SlideShare una empresa de Scribd logo
1 de 7
Descargar para leer sin conexión
http://www.maths.net.au/                                                            2010 Mathematics HSC Solutions



                   2010 Mathematics HSC Solutions 
 Question 1                                           (b)        x 2  x  12  0
 (a)                                                        ( x  4)( x  3)  0
        x2  4x  0
                                                                       y
       x( x  4)  0
       x  0 or x  4  0
                                                             –3                4
                     x4                                                            x


 (b)      1    52   52
                                                          3  x  4
         52   52   54
                            2 5                     (c) y  ln  3x 
                                                            dy 3
       a  2       and b  1                                 
                                                            dx 3x
 (c) ( x  1) 2  ( y  2) 2  25                               1
                                                              
                                                                x
 (d) 2 x  3  9                                                                1
                                                            at x  2, m 
                                                                                2
       2x  3  9     or    (2 x  3)  9
                                                                               2 3
                                                      (d) (i)  5 x  1 dx        5  5 x  1 2 dx
                                                                                                   1

           2x  6               2 x  3  9                  
                                                                            3 5 2
              x3                   2 x  12                                 2
                                                                                  5 x  1  c
                                                                                           3
                                                                           
                                      x  6                                 15

       d 2                                                           x        1      2x
 (e)      x tan x  tan x (2 x)  x 2 (sec 2 x)             (ii) 
                                                                         dx            dx
       dx                                                         4 x 2
                                                                              2  4  x2
                   x(2 tan x  x sec2 x)                                     1
                                                                              ln  4  x 2   c
                                                                              2
             a
 (f) s 
                                                      (e)    6
            1 r
             1
                                                              x  k  dx  30
                                                             0
                                                              x2     
                                                                           6
            1 1
               3
                                                               2  kx   30
              3                                                       0
          
              2                                                    62
                                                                       6k  30
                                                                   2
 (g) x  8                                                              6k  12
 Question 2                                                              k 2
                                                      Question 3
       d cos x x( sin x)  cos x(1)
 (a)                                                              2  12 4  6 
       dx x                x2                         (a) (i) M          ,       
                 x sin x  cos x                                  2         2 
                                                                 5, 1
                        x2


                                                  1
http://www.maths.net.au/                                                                          2010 Mathematics HSC Solutions


                     86                                                   3                   1
      (ii) mBC                                                               ln x dx           0  2 ln 2  ln 3
                     6  12                                             1                      2
                       1                                                                      1.24 (2 d.p.)
                    
                       3
                                                                (iii) The approximation using the
                   2 1                                               trapezoidal rule is less than the
      (iii) mMN 
                   25                                                actual value of the integral, because
                    1                                                 the shaded area of the trapeziums,
                 
                     3                                                is less than the actual area below
            since mBC  mMN ,                                         the curve.
             BC || MN
                                                                                   y
             Corresponding angles on parallel                                  2
             lines are equal, so
             ACB  ANM                                                       1
             ABC  AMN
              ABC ||| AMN (equiangular)
                                                                                              1        2    3     4 x
                          1
      (iv)       y  2    x  2
                          3                                                 -1
                3y  6  x  2
                                                            Question 4
             x  3y  8  0
                                                            (a) (i) Forms an AP, a  1 , d  0.75
                                                                    Tn  1  (n  1)  0.75
                        12  6    6  8
                                    2             2
      (v) BC 
                                                                      Tn  0.25  0.75n
                  2 10
                                                                      T9  0.25  0.75  9
                 1                                                    T9  7 km
      (vi) Area  bh
                 2                                                    Susannah runs 7 km in the 9th week
                 1                                              (ii) Tn  0.25  0.75n
             44  2 10h
                 2                                                    10  0.25  0.75n
                 22 10                                                n  13
              h
                   5                                                  In the 13th week.

