ 5 p 2 ¡ p 2 k 3 p 3 ¡ p 3 + 2 p 3 l 3 p 5 + 7 p 5 ¡ 10 5 Simplify: a 3 p 2 + 2 p 3 ¡ p 2 + 5 p 3 b 7 p 2 ¡ 4 p 3 ¡ 2 p 2 + 3 p 3 c ¡6 p 2 ¡ 2 p 3 ¡ p 2 + 6 p 3 d 2 p 5 + 4 p 2 + 9 p 5 ¡ 9 p 2 e 3 p 2 ¡ 5 p 7 ¡ p 2 ¡ 5 p 7 f 3 p 2 + 4 p 11 + 6 ¡ p 2 ¡ p 11 ¡ 3 g 6 p 6 ¡ 2 p 2 ¡ p 2 ¡ 5 p 6 + 4 h 5 p 3 ¡ 6 p 7 ¡ 5 + 4 p 3 + p 7 ¡ 8 IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 y:HAESEIGCSE01IG01_06136IGCSE01_06.CDR Friday, 10 October 2008 9:08:51 AM PETER
  • 15. Exponents and surds (Chapter 6) 137 Discovery Properties of surds #endboxedheading Notice that p 4 £ 9 = p 36 = 6 and p 4 £ p 9 = 2 £ 3 = 6, which suggests that p 4£ p 9 = p 4 £ 9: Also, r 36 4 = p 9 = 3 and p 36 p 4 = 6 2 = 3, which suggests that p 36 p 4 = r 36 4 . What to do: Test the following possible properties or rules for surds by substituting different values of a and b. Use your calculator to evaluate the results. 1 p a £ p b = p ab for all a > 0, b > 0. 2 qa b = p a p b for all a > 0, b > 0. 3 p a + b = p a + p b for all a > 0, b > 0. 4 p a ¡ b = p a ¡ p b for all a > 0, b > 0. You should have discovered the following properties of surds: ² p a £ p b = p a £ b for a > 0, b > 0 ² p a p b = r a b for a > 0, b > 0 However, in general it is not true that p a + b = p a + p b or that p a ¡ b = p a ¡ p b: Example 18 Self Tutor Write in simplest form: a p 3 £ p 2 b 2 p 5 £ 3 p 2 a p 3 £ p 2 = p 3 £ 2 = p 6 b 2 p 5 £ 3 p 2 = 2 £ 3 £ p 5 £ p 2 = 6 £ p 5 £ 2 = 6 p 10 PROPERTIES OF SURDS [1.10]F IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06137IGCSE01_06.CDR Monday, 15 September 2008 3:02:50 PM PETER
  • 16. 138 Exponents and surds (Chapter 6) Example 19 Self Tutor Simplify: a p 32 p 2 b p 12 2 p 3 a p 32 p 2 = q 32 2 = p 16 = 4 b p 12 2 p 3 = 1 2 q 12 3 fusing p a p b = r a b g = 1 2 p 4 = 1 2 £ 2 = 1 Example 20 Self Tutor Write p 32 in the form k p 2. p 32 = p 16 £ 2 = p 16 £ p 2 fusing p ab = p a £ p bg = 4 p 2 SIMPLEST SURD FORM A surd is in simplest form when the number under the radical sign is the smallest integer possible. Example 21 Self Tutor Write p 28 in simplest surd form. p 28 = p 4 £ 7 f4 is the largest perfect square factor of 28g = p 4 £ p 7 = 2 p 7 EXERCISE 6F 1 Simplify: a p 2 £ p 5 b p 3 £ p 7 c p 3 £ p 11 d p 7 £ p 7 e p 3 £ 2 p 3 f 2 p 2 £ p 5 Look for the largest perfect square factor. IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06138IGCSE01_06.CDR Monday, 15 September 2008 3:04:28 PM PETER
