SlideShare una empresa de Scribd logo
1 de 70
1 Optical Isomerism
Content History Enantiomers Reasons for molecular handedness Optical activity of enantiomers Naming Conventions Diastereomers Meso Compounds Resolution of Enantiomers Importance of Enantiomers 2
Isomers 3
History 4
Discovery of Optical Activity In 1850, French Physicist Jean-BaptiseBiot observed that solutions of some organic compounds like sugar and camphor have the ability to rotate plane polarized light Up till then the basis of this phenomenon was not yet known 5
Separation of Enantiomers In 1848 French Chemist Louis Pasteur separated a solution of optically inactive tartaric acid into two optically active components.   He observed that: Each of these components had identical physical properties like density,  melting point, solubility, etc But One of the components rotated plane polarized light clockwise while the other component rotated the polarized light by the same amount counter clockwise.  6
Pasteur made a proposal that since the crystals of tartaric acid were mirror images of each other, their molecules were also mirror images of each other 7
Additional research done by Pasteur revealed that one component of tartaric acid could be utilized for nutrition by micro-organisms but the other could not. Thus Pasteur concluded that  biological properties of chemical substances depend not only on the nature of the atoms comprising the molecules but also on the manner in which these atoms are arranged in space.  8
The tetrahedral Carbon In 1874 as a student at University of Utrecht, Jacobusvan't Hoff proposed the tetrahedral carbon. His proposal was based upon evidence of isomer number: Conversion of CH4 into CH3R(1 isomer) Conversion of CH3R into CH2RR1(1 isomer) van't Hoff realized that the four hydrogens in CH4 had to be equivalent and a geometrical square was ruled out because it would form 2 isomers for CH2RR1. Thus he proposed the tetrahedral carbon centre. 9
Explanation of Optical Isomerism  The tetrahedral carbon not only collaborated the absence of isomers in CH2YZ, but also predicted the existence of mirror image isomers. When carbon makes four single bonds with four different groups such as CHFClBr, non-super-imposable mirror-image molecules exist 10
Enantiomers 11
Definition An enantiomer is one of two stereoisomers that are mirror images of each other and are non-superimposable. 12
As seen here, the two molecules of lactic acid are mirror images of each other, but cannot superimpose. 13 (S)-Lactic acid or (+)-Lactic acid (R)-Lactic acid or (-)-Lactic acid
The Tetrahedral Carbon Enantiomers result when two compounds that are mirror-images of each other cannot superimpose Eg. when a tetrahedral carbon is bonded to four different substituents(CR1R2R3R4) For example, in lactic acid, there are four different groups: -H, -OH, -CH3, -COOH Can you name other examples of enantiomers formed this way? Alanine, Tartaric Acid, Glyceraldehyde 14
Reasons for molecular handedness(Chirality) 15
Chirality A molecule that is not superimposable to its mirror image is said to be chiral The most common cause of chirality in organic molecules is the presence of a carbon atom bonded with 4 different groups(eg in lactic acid), this is also known as point chirality. These carbon atoms are called chirality centers or chirality centres. Can you think of other causes of Chirality? (be creative) 16
Identifying Chiral Molecules The obvious way: find any carbon with 4 different substituents. If there are any, then the molecule is chiral. Isotopic differences are also considered different substituents. Thus, -CH2-, -CH3(methyl), >C=O(carbonyl), >C=C<(alkene) and -C@C-(alkyne) groups cannot be chirality centers as they all have less than 4 substituents. Easier way: look for the presence of a plane of symmetry, since a symmetrical molecule is identical to its mirror image and is thus achiral 17
Drawing of Enantiomers Fischer Projection (do not confuse with Lewis Structure) Natta Projection (we all know this) For cyclic molecules Haworth Projection Chair conformation 18
19 1. Fischer Projection  2.  Haworth Projection 3.  Chair Conformation 4. Natta Projections
Optical activity of enantiomers 20
As seen from Biot’s experiment, enantiomers can rotate plane polarised light, since they are optically active When a beam of plane polarised light passes through a solution of a non-racemic (scalemic) mixture (ie has enantiomeric excess of one of the enantiomers), rotation of the polarisation plane occurs. 21
Polarimeter 22
Optical Activity Observed rotation The number of degrees, , through which a compound rotates the plane of polarized light. Dextrorotatory (+) Acompound that rotates the plane of polarized light to the right. Levorotatory (-) Refers to a compound that rotates the plane of polarized light to the left. 23
Specific Rotation 	Specific rotation refers to the observed rotation for a sample in a tube 1.0 dm in length and at a concentration of 1.0 g/mL. The degree of rotation also depends on the wavelength of the light (the yellow sodium D2 line near 589 nm is commonly used for measurements) 24
Calculating Specific Rotation (liquids) The specific rotation of a compound is given by: Where: [a] is the specific rotation T is the temperature l is the wavelength of light used l is the path length of sample (in decimetres) d is the density of the sample (in g/cm3 for pure liquids) The sign of the rotation (+ or -) is always given 25
Calculating Specific Rotation (liquids) The specific rotation of a compound is given by: Where: [a] is the specific rotation T is the temperature l is the wavelength of light used l is the path length of sample (in decimetres) c is the concentration of the sample (in g/cm3) The sign of the rotation (+ or -) is always given 26
Optical Purity Optical purity: A way of describing the composition of a mixture of enantiomers. Enantiomeric excess: The difference between the percentage of two enantiomers in a mixture. optical purity is numerically equal to enantiomeric excess, but is experimentally determined. 27
Naming Conventions 28
Types of naming R,S designation +, - designation (explained just now) d,l Nomenclature 29
R-, S- Naming Convention This convention labels each chiralcenterR or S according to a system by which its substituents are each assigned a priority based on atomic number. The priority of substituents are assigned based on Cahn–Ingold–Prelog priority rules 30
Cahn–Ingold–Prelog priority rules Assignment of Priority Compare the atomic number of the atoms directly attached to the chirality center. The group with the atom of higher atomic number receives higher priority. (eg –Cl > –OH > –NH2 > –CH3) If different isotopes of the same element is attached to the chiral center, the group with the higher mass number recieves higher priority (2H > 1H) 31
If double or triple bonded groups are encountered as substituents, they are treated as an equivalent set of single-bonded atoms.For example, C2H5–  <  CH2=CH–  <  HC≡C–  32
[object Object],33
If there is still a tie, each atom in each of the two lists is replaced with a sub-list of the other atoms bonded to it (at distance 3 from the chiralitycenter), the sub-lists are arranged in decreasing order of atomic number, and the entire structure is again compared atom by atom. This process is repeated, each time with atoms one bond farther from the chiralitycenter, until the tie is broken. 34