 (b) (i)            y
                                                                (iii) S 26            26
                                                                                        2    2 1   26  1  0.75
                3                                                                269.75 km
                2                                                                  2
                                                                       
                1                                           (b) Area    e 2 x  e x  dx
                                                                       0
               -1       1       2       3   4    5 x                                               2
               -2                                                        e2 x        
                                                                              e x 
               -3                                                        2           0
               -4
               -5                                                         e4        e0    
                                                                          e 2     e0 
      (ii)      x           1         2           3                      2         2      
                            0       ln(2)       ln(3)                           2
               f(x)                                                      e  2e  3
                                                                           4
                                                                       
                                                                              2

                                                        2
http://www.maths.net.au/                                                              2010 Mathematics HSC Solutions



 (c) (i) P (2 mint) 
                              4 3                                     4 r 3  20  0
                                
                             12 11                                     r3  5  0
                              1
                                                                               5
                             11                                       r    3
                                                                                
                              1 1 1
      (ii) P (2same)                                               d2A        60
                             11 11 11                                       4  3
                                                                         2
                              3                                       dr          r
                           
                             11                                                  5
                                                                      when r  3 ,
                                                                                     
                                         3                              2
                                                                      d A
      (iii) P (2 different)  1                                            16  0,  c.c.up,
                                        11                            dr 2
                                   8                                                                           5
                                                                      local minimum at r              3
                                   11                                                                        




 (d) f  x   f   x   1  e x 1  e  x 

                            1  e x  e x  1                                                     1      1 sin x
                                         x                  (b) (i) sec2 x  sec x tan x               
                           2e e x
                                                                                                 cos 2 x cos x cos x
       f  x   f   x   1  e x   1  e  x                                          
                                                                                                 1  sin x
                                                                                                  cos 2 x
                            2  e x  e x

                                                                                                 1  sin x
 Question 5                                                      (ii) sec2 x  sec x tan x 
                                                                                                  cos 2 x
                                                                                                 1  sin x
 (a) (i)    V   r 2h                                                                         
                                                                                                 1  sin 2 x
            10   r 2 h                                                                                1  sin x
                                                                                               
                  10                                                                             1  sin x 1  sin x 
             h 2
                 r                                                                                    1
                                                                                               
                                                                                                   1  sin x
            A  2 r 2  2 rh
                                10 
                2 r 2  2 r  2                                             
                                                                                  1
                                                                 (iii) I  
                                                                             4

                               r                                                    dx
                                                                           0 1  sin x
                          20
                2 r 2 
                                                                                
                                                                          4
                           r                                               sec 2 x  sec x tan x  dx
                                                                          0
                                                                          tan x  sec x 0
                                                                                           
      (ii) dA          20                                                                  4

                4 r  2
            dr         r                                                                             
               dA                                                         tan  sec    tan 0  sec 0 
           let     0 to find stationary points                               4     4                  
               dr
                                                                         1 2 1
                                                                         2

                                                         3
http://www.maths.net.au/                                                      2010 Mathematics HSC Solutions


                    1 1
                                                        (iii)
            A1   dx
 (c)                                                                              y
                 
                 a x
             1   ln x a
                          1
                                                                             8
             1  ln 1  ln  a 
                                                                       –2
       ln  a   1                                                                         x
                  1
            a
                  e                                 (b) (i) l  r
                                                            9  5
                  b
                    1
           A2   dx
                                                                 1.8
                1 x
             1   ln x 1
                          b                             (ii) In OPT and OQT
                                                             OP = OQ (equal radii of 5 cm)
             1  ln  b   ln 1                           OPT = OQT (both right angles)
       ln  b   1                                          OT is a common line
                                                             OPT  OQT (RHS)
            be
                                                        (iii) POT  1 POQ
 Question 6                                                          2

                                                                        0.9
 (a) (i)     f ( x)  ( x  2)( x  4)
                                  2
                                                                           PT
                                                                tan(0.9) 
             f ( x)  x3  2 x 2  4 x  8                                  5
                                                                PT  5 tan(0.9)
             f ( x)  3 x 2  4 x  4                       PT  6.3 cm (1 d.p.)
                                                                       
