SlideShare una empresa de Scribd logo
1 de 15
FisikaMatematika I Drs. Tasman Abbas Sesion#9-10 JurusanFisika FakultasMatematikadanIlmuPengetahuanAlam
Outline Fourier Series Trigonometric form of Fourier Series Solving a problem using Fourier series 19/01/2011 ©  2010 Universitas Negeri Jakarta   |  www.unj.ac.id                      | 2
Infinite Series (part 3)	 ©  2010 Universitas Negeri Jakarta   |  www.unj.ac.id                      | 3 19/01/2011
FOURIER SERIES Jean-Baptiste Fourier (France, 1768 - 1830) proved that almost any period function can be represented as the sum of sinusoids with integrally related frequencies. The Fourier series is one example of an orthogonal set of basis functions, as a very important example for engineers. Trigonometric form of Fourier Series Let us map the functions 1, 	    and  		by the following : The purpose of this nothing deeper than to map the conventional Fourier series onto the notation we have derived for orthogonal functions 19/01/2011 4 ©  2010 Universitas Negeri Jakarta   |  www.unj.ac.id                      |
The Fourier series is a special case of the more general theory of orthogonal functions. Now calculate the value of lm from  ie The value of   lm    for 	       is simply the power in a sinewave (cosine wave) The value of  l0 is the power in a DC signal of unit amplitude. Now we can derive immediately the Euler formula from equation 					 	by substituting in the values of 	 and lm  from the above equations then 19/01/2011 5 ©  2010 Universitas Negeri Jakarta   |  www.unj.ac.id                      |
In the Fourier series, instead of using the term a-m as the coefficient of the cosine terms in the Fourier expansion we usually use the term am with  bm reserved for the sine terms. The important point to realize here is that the Fourier series expansion is only a special case of an expansion in terms of orthogonal functions There are many other function (e.g. Walsh function), so using the Fourier series as an example, try and understand the more general orthogonal function approach When we write a periodic function using a Fourier series expansion in terms of a DC term and sine and cosine terms the problem which remains is to determine the coefficients a0 , am and bm 19/01/2011 6 ©  2010 Universitas Negeri Jakarta   |  www.unj.ac.id                      |
Remove all u(t) y(t) frequencies > 5.5 Hz 2V t t=0 1s Solving a problem using Fourier series Consider a sawtooth wave which rises from -2V to 2V in a second. It passes through a linear time invariant communication channel which does not pass frequencies greater than 5.5 Hz. What is the power lost in the channel ? Assume the output and input impedance are the same. (Use sine or cosine Fourier series). 19/01/2011 7 ©  2010 Universitas Negeri Jakarta   |  www.unj.ac.id                      |
The first step is set up the problem mathematically. 	The time origin has not been specified in the problem. 	Since the system is time invariant it doesn't matter when t = 0 is located since it is will not change the form of the output. Choose time t = 0 at the center of the rise of the sawtooth because it makes the function which we now call u(t), into an odd function. Since the system is specified in terms of it frequency response, i.e. what it will do if a sinwave of a given frequency is input, it makes a lot of sense to express as a sum of either sines and cosines or complex exponentials since as we know what happens to these functions. If it's a sinewave or cosine wave and has a frequency less than 5.5 Hz it is transmitted, otherwise it is eliminated. The situation with complex exponential is a little trickier, if its in the range    [-5.5,5.5] Hz then will be transmitted otherwise will be eliminated. It would do no good to find the response to each sinewave individually, because we could not then add up these individual response to form the total output, because that would require superposition to hold. 19/01/2011 8 ©  2010 Universitas Negeri Jakarta   |  www.unj.ac.id                      |
Let us calculate the Fourier series for a sawtooth wave or arbitrary period and amplitude. Now with the choice of t = 0, we can write the input as mathematically within the period as We don't need to worry that outside the range [-T/2 < t < T/2] the above formula is incorrect since all the calculation are done within the range   [-T/2 < t < T/2]. As we strict to the range given the mathematical description is identical to the sawtooth and all will be well. We want the input to written in the form 19/01/2011 9 ©  2010 Universitas Negeri Jakarta   |  www.unj.ac.id                      |
Go back to Euler formula for Fourier series which have derived earlier from the general orthogonality conditions Now for the DC value of the sawtooth For an the coefficients of the cosine terms 19/01/2011 10 ©  2010 Universitas Negeri Jakarta   |  www.unj.ac.id                      |
The next step is use integration by parts, i.e. Therefore 19/01/2011 11 ©  2010 Universitas Negeri Jakarta   |  www.unj.ac.id                      |
This is a lot of work for 0, when it is fairly obvious that the integral of the product of an odd function (sawtooth) and an even function (the cosine term) is always zero when we integrate from [-v,v] whatever value of v, as shown below The procedure for calculating for  is almost identical, the final answer is  Now we know a0 , an and bn , we can write down the Fourier series representation for u(t) after substituting T = 1 and A = 2 The series has all the sine terms present, i.e.bm  is never zero and there are no cosine terms. 19/01/2011 12 ©  2010 Universitas Negeri Jakarta   |  www.unj.ac.id                      |
How can be check that our calculations for u(t) is correct ? We can calculate the power in the signal by 	and also by Parseval's theorem when applied to sine and cosine functions Where the 0.5 came from ? 	Remember that is lm which has the basis function was equal to sin(t) and the power in the sinewave, lm = 0.5 . Having calculated the Fourier series and having checked it using the Parseval's theorem it only remains to calculate the power in the first 5 harmonics, i.e. those with a frequency less than 5.5 Hz 19/01/2011 13 ©  2010 Universitas Negeri Jakarta   |  www.unj.ac.id                      |
Thus the power transmitted by the channel is The power loss is therefore 1.3333 - 1.1863 = 0.1470, and the power gain in dB is thus -0.51 dB. The final answer is that the channel attenuates the signal by 0.51 dB. 19/01/2011 14 ©  2010 Universitas Negeri Jakarta   |  www.unj.ac.id                      |
Thank You 19/01/2011 ©  2010 Universitas Negeri Jakarta   |  www.unj.ac.id                      | 15

