ABSTRACT: Statistical significance tests serve in gatekeeping against being fooled by randomness, but recent attempts to gatekeep these tools have themselves malfunctioned. Warranted gatekeepers formulate statistical tests so as to avoid fallacies and misuses of P-values. They highlight how multiplicity, optional stopping, and data-dredging can readily invalidate error probabilities. It is unwarranted, however, to argue that statistical significance and P-value thresholds be abandoned because they can be misused. Nor is it warranted to argue for abandoning statistical significance based on presuppositions about evidence and probability that are at odds with those underlying statistical significance tests. When statistical gatekeeping malfunctions, I argue, it undermines a central role to which scientists look to statistics. In order to combat the dangers of unthinking, bandwagon effects, statistical practitioners and consumers need to be in a position to critically evaluate the ramifications of proposed "reforms” (“stat activism”). I analyze what may be learned from three recent episodes of gatekeeping (and meta-gatekeeping) at the American Statistical Association (ASA).