Identifying the Configuration After having ranked the four groups attached to the stereo-center, orientate the molecule such that the lowest ranking group points directly back Look at the 3 substituents left facing you: If the priority of the remaining three substituents decreases in clockwise direction, it is labeledR (for Rectus, Latin for right), if it decreases in counterclockwise direction, it is S (for Sinister, Latin for left). 35
d,l Nomenclature The d/l system names isomers after the spatial configuration of its atoms, by relating the molecule to glyceraldehyde. Glyceraldehyde is chiral itself, and its two isomers are labeled d and l This nomenclature is still used in certain organic compounds like saccharides and amino acids 36
37
Identifying the Configuration For Monosaccharides: The absolute configuration of all monosaccharides is denoted by the configuration at the chiralitycenter furthest from the anomeric centre (the carbonyl carbon in the open chain representation)  If, in the Fischer projection, that centre has the hydroxyl group on the right, it is a d-sugar; if on the left, it is an l-sugar. By convention, the "D" and "L" symbols are written in small capitals. 38
Non amino-acids such as Lactic, Ascorbic, Tartaric Acid also follow the same rules as Saccharides. 39
Identifying the Configurations For Amino Acids CORN Rule: The groups: COOH, R, NH2 and H (where R is a variant carbon chain)are arranged around the chiralcenter carbon atom. Starting with the hydrogen atom away from the viewer, if these groups are arranged clockwise around the carbon atom, then it is the d-form. If counter-clockwise, it is the l-form. 40
Relation to other naming conventions The d/l labeling is unrelated to (+)/(−); it does not indicate which enantiomer is dextrorotatory and which is levorotatory.  Rather, it says that the compound's stereochemistry is related to that of the dextrorotatory or levorotatory enantiomer of glyceraldehyde—the dextrorotatory isomer of glyceraldehyde is, in fact, the d- isomer.  41
Diastereomers 42
2n Rule As a general rule the maximum number of isomers for a compound is 2n, with n being the number of chirality centers. *As seen in the next slide 43
44
Definition Diastereomers refer to enantiomers that are not mirror images of each other They can be chiral or achiral Eg D-glucose and D-galactose 45
Stereochemistry in Sugars Aldose An aldose is a monosaccharide that contains only one aldehyde group per molecule. The chemical formula takes the form Cn(H2O)n. The maximum number of chirality centers for any aldose is 2n-2 Since the “head”(-CH=O) and “tail”(-CH2OH) carbons cannot be chiral centers 46
Examples (Aldotetrose) Aldotetroses are Aldoses with 4 carbons As such, the maximum number of enantiomers of aldotetroses is 4 (24-2) The 4 possible enantiomers of Aldotetroses 47
Other examples of diastereomers 48
Reasons As we can see, although Erythrose and Threose are stereoisomers, they are not enantiomers, since their molecules are not mirror-images of each other. They are thus called diastereomers 49 Erythrose Threose They are not mirror images of each other
This is because stereoisomers are only enantiomers because all their chirality centers have opposite configurations, but if not all chiralitycentres have opposite configurations, then they are diastereomers. 50 Example of d(+)-Glucose and D(+)-Galactose
Meso Compounds 51
Definition A meso-compound is a non-optically active member of a set of stereoisomers. It does not give a (+) or (-) reading on a polarimeter It is non-optically active as it is achiral It is achiral since it has a plane of symmetry 52
Examples Tartaric acid has 3 stereoisomers d-(2S,3S)-(−)-tartaric acid l-(2R,3R)-(+)-tartaric acid (2R,3S)-mesotartaric acid 53 d-(2S,3S)-(−)-tartaric acid l-(2R,3R)-(+)-tartaric acid (2R,3S)-mesotartaric acid
Mesotartaric Acid Let’s assume the mirror image of mesotartaric acid: Flip the molecule: And you find that you get the same molecule 54 Flip this molecule 180 degrees
Meso Compounds Thus, we can say that mesotartaric acid is not an enantiomer, as it is superimposible with its mirror image. This is due to the fact that there is a plane of symmetry in the molecule 55 There is a plane of symmetry Rotate this bond 180 degrees
Resolution of Enantiomers 56
Resolution of Enantiomers In the lab, if we make chiral compounds from achiral starting materials, we are bound to get a racemic mixture. The way we separate the mixture is known as resolution Resolution is important as most of the time enantiomerically pure compounds are required 57
Crystallisation One way of resolution would be crystallisation (like what Pasteur did), it’s use is limited to solid compounds (eg Sodium Ammonium Tartrate) It does not work for liquid compounds that do not crystallise under ordinary conditions 58
The most common way of resolution would be to use an acid-base reaction between a racemic mixture of chiral carboxylic acid and an amine base to yield an ammonium salt, which can be crystallised. 59 +
Resolution of enantiomers Another way would be using a chemical reaction to produce a diastereomer. This can be done in various ways, by esterification or by forming diastereomeric salt (Adduct). 60
Resolution of enantiomers (Esterification) One way of resolution of enantiomers would be using an ester 61 TsOHor H2SO4 + + Chiral but enantiomerically pure Diastereomers Chiral but Racemic
Diastereomers have different physical properties (solubility, boiling point etc), and should be quite easy to separate by distillation/crystallisation/chromatography When a pure enantiomer (diastereomer) is separated, the original intended products can be obtained 62 Enantiomerically pure product NaOH, H2O +
Resolution of enantiomers (Forming a diastereomeric salt) When a racemic mixture of a carboxylic acid reacts with a single enantiomer of a chiral base, diastereomers are obtained. Diastereomers can then be separated just like previously 63
Acidification of the two diastereomeric salts resolved the original racemic mixture. 64 Racemic Mixture Enantiomerically pure compound
Importance of Enantiomers 65
Chirality in the Biological World Enzymes are like hands in a handshake The substrate fits into a binding site on the enzyme surface A left-handed molecule, like hands in gloves, will only fit into a left-handed binding site and a right-handed molecule will only fit into a right-handed binding site. Because of the differences in their interactions with other chiral molecules in living systems, enantiomers have different physiological properties.  66
Some Examples d-Glucose can be used for metabolism for all organisms but not l-glucose Almost all of the amino acids in proteins are (S) at the α carbon. In most pharmaceutical drugs, only one of the enantiomers are biologically active. Eg. (S)Ibuprofen is an active analgestic agent but the (R) enantiomer is biologically inactive 67 a carbon
Chirality in the Biological World A schematic diagram of an enzyme active site capable of binding with (R)-glyceraldehyde but not with (S)-glyceraldehyde. 68
Credits Most of these information are taken from  online sources[citation needed] However due to the fact that the layout was copied from the book, we apologise for the fact that this may be a little boring (for some) Done by: Jeff Xu, Luther Mok, Joshua Lay, Wen Song Design by Jonathan Yong 69
70 Thank You