  • 17. Exponents and surds (Chapter 6) 139 2 Simplify: a 3 p 3 £ 2 p 2 b 2 p 3 £ 3 p 5 c p 2 £ p 3 £ p 5 d p 3 £ p 2 £ 2 p 2 e ¡3 p 2 £ ( p 2)3 f (3 p 2)3 £ ( p 3)3 3 Simplify: a p 8 p 2 b p 2 p 8 c p 18 p 2 d p 2 p 18 e p 20 p 5 f p 5 p 20 g p 27 p 3 h p 18 p 3 i p 3 p 30 j p 50 p 2 k 2 p 6 p 24 l 5 p 75 p 3 4 Write the following in the form k p 2: a p 8 b p 18 c p 50 d p 98 e p 200 f p 288 g p 20 000 h q 1 2 5 Write the following in the form k p 3: a p 12 b p 27 c p 75 d q 1 3 6 Write the following in the form k p 5: a p 20 b p 45 c p 125 d q 1 5 7 a Find: i p 16 + p 9 ii p 16 + 9 iii p 25 ¡ p 9 iv p 25 ¡ 9 b Copy and complete: In general, p a + b 6= :::::: and p a ¡ b 6= :::::: 8 Write the following in simplest surd form: a p 24 b p 50 c p 54 d p 40 e p 56 f p 63 g p 52 h p 44 i p 60 j p 90 k p 96 l p 68 m p 175 n p 162 o p 128 p p 700 9 Write the following in simplest surd form: a q 5 9 b q 18 4 c q 12 16 d q 75 36 The rules for expanding brackets involving surds are identical to those for ordinary algebra. We can thus use: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (a + b)2 = a2 + 2ab + b2 (a ¡ b)2 = a2 ¡ 2ab + b2 (a + b)(a ¡ b) = a2 ¡ b2 MULTIPLICATION OF SURDS [1.10]G IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06139IGCSE01_06.CDR Monday, 15 September 2008 3:06:19 PM PETER
  • 18. 140 Exponents and surds (Chapter 6) Example 22 Self Tutor Expand and simplify: a p 2( p 2 + p 3) b p 3(6 ¡ 2 p 3) a p 2( p 2 + p 3) = p 2 £ p 2 + p 2 £ p 3 = 2 + p 6 b p 3(6 ¡ 2 p 3) = ( p 3)(6 + ¡2 p 3) = ( p 3)(6) + ( p 3)(¡2 p 3) = 6 p 3 + ¡6 = 6 p 3 ¡ 6 Example 23 Self Tutor Expand and simplify: a ¡ p 2( p 2 + 3) b ¡ p 3(7 ¡ 2 p 3) a ¡ p 2( p 2 + 3) = ¡ p 2 £ p 2 + ¡ p 2 £ 3 = ¡2 ¡ 3 p 2 b ¡ p 3(7 ¡ 2 p 3) = (¡ p 3)(7 ¡ 2 p 3) = (¡ p 3)(7) + (¡ p 3)(¡2 p 3) = ¡7 p 3 + 6 Example 24 Self Tutor Expand and simplify: (3 ¡ p 2)(4 + 2 p 2) (3 ¡ p 2)(4 + 2 p 2) = (3 ¡ p 2)(4) + (3 ¡ p 2)(2 p 2) = 12 ¡ 4 p 2 + 6 p 2 ¡ 4 = 8 + 2 p 2 Example 25 Self Tutor Expand and simplify: a ( p 3 + 2)2 b ( p 3 ¡ p 7)2 a ( p 3 + 2)2 = ( p 3)2 + 2 £ p 3 £ 2 + 22 = 3 + 4 p 3 + 4 = 7 + 4 p 3 b ( p 3 ¡ p 7)2 = ( p 3)2 ¡ 2 £ p 3 £ p 7 + ( p 7)2 = 3 ¡ 2 p 21 + 7 = 10 ¡ 2 p 21 IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06140IGCSE01_06.CDR Monday, 15 September 2008 3:21:04 PM PETER
  • 19. Exponents and surds (Chapter 6) 141 Example 26 Self Tutor Expand and simplify: a (3 + p 2)(3 ¡ p 2) b (2 p 3 ¡ 5)(2 p 3 + 5) a (3 + p 2)(3 ¡ p 2) = 32 ¡ ( p 2)2 = 9 ¡ 2 = 7 b (2 p 3 ¡ 5)(2 p 3 + 5) = (2 p 3)2 ¡ 52 = (4 £ 3) ¡ 25 = 12 ¡ 25 = ¡13 EXERCISE 6G 1 Expand and simplify: a p 2( p 5 + p 2) b p 2(3 ¡ p 2) c p 3( p 3 + 1) d p 3(1 ¡ p 3) e p 7(7 ¡ p 7) f p 5(2 ¡ p 5) g p 11(2 p 11 ¡ 1) h p 6(1 ¡ 2 p 6) i p 3( p 3 + p 2 ¡ 1) j 2 p 3( p 3 ¡ p 5) k 2 p 5(3 ¡ p 5) l 3 p 5(2 p 5 + p 2) 2 Expand and simplify: a ¡ p 2(3 ¡ p 2) b ¡ p 2( p 2 + p 3) c ¡ p 2(4 ¡ p 2) d ¡ p 3(1 + p 3) e ¡ p 3( p 3 + 2) f ¡ p 5(2 + p 5) g ¡( p 2 + 3) h ¡ p 5( p 5 ¡ 4) i ¡(3 ¡ p 7) j ¡ p 11(2 ¡ p 11) k ¡( p 3 ¡ p 7) l ¡2 p 2(1 ¡ p 2) m ¡3 p 3(5 ¡ p 3) n ¡7 p 2( p 2 + p 6) o (¡ p 2)3 (3 ¡ p 2) 3 Expand and simplify: a (1 + p 2)(2 + p 2) b (2 + p 3)(2 + p 3) c ( p 3 + 2)( p 3 ¡ 1) d (4 ¡ p 2)(3 + p 2) e (1 + p 3)(1 ¡ p 3) f (5 + p 7)(2 ¡ p 7) g ( p 5 + 2)( p 5 ¡ 3) h ( p 7 ¡ p 3)( p 7 + p 3) i (2 p 2 + p 3)(2 p 2 ¡ p 3) j (4 ¡ p 2)(3 ¡ p 2) 4 Expand and simplify: a (1 + p 2)2 b (2 ¡ p 3)2 c ( p 3 + 2)2 d (1 + p 5)2 e ( p 2 ¡ p 3)2 f (5 ¡ p 2)2 g ( p 2 + p 7)2 h (4 ¡ p 6)2 i ( p 6 ¡ p 2)2 j ( p 5 + 2 p 2)2 k ( p 5 ¡ 2 p 2)2 l (6 + p 8)2 m (5 p 2 ¡ 1)2 n (3 ¡ 2 p 2)2 o (1 + 3 p 2)2 5 Expand and simplify: a (4 + p 3)(4 ¡ p 3) b (5 ¡ p 2)(5 + p 2) c ( p 5 ¡ 2)( p 5 + 2) d ( p 7 + 4)( p 7 ¡ 4) e (3 p 2 + 2)(3 p 2 ¡ 2) f (2 p 5 ¡ 1)(2 p 5 + 1) g (5 ¡ 3 p 3)(5 + 3 p 3) h (2 ¡ 4 p 2)(2 + 4 p 2) i (1 + 5 p 7)(1 ¡ 5 p 7) 6 Expand and simplify: a ( p 3 + p 2)( p 3 ¡ p 2) b ( p 7 + p 11)( p 7 ¡ p 11) c ( p x ¡ p y)( p y + p x) Did you notice that these answers are ?integers IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06141IGCSE01_06.CDR Monday, 15 September 2008 3:11:33 PM PETER
  • 20. 142 Exponents and surds (Chapter 6) When an expression involves division by a surd, we can write the expression with an integer denominator which does not contain surds. If the denominator contains a simple surd such as p a then we use the rule p a £ p a = a: For example: 6 p 3 can be written as 6 p 3 £ p 3 p 3 since we are really just multiplying the original fraction by 1. 6 p 3 £ p 3 p 3 then simplifies to 6 p 3 3 or 2 p 3. Example 27 Self Tutor Express with integer denominator: a 7 p 3 b 10 p 5 c 10 2 p 2 a 7 p 3 = 7 p 3 £ p 3 p 3 = 7 p 3 3 b 10 p 5 = 10 p 5 £ p 5 p 5 = 10 5 p 5 = 2 p 5 c 10 2 p 2 = 10 2 p 2 £ p 2 p 2 = 10 p 2 4 = 5 p 2 2 Example 28 Self Tutor Express 1 3 + p 2 with integer denominator. 1 3 + p 2 = µ 1 3 + p 2 ¶ µ 3 ¡ p 2 3 ¡ p 2 ¶ = 3 ¡ p 2 32 ¡ ( p 2)2 fusing (a + b)(a ¡ b) = a2 ¡ b2 g = 3 ¡ p 2 7 DIVISION BY SURDS [1.10]H We are really multiplying by one, which does not change the value of the original expression. If the denominator has the form a + p b then we can remove the surd from the denominator by multiplying both the numerator and the denominator by its radical conjugate a ¡ p b. This produces a rational denominator, so the process is called rationalisation of the denominator. IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 y:HAESEIGCSE01IG01_06142IGCSE01_06.CDR Friday, 10 October 2008 9:10:01 AM PETER
