SlideShare una empresa de Scribd logo
1 de 15
Descargar para leer sin conexión
Chapter 11
11-1 For the deep-groove 02-series ball bearing with R = 0.90, the design life xD, in multiples
of rating life, is
xD =
30 000(300)(60)
106
= 540 Ans.
The design radial load FD is
FD = 1.2(1.898) = 2.278 kN
From Eq. (11-6),
C10 = 2.278
540
0.02 + 4.439[ln(1/0.9)]1/1.483
1/3
= 18.59 kN Ans.
Table 11-2: Choose a 02-30 mm with C10 = 19.5 kN. Ans.
Eq. (11-18):
R = exp −
540(2.278/19.5)3
− 0.02
4.439
1.483
= 0.919 Ans.
11-2 For the Angular-contact 02-series ball bearing as described, the rating life multiple is
xD =
50 000(480)(60)
106
= 1440
The design load is radial and equal to
FD = 1.4(610) = 854 lbf = 3.80 kN
Eq. (11-6):
C10 = 854
1440
0.02 + 4.439[ln(1/0.9)]1/1.483
1/3
= 9665 lbf = 43.0 kN
Table 11-2: Select a 02-55 mm with C10 = 46.2 kN. Ans.
Using Eq. (11-18),
R = exp −
1440(3.8/46.2)3
− 0.02
4.439
1.483
= 0.927 Ans.
shi20396_ch11.qxd 8/12/03 9:51 AM Page 297
298 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
11-3 For the straight-Roller 03-series bearing selection, xD = 1440 rating lives from Prob. 11-2
solution.
FD = 1.4(1650) = 2310 lbf = 10.279 kN
C10 = 10.279
1440
1
3/10
= 91.1 kN
Table 11-3: Select a 03-55 mm with C10 = 102 kN. Ans.
Using Eq. (11-18),
R = exp −
1440(10.28/102)10/3
− 0.02
4.439
1.483
= 0.942 Ans.
11-4 We can choose a reliability goal of
√
0.90 = 0.95 for each bearing. We make the selec-
tions, find the existing reliabilities, multiply them together, and observe that the reliability
goal is exceeded due to the roundup of capacity upon table entry.
Another possibility is to use the reliability of one bearing, say R1. Then set the relia-
bility goal of the second as
R2 =
0.90
R1
or vice versa. This gives three pairs of selections to compare in terms of cost, geometry im-
plications, etc.
11-5 Establish a reliability goal of
√
0.90 = 0.95 for each bearing. For a 02-series angular con-
tact ball bearing,
C10 = 854
1440
0.02 + 4.439[ln(1/0.95)]1/1.483
1/3
= 11 315 lbf = 50.4 kN
Select a 02-60 mm angular-contact bearing with C10 = 55.9 kN.
RA = exp −
1440(3.8/55.9)3
− 0.02
4.439
1.483
= 0.969
For a 03-series straight-roller bearing,
C10 = 10.279
1440
0.02 + 4.439[ln(1/0.95)]1/1.483
3/10
= 105.2 kN
Select a 03-60 mm straight-roller bearing with C10 = 123 kN.
RB = exp −
1440(10.28/123)10/3
− 0.02
4.439
1.483
= 0.977
shi20396_ch11.qxd 8/12/03 9:51 AM Page 298
Chapter 11 299
Form a table of existing reliabilities
Rgoal RA RB 0.912
0.90 0.927 0.941 0.872
0.95 0.969 0.977 0.947
0.906
The possible products in the body of the table are displayed to the right of the table. One,
0.872, is predictably less than the overall reliability goal. The remaining three are the
choices for a combined reliability goal of 0.90. Choices can be compared for the cost of
bearings, outside diameter considerations, bore implications for shaft modifications and
housing modifications.
The point is that the designer has choices. Discover them before making the selection
decision. Did the answer to Prob. 11-4 uncover the possibilities?
To reduce the work to fill in the body of the table above, a computer program can be
helpful.
11-6 Choose a 02-series ball bearing from manufacturer #2, having a service factor of 1. For
Fr = 8 kN and Fa = 4 kN
xD =
5000(900)(60)
106
= 270
Eq. (11-5):
C10 = 8
270
0.02 + 4.439[ln(1/0.90)]1/1.483
1/3
= 51.8 kN
Trial #1: From Table (11-2) make a tentative selection of a deep-groove 02-70 mm with
C0 = 37.5 kN.
Fa
C0
=
4
37.5
= 0.107
Table 11-1:
Fa/(V Fr ) = 0.5 > e
X2 = 0.56, Y2 = 1.46
Eq. (11-9):
Fe = 0.56(1)(8) + 1.46(4) = 10.32 kN
Eq. (11-6):
C10 = 10.32
270
1
1/3
= 66.7 kN > 61.8 kN
Trial #2: From Table 11-2 choose a 02-80 mm having C10 = 70.2 and C0 = 45.0.
Check:
Fa
C0
=
4
45
= 0.089
shi20396_ch11.qxd 8/12/03 9:51 AM Page 299
300 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
Table 11-1: X2 = 0.56, Y2 = 1.53
Fe = 0.56(8) + 1.53(4) = 10.60 kN
Eq. (11-6):
C10 = 10.60
270
1
1/3
= 68.51 kN < 70.2 kN
∴ Selection stands.
Decision: Specify a 02-80 mm deep-groove ball bearing. Ans.
11-7 From Prob. 11-6, xD = 270 and the final value of Fe is 10.60 kN.
C10 = 10.6
270
0.02 + 4.439[ln(1/0.96)]1/1.483
1/3
= 84.47 kN
Table 11-2: Choose a deep-groove ball bearing, based upon C10 load ratings.
Trial #1:
Tentatively select a 02-90 mm.
C10 = 95.6, C0 = 62 kN
Fa
C0
=
4
62
= 0.0645
From Table 11-1, interpolate for Y2.
Fa/C0 Y2
0.056 1.71
0.0645 Y2
0.070 1.63
Y2 − 1.71
1.63 − 1.71
=
0.0645 − 0.056
0.070 − 0.056
= 0.607
Y2 = 1.71 + 0.607(1.63 − 1.71) = 1.661
Fe = 0.56(8) + 1.661(4) = 11.12 kN
C10 = 11.12
270
0.02 + 4.439[ln(1/0.96)]1/1.483
1/3
= 88.61 kN < 95.6 kN
Bearing is OK.
Decision: Specify a deep-groove 02-90 mm ball bearing. Ans.
shi20396_ch11.qxd 8/12/03 9:51 AM Page 300
Chapter 11 301
11-8 For the straight cylindrical roller bearing specified with a service factor of 1, R = 0.90 and
Fr = 12 kN
xD =
4000(750)(60)
106
= 180
C10 = 12
180
1
3/10
= 57.0 kN Ans.
11-9
Assume concentrated forces as shown.
Pz = 8(24) = 192 lbf
Py = 8(30) = 240 lbf
T = 192(2) = 384 lbf · in
T x
= −384 + 1.5F cos 20◦
= 0
F =
384
1.5(0.940)
= 272 lbf
Mz
O = 5.75Py + 11.5R
y
A − 14.25F sin 20◦
= 0;
thus 5.75(240) + 11.5R
y
A − 14.25(272)(0.342) = 0
R
y
A = −4.73 lbf
M
y
O = −5.75Pz − 11.5Rz
A − 14.25F cos 20◦
= 0;
thus −5.75(192) − 11.5Rz
A − 14.25(272)(0.940) = 0
Rz
A = −413 lbf; RA = [(−413)2
+ (−4.73)2
]1/2
= 413 lbf
Fz
= Rz
O + Pz + Rz
A + F cos 20◦
= 0
Rz
O + 192 − 413 + 272(0.940) = 0
Rz
O = −34.7 lbf
B
O
z
11
1
2
"
Rz
O
Ry
O
Pz
Py
T
F
20Њ
R
y
A
R
z
A
A
T
y
2
3
4
"
x
shi20396_ch11.qxd 8/12/03 9:51 AM Page 301
302 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
Fy
= R
y
O + Py + R
y
A − F sin 20◦
= 0
R
y
O + 240 − 4.73 − 272(0.342) = 0
R
y
O = −142 lbf
RO = [(−34.6)2