Más contenido relacionado

La actualidad más candente

D-L Nomenclature System
D-L Nomenclature SystemD-L Nomenclature System
D-L Nomenclature SystemRahmah Ather
 
Stereochemistry (Introduction to Stereochemistry)
Stereochemistry (Introduction to Stereochemistry)Stereochemistry (Introduction to Stereochemistry)
Stereochemistry (Introduction to Stereochemistry)Ashwani Dhingra
 
Geometrical isomerism
Geometrical isomerismGeometrical isomerism
Geometrical isomerismAkhil Nagar
 
Absolute &amp; relative configuration
Absolute &amp; relative configurationAbsolute &amp; relative configuration
Absolute &amp; relative configurationrangusha75
 
Unit iii heterocyclic compounds as per PCI Syllabus of POC-III
Unit iii  heterocyclic compounds as per PCI Syllabus of POC-IIIUnit iii  heterocyclic compounds as per PCI Syllabus of POC-III
Unit iii heterocyclic compounds as per PCI Syllabus of POC-IIIGanesh Mote
 
Slides for optical isomerism
Slides for optical isomerismSlides for optical isomerism
Slides for optical isomerismSabbir_Akand
 
Stereochemistry & diastereoselctivity ppt
Stereochemistry & diastereoselctivity pptStereochemistry & diastereoselctivity ppt
Stereochemistry & diastereoselctivity pptSujitlal Bhakta
 
Chapter 05 stereochemistry at tetrahedral centers
Chapter 05 stereochemistry at tetrahedral centersChapter 05 stereochemistry at tetrahedral centers
Chapter 05 stereochemistry at tetrahedral centersWong Hsiung
 