                                                        (iv) PTQ    1.8  2
            Consider the discriminate,                                2 2
              42  4(3)(4)                                  (angle sum of a quadrilateral is 2 )
               32
                                                                PTQ  1.34
            Therefore there are no zeros, and                         1
                                                                Area  (6.3) 2 sin(1.34)
            hence, no stationary points. (the                         2
            derivative function is positive                               1                       
            definite)                                                     (5) 2 (1.8  sin(1.8)) 
                                                                          2                       
       (ii) f ( x )  6 x  4                                         9 cm 2

                                                    Question 7
            The graph is concave down when
            6x  4  0
                                                    (a) (i) x   4 cos 2t dt
                                                            
                 2
            x
                 3                                                 2sin 2t  c
            The graph is concave up when
                 2                                              when t = 0, x  1 ,
                                                                             
            x                                                 1  2sin 2(0)  c
                 3
                                                                c 1

                                                                 x  2sin 2t  1
                                                                  


                                                4
http://www.maths.net.au/                                                                2010 Mathematics HSC Solutions


      (ii) at x  0
                                                                                    1     
           0  2sin 2t  1                                           T is the point  , 2  .
                                                                                     2     
                      1                                             mBT  4
           sin 2t  
                      2                                             Eqn BT: y  4  4( x  2)
                                                                            y  4x  4
              2t  
                       6
                     13                                           Since this line is not vertical, if there
              t          ,
                    12 12                                           is one simultaneous solution between
                                                                    this line and the parabola, it is a
              Therefore, the first time it will be at               tangent. So, sub y  4 x  4 into
                             13                                     y  x2
              rest is at t =      3.4 s
                              12                                    4 x  4  x2
      (iii) x  2sin 2t  1 dt                                       x2  4 x  4  0
               
                                                                     x  2
                                                                               2
                                                                                   0
                  cos 2t  t  c
                                                                    x2
              at t = 0, x = 0                                        BT is a tangent to the parabola
              0   cos 2(0)  0  c
         c 1
         x   cos 2t  t  1
          dy                                                Question 8
 (b) (i)      2x
          dx
         at x = –1, m = –2                                  (a) P  Ae kt
                                                                P  102e kt
              y  1  2( x  1)
                                                                when t = 75, P = 200 000 000
              2x  y 1  0                                     200000000  102e 75 k
                                                                k  0.22
      (ii) M   , 
                   1 5
                       
                 2 2                                          P  102e0.22t
            mAB  1
                                                                P  102e0.22(100)
           so, to find the x-value on the curve,
           where the tangent is 1, let 2x = 1.                  P  539 311 817 787
                                     1 1                       P  539 billion
           Therefore the point C is  ,  .
                                     2 4                  (b) P ( HH )  0.36
           Since the x-values of M and C are                     P ( H )  0.6
           the same, then the line MC will be                    P (T )  0.4
           vertical.
                                                                 P (TT )  0.16
              x–coordinate of T is 0.5.                     (c) (i) A  4 (amplitude)
      (iii)
              2x  y 1  0                                            2
                                                                (ii) T 
                 1                                                      b
              2  y 1  0                                            2
                 2                                                  
              y  2                                                    b
                                                                    b2

                                                        5
http://www.maths.net.au/                                                                    2010 Mathematics HSC Solutions


      (iii)        y                                         (ii)1      A1  P (1  0.005)1  2000
                                                                                P (1.005)1  2000
               4
               3                                                        A2  A1 (1.005)1  2000
               2                                                                 P (1.005)1  2000  (1.005)1  2000
                                                                                                    
               1
                                                                                P (1.005) 2  2000(1  1.005)
                                                 x                      A3  A2 (1.005)1  2000
              -1                          
              -2                    2                                            P (1.005) 2  2000(1  1.005)  (1.005)1  2000
                                                                                                                
              -3
                                                                                P (1.005)3  2000(1  1.005  1.0052 )
              -4
                                                                               