Más contenido relacionado

La actualidad más candente

Optics Fourier Transform I
Optics Fourier Transform IOptics Fourier Transform I
Optics Fourier Transform I
diarmseven
 
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoidFourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Xavier Davias
 
Dft and its applications
Dft and its applicationsDft and its applications
Dft and its applications
Agam Goel
 

La actualidad más candente (20)

Fourier transforms
Fourier transforms Fourier transforms
Fourier transforms
 
Optics Fourier Transform I
Optics Fourier Transform IOptics Fourier Transform I
Optics Fourier Transform I
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Fourier analysis
Fourier analysisFourier analysis
Fourier analysis
 
Signal & System Assignment
Signal & System Assignment Signal & System Assignment
Signal & System Assignment
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Lti system
Lti systemLti system
Lti system
 
Lecture5
Lecture5Lecture5
Lecture5
 
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoidFourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
 
History and Real Life Applications of Fourier Analaysis
History and Real Life Applications of Fourier AnalaysisHistory and Real Life Applications of Fourier Analaysis
History and Real Life Applications of Fourier Analaysis
 
Dft,fft,windowing
Dft,fft,windowingDft,fft,windowing
Dft,fft,windowing
 
Ic batch b1 sem 3(2015) introduction to some special functions and fourier se...
Ic batch b1 sem 3(2015) introduction to some special functions and fourier se...Ic batch b1 sem 3(2015) introduction to some special functions and fourier se...
Ic batch b1 sem 3(2015) introduction to some special functions and fourier se...
 
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
 
Fourier series and fourier integral
Fourier series and fourier integralFourier series and fourier integral
Fourier series and fourier integral
 
Dft and its applications
Dft and its applicationsDft and its applications
Dft and its applications
 
Classification of Digital signals
Classification of Digital signalsClassification of Digital signals
Classification of Digital signals
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier series and applications of fourier transform
Fourier series and applications of fourier transformFourier series and applications of fourier transform
Fourier series and applications of fourier transform
 
Lec3
Lec3Lec3
Lec3
 
Lecture5 Signal and Systems
Lecture5 Signal and SystemsLecture5 Signal and Systems
Lecture5 Signal and Systems
 

Similar a Fisika Matematika I (9 - 10) Deret fourier

Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.pptFourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.ppt
MozammelHossain31
 
Optics Fourier Transform Ii
Optics Fourier Transform IiOptics Fourier Transform Ii
Optics Fourier Transform Ii
diarmseven
 
Meeting w3 chapter 2 part 1
Meeting w3   chapter 2 part 1Meeting w3   chapter 2 part 1
Meeting w3 chapter 2 part 1
mkazree
 
Meeting w3 chapter 2 part 1
Meeting w3   chapter 2 part 1Meeting w3   chapter 2 part 1
Meeting w3 chapter 2 part 1
Hattori Sidek
 

Similar a Fisika Matematika I (9 - 10) Deret fourier (20)