Cahn ingold-prelog nomenclature
Cahn ingold-prelog nomenclatureCahn ingold-prelog nomenclature
Cahn ingold-prelog nomenclatureBiji Saro
 
Nomenclature of heterocyclic bicyclic compound
Nomenclature of heterocyclic bicyclic compoundNomenclature of heterocyclic bicyclic compound
Nomenclature of heterocyclic bicyclic compoundHarshad Sonawane
 
Unit II-Geometric isomerism and conformational isomer as PCI Syllabus of POC-III
Unit II-Geometric isomerism and conformational isomer as PCI Syllabus of POC-IIIUnit II-Geometric isomerism and conformational isomer as PCI Syllabus of POC-III
Unit II-Geometric isomerism and conformational isomer as PCI Syllabus of POC-IIIGanesh Mote
 
Nomenclature of optical isomerism
Nomenclature of optical isomerismNomenclature of optical isomerism
Nomenclature of optical isomerismSowmiya Perinbaraj
 
Stereochemistry part 1 Isomerism 1
Stereochemistry part 1 Isomerism 1Stereochemistry part 1 Isomerism 1
Stereochemistry part 1 Isomerism 1AtulBendale2
 

La actualidad más candente (20)

Stereoisomers
StereoisomersStereoisomers
Stereoisomers
 
D-L Nomenclature System
D-L Nomenclature SystemD-L Nomenclature System
D-L Nomenclature System
 
Stereochemistry (Introduction to Stereochemistry)
Stereochemistry (Introduction to Stereochemistry)Stereochemistry (Introduction to Stereochemistry)
Stereochemistry (Introduction to Stereochemistry)
 
Nomenclature of stereoisomers
Nomenclature of stereoisomersNomenclature of stereoisomers
Nomenclature of stereoisomers
 
Unit II Geometrical isomerism
Unit II Geometrical isomerismUnit II Geometrical isomerism
Unit II Geometrical isomerism
 
Geometrical isomerism
Geometrical isomerismGeometrical isomerism
Geometrical isomerism
 
Absolute &amp; relative configuration
Absolute &amp; relative configurationAbsolute &amp; relative configuration
Absolute &amp; relative configuration
 
Unit iii heterocyclic compounds as per PCI Syllabus of POC-III
Unit iii  heterocyclic compounds as per PCI Syllabus of POC-IIIUnit iii  heterocyclic compounds as per PCI Syllabus of POC-III
Unit iii heterocyclic compounds as per PCI Syllabus of POC-III
 
Slides for optical isomerism
Slides for optical isomerismSlides for optical isomerism
Slides for optical isomerism
 
Basics of Stereochemistry
Basics of StereochemistryBasics of Stereochemistry
Basics of Stereochemistry
 
Stereochemistry & diastereoselctivity ppt
Stereochemistry & diastereoselctivity pptStereochemistry & diastereoselctivity ppt
Stereochemistry & diastereoselctivity ppt
 
Chapter 05 stereochemistry at tetrahedral centers
Chapter 05 stereochemistry at tetrahedral centersChapter 05 stereochemistry at tetrahedral centers
Chapter 05 stereochemistry at tetrahedral centers
 
Cahn ingold-prelog nomenclature
Cahn ingold-prelog nomenclatureCahn ingold-prelog nomenclature
Cahn ingold-prelog nomenclature
 
Nomenclature of heterocyclic bicyclic compound
Nomenclature of heterocyclic bicyclic compoundNomenclature of heterocyclic bicyclic compound
Nomenclature of heterocyclic bicyclic compound
 
Stereochemical aspects
Stereochemical aspectsStereochemical aspects
Stereochemical aspects
 
Unit II-Geometric isomerism and conformational isomer as PCI Syllabus of POC-III
Unit II-Geometric isomerism and conformational isomer as PCI Syllabus of POC-IIIUnit II-Geometric isomerism and conformational isomer as PCI Syllabus of POC-III
Unit II-Geometric isomerism and conformational isomer as PCI Syllabus of POC-III
 
Geometrical isomers
Geometrical isomersGeometrical isomers
Geometrical isomers
 
Nomenclature of optical isomerism
Nomenclature of optical isomerismNomenclature of optical isomerism
Nomenclature of optical isomerism
 
Stereochemistry part 1 Isomerism 1
Stereochemistry part 1 Isomerism 1Stereochemistry part 1 Isomerism 1
Stereochemistry part 1 Isomerism 1
 
Stereochemistry
StereochemistryStereochemistry
Stereochemistry
 

Similar a Optical isomerism

organicchemistryxicbse-120701003142-phpapp02.pdf
organicchemistryxicbse-120701003142-phpapp02.pdforganicchemistryxicbse-120701003142-phpapp02.pdf
organicchemistryxicbse-120701003142-phpapp02.pdfLUXMIKANTGIRI
 
organicchemistryxicbse-120701003142-phpapp02-150809113721-lva1-app6892.pdf
organicchemistryxicbse-120701003142-phpapp02-150809113721-lva1-app6892.pdforganicchemistryxicbse-120701003142-phpapp02-150809113721-lva1-app6892.pdf
organicchemistryxicbse-120701003142-phpapp02-150809113721-lva1-app6892.pdfTinumol1
 