 (d) f  x   x3  3 x 2  kx  8                                      An  P (1.005) n  2000(1  1.005    1.005n 1 )

       f   x   3x 2  6 x  k                                               P (1.005n )  2000 
                                                                                                     1(1.005n  1)
                                                                                                       1.005  1
                                                                                P (1.005n )  400 000  (1.005n  1)
      For an increasing function f   x   0 ,                                P (1.005n )  400 000 1.005n  400 000
                                                                                ( P  400 000) 1.005n  400 000
      i.e. 3 x 2  6 x  k  0

      Consider the graph of y  3 x 2  6 x with                   2           An  ( P  400 000) 1.005n  400 000
                                                                            0  (232 175.55  400 000) 1.005n  400 000
      x-intercepts at 0 and 2. Vertex at x = 1,                                  400 000
                                                                       1.005n 
      y = –3.  if k  3 , f   x  is positive                                167824.45
                                                                            n  log1.005 (2.38)
      definite and hence f  x  is an                                                log10 2.38
                                                                                n
                                                                                     log10 1.005
      increasing function.
                                                                                n  174.1
 Question 9

 (a) (i) A1  500(1  0.005) 240                                       Thus there will be money in the
                                                                       account for the next 175 months
           A2  500(1  0.005) 239
          .                                              (b) (i)       0 x2
          .
          .                                                  (ii) The maximum occurs at x = 2,
                                                                           2
           A240  500(1  0.005)1
                                                                              f   x  dx  4
                                                                        0

                                                                       f  2  f  0  4
           A  A1  A2    A240
                                                                       f  2  4
               500(1.005  1.0052  
                                                                       The maximum value is f  x   4
                        1.005239  1.005240 )
                   1.005(1.005240  1)                       (iii) f  6   f  4 
               500
                        1.005  1                                          4
               $232 175.55                                                   f   x  dx  4
                                                                        2

                                                                       f  4   f  2   4
                                                                       f  4   4  4
                                                                       f  4  0
                                                                       The gradient is –3, so f  6   6




                                                     6
http://www.maths.net.au/                                                                2010 Mathematics HSC Solutions


      (iv)     4
                                                            y  a (1  2 cos  )
                                                             y  a (1  2(1))
                            2    4           6               y  3a
                                                                      OA
                                                     (b) (i) sin  
                                                                       r
                                                             OA  r sin 
             –6                                                     r
                                                            V             y 2 dx
                                                                   r sin 

 Question 10
                                                                             r        x 2  dx
                                                                    r
                                                                               2
                                                                   r sin 

 (a) (i)In ACD, DAC and DCA =                                         x3 
                                                                                         r

                                                                r 2 x  
        90  1  ( sum of )
             2                                                           3  r sin 
                                                                         r3               r 3 sin 3       
        CDB = 180   (suppl. angles)                           r 3     r 3 sin                     
                                                                         3                     3           
        DBC = 90  1  (ABC is isosc.)
                    2
                                                                r 3
        DCB = 90  3  ( sum of )
                     2                                        
                                                                 3
                                                                      2  3sin   sin 3  
        ACB = DCB + DCA = 
                                                     (ii) 1 Initial depth = r. So, find  , to give
        In ABC and ACD,                                   depth 1 r. From the diagram,
        ACB = ADC (both  )
                                                                    2

                                                                            r
        DAC = DBC (both 90  1  )
                               2                            OA  r sin  
                                                                            2
         ABC ||| ACD (equiangular)                                 1
                                                            sin  
                   AD DC a                                            2
        also note                                               30
                   AC CB x
     (ii) orresponding sides of similar
        C
        triangles are in the same proportion.                                  r3 
                                                                                3 1
                                                                          2  
            AD AC                                                       3      2 8
                                                       2 Fraction 
            AC AB                                                           2 r 3
         a     x                                                              3
           
         x a y                                                        5
                                                                    
         a (a  y )  x 2                                             16
         x 2  a 2  ay

     (iii n ACD, by the cosine rule
        I
         x 2  a 2  a 2  2a 2 cos 
         a 2  ay  a 2  a 2  2a 2 cos 
         ay  a 2  2a 2 cos 
         y  a  2a cos 
        y  a (1  2 cos  )
     (ivTo get the maximum value of y, cos 
        must take its minimum value, of –1.