+ (−142)2
]1/2
= 146 lbf
So the reaction at A governs.
Reliability Goal:
√
0.92 = 0.96
FD = 1.2(413) = 496 lbf
xD = 30 000(300)(60/106
) = 540
C10 = 496
540
0.02 + 4.439[ln(1/0.96)]1/1.483
1/3
= 4980 lbf = 22.16 kN
A 02-35 bearing will do.
Decision: Specify an angular-contact 02-35 mm ball bearing for the locations at A and O.
Check combined reliability. Ans.
11-10 For a combined reliability goal of 0.90, use
√
0.90 = 0.95 for the individual bearings.
x0 =
50 000(480)(60)
106
= 1440
The resultant of the given forces are RO = 607 lbf and RB = 1646 lbf.
At O: Fe = 1.4(607) = 850 lbf
Ball: C10 = 850
1440
0.02 + 4.439[ln(1/0.95)]1/1.483
1/3
= 11 262 lbf or 50.1 kN
Select a 02-60 mm angular-contact ball bearing with a basic load rating of 55.9 kN.
At B: Fe = 1.4(1646) = 2304 lbf
Roller: C10 = 2304
1440
0.02 + 4.439[ln(1/0.95)]1/1.483
3/10
= 23 576 lbf or 104.9 kN
Select a 02-80 mm cylindrical roller or a 03-60 mm cylindrical roller. The 03-series roller
has the same bore as the 02-series ball.
z
20
16
10
O
FA
RO
RB
B
A
C
y
x
FC
20Њ
shi20396_ch11.qxd 8/12/03 9:51 AM Page 302
Chapter 11 303
11-11 The reliability of the individual bearings is R =
√
0.999 = 0.9995
From statics,
R
y
O = −163.4 N, Rz
O = 107 N, RO = 195 N
R
y
E = −89.1 N, Rz
E = −174.4 N, RE = 196 N
xD =
60 000(1200)(60)
106
= 4320
C10 = 0.196
4340
0.02 + 4.439[ln(1/0.9995)]1/1.483
1/3
= 8.9 kN
A 02-25 mm deep-groove ball bearing has a basic load rating of 14.0 kN which is ample.
An extra-light bearing could also be investigated.
11-12 Given:
Fr A = 560 lbf or 2.492 kN
Fr B = 1095 lbf or 4.873 kN
Trial #1: Use KA = KB = 1.5 and from Table 11-6 choose an indirect mounting.
0.47Fr A
KA
<? >
0.47Fr B
KB
− (−1)(0)
0.47(2.492)
1.5
<? >
0.47(4.873)
1.5
0.781 < 1.527 Therefore use the upper line of Table 11-6.
FaA = FaB =
0.47Fr B
KB
= 1.527 kN
PA = 0.4Fr A + KA FaA = 0.4(2.492) + 1.5(1.527) = 3.29 kN
PB = Fr B = 4.873 kN
150
300
400
A
O
Fz
A
F
y
A
E
Rz
E
R
y
E
FC
C
Rz
O
R
y
O
z
x
y
shi20396_ch11.qxd 8/12/03 9:51 AM Page 303
304 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
Fig. 11-16: fT = 0.8
Fig. 11-17: fV = 1.07
Thus, a3l = fT fV = 0.8(1.07) = 0.856
Individual reliability: Ri =
√
0.9 = 0.95
Eq. (11-17):
(C10)A = 1.4(3.29)
40 000(400)(60)
4.48(0.856)(1 − 0.95)2/3(90)(106)
0.3
= 11.40 kN
(C10)B = 1.4(4.873)
40 000(400)(60)
4.48(0.856)(1 − 0.95)2/3(90)(106)
0.3
= 16.88 kN
From Fig. 11-14, choose cone 32305 and cup 32305 which provide Fr = 17.4 kN and
K = 1.95. With K = 1.95 for both bearings, a second trial validates the choice of cone
32305 and cup 32305. Ans.
11-13
R =
√
0.95 = 0.975
T = 240(12)(cos 20◦
) = 2706 lbf · in
F =
2706
6 cos 25◦
= 498 lbf
In xy-plane:
MO = −82.1(16) − 210(30) + 42R
y
C = 0
R
y
C = 181 lbf
R
y
O = 82 + 210 − 181 = 111 lbf
In xz-plane:
MO = 226(16) − 452(30) − 42Rz
c = 0
Rz
C = −237 lbf
Rz
O = 226 − 451 + 237 = 12 lbf
RO = (1112
+ 122
)1/2
= 112 lbf Ans.
RC = (1812
+ 2372
)1/2
= 298 lbf Ans.
FeO = 1.2(112) = 134.4 lbf
FeC = 1.2(298) = 357.6 lbf
xD =
40 000(200)(60)
106
= 480
z
14"
16"
12"
Rz
O
R
z
C
R
y
O
A
B
C
R
y
C
O
451
210
226
T
T
82.1
x
y
shi20396_ch11.qxd 8/12/03 9:51 AM Page 304
Chapter 11 305
(C10)O = 134.4
480
0.02 + 4.439[ln(1/0.975)]1/1.483
1/3
= 1438 lbf or 6.398 kN
(C10)C = 357.6
480
0.02 + 4.439[ln(1/0.975)]1/1.483
1/3
= 3825 lbf or 17.02 kN
Bearing at O: Choose a deep-groove 02-12 mm. Ans.
Bearing at C: Choose a deep-groove 02-30 mm. Ans.
There may be an advantage to the identical 02-30 mm bearings in a gear-reduction unit.
11-14 Shafts subjected to thrust can be constrained by bearings, one of which supports the thrust.
The shaft floats within the endplay of the second (Roller) bearing. Since the thrust force
here is larger than any radial load, the bearing absorbing the thrust is heavily loaded com-
pared to the other bearing. The second bearing is thus oversized and does not contribute
measurably to the chance of failure. This is predictable. The reliability goal is not
√
0.99,
but 0.99 for the ball bearing. The reliability of the roller is 1. Beginning here saves effort.
Bearing at A (Ball)
Fr = (362
+ 2122
)1/2
= 215 lbf = 0.957 kN
Fa = 555 lbf = 2.47 kN
Trial #1:
Tentatively select a 02-85 mm angular-contact with C10 = 90.4 kN and C0 = 63.0 kN.
Fa
C0
=
2.47
63.0
= 0.0392
xD =
25 000(600)(60)
106
= 900
Table 11-1: X2 = 0.56, Y2 = 1.88
Fe = 0.56(0.957) + 1.88(2.47) = 5.18 kN
FD = fA Fe = 1.3(5.18) = 6.73 kN
C10 = 6.73
900
0.02 + 4.439[ln(1/0.99)]1/1.483
1/3
= 107.7 kN > 90.4 kN
Trial #2:
Tentatively select a 02-95 mm angular-contact ball with C10 = 121 kN and C0 = 85 kN.
Fa
C0
=
2.47
85
= 0.029
shi20396_ch11.qxd 8/12/03 9:51 AM Page 305
306 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
Table 11-1: Y2 = 1.98
Fe = 0.56(0.957) + 1.98(2.47) = 5.43 kN
FD = 1.3(5.43) = 7.05 kN
C10 = 7.05
900
0.02 + 4.439[ln(1/0.99)]1/1.483
1/3
= 113 kN < 121 kN O.K.
Select a 02-95 mm angular-contact ball bearing. Ans.
Bearing at B (Roller): Any bearing will do since R = 1. Let’s prove it. From Eq. (11-18)
when
af FD
C10
3
xD < x0 R = 1
The smallest 02-series roller has a C10 = 16.8 kN for a basic load rating.
0.427
16.8
3
(900) < ? > 0.02
0.0148 < 0.02 ∴ R = 1
Spotting this early avoided rework from
√
0.99 = 0.995.
Any 02-series roller bearing will do. Same bore or outside diameter is a common choice.
(Why?) Ans.
11-15 Hoover Ball-bearing Division uses the same 2-parameter Weibull model as Timken:
b = 1.5, θ = 4.48. We have some data. Let’s estimate parameters b and θ from it. In
Fig. 11-5, we will use line AB. In this case, B is to the right of A.
For F = 18 kN, (x)1 =
115(2000)(16)
106
= 13.8
This establishes point 1 on the R = 0.90 line.
1
0
10
2
10
18
1 2
39.6
100
1
10
13.8 72
1
100 x
2 log x
F
A B
log F
R ϭ 0.90
R ϭ 0.20
shi20396_ch11.qxd 8/12/03 9:51 AM Page 306