Basic Organic chemistry
Basic Organic chemistryBasic Organic chemistry
Basic Organic chemistrysuresh gdvm
 
Mba admisson in india
Mba admisson in indiaMba admisson in india
Mba admisson in indiaEdhole.com
 
12 organic chemistry.pptx
12 organic chemistry.pptx12 organic chemistry.pptx
12 organic chemistry.pptxRohitxisci
 
ORGANIC CHEMISTRY.pptx
ORGANIC CHEMISTRY.pptxORGANIC CHEMISTRY.pptx
ORGANIC CHEMISTRY.pptxssuser4fe6eb1
 
Stereochemistry(s.r.y.)
Stereochemistry(s.r.y.)Stereochemistry(s.r.y.)
Stereochemistry(s.r.y.)ShwetaYadav150
 
Optical Isomerism- Reema
Optical Isomerism- ReemaOptical Isomerism- Reema
Optical Isomerism- ReemaBebeto G
 
Chirality and its biological role (English language) - www.wespeakscience.com
Chirality and its biological role (English language) - www.wespeakscience.comChirality and its biological role (English language) - www.wespeakscience.com
Chirality and its biological role (English language) - www.wespeakscience.comZeqir Kryeziu
 
(Organic)Stereochemistry - Geometrical Isomerism
(Organic)Stereochemistry - Geometrical Isomerism(Organic)Stereochemistry - Geometrical Isomerism
(Organic)Stereochemistry - Geometrical IsomerismShilpashreeGS2
 
ORGANIC CHEMISTRY FOR CLASS XI CBSE
ORGANIC CHEMISTRY FOR CLASS XI CBSEORGANIC CHEMISTRY FOR CLASS XI CBSE
ORGANIC CHEMISTRY FOR CLASS XI CBSEkapde1970
 
Stereo chemistry and kinetic molecular theory
Stereo chemistry and kinetic molecular theoryStereo chemistry and kinetic molecular theory
Stereo chemistry and kinetic molecular theoryAlexis Wellington
 
organic Stereochemistry
organic Stereochemistry organic Stereochemistry
organic Stereochemistry BBTSworld
 
structure and Terminology of Hydrocarbons.pdf
structure and Terminology of Hydrocarbons.pdfstructure and Terminology of Hydrocarbons.pdf
structure and Terminology of Hydrocarbons.pdfMrFURY4
 

Similar a Optical isomerism (20)

Ch05. streochemistry
Ch05. streochemistryCh05. streochemistry
Ch05. streochemistry
 
Sir abdul haq on biochemistry
Sir abdul haq on biochemistrySir abdul haq on biochemistry
Sir abdul haq on biochemistry
 
stereochemistry
stereochemistrystereochemistry
stereochemistry
 
steroechemistry
steroechemistrysteroechemistry
steroechemistry
 
organicchemistryxicbse-120701003142-phpapp02.pdf
organicchemistryxicbse-120701003142-phpapp02.pdforganicchemistryxicbse-120701003142-phpapp02.pdf
organicchemistryxicbse-120701003142-phpapp02.pdf
 
organicchemistryxicbse-120701003142-phpapp02-150809113721-lva1-app6892.pdf
organicchemistryxicbse-120701003142-phpapp02-150809113721-lva1-app6892.pdforganicchemistryxicbse-120701003142-phpapp02-150809113721-lva1-app6892.pdf
organicchemistryxicbse-120701003142-phpapp02-150809113721-lva1-app6892.pdf
 
Basic Organic chemistry
Basic Organic chemistryBasic Organic chemistry
Basic Organic chemistry
 
Mba admisson in india
Mba admisson in indiaMba admisson in india
Mba admisson in india
 
12 organic chemistry.pptx
12 organic chemistry.pptx12 organic chemistry.pptx
12 organic chemistry.pptx
 
Alex stereo chemistry
Alex   stereo chemistryAlex   stereo chemistry
Alex stereo chemistry
 
ORGANIC CHEMISTRY.pptx
ORGANIC CHEMISTRY.pptxORGANIC CHEMISTRY.pptx
ORGANIC CHEMISTRY.pptx
 
Stereochemistry(s.r.y.)
Stereochemistry(s.r.y.)Stereochemistry(s.r.y.)
Stereochemistry(s.r.y.)
 