Aplicación de la serie Fourier en un circuito electrónico de potencia)
Aplicación de la serie Fourier en un circuito electrónico de potencia)Aplicación de la serie Fourier en un circuito electrónico de potencia)
Aplicación de la serie Fourier en un circuito electrónico de potencia)
 
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.pptFourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.ppt
 
FFT Analysis
FFT AnalysisFFT Analysis
FFT Analysis
 
Fft analysis
Fft analysisFft analysis
Fft analysis
 
Fourier analysis techniques fourier series
Fourier analysis techniques   fourier seriesFourier analysis techniques   fourier series
Fourier analysis techniques fourier series
 
unit 2: analysis of continues time signal
unit 2: analysis of continues time signalunit 2: analysis of continues time signal
unit 2: analysis of continues time signal
 
Nt lecture skm-iiit-bh
Nt lecture skm-iiit-bhNt lecture skm-iiit-bh
Nt lecture skm-iiit-bh
 
Operations on fourier series
Operations on fourier seriesOperations on fourier series
Operations on fourier series
 
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
 
Mba Ebooks ! Edhole
Mba Ebooks ! EdholeMba Ebooks ! Edhole
Mba Ebooks ! Edhole
 
Ch1 representation of signal pg 130
Ch1 representation of signal pg 130Ch1 representation of signal pg 130
Ch1 representation of signal pg 130
 
Laplace transforms
Laplace transforms Laplace transforms
Laplace transforms
 
Ist module 3
Ist module 3Ist module 3
Ist module 3
 
Chep 04 Harmonics
Chep 04 HarmonicsChep 04 Harmonics
Chep 04 Harmonics
 
Optics Fourier Transform Ii
Optics Fourier Transform IiOptics Fourier Transform Ii
Optics Fourier Transform Ii
 
Fourier transform (cell phones)
Fourier transform (cell phones)Fourier transform (cell phones)
Fourier transform (cell phones)
 
Unit 8
Unit 8Unit 8
Unit 8
 
PS.pptx
PS.pptxPS.pptx
PS.pptx
 
Meeting w3 chapter 2 part 1
Meeting w3   chapter 2 part 1Meeting w3   chapter 2 part 1
Meeting w3 chapter 2 part 1
 
Meeting w3 chapter 2 part 1
Meeting w3   chapter 2 part 1Meeting w3   chapter 2 part 1
Meeting w3 chapter 2 part 1
 

Más de jayamartha

Más de jayamartha (20)

Kalkulus 1 - Kuis 4
Kalkulus 1 - Kuis 4Kalkulus 1 - Kuis 4
Kalkulus 1 - Kuis 4
 
Kalkulus 1 - Kuis 3
Kalkulus 1 - Kuis 3Kalkulus 1 - Kuis 3
Kalkulus 1 - Kuis 3
 
Kalkulus 1 - Kuis 2
Kalkulus 1 - Kuis 2Kalkulus 1 - Kuis 2
Kalkulus 1 - Kuis 2
 
Kalkulus 1 - Kuis 1
Kalkulus 1 - Kuis 1Kalkulus 1 - Kuis 1
Kalkulus 1 - Kuis 1
 
P6
P6P6
P6
 
Week 15 kognitif
Week 15 kognitifWeek 15 kognitif
Week 15 kognitif
 
15-superconductivity
15-superconductivity15-superconductivity
15-superconductivity
 
12-14 d-effect_of_electron_-_electron_interaction
12-14 d-effect_of_electron_-_electron_interaction12-14 d-effect_of_electron_-_electron_interaction
12-14 d-effect_of_electron_-_electron_interaction
 
7-metal_vs_semiconductor
7-metal_vs_semiconductor7-metal_vs_semiconductor
7-metal_vs_semiconductor
 
12 -14 c-spin_paramagnetism
12 -14 c-spin_paramagnetism12 -14 c-spin_paramagnetism
12 -14 c-spin_paramagnetism
 
12 -14 b-diamagnetism
12 -14 b-diamagnetism12 -14 b-diamagnetism
12 -14 b-diamagnetism
 
12-14 a-magnetic_effects_in_quantum _mechanics
12-14 a-magnetic_effects_in_quantum _mechanics12-14 a-magnetic_effects_in_quantum _mechanics
12-14 a-magnetic_effects_in_quantum _mechanics
 
Week4-5 tb-kognitif
Week4-5 tb-kognitifWeek4-5 tb-kognitif
Week4-5 tb-kognitif
 
10-11 a-energy_bands
10-11 a-energy_bands10-11 a-energy_bands
10-11 a-energy_bands
 