                                                 7

Más contenido relacionado

Similar a 2010 mathematics hsc solutions

Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational formLily Maryati
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)Nigel Simmons
 
11X1 T09 03 second derivative
11X1 T09 03 second derivative11X1 T09 03 second derivative
11X1 T09 03 second derivativeNigel Simmons
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equationsErik Tjersland
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisespaufong
 
1-1 Algebra Review HW
1-1 Algebra Review HW1-1 Algebra Review HW
1-1 Algebra Review HWnechamkin
 
Algebra: Practice 10.5B
Algebra: Practice 10.5BAlgebra: Practice 10.5B
Algebra: Practice 10.5BLinda Horst
 
PMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic FractionsPMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic FractionsSook Yen Wong
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)Nigel Simmons
 
Day 3 subtracting polynomials
Day 3 subtracting polynomialsDay 3 subtracting polynomials
Day 3 subtracting polynomialsErik Tjersland
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)Nigel Simmons
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)Nigel Simmons
 
11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)Nigel Simmons
 
11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)Nigel Simmons
 
09 Trial Penang S1
09 Trial Penang S109 Trial Penang S1
09 Trial Penang S1guest9442c5
 

Similar a 2010 mathematics hsc solutions (20)

Mathematics
MathematicsMathematics
Mathematics
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
11X1 T09 03 second derivative
11X1 T09 03 second derivative11X1 T09 03 second derivative
11X1 T09 03 second derivative
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equations
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercises
 
1-1 Algebra Review HW
1-1 Algebra Review HW1-1 Algebra Review HW
1-1 Algebra Review HW
 
Alg.Pr10.4 B
Alg.Pr10.4 BAlg.Pr10.4 B
Alg.Pr10.4 B
 
Algebra: Practice 10.5B
Algebra: Practice 10.5BAlgebra: Practice 10.5B
Algebra: Practice 10.5B
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
 
PMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic FractionsPMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic Fractions
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 
Day 3 subtracting polynomials
Day 3 subtracting polynomialsDay 3 subtracting polynomials
Day 3 subtracting polynomials
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)
 
11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)
 
11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)
 
09 Trial Penang S1
09 Trial Penang S109 Trial Penang S1
09 Trial Penang S1
 

Más de jharnwell

Ict in maths presentation for my favourite lesson
Ict in maths presentation   for my favourite lessonIct in maths presentation   for my favourite lesson
Ict in maths presentation for my favourite lessonjharnwell
 
Technology in Mathematics
Technology in MathematicsTechnology in Mathematics
Technology in Mathematicsjharnwell
 
Tech toolbox for teachers
Tech toolbox for teachersTech toolbox for teachers
Tech toolbox for teachersjharnwell
 
Fantastic trip
Fantastic tripFantastic trip
Fantastic tripjharnwell
 
Draft nsw maths syllabus
Draft nsw maths syllabusDraft nsw maths syllabus
Draft nsw maths syllabusjharnwell
 
Scootle presentation
Scootle presentationScootle presentation
Scootle presentationjharnwell
 
2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutions2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutionsjharnwell
 
2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutions2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutionsjharnwell
 
2010 mathematics school certificate solutions
2010 mathematics school certificate solutions2010 mathematics school certificate solutions
2010 mathematics school certificate solutionsjharnwell
 
Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011jharnwell
 

Más de jharnwell (10)

Ict in maths presentation for my favourite lesson
Ict in maths presentation   for my favourite lessonIct in maths presentation   for my favourite lesson
Ict in maths presentation for my favourite lesson
 
Technology in Mathematics
Technology in MathematicsTechnology in Mathematics
Technology in Mathematics
 