Chapter 11 307
The R = 0.20 locus is above and parallel to the R = 0.90 locus. For the two-parameter
Weibull distribution, x0 = 0 and points A and B are related by:
xA = θ[ln(1/0.90)]1/b
(1)
xB = θ[ln(1/0.20)]1/b
and xB/xA is in the same ratio as 600/115. Eliminating θ
b =
ln[ln(1/0.20)/ ln(1/0.90)]
ln(600/115)
= 1.65
Solving for θ in Eq. (1)
θ =
xA
[ln(1/RA)]1/1.65
=
1
[ln(1/0.90)]1/1.65
= 3.91
Therefore, for the data at hand,
R = exp −
x
3.91
1.65
Check R at point B: xB = (600/115) = 5.217
R = exp −
5.217
3.91
1.65
= 0.20
Note also, for point 2 on the R = 0.20 line.
log(5.217) − log(1) = log(xm)2 − log(13.8)
(xm)2 = 72
11-16 This problem is rich in useful variations. Here is one.
Decision: Make straight roller bearings identical on a given shaft. Use a reliability goal of
(0.99)1/6
= 0.9983.
Shaft a
Fr
A = (2392
+ 1112
)1/2
= 264 lbf or 1.175 kN
Fr
B = (5022
+ 10752
)1/2
= 1186 lbf or 5.28 kN
Thus the bearing at B controls
xD =
10 000(1200)(60)
106
= 720
0.02 + 4.439[ln(1/0.9983)]1/1.483
= 0.080 26
C10 = 1.2(5.2)
720
0.080 26
0.3
= 97.2 kN
Select either a 02-80 mm with C10 = 106 kN or a 03-55 mm with C10 = 102 kN
shi20396_ch11.qxd 8/12/03 9:51 AM Page 307
308 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
Shaft b
Fr
C = (8742
+ 22742
)1/2
= 2436 lbf or 10.84 kN
Fr
D = (3932
+ 6572
)1/2
= 766 lbf or 3.41 kN
The bearing at C controls
xD =
10 000(240)(60)
106
= 144
C10 = 1.2(10.84)
144
0.0826
0.3
= 122 kN
Select either a 02-90 mm with C10 = 142 kN or a 03-60 mm with C10 = 123 kN
Shaft c
Fr
E = (11132
+ 23852
)1/2
= 2632 lbf or 11.71 kN
Fr
F = (4172
+ 8952
)1/2
= 987 lbf or 4.39 kN
The bearing at E controls
xD = 10 000(80)(60/106
) = 48
C10 = 1.2(11.71)
48
0.0826
0.3
= 94.8 kN
Select a 02-80 mm with C10 = 106 kN or a 03-60 mm with C10 = 123 kN
11-17 The horizontal separation of the R = 0.90 loci in a log F-log x plot such as Fig. 11-5
will be demonstrated. We refer to the solution of Prob. 11-15 to plot point G (F =
18 kN, xG = 13.8). We know that (C10)1 = 39.6 kN, x1 = 1. This establishes the unim-
proved steel R = 0.90 locus, line AG. For the improved steel
(xm)1 =
360(2000)(60)
106
= 43.2
We plot point G (F = 18 kN, xG = 43.2), and draw the R = 0.90 locus AmG parallel
to AG
1
0
10
2
10
18
G GЈ
39.6
55.8
100
1
10
13.8
1
100
2
x
log x
F
A
Am
Improved steel
log F
Unimproved steel
43.2
R ϭ 0.90
R ϭ 0.90
1
3
1
3
shi20396_ch11.qxd 8/12/03 9:51 AM Page 308
Chapter 11 309
We can calculate (C10)m by similar triangles.
log(C10)m − log 18
log 43.2 − log 1
=
log 39.6 − log 18
log 13.8 − log 1
log(C10)m =
log 43.2
log 13.8
log
39.6
18
+ log 18
(C10)m = 55.8 kN
The usefulness of this plot is evident. The improvement is 43.2/13.8 = 3.13 fold in life.
This result is also available by (L10)m/(L10)1 as 360/115 or 3.13 fold, but the plot shows
the improvement is for all loading. Thus, the manufacturer’s assertion that there is at least
a 3-fold increase in life has been demonstrated by the sample data given. Ans.
11-18 Express Eq. (11-1) as
Fa
1 L1 = Ca
10L10 = K
For a ball bearing, a = 3 and for a 02-30 mm angular contact bearing, C10 = 20.3 kN.
K = (20.3)3
(106
) = 8.365(109
)
At a load of 18 kN, life L1 is given by:
L1 =
K
Fa
1
=
8.365(109
)
183
= 1.434(106
) rev
For a load of 30 kN, life L2 is:
L2 =
8.365(109
)
303
= 0.310(106
) rev
In this case, Eq. (7-57) – the Palmgren-Miner cycle ratio summation rule – can be ex-
pressed as
l1
L1
+
l2
L2
= 1
Substituting,
200 000
1.434(106)
+
l2
0.310(106)
= 1
l2 = 0.267(106
) rev Ans.
Check:
200 000
1.434(106)
+
0.267(106
)
0.310(106)
= 1 O.K.
11-19 Total life in revolutions
Let:
l = total turns
f1 = fraction of turns at F1
f2 = fraction of turns at F2
shi20396_ch11.qxd 8/12/03 9:51 AM Page 309
310 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
From the solution of Prob. 11-18, L1 = 1.434(106
) rev and L2 = 0.310(106
) rev.
Palmgren-Miner rule:
l1
L1
+
l2
L2
=
f1l
L1
+
f2l
L2
= 1
from which
l =
1
f1/L1 + f2/L2
l =
1
{0.40/[1.434(106)]} + {0.60/[0.310(106)]}
= 451 585 rev Ans.
Total life in loading cycles
4 min at 2000 rev/min = 8000 rev
6 min
10 min/cycle
at 2000 rev/min =
12 000 rev
20 000 rev/cycle
451 585 rev
20 000 rev/cycle
= 22.58 cycles Ans.
Total life in hours
10
min
cycle
22.58 cycles
60 min/h
= 3.76 h Ans.
11-20 While we made some use of the log F-log x plot in Probs. 11-15 and 11-17, the principal
use of Fig. 11-5 is to understand equations (11-6) and (11-7) in the discovery of the cata-
log basic load rating for a case at hand.
Point D
FD = 495.6 lbf
log FD = log 495.6 = 2.70
xD =
30 000(300)(60)
106
= 540
log xD = log 540 = 2.73
KD = F3
DxD = (495.6)3
(540)
= 65.7(109
) lbf3
· turns
log KD = log[65.7(109
)] = 10.82
FD has the following uses: Fdesign, Fdesired, Fe when a thrust load is present. It can include
application factor af , or not. It depends on context.
shi20396_ch11.qxd 8/12/03 9:51 AM Page 310
Chapter 11 311
Point B
xB = 0.02 + 4.439[ln(1/0.99)]1/1.483
= 0.220 turns
log xB = log 0.220 = −0.658
FB = FD
xD
xB
1/3
= 495.6
540
0.220
1/3
= 6685 lbf
Note: Example 11-3 used Eq. (11-7). Whereas, here we basically used Eq. (11-6).
log FB = log(6685) = 3.825
KD = 66853
(0.220) = 65.7(109
) lbf3
· turns (as it should)
Point A
FA = FB = C10 = 6685 lbf
log C10 = log(6685) = 3.825
xA = 1
log xA = log(1) = 0
K10 = F3
AxA = C3
10(1) = 66853
= 299(109
) lbf3
· turns
Note that KD/K10 = 65.7(109
)/[299(109
)] = 0.220, which is xB. This is worth knowing
since
K10 =
KD
xB
log K10 = log[299(109
)] = 11.48
Now C10 = 6685 lbf = 29.748 kN, which is required for a reliability goal of 0.99. If we
select an angular contact 02-40 mm ball bearing, then C10 = 31.9 kN = 7169 lbf.
0.1
Ϫ1
Ϫ0.658
1
0
10
1
102
2
102
2
103
495.6
6685
3
104
4
103
3
x
log x
F
A
D
B
log F
540
shi20396_ch11.qxd 8/12/03 9:51 AM Page 311