7 -metal_vs_semiconductor
7 -metal_vs_semiconductor7 -metal_vs_semiconductor
7 -metal_vs_semiconductor
 
Week-13 model pembelajaran
Week-13 model pembelajaranWeek-13 model pembelajaran
Week-13 model pembelajaran
 
5-6-definition_of_semiconductor
5-6-definition_of_semiconductor5-6-definition_of_semiconductor
5-6-definition_of_semiconductor
 
Week-15 kognitif
Week-15 kognitifWeek-15 kognitif
Week-15 kognitif
 
Week 15 kognitif
Week 15 kognitifWeek 15 kognitif
Week 15 kognitif
 
Pert 1-4
Pert 1-4Pert 1-4
Pert 1-4
 

Último

會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
中 央社
 
Financial Accounting IFRS, 3rd Edition-dikompresi.pdf
Financial Accounting IFRS, 3rd Edition-dikompresi.pdfFinancial Accounting IFRS, 3rd Edition-dikompresi.pdf
Financial Accounting IFRS, 3rd Edition-dikompresi.pdf
MinawBelay
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptx
heathfieldcps1
 

Último (20)

Open Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPointOpen Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPoint
 
Discover the Dark Web .pdf InfosecTrain
Discover the Dark Web .pdf  InfosecTrainDiscover the Dark Web .pdf  InfosecTrain
Discover the Dark Web .pdf InfosecTrain
 
Navigating the Misinformation Minefield: The Role of Higher Education in the ...
Navigating the Misinformation Minefield: The Role of Higher Education in the ...Navigating the Misinformation Minefield: The Role of Higher Education in the ...
Navigating the Misinformation Minefield: The Role of Higher Education in the ...
 
How to Manage Notification Preferences in the Odoo 17
How to Manage Notification Preferences in the Odoo 17How to Manage Notification Preferences in the Odoo 17
How to Manage Notification Preferences in the Odoo 17
 
An Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxAn Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptx
 
Essential Safety precautions during monsoon season
Essential Safety precautions during monsoon seasonEssential Safety precautions during monsoon season
Essential Safety precautions during monsoon season
 
How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17
 
factors influencing drug absorption-final-2.pptx
factors influencing drug absorption-final-2.pptxfactors influencing drug absorption-final-2.pptx
factors influencing drug absorption-final-2.pptx
 
Application of Matrices in real life. Presentation on application of matrices
Application of Matrices in real life. Presentation on application of matricesApplication of Matrices in real life. Presentation on application of matrices
Application of Matrices in real life. Presentation on application of matrices
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
 
size separation d pharm 1st year pharmaceutics
size separation d pharm 1st year pharmaceuticssize separation d pharm 1st year pharmaceutics
size separation d pharm 1st year pharmaceutics
 
Financial Accounting IFRS, 3rd Edition-dikompresi.pdf
Financial Accounting IFRS, 3rd Edition-dikompresi.pdfFinancial Accounting IFRS, 3rd Edition-dikompresi.pdf
Financial Accounting IFRS, 3rd Edition-dikompresi.pdf
 
2024_Student Session 2_ Set Plan Preparation.pptx
2024_Student Session 2_ Set Plan Preparation.pptx2024_Student Session 2_ Set Plan Preparation.pptx
2024_Student Session 2_ Set Plan Preparation.pptx
 
MichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdfMichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdf
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptx
 
Features of Video Calls in the Discuss Module in Odoo 17
Features of Video Calls in the Discuss Module in Odoo 17Features of Video Calls in the Discuss Module in Odoo 17
Features of Video Calls in the Discuss Module in Odoo 17
 
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
Operations Management - Book1.p  - Dr. Abdulfatah A. SalemOperations Management - Book1.p  - Dr. Abdulfatah A. Salem
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
 
Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17
 
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdfPost Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
 
Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment
 Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment
Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment
 