Tech toolbox for teachers
Tech toolbox for teachersTech toolbox for teachers
Tech toolbox for teachers
 
Fantastic trip
Fantastic tripFantastic trip
Fantastic trip
 
Draft nsw maths syllabus
Draft nsw maths syllabusDraft nsw maths syllabus
Draft nsw maths syllabus
 
Scootle presentation
Scootle presentationScootle presentation
Scootle presentation
 
2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutions2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutions
 
2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutions2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutions
 
2010 mathematics school certificate solutions
2010 mathematics school certificate solutions2010 mathematics school certificate solutions
2010 mathematics school certificate solutions
 
Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011
 

Último

Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsNbelano25
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 

Último (20)

Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 

2010 mathematics hsc solutions

  • 1. http://www.maths.net.au/ 2010 Mathematics HSC Solutions 2010 Mathematics HSC Solutions  Question 1 (b) x 2  x  12  0 (a) ( x  4)( x  3)  0 x2  4x  0 y x( x  4)  0 x  0 or x  4  0 –3 4 x4 x (b) 1 52 52   3  x  4 52 52 54  2 5 (c) y  ln  3x  dy 3 a  2 and b  1  dx 3x (c) ( x  1) 2  ( y  2) 2  25 1  x (d) 2 x  3  9 1 at x  2, m  2 2x  3  9 or (2 x  3)  9 2 3 (d) (i)  5 x  1 dx    5  5 x  1 2 dx 1 2x  6 2 x  3  9   3 5 2 x3 2 x  12 2  5 x  1  c 3  x  6 15 d 2 x 1 2x (e) x tan x  tan x (2 x)  x 2 (sec 2 x) (ii)   dx   dx dx  4 x 2 2  4  x2  x(2 tan x  x sec2 x) 1  ln  4  x 2   c 2 a (f) s  (e) 6 1 r 1   x  k  dx  30 0   x2  6 1 1 3  2  kx   30 3  0  2 62  6k  30 2 (g) x  8 6k  12 Question 2 k 2 Question 3 d cos x x( sin x)  cos x(1) (a)   2  12 4  6  dx x x2 (a) (i) M   ,   x sin x  cos x  2 2     5, 1 x2 1
  • 2. http://www.maths.net.au/ 2010 Mathematics HSC Solutions 86 3 1 (ii) mBC   ln x dx   0  2 ln 2  ln 3 6  12 1 2 1  1.24 (2 d.p.)  3 (iii) The approximation using the 2 1 trapezoidal rule is less than the (iii) mMN  25 actual value of the integral, because 1 the shaded area of the trapeziums,  3 is less than the actual area below since mBC  mMN , the curve. BC || MN y Corresponding angles on parallel 2 lines are equal, so ACB  ANM 1 ABC  AMN  ABC ||| AMN (equiangular) 1 2 3 4 x 1 (iv) y  2    x  2 3 -1 3y  6  x  2 Question 4 x  3y  8  0 (a) (i) Forms an AP, a  1 , d  0.75 Tn  1  (n  1)  0.75 12  6    6  8 2 2 (v) BC  Tn  0.25  0.75n  2 10 T9  0.25  0.75  9 1 T9  7 km (vi) Area  bh 2 Susannah runs 7 km in the 9th week 1 (ii) Tn  0.25  0.75n 44  2 10h 2 10  0.25  0.75n 22 10 n  13 h 5 In the 13th week. (b) (i) y (iii) S 26  26 2  2 1   26  1  0.75 3  269.75 km 2 2  1 (b) Area    e 2 x  e x  dx 0 -1 1 2 3 4 5 x 2 -2  e2 x    e x  -3  2 0 -4 -5  e4   e0     e 2     e0  (ii) x 1 2 3 2  2  0 ln(2) ln(3) 2 f(x) e  2e  3 4  2 2