Optical Isomerism- Reema
Optical Isomerism- ReemaOptical Isomerism- Reema
Optical Isomerism- Reema
 
Chirality and its biological role (English language) - www.wespeakscience.com
Chirality and its biological role (English language) - www.wespeakscience.comChirality and its biological role (English language) - www.wespeakscience.com
Chirality and its biological role (English language) - www.wespeakscience.com
 
(Organic)Stereochemistry - Geometrical Isomerism
(Organic)Stereochemistry - Geometrical Isomerism(Organic)Stereochemistry - Geometrical Isomerism
(Organic)Stereochemistry - Geometrical Isomerism
 
ORGANIC CHEMISTRY FOR CLASS XI CBSE
ORGANIC CHEMISTRY FOR CLASS XI CBSEORGANIC CHEMISTRY FOR CLASS XI CBSE
ORGANIC CHEMISTRY FOR CLASS XI CBSE
 
Stereo chemistry and kinetic molecular theory
Stereo chemistry and kinetic molecular theoryStereo chemistry and kinetic molecular theory
Stereo chemistry and kinetic molecular theory
 
organic Stereochemistry
organic Stereochemistry organic Stereochemistry
organic Stereochemistry
 
structure and Terminology of Hydrocarbons.pdf
structure and Terminology of Hydrocarbons.pdfstructure and Terminology of Hydrocarbons.pdf
structure and Terminology of Hydrocarbons.pdf
 
Stereochemistry.pptx
Stereochemistry.pptxStereochemistry.pptx
Stereochemistry.pptx
 

Último

The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Evaluating the top large language models.pdf
Evaluating the top large language models.pdfEvaluating the top large language models.pdf
Evaluating the top large language models.pdfChristopherTHyatt
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 

Último (20)

The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Evaluating the top large language models.pdf
Evaluating the top large language models.pdfEvaluating the top large language models.pdf
Evaluating the top large language models.pdf
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 