Fisika Matematika I (9 - 10) Deret fourier

  • 1. FisikaMatematika I Drs. Tasman Abbas Sesion#9-10 JurusanFisika FakultasMatematikadanIlmuPengetahuanAlam
  • 2. Outline Fourier Series Trigonometric form of Fourier Series Solving a problem using Fourier series 19/01/2011 © 2010 Universitas Negeri Jakarta | www.unj.ac.id | 2
  • 3. Infinite Series (part 3) © 2010 Universitas Negeri Jakarta | www.unj.ac.id | 3 19/01/2011
  • 4. FOURIER SERIES Jean-Baptiste Fourier (France, 1768 - 1830) proved that almost any period function can be represented as the sum of sinusoids with integrally related frequencies. The Fourier series is one example of an orthogonal set of basis functions, as a very important example for engineers. Trigonometric form of Fourier Series Let us map the functions 1, and by the following : The purpose of this nothing deeper than to map the conventional Fourier series onto the notation we have derived for orthogonal functions 19/01/2011 4 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 5. The Fourier series is a special case of the more general theory of orthogonal functions. Now calculate the value of lm from ie The value of lm for is simply the power in a sinewave (cosine wave) The value of l0 is the power in a DC signal of unit amplitude. Now we can derive immediately the Euler formula from equation by substituting in the values of and lm from the above equations then 19/01/2011 5 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 6. In the Fourier series, instead of using the term a-m as the coefficient of the cosine terms in the Fourier expansion we usually use the term am with bm reserved for the sine terms. The important point to realize here is that the Fourier series expansion is only a special case of an expansion in terms of orthogonal functions There are many other function (e.g. Walsh function), so using the Fourier series as an example, try and understand the more general orthogonal function approach When we write a periodic function using a Fourier series expansion in terms of a DC term and sine and cosine terms the problem which remains is to determine the coefficients a0 , am and bm 19/01/2011 6 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 7. Remove all u(t) y(t) frequencies > 5.5 Hz 2V t t=0 1s Solving a problem using Fourier series Consider a sawtooth wave which rises from -2V to 2V in a second. It passes through a linear time invariant communication channel which does not pass frequencies greater than 5.5 Hz. What is the power lost in the channel ? Assume the output and input impedance are the same. (Use sine or cosine Fourier series). 19/01/2011 7 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 8. The first step is set up the problem mathematically. The time origin has not been specified in the problem. Since the system is time invariant it doesn't matter when t = 0 is located since it is will not change the form of the output. Choose time t = 0 at the center of the rise of the sawtooth because it makes the function which we now call u(t), into an odd function. Since the system is specified in terms of it frequency response, i.e. what it will do if a sinwave of a given frequency is input, it makes a lot of sense to express as a sum of either sines and cosines or complex exponentials since as we know what happens to these functions. If it's a sinewave or cosine wave and has a frequency less than 5.5 Hz it is transmitted, otherwise it is eliminated. The situation with complex exponential is a little trickier, if its in the range [-5.5,5.5] Hz then will be transmitted otherwise will be eliminated. It would do no good to find the response to each sinewave individually, because we could not then add up these individual response to form the total output, because that would require superposition to hold. 19/01/2011 8 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 9. Let us calculate the Fourier series for a sawtooth wave or arbitrary period and amplitude. Now with the choice of t = 0, we can write the input as mathematically within the period as We don't need to worry that outside the range [-T/2 < t < T/2] the above formula is incorrect since all the calculation are done within the range [-T/2 < t < T/2]. As we strict to the range given the mathematical description is identical to the sawtooth and all will be well. We want the input to written in the form 19/01/2011 9 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 10. Go back to Euler formula for Fourier series which have derived earlier from the general orthogonality conditions Now for the DC value of the sawtooth For an the coefficients of the cosine terms 19/01/2011 10 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 11. The next step is use integration by parts, i.e. Therefore 19/01/2011 11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 12. This is a lot of work for 0, when it is fairly obvious that the integral of the product of an odd function (sawtooth) and an even function (the cosine term) is always zero when we integrate from [-v,v] whatever value of v, as shown below The procedure for calculating for is almost identical, the final answer is Now we know a0 , an and bn , we can write down the Fourier series representation for u(t) after substituting T = 1 and A = 2 The series has all the sine terms present, i.e.bm is never zero and there are no cosine terms. 19/01/2011 12 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 13. How can be check that our calculations for u(t) is correct ? We can calculate the power in the signal by and also by Parseval's theorem when applied to sine and cosine functions Where the 0.5 came from ? Remember that is lm which has the basis function was equal to sin(t) and the power in the sinewave, lm = 0.5 . Having calculated the Fourier series and having checked it using the Parseval's theorem it only remains to calculate the power in the first 5 harmonics, i.e. those with a frequency less than 5.5 Hz 19/01/2011 13 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 14. Thus the power transmitted by the channel is The power loss is therefore 1.3333 - 1.1863 = 0.1470, and the power gain in dB is thus -0.51 dB. The final answer is that the channel attenuates the signal by 0.51 dB. 19/01/2011 14 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 15. Thank You 19/01/2011 © 2010 Universitas Negeri Jakarta | www.unj.ac.id | 15