Más contenido relacionado

La actualidad más candente

Lintech 120series specsheet
Lintech 120series specsheetLintech 120series specsheet
Lintech 120series specsheetElectromate
 
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...JudithLandrys
 
Design of machine elements - Spur gears
Design of machine elements - Spur gearsDesign of machine elements - Spur gears
Design of machine elements - Spur gearsAkram Hossain
 
Design of machine elements - Helical gears
Design of machine elements - Helical gearsDesign of machine elements - Helical gears
Design of machine elements - Helical gearsAkram Hossain
 
Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatWajahat Ullah
 
Design of machine elements - DESIGN FOR SIMPLE STRESSES
Design of machine elements - DESIGN FOR SIMPLE STRESSESDesign of machine elements - DESIGN FOR SIMPLE STRESSES
Design of machine elements - DESIGN FOR SIMPLE STRESSESAkram Hossain
 
Shaft design Erdi Karaçal Mechanical Engineer University of Gaziantep
Shaft design Erdi Karaçal Mechanical Engineer University of GaziantepShaft design Erdi Karaçal Mechanical Engineer University of Gaziantep
Shaft design Erdi Karaçal Mechanical Engineer University of GaziantepErdi Karaçal
 
Design of a Multispeed Multistage Gearbox
Design of a Multispeed Multistage GearboxDesign of a Multispeed Multistage Gearbox
Design of a Multispeed Multistage GearboxIJERA Editor
 
Mechanics of Materials 9th Edition Hibbeler Solutions Manual
Mechanics of Materials 9th Edition Hibbeler Solutions ManualMechanics of Materials 9th Edition Hibbeler Solutions Manual
Mechanics of Materials 9th Edition Hibbeler Solutions Manualpofojufyv
 
Al6061 Nanoindentation results
Al6061 Nanoindentation resultsAl6061 Nanoindentation results
Al6061 Nanoindentation resultsalikhosravani
 
Mechanics Of Materials 9th Edition Hibbeler Solutions Manual
Mechanics Of Materials 9th Edition Hibbeler Solutions ManualMechanics Of Materials 9th Edition Hibbeler Solutions Manual
Mechanics Of Materials 9th Edition Hibbeler Solutions ManualVictoriasses
 
An optimistic approach to blend recycled slag with flux during SAW
An optimistic approach to blend recycled slag with flux during SAWAn optimistic approach to blend recycled slag with flux during SAW
An optimistic approach to blend recycled slag with flux during SAWDr. Bikram Jit Singh
 
Solutions manual for mechanics of materials si 9th edition by hibbeler ibsn 9...
Solutions manual for mechanics of materials si 9th edition by hibbeler ibsn 9...Solutions manual for mechanics of materials si 9th edition by hibbeler ibsn 9...
Solutions manual for mechanics of materials si 9th edition by hibbeler ibsn 9...jungkook11
 
0136023126 ism 06(1)
0136023126 ism 06(1)0136023126 ism 06(1)
0136023126 ism 06(1)aryaanuj1
 

La actualidad más candente (19)

Lintech 120series specsheet
Lintech 120series specsheetLintech 120series specsheet
Lintech 120series specsheet
 
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
 
Design of machine elements - Spur gears
Design of machine elements - Spur gearsDesign of machine elements - Spur gears
Design of machine elements - Spur gears
 
Design of machine elements - Helical gears
Design of machine elements - Helical gearsDesign of machine elements - Helical gears
Design of machine elements - Helical gears
 
Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by Wajahat
 
Shi20396 ch18
Shi20396 ch18Shi20396 ch18
Shi20396 ch18
 
Design of machine elements - DESIGN FOR SIMPLE STRESSES
Design of machine elements - DESIGN FOR SIMPLE STRESSESDesign of machine elements - DESIGN FOR SIMPLE STRESSES
Design of machine elements - DESIGN FOR SIMPLE STRESSES
 
Shaft design Erdi Karaçal Mechanical Engineer University of Gaziantep
Shaft design Erdi Karaçal Mechanical Engineer University of GaziantepShaft design Erdi Karaçal Mechanical Engineer University of Gaziantep
Shaft design Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Design of a Multispeed Multistage Gearbox
Design of a Multispeed Multistage GearboxDesign of a Multispeed Multistage Gearbox
Design of a Multispeed Multistage Gearbox
 
Deflection and member deformation
Deflection and member deformationDeflection and member deformation
Deflection and member deformation
 
Mechanics of Materials 9th Edition Hibbeler Solutions Manual
Mechanics of Materials 9th Edition Hibbeler Solutions ManualMechanics of Materials 9th Edition Hibbeler Solutions Manual
Mechanics of Materials 9th Edition Hibbeler Solutions Manual
 
SFD & BMD
SFD & BMDSFD & BMD
SFD & BMD
 
Appendix E
Appendix EAppendix E
Appendix E
 
Al6061 Nanoindentation results
Al6061 Nanoindentation resultsAl6061 Nanoindentation results
Al6061 Nanoindentation results
 
Mechanics Of Materials 9th Edition Hibbeler Solutions Manual
Mechanics Of Materials 9th Edition Hibbeler Solutions ManualMechanics Of Materials 9th Edition Hibbeler Solutions Manual
Mechanics Of Materials 9th Edition Hibbeler Solutions Manual
 
An optimistic approach to blend recycled slag with flux during SAW
An optimistic approach to blend recycled slag with flux during SAWAn optimistic approach to blend recycled slag with flux during SAW
An optimistic approach to blend recycled slag with flux during SAW
 
Solutions manual for mechanics of materials si 9th edition by hibbeler ibsn 9...
Solutions manual for mechanics of materials si 9th edition by hibbeler ibsn 9...Solutions manual for mechanics of materials si 9th edition by hibbeler ibsn 9...
Solutions manual for mechanics of materials si 9th edition by hibbeler ibsn 9...
 