Optical isomerism

  • 2. Content History Enantiomers Reasons for molecular handedness Optical activity of enantiomers Naming Conventions Diastereomers Meso Compounds Resolution of Enantiomers Importance of Enantiomers 2
  • 5. Discovery of Optical Activity In 1850, French Physicist Jean-BaptiseBiot observed that solutions of some organic compounds like sugar and camphor have the ability to rotate plane polarized light Up till then the basis of this phenomenon was not yet known 5
  • 6. Separation of Enantiomers In 1848 French Chemist Louis Pasteur separated a solution of optically inactive tartaric acid into two optically active components.  He observed that: Each of these components had identical physical properties like density,  melting point, solubility, etc But One of the components rotated plane polarized light clockwise while the other component rotated the polarized light by the same amount counter clockwise. 6
  • 7. Pasteur made a proposal that since the crystals of tartaric acid were mirror images of each other, their molecules were also mirror images of each other 7
  • 8. Additional research done by Pasteur revealed that one component of tartaric acid could be utilized for nutrition by micro-organisms but the other could not. Thus Pasteur concluded that  biological properties of chemical substances depend not only on the nature of the atoms comprising the molecules but also on the manner in which these atoms are arranged in space. 8
  • 9. The tetrahedral Carbon In 1874 as a student at University of Utrecht, Jacobusvan't Hoff proposed the tetrahedral carbon. His proposal was based upon evidence of isomer number: Conversion of CH4 into CH3R(1 isomer) Conversion of CH3R into CH2RR1(1 isomer) van't Hoff realized that the four hydrogens in CH4 had to be equivalent and a geometrical square was ruled out because it would form 2 isomers for CH2RR1. Thus he proposed the tetrahedral carbon centre. 9
  • 10. Explanation of Optical Isomerism The tetrahedral carbon not only collaborated the absence of isomers in CH2YZ, but also predicted the existence of mirror image isomers. When carbon makes four single bonds with four different groups such as CHFClBr, non-super-imposable mirror-image molecules exist 10
  • 12. Definition An enantiomer is one of two stereoisomers that are mirror images of each other and are non-superimposable. 12
  • 13. As seen here, the two molecules of lactic acid are mirror images of each other, but cannot superimpose. 13 (S)-Lactic acid or (+)-Lactic acid (R)-Lactic acid or (-)-Lactic acid
  • 14. The Tetrahedral Carbon Enantiomers result when two compounds that are mirror-images of each other cannot superimpose Eg. when a tetrahedral carbon is bonded to four different substituents(CR1R2R3R4) For example, in lactic acid, there are four different groups: -H, -OH, -CH3, -COOH Can you name other examples of enantiomers formed this way? Alanine, Tartaric Acid, Glyceraldehyde 14
  • 15. Reasons for molecular handedness(Chirality) 15
  • 16. Chirality A molecule that is not superimposable to its mirror image is said to be chiral The most common cause of chirality in organic molecules is the presence of a carbon atom bonded with 4 different groups(eg in lactic acid), this is also known as point chirality. These carbon atoms are called chirality centers or chirality centres. Can you think of other causes of Chirality? (be creative) 16
  • 17. Identifying Chiral Molecules The obvious way: find any carbon with 4 different substituents. If there are any, then the molecule is chiral. Isotopic differences are also considered different substituents. Thus, -CH2-, -CH3(methyl), >C=O(carbonyl), >C=C<(alkene) and -C@C-(alkyne) groups cannot be chirality centers as they all have less than 4 substituents. Easier way: look for the presence of a plane of symmetry, since a symmetrical molecule is identical to its mirror image and is thus achiral 17
  • 18. Drawing of Enantiomers Fischer Projection (do not confuse with Lewis Structure) Natta Projection (we all know this) For cyclic molecules Haworth Projection Chair conformation 18
  • 19. 19 1. Fischer Projection 2. Haworth Projection 3. Chair Conformation 4. Natta Projections
  • 20. Optical activity of enantiomers 20
  • 21. As seen from Biot’s experiment, enantiomers can rotate plane polarised light, since they are optically active When a beam of plane polarised light passes through a solution of a non-racemic (scalemic) mixture (ie has enantiomeric excess of one of the enantiomers), rotation of the polarisation plane occurs. 21
  • 23. Optical Activity Observed rotation The number of degrees, , through which a compound rotates the plane of polarized light. Dextrorotatory (+) Acompound that rotates the plane of polarized light to the right. Levorotatory (-) Refers to a compound that rotates the plane of polarized light to the left. 23
  • 24. Specific Rotation Specific rotation refers to the observed rotation for a sample in a tube 1.0 dm in length and at a concentration of 1.0 g/mL. The degree of rotation also depends on the wavelength of the light (the yellow sodium D2 line near 589 nm is commonly used for measurements) 24
  • 25. Calculating Specific Rotation (liquids) The specific rotation of a compound is given by: Where: [a] is the specific rotation T is the temperature l is the wavelength of light used l is the path length of sample (in decimetres) d is the density of the sample (in g/cm3 for pure liquids) The sign of the rotation (+ or -) is always given 25
  • 26. Calculating Specific Rotation (liquids) The specific rotation of a compound is given by: Where: [a] is the specific rotation T is the temperature l is the wavelength of light used l is the path length of sample (in decimetres) c is the concentration of the sample (in g/cm3) The sign of the rotation (+ or -) is always given 26
  • 27. Optical Purity Optical purity: A way of describing the composition of a mixture of enantiomers. Enantiomeric excess: The difference between the percentage of two enantiomers in a mixture. optical purity is numerically equal to enantiomeric excess, but is experimentally determined. 27
  • 29. Types of naming R,S designation +, - designation (explained just now) d,l Nomenclature 29
  • 30. R-, S- Naming Convention This convention labels each chiralcenterR or S according to a system by which its substituents are each assigned a priority based on atomic number. The priority of substituents are assigned based on Cahn–Ingold–Prelog priority rules 30
  • 31. Cahn–Ingold–Prelog priority rules Assignment of Priority Compare the atomic number of the atoms directly attached to the chirality center. The group with the atom of higher atomic number receives higher priority. (eg –Cl > –OH > –NH2 > –CH3) If different isotopes of the same element is attached to the chiral center, the group with the higher mass number recieves higher priority (2H > 1H) 31
  • 32. If double or triple bonded groups are encountered as substituents, they are treated as an equivalent set of single-bonded atoms.For example, C2H5–  <  CH2=CH–  <  HC≡C–  32
  • 33.
  • 34. If there is still a tie, each atom in each of the two lists is replaced with a sub-list of the other atoms bonded to it (at distance 3 from the chiralitycenter), the sub-lists are arranged in decreasing order of atomic number, and the entire structure is again compared atom by atom. This process is repeated, each time with atoms one bond farther from the chiralitycenter, until the tie is broken. 34