  • 3. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (c) (i) P (2 mint)  4 3 4 r 3  20  0  12 11  r3  5  0 1  5 11 r 3  1 1 1 (ii) P (2same)    d2A 60 11 11 11  4  3 2 3 dr r  11 5 when r  3 ,  3 2 d A (iii) P (2 different)  1   16  0,  c.c.up, 11 dr 2 8 5   local minimum at r  3 11  (d) f  x   f   x   1  e x 1  e  x   1  e x  e x  1 1 1 sin x x (b) (i) sec2 x  sec x tan x    2e e x cos 2 x cos x cos x f  x   f   x   1  e x   1  e  x   1  sin x cos 2 x  2  e x  e x 1  sin x Question 5 (ii) sec2 x  sec x tan x  cos 2 x 1  sin x (a) (i) V   r 2h  1  sin 2 x 10   r 2 h 1  sin x  10 1  sin x 1  sin x  h 2 r 1  1  sin x A  2 r 2  2 rh  10   2 r 2  2 r  2   1 (iii) I   4 r   dx 0 1  sin x 20  2 r 2   4 r    sec 2 x  sec x tan x  dx 0   tan x  sec x 0  (ii) dA 20 4  4 r  2 dr r      dA   tan  sec    tan 0  sec 0  let  0 to find stationary points  4 4   dr  1 2 1  2 3
  • 4. http://www.maths.net.au/ 2010 Mathematics HSC Solutions 1 1 (iii) A1   dx (c) y  a x 1   ln x a 1 8 1  ln 1  ln  a  –2 ln  a   1 x 1 a e (b) (i) l  r 9  5 b 1 A2   dx    1.8 1 x 1   ln x 1 b (ii) In OPT and OQT OP = OQ (equal radii of 5 cm) 1  ln  b   ln 1 OPT = OQT (both right angles) ln  b   1 OT is a common line OPT  OQT (RHS) be (iii) POT  1 POQ Question 6 2  0.9 (a) (i) f ( x)  ( x  2)( x  4) 2 PT tan(0.9)  f ( x)  x3  2 x 2  4 x  8 5 PT  5 tan(0.9) f ( x)  3 x 2  4 x  4 PT  6.3 cm (1 d.p.)   (iv) PTQ    1.8  2 Consider the discriminate, 2 2   42  4(3)(4) (angle sum of a quadrilateral is 2 )  32 PTQ  1.34 Therefore there are no zeros, and 1 Area  (6.3) 2 sin(1.34) hence, no stationary points. (the 2 derivative function is positive 1  definite)   (5) 2 (1.8  sin(1.8))  2  (ii) f ( x )  6 x  4  9 cm 2 Question 7 The graph is concave down when 6x  4  0 (a) (i) x   4 cos 2t dt  2 x 3  2sin 2t  c The graph is concave up when 2 when t = 0, x  1 ,  x 1  2sin 2(0)  c 3 c 1  x  2sin 2t  1  4
  • 5. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (ii) at x  0  1  0  2sin 2t  1  T is the point  , 2  . 2  1 mBT  4 sin 2t   2 Eqn BT: y  4  4( x  2)  y  4x  4 2t   6  13 Since this line is not vertical, if there t , 12 12 is one simultaneous solution between this line and the parabola, it is a Therefore, the first time it will be at tangent. So, sub y  4 x  4 into 13 y  x2 rest is at t =  3.4 s 12 4 x  4  x2 (iii) x  2sin 2t  1 dt x2  4 x  4  0   x  2 2 0   cos 2t  t  c x2 at t = 0, x = 0  BT is a tangent to the parabola 0   cos 2(0)  0  c c 1 x   cos 2t  t  1 dy Question 8 (b) (i)  2x dx at x = –1, m = –2 (a) P  Ae kt P  102e kt y  1  2( x  1) when t = 75, P = 200 000 000 2x  y 1  0 200000000  102e 75 k k  0.22 (ii) M   ,  1 5   2 2 P  102e0.22t mAB  1 P  102e0.22(100) so, to find the x-value on the curve, where the tangent is 1, let 2x = 1. P  539 311 817 787 1 1 P  539 billion Therefore the point C is  ,  . 2 4 (b) P ( HH )  0.36 Since the x-values of M and C are P ( H )  0.6 the same, then the line MC will be P (T )  0.4 vertical. P (TT )  0.16 x–coordinate of T is 0.5. (c) (i) A  4 (amplitude) (iii) 2x  y 1  0 2 (ii) T  1 b 2  y 1  0 2 2  y  2 b b2 5