5th Semester Mechanical Engineering (2013-December) Question Papers
5th Semester Mechanical Engineering (2013-December) Question Papers5th Semester Mechanical Engineering (2013-December) Question Papers
5th Semester Mechanical Engineering (2013-December) Question Papers
 
0136023126 ism 06(1)
0136023126 ism 06(1)0136023126 ism 06(1)
0136023126 ism 06(1)
 

Similar a Capítulo 11 mancais de contato rolante

Chapter 16 solutions
Chapter 16 solutionsChapter 16 solutions
Chapter 16 solutionsLK Education
 
Capítulo 14 engrenagens cilíndricas
Capítulo 14   engrenagens cilíndricasCapítulo 14   engrenagens cilíndricas
Capítulo 14 engrenagens cilíndricasJhayson Carvalho
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidezJhayson Carvalho
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfDannyCoronel5
 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdffranciscoantoniomonr1
 
Chapter 15 solutions
Chapter 15 solutionsChapter 15 solutions
Chapter 15 solutionsLK Education
 
Capítulo 17 elementos mecânicos flexíveis
Capítulo 17   elementos mecânicos flexíveisCapítulo 17   elementos mecânicos flexíveis
Capítulo 17 elementos mecânicos flexíveisJhayson Carvalho
 
Capítulo 15 engrenagens cônicas e sem-fim
Capítulo 15   engrenagens cônicas e sem-fimCapítulo 15   engrenagens cônicas e sem-fim
Capítulo 15 engrenagens cônicas e sem-fimJhayson Carvalho
 
Solution shigley's
Solution shigley'sSolution shigley's
Solution shigley'sAlemu Abera
 
Shigley 13830681 solution mechanical engineering design shigley 7th edition
Shigley 13830681 solution mechanical engineering design shigley 7th editionShigley 13830681 solution mechanical engineering design shigley 7th edition
Shigley 13830681 solution mechanical engineering design shigley 7th editionLuis Eduin
 

Similar a Capítulo 11 mancais de contato rolante (20)

Shi20396 ch11
Shi20396 ch11Shi20396 ch11
Shi20396 ch11
 
Chapter 16 solutions
Chapter 16 solutionsChapter 16 solutions
Chapter 16 solutions
 
Shi20396 ch16
Shi20396 ch16Shi20396 ch16
Shi20396 ch16
 
Shi20396 ch04
Shi20396 ch04Shi20396 ch04
Shi20396 ch04
 
Shi20396 ch14
Shi20396 ch14Shi20396 ch14
Shi20396 ch14
 
Capítulo 14 engrenagens cilíndricas
Capítulo 14   engrenagens cilíndricasCapítulo 14   engrenagens cilíndricas
Capítulo 14 engrenagens cilíndricas
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidez
 
Shi20396 ch17
Shi20396 ch17Shi20396 ch17
Shi20396 ch17
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
 
Shi20396 ch10
Shi20396 ch10Shi20396 ch10
Shi20396 ch10
 
Capítulo 10 mola
Capítulo 10   molaCapítulo 10   mola
Capítulo 10 mola
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
 
Shi20396 ch03
Shi20396 ch03Shi20396 ch03
Shi20396 ch03
 
Chapter 15 solutions
Chapter 15 solutionsChapter 15 solutions
Chapter 15 solutions
 
Capítulo 17 elementos mecânicos flexíveis
Capítulo 17   elementos mecânicos flexíveisCapítulo 17   elementos mecânicos flexíveis
Capítulo 17 elementos mecânicos flexíveis
 
Capítulo 15 engrenagens cônicas e sem-fim
Capítulo 15   engrenagens cônicas e sem-fimCapítulo 15   engrenagens cônicas e sem-fim
Capítulo 15 engrenagens cônicas e sem-fim
 
Solution shigley's
Solution shigley'sSolution shigley's
Solution shigley's
 
Shigley 13830681 solution mechanical engineering design shigley 7th edition
Shigley 13830681 solution mechanical engineering design shigley 7th editionShigley 13830681 solution mechanical engineering design shigley 7th edition
Shigley 13830681 solution mechanical engineering design shigley 7th edition
 
Shi20396 ch07
Shi20396 ch07Shi20396 ch07
Shi20396 ch07
 

Más de Jhayson Carvalho

Capítulo 12 lubrificação e mancais de munhão
Capítulo 12   lubrificação e mancais de munhãoCapítulo 12   lubrificação e mancais de munhão
Capítulo 12 lubrificação e mancais de munhãoJhayson Carvalho
 
Capítulo 07 falha por fadiga resultante de carregamento variável
Capítulo 07   falha por fadiga resultante de carregamento variávelCapítulo 07   falha por fadiga resultante de carregamento variável
Capítulo 07 falha por fadiga resultante de carregamento variávelJhayson Carvalho
 
Capítulo 06 falhas resultantes de carregamento estático
Capítulo 06   falhas resultantes de carregamento estáticoCapítulo 06   falhas resultantes de carregamento estático
Capítulo 06 falhas resultantes de carregamento estáticoJhayson Carvalho
 
Capítulo 04 carga e análise de tensão
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensãoJhayson Carvalho
 
Capítulo 02 considerações estatísticas
Capítulo 02   considerações estatísticasCapítulo 02   considerações estatísticas
Capítulo 02 considerações estatísticasJhayson Carvalho
 

Más de Jhayson Carvalho (10)

Capítulo 13 engrenagens
Capítulo 13   engrenagensCapítulo 13   engrenagens
Capítulo 13 engrenagens
 
Capítulo 12 lubrificação e mancais de munhão
Capítulo 12   lubrificação e mancais de munhãoCapítulo 12   lubrificação e mancais de munhão
Capítulo 12 lubrificação e mancais de munhão
 
Capítulo 09 solda
Capítulo 09   soldaCapítulo 09   solda
Capítulo 09 solda
 
Capítulo 08 parafusos
Capítulo 08   parafusosCapítulo 08   parafusos
Capítulo 08 parafusos
 
Capítulo 07 falha por fadiga resultante de carregamento variável
Capítulo 07   falha por fadiga resultante de carregamento variávelCapítulo 07   falha por fadiga resultante de carregamento variável
Capítulo 07 falha por fadiga resultante de carregamento variável
 
Capítulo 06 falhas resultantes de carregamento estático
Capítulo 06   falhas resultantes de carregamento estáticoCapítulo 06   falhas resultantes de carregamento estático
Capítulo 06 falhas resultantes de carregamento estático
 
Capítulo 04 carga e análise de tensão
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensão
 
Capítulo 03 materiais
Capítulo 03   materiaisCapítulo 03   materiais
Capítulo 03 materiais
 
Capítulo 02 considerações estatísticas
Capítulo 02   considerações estatísticasCapítulo 02   considerações estatísticas
Capítulo 02 considerações estatísticas
 
Capítulo 01 introdução
Capítulo 01   introduçãoCapítulo 01   introdução
Capítulo 01 introdução
 

Último

A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoordharasingh5698
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf203318pmpc
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756dollysharma2066
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 

Último (20)