  • 21. Exponents and surds (Chapter 6) 143 Example 29 Self Tutor Write 1 ¡ 2 p 3 1 + p 3 in simplest form. 1 ¡ 2 p 3 1 + p 3 = µ 1 ¡ 2 p 3 1 + p 3 ¶ µ 1 ¡ p 3 1 ¡ p 3 ¶ = 1 ¡ p 3 ¡ 2 p 3 + 6 1 ¡ 3 = 7 ¡ 3 p 3 ¡2 = 3 p 3 ¡ 7 2 EXERCISE 6H 1 Express with integer denominator: a 1 p 2 b 2 p 2 c 4 p 2 d 10 p 2 e p 7 p 2 f 1 p 3 g 3 p 3 h 4 p 3 i 18 p 3 j p 11 p 3 k 1 p 5 l 3 p 5 m p 3 p 5 n 15 p 5 o 125 p 5 p p 10 p 2 q 1 2 p 3 r 2 p 2 p 3 s 15 2 p 5 t 1 ( p 2)3 2 Rationalise the denominator: a 1 3 ¡ p 5 b 1 2 + p 3 c 1 4 ¡ p 11 d p 2 5 + p 2 e p 3 3 + p 3 f 5 2 ¡ 3 p 2 g ¡ p 5 3 + 2 p 5 h 3 ¡ p 7 2 + p 7 3 Write in the form a + b p 2 where a, b 2 Q : a 4 2 ¡ p 2 b ¡5 1 + p 2 c 1 ¡ p 2 1 + p 2 d p 2 ¡ 2 3 ¡ p 2 e 1p 2 1 ¡ 1p 2 f 1 + 1p 2 1 ¡ 1p 2 g 1 1 ¡ p 2 3 h p 2 2 + 1 1 ¡ p 2 4 Review set 6A #endboxedheading 1 Find the integer equal to: a 34 b 5 £ 23 2 Write as a product of primes in index form: a 36 b 242 IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06143IGCSE01_06.CDR Monday, 15 September 2008 3:24:16 PM PETER
  • 22. 144 Exponents and surds (Chapter 6) 3 Simplify: a (¡2)3 b ¡(¡1)8 c (¡1)3 £ (¡2)2 £ ¡33 4 Simplify, giving your answers in simplest rational form: a 3¡3 b ¡4 3 ¢¡2 c 30 ¡ 31 5 Write 1 16 as a power of 2. 6 Simplify, using the exponent laws: a 56 £ 5 b b7 ¥ b2 c (x4 )3 7 Express in simplest form, without brackets: a (4c3 )2 b (2a2 b)3 c ³ s 3t2 ´4 8 Write in standard form: a 9 b 34 900 c 0:0075 9 Write as an ordinary decimal number: a 2:81 £ 106 b 2:81 £ 100 c 2:81 £ 10¡3 10 Simplify, giving your answer in standard form: a (6 £ 103 ) £ (7:1 £ 104 ) b (2:4 £ 106 ) ¥ (4 £ 102 ) 11 The Earth orbits around the Sun at a speed of approximately 1:07 £ 105 km/h. How far does the Earth move, relative to the Sun, in: a 1 day b 1 week c 1 year? Give your answers in standard form with decimal part correct to 2 decimal places. Assume that 1 year = 365 days. 12 a Simplify (3 p 2)2 : b Simplify ¡2 p 3 £ 4 p 3: c Simplify 3 p 2 ¡ p 8: d Write p 48 in simplest surd form. 13 Expand and simplify: a 2 p 3(4 ¡ p 3) b (3 ¡ p 7)2 c (2 ¡ p 3)(2 + p 3) d (3 + 2 p 5)(2 ¡ p 5) e (4 ¡ p 2)(3 + 2 p 2) 14 Rationalise the denominator: a 8 p 2 b 15 p 3 c p 3 p 2 d 5 6 ¡ p 3 15 Write q 1 7 in the form k p 7. 16 Write in the form a + b p 3 where a, b 2 Q : a p 3 2 + 1 1 ¡ p 3 2 b 2 + p 3 2 ¡ p 3 ¡ 2 p 3 2 + p 3 IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06144IGCSE01_06.CDR Monday, 15 September 2008 3:25:03 PM PETER