  • 6. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (iii) y (ii)1 A1  P (1  0.005)1  2000  P (1.005)1  2000 4 3 A2  A1 (1.005)1  2000 2   P (1.005)1  2000  (1.005)1  2000   1  P (1.005) 2  2000(1  1.005) x A3  A2 (1.005)1  2000 -1   -2 2   P (1.005) 2  2000(1  1.005)  (1.005)1  2000   -3  P (1.005)3  2000(1  1.005  1.0052 ) -4  (d) f  x   x3  3 x 2  kx  8 An  P (1.005) n  2000(1  1.005    1.005n 1 ) f   x   3x 2  6 x  k  P (1.005n )  2000  1(1.005n  1) 1.005  1  P (1.005n )  400 000  (1.005n  1) For an increasing function f   x   0 ,  P (1.005n )  400 000 1.005n  400 000  ( P  400 000) 1.005n  400 000 i.e. 3 x 2  6 x  k  0 Consider the graph of y  3 x 2  6 x with 2 An  ( P  400 000) 1.005n  400 000 0  (232 175.55  400 000) 1.005n  400 000 x-intercepts at 0 and 2. Vertex at x = 1, 400 000 1.005n  y = –3.  if k  3 , f   x  is positive 167824.45 n  log1.005 (2.38) definite and hence f  x  is an log10 2.38 n log10 1.005 increasing function. n  174.1 Question 9 (a) (i) A1  500(1  0.005) 240 Thus there will be money in the account for the next 175 months A2  500(1  0.005) 239 . (b) (i) 0 x2 . . (ii) The maximum occurs at x = 2, 2 A240  500(1  0.005)1  f   x  dx  4 0 f  2  f  0  4 A  A1  A2    A240 f  2  4  500(1.005  1.0052   The maximum value is f  x   4  1.005239  1.005240 ) 1.005(1.005240  1) (iii) f  6   f  4   500 1.005  1 4  $232 175.55  f   x  dx  4 2 f  4   f  2   4 f  4   4  4 f  4  0 The gradient is –3, so f  6   6 6
  • 7. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (iv) 4 y  a (1  2 cos  ) y  a (1  2(1)) 2 4 6 y  3a OA (b) (i) sin   r OA  r sin  –6 r V  y 2 dx r sin  Question 10 r  x 2  dx r  2 r sin  (a) (i)In ACD, DAC and DCA =  x3  r   r 2 x   90  1  ( sum of ) 2  3  r sin   r3   r 3 sin 3   CDB = 180   (suppl. angles)    r 3     r 3 sin     3  3  DBC = 90  1  (ABC is isosc.) 2 r 3 DCB = 90  3  ( sum of ) 2  3  2  3sin   sin 3   ACB = DCB + DCA =  (ii) 1 Initial depth = r. So, find  , to give In ABC and ACD, depth 1 r. From the diagram, ACB = ADC (both  ) 2 r DAC = DBC (both 90  1  ) 2 OA  r sin   2  ABC ||| ACD (equiangular) 1 sin   AD DC a 2 also note     30 AC CB x (ii) orresponding sides of similar C triangles are in the same proportion.  r3  3 1 2   AD AC 3  2 8   2 Fraction  AC AB 2 r 3 a x 3  x a y 5  a (a  y )  x 2 16 x 2  a 2  ay (iii n ACD, by the cosine rule I x 2  a 2  a 2  2a 2 cos  a 2  ay  a 2  a 2  2a 2 cos  ay  a 2  2a 2 cos  y  a  2a cos  y  a (1  2 cos  ) (ivTo get the maximum value of y, cos  must take its minimum value, of –1. 7