A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 

Capítulo 11 mancais de contato rolante

  • 1. Chapter 11 11-1 For the deep-groove 02-series ball bearing with R = 0.90, the design life xD, in multiples of rating life, is xD = 30 000(300)(60) 106 = 540 Ans. The design radial load FD is FD = 1.2(1.898) = 2.278 kN From Eq. (11-6), C10 = 2.278 540 0.02 + 4.439[ln(1/0.9)]1/1.483 1/3 = 18.59 kN Ans. Table 11-2: Choose a 02-30 mm with C10 = 19.5 kN. Ans. Eq. (11-18): R = exp − 540(2.278/19.5)3 − 0.02 4.439 1.483 = 0.919 Ans. 11-2 For the Angular-contact 02-series ball bearing as described, the rating life multiple is xD = 50 000(480)(60) 106 = 1440 The design load is radial and equal to FD = 1.4(610) = 854 lbf = 3.80 kN Eq. (11-6): C10 = 854 1440 0.02 + 4.439[ln(1/0.9)]1/1.483 1/3 = 9665 lbf = 43.0 kN Table 11-2: Select a 02-55 mm with C10 = 46.2 kN. Ans. Using Eq. (11-18), R = exp − 1440(3.8/46.2)3 − 0.02 4.439 1.483 = 0.927 Ans. shi20396_ch11.qxd 8/12/03 9:51 AM Page 297
  • 2. 298 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 11-3 For the straight-Roller 03-series bearing selection, xD = 1440 rating lives from Prob. 11-2 solution. FD = 1.4(1650) = 2310 lbf = 10.279 kN C10 = 10.279 1440 1 3/10 = 91.1 kN Table 11-3: Select a 03-55 mm with C10 = 102 kN. Ans. Using Eq. (11-18), R = exp − 1440(10.28/102)10/3 − 0.02 4.439 1.483 = 0.942 Ans. 11-4 We can choose a reliability goal of √ 0.90 = 0.95 for each bearing. We make the selec- tions, find the existing reliabilities, multiply them together, and observe that the reliability goal is exceeded due to the roundup of capacity upon table entry. Another possibility is to use the reliability of one bearing, say R1. Then set the relia- bility goal of the second as R2 = 0.90 R1 or vice versa. This gives three pairs of selections to compare in terms of cost, geometry im- plications, etc. 11-5 Establish a reliability goal of √ 0.90 = 0.95 for each bearing. For a 02-series angular con- tact ball bearing, C10 = 854 1440 0.02 + 4.439[ln(1/0.95)]1/1.483 1/3 = 11 315 lbf = 50.4 kN Select a 02-60 mm angular-contact bearing with C10 = 55.9 kN. RA = exp − 1440(3.8/55.9)3 − 0.02 4.439 1.483 = 0.969 For a 03-series straight-roller bearing, C10 = 10.279 1440 0.02 + 4.439[ln(1/0.95)]1/1.483 3/10 = 105.2 kN Select a 03-60 mm straight-roller bearing with C10 = 123 kN. RB = exp − 1440(10.28/123)10/3 − 0.02 4.439 1.483 = 0.977 shi20396_ch11.qxd 8/12/03 9:51 AM Page 298
  • 3. Chapter 11 299 Form a table of existing reliabilities Rgoal RA RB 0.912 0.90 0.927 0.941 0.872 0.95 0.969 0.977 0.947 0.906 The possible products in the body of the table are displayed to the right of the table. One, 0.872, is predictably less than the overall reliability goal. The remaining three are the choices for a combined reliability goal of 0.90. Choices can be compared for the cost of bearings, outside diameter considerations, bore implications for shaft modifications and housing modifications. The point is that the designer has choices. Discover them before making the selection decision. Did the answer to Prob. 11-4 uncover the possibilities? To reduce the work to fill in the body of the table above, a computer program can be helpful. 11-6 Choose a 02-series ball bearing from manufacturer #2, having a service factor of 1. For Fr = 8 kN and Fa = 4 kN xD = 5000(900)(60) 106 = 270 Eq. (11-5): C10 = 8 270 0.02 + 4.439[ln(1/0.90)]1/1.483 1/3 = 51.8 kN Trial #1: From Table (11-2) make a tentative selection of a deep-groove 02-70 mm with C0 = 37.5 kN. Fa C0 = 4 37.5 = 0.107 Table 11-1: Fa/(V Fr ) = 0.5 > e X2 = 0.56, Y2 = 1.46 Eq. (11-9): Fe = 0.56(1)(8) + 1.46(4) = 10.32 kN Eq. (11-6): C10 = 10.32 270 1 1/3 = 66.7 kN > 61.8 kN Trial #2: From Table 11-2 choose a 02-80 mm having C10 = 70.2 and C0 = 45.0. Check: Fa C0 = 4 45 = 0.089 shi20396_ch11.qxd 8/12/03 9:51 AM Page 299
  • 4. 300 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Table 11-1: X2 = 0.56, Y2 = 1.53 Fe = 0.56(8) + 1.53(4) = 10.60 kN Eq. (11-6): C10 = 10.60 270 1 1/3 = 68.51 kN < 70.2 kN ∴ Selection stands. Decision: Specify a 02-80 mm deep-groove ball bearing. Ans. 11-7 From Prob. 11-6, xD = 270 and the final value of Fe is 10.60 kN. C10 = 10.6 270 0.02 + 4.439[ln(1/0.96)]1/1.483 1/3 = 84.47 kN Table 11-2: Choose a deep-groove ball bearing, based upon C10 load ratings. Trial #1: Tentatively select a 02-90 mm. C10 = 95.6, C0 = 62 kN Fa C0 = 4 62 = 0.0645 From Table 11-1, interpolate for Y2. Fa/C0 Y2 0.056 1.71 0.0645 Y2 0.070 1.63 Y2 − 1.71 1.63 − 1.71 = 0.0645 − 0.056 0.070 − 0.056 = 0.607 Y2 = 1.71 + 0.607(1.63 − 1.71) = 1.661 Fe = 0.56(8) + 1.661(4) = 11.12 kN C10 = 11.12 270 0.02 + 4.439[ln(1/0.96)]1/1.483 1/3 = 88.61 kN < 95.6 kN Bearing is OK. Decision: Specify a deep-groove 02-90 mm ball bearing. Ans. shi20396_ch11.qxd 8/12/03 9:51 AM Page 300
  • 5. Chapter 11 301 11-8 For the straight cylindrical roller bearing specified with a service factor of 1, R = 0.90 and Fr = 12 kN xD = 4000(750)(60) 106 = 180 C10 = 12 180 1 3/10 = 57.0 kN Ans. 11-9 Assume concentrated forces as shown. Pz = 8(24) = 192 lbf Py = 8(30) = 240 lbf T = 192(2) = 384 lbf · in T x = −384 + 1.5F cos 20◦ = 0 F = 384 1.5(0.940) = 272 lbf Mz O = 5.75Py + 11.5R y A − 14.25F sin 20◦ = 0; thus 5.75(240) + 11.5R y A − 14.25(272)(0.342) = 0 R y A = −4.73 lbf M y O = −5.75Pz − 11.5Rz A − 14.25F cos 20◦ = 0; thus −5.75(192) − 11.5Rz A − 14.25(272)(0.940) = 0 Rz A = −413 lbf; RA = [(−413)2 + (−4.73)2 ]1/2 = 413 lbf Fz = Rz O + Pz + Rz A + F cos 20◦ = 0 Rz O + 192 − 413 + 272(0.940) = 0 Rz O = −34.7 lbf B O z 11 1 2 " Rz O Ry O Pz Py T F 20Њ R y A R z A A T y 2 3 4 " x shi20396_ch11.qxd 8/12/03 9:51 AM Page 301