  • 23. Exponents and surds (Chapter 6) 145 Review set 6B #endboxedheading 1 Find the integer equal to: a 73 b 32 £ 52 2 Write as a product of primes in index form: a 42 b 144 3 Simplify: a ¡(¡1)7 b ¡43 c (¡2)5 £ (¡3)2 4 Simplify, giving your answers in simplest rational form: a 6¡2 b ¡ 11 2 ¢¡1 c ¡3 5 ¢¡2 5 Simplify, using the exponent laws: a 32 £ 36 b a5 ¥ a5 c (y3 )5 6 Write as powers of 2, 3 or 5: a 16 25 b 40 81 c 180 d 111 9 7 Express in simplest form, without brackets or negative indices: a (5c)¡1 b 7k¡2 c (4d2 )¡3 8 Write in standard form: a 263:57 b 0:000 511 c 863 400 000 9 Write as an ordinary decimal number: a 2:78 £ 100 b 3:99 £ 107 c 2:081 £ 10¡3 10 Simplify, giving your answer in standard form: a (8 £ 103 )2 b (3:6 £ 105 ) ¥ (6 £ 10¡2 ) 11 How many kilometres are there in 0:21 millimetres? Give your answer in standard form. 12 Simplify: a 2 p 3 £ 3 p 5 b (2 p 5)3 c 5 p 2 ¡ 7 p 2 d ¡ p 2(2 ¡ p 2) e ( p 3)4 f p 3 £ p 5 £ p 15 13 Write in simplest surd form: a p 75 b q 20 9 14 Expand and simplify: a (5 ¡ p 3)(5 + p 3) b ¡(2 ¡ p 5)2 c 2 p 3( p 3 ¡ 1) ¡ 2 p 3 d (2 p 2 ¡ 5)(1 ¡ p 2) 15 Express with integer denominator: a 14 p 2 b p 2 p 3 c p 2 3 + p 2 d ¡5 4 ¡ p 3 16 Write in the form a + b p 5 where a, b 2 Q : a 1 + p 5 2 ¡ p 5 b 3 ¡ p 5 3 + p 5 ¡ 4 3 ¡ p 5 IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06145IGCSE01_06.CDR Wednesday, 5 November 2008 2:15:20 PM PETER
  • 24. Challenge #endboxedheading 146 Exponents and surds (Chapter 6) Discovery Continued square roots#endboxedheading X = s 2 + r 2 + q 2 + p 2 + p 2 + :::::: is an example of a continued square root. Some continued square roots have actual values which are integers. 1 Use your calculator to show that p 2 ¼ 1:41421 p 2 + p 2 ¼ 1:84776 q 2 + p 2 + p 2 ¼ 1:96157: 2 Find the values, correct to 6 decimal places, of: a r 2 + q 2 + p 2 + p 2 b s 2 + r 2 + q 2 + p 2 + p 2 3 Continue the process and hence predict the actual value of X. 4 Use algebra to find the exact value of X. Hint: Find X2 in terms of X, and solve by inspection. 5 Can you find a continued square root whose actual value is 3? 1 Find s 3 + 2 p 2 3 ¡ 2 p 2 giving your answer in the form a + b p 2 where a, b 2 Q . 2 If x = p 5 ¡ p 3, find x2 and x4 . Hence find the value of x4 ¡ 16x2 . Copy and complete: x = p 5 ¡ p 3 is one of the solutions of the equation x4 ¡ 16x2 = 0 3 a We know that in general, p a + b 6= p a + p b Deduce that if p a + b = p a + p b then at least one of a or b is 0. b What can be deduced about a and b if p a ¡ b = p a ¡ p b? 4 a Find the value of µ 1 + p 5 2 ¶n ¡ µ 1 ¡ p 5 2 ¶n for n = 1, 2, 3 and 4. b What do you suspect about µ 1 + p 5 2 ¶n ¡ µ 1 ¡ p 5 2 ¶n for all n 2 Z + ? What to do: IGCSE01 magentacyan yellow black 0 0 5 5 25 25 75 75 50 50 95 95 100 100 0 0 5 5 25 25 75 75 50 50 95 95 100 100 Y:HAESEIGCSE01IG01_06146IGCSE01_06.cdr Friday, 31 October 2008 9:51:20 AM PETER