  • 35. Identifying the Configuration After having ranked the four groups attached to the stereo-center, orientate the molecule such that the lowest ranking group points directly back Look at the 3 substituents left facing you: If the priority of the remaining three substituents decreases in clockwise direction, it is labeledR (for Rectus, Latin for right), if it decreases in counterclockwise direction, it is S (for Sinister, Latin for left). 35
  • 36. d,l Nomenclature The d/l system names isomers after the spatial configuration of its atoms, by relating the molecule to glyceraldehyde. Glyceraldehyde is chiral itself, and its two isomers are labeled d and l This nomenclature is still used in certain organic compounds like saccharides and amino acids 36
  • 37. 37
  • 38. Identifying the Configuration For Monosaccharides: The absolute configuration of all monosaccharides is denoted by the configuration at the chiralitycenter furthest from the anomeric centre (the carbonyl carbon in the open chain representation)  If, in the Fischer projection, that centre has the hydroxyl group on the right, it is a d-sugar; if on the left, it is an l-sugar. By convention, the "D" and "L" symbols are written in small capitals. 38
  • 39. Non amino-acids such as Lactic, Ascorbic, Tartaric Acid also follow the same rules as Saccharides. 39
  • 40. Identifying the Configurations For Amino Acids CORN Rule: The groups: COOH, R, NH2 and H (where R is a variant carbon chain)are arranged around the chiralcenter carbon atom. Starting with the hydrogen atom away from the viewer, if these groups are arranged clockwise around the carbon atom, then it is the d-form. If counter-clockwise, it is the l-form. 40
  • 41. Relation to other naming conventions The d/l labeling is unrelated to (+)/(−); it does not indicate which enantiomer is dextrorotatory and which is levorotatory. Rather, it says that the compound's stereochemistry is related to that of the dextrorotatory or levorotatory enantiomer of glyceraldehyde—the dextrorotatory isomer of glyceraldehyde is, in fact, the d- isomer. 41
  • 43. 2n Rule As a general rule the maximum number of isomers for a compound is 2n, with n being the number of chirality centers. *As seen in the next slide 43
  • 44. 44
  • 45. Definition Diastereomers refer to enantiomers that are not mirror images of each other They can be chiral or achiral Eg D-glucose and D-galactose 45
  • 46. Stereochemistry in Sugars Aldose An aldose is a monosaccharide that contains only one aldehyde group per molecule. The chemical formula takes the form Cn(H2O)n. The maximum number of chirality centers for any aldose is 2n-2 Since the “head”(-CH=O) and “tail”(-CH2OH) carbons cannot be chiral centers 46
  • 47. Examples (Aldotetrose) Aldotetroses are Aldoses with 4 carbons As such, the maximum number of enantiomers of aldotetroses is 4 (24-2) The 4 possible enantiomers of Aldotetroses 47
  • 48. Other examples of diastereomers 48
  • 49. Reasons As we can see, although Erythrose and Threose are stereoisomers, they are not enantiomers, since their molecules are not mirror-images of each other. They are thus called diastereomers 49 Erythrose Threose They are not mirror images of each other
  • 50. This is because stereoisomers are only enantiomers because all their chirality centers have opposite configurations, but if not all chiralitycentres have opposite configurations, then they are diastereomers. 50 Example of d(+)-Glucose and D(+)-Galactose
  • 52. Definition A meso-compound is a non-optically active member of a set of stereoisomers. It does not give a (+) or (-) reading on a polarimeter It is non-optically active as it is achiral It is achiral since it has a plane of symmetry 52
  • 53. Examples Tartaric acid has 3 stereoisomers d-(2S,3S)-(−)-tartaric acid l-(2R,3R)-(+)-tartaric acid (2R,3S)-mesotartaric acid 53 d-(2S,3S)-(−)-tartaric acid l-(2R,3R)-(+)-tartaric acid (2R,3S)-mesotartaric acid
  • 54. Mesotartaric Acid Let’s assume the mirror image of mesotartaric acid: Flip the molecule: And you find that you get the same molecule 54 Flip this molecule 180 degrees
  • 55. Meso Compounds Thus, we can say that mesotartaric acid is not an enantiomer, as it is superimposible with its mirror image. This is due to the fact that there is a plane of symmetry in the molecule 55 There is a plane of symmetry Rotate this bond 180 degrees
  • 57. Resolution of Enantiomers In the lab, if we make chiral compounds from achiral starting materials, we are bound to get a racemic mixture. The way we separate the mixture is known as resolution Resolution is important as most of the time enantiomerically pure compounds are required 57
  • 58. Crystallisation One way of resolution would be crystallisation (like what Pasteur did), it’s use is limited to solid compounds (eg Sodium Ammonium Tartrate) It does not work for liquid compounds that do not crystallise under ordinary conditions 58
  • 59. The most common way of resolution would be to use an acid-base reaction between a racemic mixture of chiral carboxylic acid and an amine base to yield an ammonium salt, which can be crystallised. 59 +
  • 60. Resolution of enantiomers Another way would be using a chemical reaction to produce a diastereomer. This can be done in various ways, by esterification or by forming diastereomeric salt (Adduct). 60
  • 61. Resolution of enantiomers (Esterification) One way of resolution of enantiomers would be using an ester 61 TsOHor H2SO4 + + Chiral but enantiomerically pure Diastereomers Chiral but Racemic
  • 62. Diastereomers have different physical properties (solubility, boiling point etc), and should be quite easy to separate by distillation/crystallisation/chromatography When a pure enantiomer (diastereomer) is separated, the original intended products can be obtained 62 Enantiomerically pure product NaOH, H2O +
  • 63. Resolution of enantiomers (Forming a diastereomeric salt) When a racemic mixture of a carboxylic acid reacts with a single enantiomer of a chiral base, diastereomers are obtained. Diastereomers can then be separated just like previously 63
  • 64. Acidification of the two diastereomeric salts resolved the original racemic mixture. 64 Racemic Mixture Enantiomerically pure compound
  • 66. Chirality in the Biological World Enzymes are like hands in a handshake The substrate fits into a binding site on the enzyme surface A left-handed molecule, like hands in gloves, will only fit into a left-handed binding site and a right-handed molecule will only fit into a right-handed binding site. Because of the differences in their interactions with other chiral molecules in living systems, enantiomers have different physiological properties. 66
  • 67. Some Examples d-Glucose can be used for metabolism for all organisms but not l-glucose Almost all of the amino acids in proteins are (S) at the α carbon. In most pharmaceutical drugs, only one of the enantiomers are biologically active. Eg. (S)Ibuprofen is an active analgestic agent but the (R) enantiomer is biologically inactive 67 a carbon
  • 68. Chirality in the Biological World A schematic diagram of an enzyme active site capable of binding with (R)-glyceraldehyde but not with (S)-glyceraldehyde. 68
  • 69. Credits Most of these information are taken from online sources[citation needed] However due to the fact that the layout was copied from the book, we apologise for the fact that this may be a little boring (for some) Done by: Jeff Xu, Luther Mok, Joshua Lay, Wen Song Design by Jonathan Yong 69