  • 6. 302 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Fy = R y O + Py + R y A − F sin 20◦ = 0 R y O + 240 − 4.73 − 272(0.342) = 0 R y O = −142 lbf RO = [(−34.6)2 + (−142)2 ]1/2 = 146 lbf So the reaction at A governs. Reliability Goal: √ 0.92 = 0.96 FD = 1.2(413) = 496 lbf xD = 30 000(300)(60/106 ) = 540 C10 = 496 540 0.02 + 4.439[ln(1/0.96)]1/1.483 1/3 = 4980 lbf = 22.16 kN A 02-35 bearing will do. Decision: Specify an angular-contact 02-35 mm ball bearing for the locations at A and O. Check combined reliability. Ans. 11-10 For a combined reliability goal of 0.90, use √ 0.90 = 0.95 for the individual bearings. x0 = 50 000(480)(60) 106 = 1440 The resultant of the given forces are RO = 607 lbf and RB = 1646 lbf. At O: Fe = 1.4(607) = 850 lbf Ball: C10 = 850 1440 0.02 + 4.439[ln(1/0.95)]1/1.483 1/3 = 11 262 lbf or 50.1 kN Select a 02-60 mm angular-contact ball bearing with a basic load rating of 55.9 kN. At B: Fe = 1.4(1646) = 2304 lbf Roller: C10 = 2304 1440 0.02 + 4.439[ln(1/0.95)]1/1.483 3/10 = 23 576 lbf or 104.9 kN Select a 02-80 mm cylindrical roller or a 03-60 mm cylindrical roller. The 03-series roller has the same bore as the 02-series ball. z 20 16 10 O FA RO RB B A C y x FC 20Њ shi20396_ch11.qxd 8/12/03 9:51 AM Page 302
  • 7. Chapter 11 303 11-11 The reliability of the individual bearings is R = √ 0.999 = 0.9995 From statics, R y O = −163.4 N, Rz O = 107 N, RO = 195 N R y E = −89.1 N, Rz E = −174.4 N, RE = 196 N xD = 60 000(1200)(60) 106 = 4320 C10 = 0.196 4340 0.02 + 4.439[ln(1/0.9995)]1/1.483 1/3 = 8.9 kN A 02-25 mm deep-groove ball bearing has a basic load rating of 14.0 kN which is ample. An extra-light bearing could also be investigated. 11-12 Given: Fr A = 560 lbf or 2.492 kN Fr B = 1095 lbf or 4.873 kN Trial #1: Use KA = KB = 1.5 and from Table 11-6 choose an indirect mounting. 0.47Fr A KA <? > 0.47Fr B KB − (−1)(0) 0.47(2.492) 1.5 <? > 0.47(4.873) 1.5 0.781 < 1.527 Therefore use the upper line of Table 11-6. FaA = FaB = 0.47Fr B KB = 1.527 kN PA = 0.4Fr A + KA FaA = 0.4(2.492) + 1.5(1.527) = 3.29 kN PB = Fr B = 4.873 kN 150 300 400 A O Fz A F y A E Rz E R y E FC C Rz O R y O z x y shi20396_ch11.qxd 8/12/03 9:51 AM Page 303
  • 8. 304 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Fig. 11-16: fT = 0.8 Fig. 11-17: fV = 1.07 Thus, a3l = fT fV = 0.8(1.07) = 0.856 Individual reliability: Ri = √ 0.9 = 0.95 Eq. (11-17): (C10)A = 1.4(3.29) 40 000(400)(60) 4.48(0.856)(1 − 0.95)2/3(90)(106) 0.3 = 11.40 kN (C10)B = 1.4(4.873) 40 000(400)(60) 4.48(0.856)(1 − 0.95)2/3(90)(106) 0.3 = 16.88 kN From Fig. 11-14, choose cone 32305 and cup 32305 which provide Fr = 17.4 kN and K = 1.95. With K = 1.95 for both bearings, a second trial validates the choice of cone 32305 and cup 32305. Ans. 11-13 R = √ 0.95 = 0.975 T = 240(12)(cos 20◦ ) = 2706 lbf · in F = 2706 6 cos 25◦ = 498 lbf In xy-plane: MO = −82.1(16) − 210(30) + 42R y C = 0 R y C = 181 lbf R y O = 82 + 210 − 181 = 111 lbf In xz-plane: MO = 226(16) − 452(30) − 42Rz c = 0 Rz C = −237 lbf Rz O = 226 − 451 + 237 = 12 lbf RO = (1112 + 122 )1/2 = 112 lbf Ans. RC = (1812 + 2372 )1/2 = 298 lbf Ans. FeO = 1.2(112) = 134.4 lbf FeC = 1.2(298) = 357.6 lbf xD = 40 000(200)(60) 106 = 480 z 14" 16" 12" Rz O R z C R y O A B C R y C O 451 210 226 T T 82.1 x y shi20396_ch11.qxd 8/12/03 9:51 AM Page 304
  • 9. Chapter 11 305 (C10)O = 134.4 480 0.02 + 4.439[ln(1/0.975)]1/1.483 1/3 = 1438 lbf or 6.398 kN (C10)C = 357.6 480 0.02 + 4.439[ln(1/0.975)]1/1.483 1/3 = 3825 lbf or 17.02 kN Bearing at O: Choose a deep-groove 02-12 mm. Ans. Bearing at C: Choose a deep-groove 02-30 mm. Ans. There may be an advantage to the identical 02-30 mm bearings in a gear-reduction unit. 11-14 Shafts subjected to thrust can be constrained by bearings, one of which supports the thrust. The shaft floats within the endplay of the second (Roller) bearing. Since the thrust force here is larger than any radial load, the bearing absorbing the thrust is heavily loaded com- pared to the other bearing. The second bearing is thus oversized and does not contribute measurably to the chance of failure. This is predictable. The reliability goal is not √ 0.99, but 0.99 for the ball bearing. The reliability of the roller is 1. Beginning here saves effort. Bearing at A (Ball) Fr = (362 + 2122 )1/2 = 215 lbf = 0.957 kN Fa = 555 lbf = 2.47 kN Trial #1: Tentatively select a 02-85 mm angular-contact with C10 = 90.4 kN and C0 = 63.0 kN. Fa C0 = 2.47 63.0 = 0.0392 xD = 25 000(600)(60) 106 = 900 Table 11-1: X2 = 0.56, Y2 = 1.88 Fe = 0.56(0.957) + 1.88(2.47) = 5.18 kN FD = fA Fe = 1.3(5.18) = 6.73 kN C10 = 6.73 900 0.02 + 4.439[ln(1/0.99)]1/1.483 1/3 = 107.7 kN > 90.4 kN Trial #2: Tentatively select a 02-95 mm angular-contact ball with C10 = 121 kN and C0 = 85 kN. Fa C0 = 2.47 85 = 0.029 shi20396_ch11.qxd 8/12/03 9:51 AM Page 305
  • 10. 306 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Table 11-1: Y2 = 1.98 Fe = 0.56(0.957) + 1.98(2.47) = 5.43 kN FD = 1.3(5.43) = 7.05 kN C10 = 7.05 900 0.02 + 4.439[ln(1/0.99)]1/1.483 1/3 = 113 kN < 121 kN O.K. Select a 02-95 mm angular-contact ball bearing. Ans. Bearing at B (Roller): Any bearing will do since R = 1. Let’s prove it. From Eq. (11-18) when af FD C10 3 xD < x0 R = 1 The smallest 02-series roller has a C10 = 16.8 kN for a basic load rating. 0.427 16.8 3 (900) < ? > 0.02 0.0148 < 0.02 ∴ R = 1 Spotting this early avoided rework from √ 0.99 = 0.995. Any 02-series roller bearing will do. Same bore or outside diameter is a common choice. (Why?) Ans. 11-15 Hoover Ball-bearing Division uses the same 2-parameter Weibull model as Timken: b = 1.5, θ = 4.48. We have some data. Let’s estimate parameters b and θ from it. In Fig. 11-5, we will use line AB. In this case, B is to the right of A. For F = 18 kN, (x)1 = 115(2000)(16) 106 = 13.8 This establishes point 1 on the R = 0.90 line. 1 0 10 2 10 18 1 2 39.6 100 1 10 13.8 72 1 100 x 2 log x F A B log F R ϭ 0.90 R ϭ 0.20 shi20396_ch11.qxd 8/12/03 9:51 AM Page 306
  • 11. Chapter 11 307 The R = 0.20 locus is above and parallel to the R = 0.90 locus. For the two-parameter Weibull distribution, x0 = 0 and points A and B are related by: xA = θ[ln(1/0.90)]1/b (1) xB = θ[ln(1/0.20)]1/b and xB/xA is in the same ratio as 600/115. Eliminating θ b = ln[ln(1/0.20)/ ln(1/0.90)] ln(600/115) = 1.65 Solving for θ in Eq. (1) θ = xA [ln(1/RA)]1/1.65 = 1 [ln(1/0.90)]1/1.65 = 3.91 Therefore, for the data at hand, R = exp − x 3.91 1.65 Check R at point B: xB = (600/115) = 5.217 R = exp − 5.217 3.91 1.65 = 0.20 Note also, for point 2 on the R = 0.20 line. log(5.217) − log(1) = log(xm)2 − log(13.8) (xm)2 = 72 11-16 This problem is rich in useful variations. Here is one. Decision: Make straight roller bearings identical on a given shaft. Use a reliability goal of (0.99)1/6 = 0.9983. Shaft a Fr A = (2392 + 1112 )1/2 = 264 lbf or 1.175 kN Fr B = (5022 + 10752 )1/2 = 1186 lbf or 5.28 kN Thus the bearing at B controls xD = 10 000(1200)(60) 106 = 720 0.02 + 4.439[ln(1/0.9983)]1/1.483 = 0.080 26 C10 = 1.2(5.2) 720 0.080 26 0.3 = 97.2 kN Select either a 02-80 mm with C10 = 106 kN or a 03-55 mm with C10 = 102 kN shi20396_ch11.qxd 8/12/03 9:51 AM Page 307
  • 12. 308 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Shaft b Fr C = (8742 + 22742 )1/2 = 2436 lbf or 10.84 kN Fr D = (3932 + 6572 )1/2 = 766 lbf or 3.41 kN The bearing at C controls xD = 10 000(240)(60) 106 = 144 C10 = 1.2(10.84) 144 0.0826 0.3 = 122 kN Select either a 02-90 mm with C10 = 142 kN or a 03-60 mm with C10 = 123 kN Shaft c Fr E = (11132 + 23852 )1/2 = 2632 lbf or 11.71 kN Fr F = (4172 + 8952 )1/2 = 987 lbf or 4.39 kN The bearing at E controls xD = 10 000(80)(60/106 ) = 48 C10 = 1.2(11.71) 48 0.0826 0.3 = 94.8 kN Select a 02-80 mm with C10 = 106 kN or a 03-60 mm with C10 = 123 kN 11-17 The horizontal separation of the R = 0.90 loci in a log F-log x plot such as Fig. 11-5 will be demonstrated. We refer to the solution of Prob. 11-15 to plot point G (F = 18 kN, xG = 13.8). We know that (C10)1 = 39.6 kN, x1 = 1. This establishes the unim- proved steel R = 0.90 locus, line AG. For the improved steel (xm)1 = 360(2000)(60) 106 = 43.2 We plot point G (F = 18 kN, xG = 43.2), and draw the R = 0.90 locus AmG parallel to AG 1 0 10 2 10 18 G GЈ 39.6 55.8 100 1 10 13.8 1 100 2 x log x F A Am Improved steel log F Unimproved steel 43.2 R ϭ 0.90 R ϭ 0.90 1 3 1 3 shi20396_ch11.qxd 8/12/03 9:51 AM Page 308
  • 13. Chapter 11 309 We can calculate (C10)m by similar triangles. log(C10)m − log 18 log 43.2 − log 1 = log 39.6 − log 18 log 13.8 − log 1 log(C10)m = log 43.2 log 13.8 log 39.6 18 + log 18 (C10)m = 55.8 kN The usefulness of this plot is evident. The improvement is 43.2/13.8 = 3.13 fold in life. This result is also available by (L10)m/(L10)1 as 360/115 or 3.13 fold, but the plot shows the improvement is for all loading. Thus, the manufacturer’s assertion that there is at least a 3-fold increase in life has been demonstrated by the sample data given. Ans. 11-18 Express Eq. (11-1) as Fa 1 L1 = Ca 10L10 = K For a ball bearing, a = 3 and for a 02-30 mm angular contact bearing, C10 = 20.3 kN. K = (20.3)3 (106 ) = 8.365(109 ) At a load of 18 kN, life L1 is given by: L1 = K Fa 1 = 8.365(109 ) 183 = 1.434(106 ) rev For a load of 30 kN, life L2 is: L2 = 8.365(109 ) 303 = 0.310(106 ) rev In this case, Eq. (7-57) – the Palmgren-Miner cycle ratio summation rule – can be ex- pressed as l1 L1 + l2 L2 = 1 Substituting, 200 000 1.434(106) + l2 0.310(106) = 1 l2 = 0.267(106 ) rev Ans. Check: 200 000 1.434(106) + 0.267(106 ) 0.310(106) = 1 O.K. 11-19 Total life in revolutions Let: l = total turns f1 = fraction of turns at F1 f2 = fraction of turns at F2 shi20396_ch11.qxd 8/12/03 9:51 AM Page 309
  • 14. 310 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design From the solution of Prob. 11-18, L1 = 1.434(106 ) rev and L2 = 0.310(106 ) rev. Palmgren-Miner rule: l1 L1 + l2 L2 = f1l L1 + f2l L2 = 1 from which l = 1 f1/L1 + f2/L2 l = 1 {0.40/[1.434(106)]} + {0.60/[0.310(106)]} = 451 585 rev Ans. Total life in loading cycles 4 min at 2000 rev/min = 8000 rev 6 min 10 min/cycle at 2000 rev/min = 12 000 rev 20 000 rev/cycle 451 585 rev 20 000 rev/cycle = 22.58 cycles Ans. Total life in hours 10 min cycle 22.58 cycles 60 min/h = 3.76 h Ans. 11-20 While we made some use of the log F-log x plot in Probs. 11-15 and 11-17, the principal use of Fig. 11-5 is to understand equations (11-6) and (11-7) in the discovery of the cata- log basic load rating for a case at hand. Point D FD = 495.6 lbf log FD = log 495.6 = 2.70 xD = 30 000(300)(60) 106 = 540 log xD = log 540 = 2.73 KD = F3 DxD = (495.6)3 (540) = 65.7(109 ) lbf3 · turns log KD = log[65.7(109 )] = 10.82 FD has the following uses: Fdesign, Fdesired, Fe when a thrust load is present. It can include application factor af , or not. It depends on context. shi20396_ch11.qxd 8/12/03 9:51 AM Page 310
  • 15. Chapter 11 311 Point B xB = 0.02 + 4.439[ln(1/0.99)]1/1.483 = 0.220 turns log xB = log 0.220 = −0.658 FB = FD xD xB 1/3 = 495.6 540 0.220 1/3 = 6685 lbf Note: Example 11-3 used Eq. (11-7). Whereas, here we basically used Eq. (11-6). log FB = log(6685) = 3.825 KD = 66853 (0.220) = 65.7(109 ) lbf3 · turns (as it should) Point A FA = FB = C10 = 6685 lbf log C10 = log(6685) = 3.825 xA = 1 log xA = log(1) = 0 K10 = F3 AxA = C3 10(1) = 66853 = 299(109 ) lbf3 · turns Note that KD/K10 = 65.7(109 )/[299(109 )] = 0.220, which is xB. This is worth knowing since K10 = KD xB log K10 = log[299(109 )] = 11.48 Now C10 = 6685 lbf = 29.748 kN, which is required for a reliability goal of 0.99. If we select an angular contact 02-40 mm ball bearing, then C10 = 31.9 kN = 7169 lbf. 0.1 Ϫ1 Ϫ0.658 1 0 10 1 102 2 102 2 103 495.6 6685 3 104 4 103 3 x log x F A D B log F 540 shi20396_ch11.qxd 8/12/03 9:51 AM Page 311