SlideShare una empresa de Scribd logo
1 de 16
Descargar para leer sin conexión
UPC-GCO
UPC-




                                       GCO
                                       Ultra-Dense, Transparent and Resilient
                                          Ring-Tree Access Network using
                                         Coupler-based Remote Nodes and
                                              Homodyne Transceivers
Universitat Politècnica de Catalunya




                                                                Josep M. Fabrega and Josep Prat
                                                                             jprat@tsc.upc.edu

                                                          Universitat Politècnica de Catalunya (UPC)
                                                   Dept. of Signal Theory and Communications (TSC)
                                                               Optical Communications Group (GCO)
                                                                              www.tsc.upc.edu/gco
UPC   Optical access evolution



          GCO                                                       ngPON


                                                                     FTTH ultra-
          COST                                                     dense WDM-PON
                                                        FTTH
                                                       WDM-PON
                                  FTTH-PtP                           FTTH
                                              FTTH                         TIME
                                                                 WDM&TDM-PON
                 CATV      xDSL              G/E-PON
                                                                            CAPACITY
                    ADSL
          POTs                                              WDM   - PON

                                                                              TIME
UPC   Introduction



          GCO
        1000 wavelengts
        Low-speed
         ∙ Rb = BWu
         ∙ Lambda-to-the-user

          WDM

                                              TIME


                                Few wavelengths
                        TDM     High-speed
                                ∙ Rb>>BWu
                                ∙ Power consumption
UPC   Introduction



          GCO
       Migration from TDM/WDM to pure WDM
       Ultra-dense WDM PONs
       ∙ Multiple low capacity channels
           E.g. 1 Gbps
                                                   OL
                                                        3 GHz


                     ...........................


                                                                λ


                  More than 1500 ch. at C band
UPC   Introduction



          GCO
       ∙ IM-DD systems limited by:
           Sensitivity
           Optical filters selectivity
                                                                       λ
                                                                       LO
                                                                                3 GHz

                                                  ...........................

                                                                                   λ

                                            Optical
       ∙ Coherent systems                   Input                                       -   I p(t)
                                                                                        +
           Heterodyne
            – Image frequency problems            Local
                                                  Laser
           Homodyne
            – oPLL (phase lock problems)
            – IQ, Feed-Forward, Phase Diversity
UPC   Introduction

      DPSK


            GCO
      Downstream   Transceiver


                      IM or
                       PM
                                                 -
                                                 +




                      Data
                                                     Data and
                                                       Phase
                                                     recovery
                              Local
                              laser
                                                      Data
                                      Receiver
UPC   Time Switching Phase Diversity Receiver



          GCO
        Phase diversity achieved by switching local
        laser phase
        3 dB penalty with respect to an ideal
        homodyne system due to the phase switching
        Several schemes proposed




                       I    Q       I     Q
                                                     t
                  t0   t0+T/2   t0+T t0+3T/2 t0+2T
UPC   Time Switching Phase Diversity Receiver



                GCO
                                                        I’
                                                                 Tb/2
      Optical                                                                  Tb
      Input                          -
                                                        Q’
                                     +
                                                                               Tb

                                                  90º


            Phase                                 0º                                      Vout
          Scrambler                                                              CLK
                                                                               Recovery
             Laser           I’

                                    +                                   Vout

                            Q’                                                      Data out



      [1] J. Prat and J. M. Fabrega, ECOC 2005, Glasgow, Scotland, sept. 2005, paper We.P.104
Time Switching Phase & Polarization
UPC   Diversity Receiver




                GCO
                                                                  3Tb/2
      Optical                                                                  Tb
      Input                      -                                  Tb/2
                                 +
                                                                               Tb
                                      V                               Tb/4
              Pol.                        H
           Scrambler                                                           Tb

                                                                                 Tb
                                          90º       freq.
             Phase                            0º   doubler
           Scrambler                                                CLK
                                                                  Recovery



            Laser                                                                   Data out


      [3] J. M. Fabrega and J. Prat, OFC 2006, Anaheim CA, March 2007, paper JThB45
UPC   Time Switching Phase Diversity Receiver



              GCO
      ES(t)                              I (t)             If(t)
                                        - P
                                       +

      ELO(t)                                                       Tb          Tb/2

          Phase                                                      CLK
        Scrambler                                   90º            Recovery
                                                      0º



            Laser
      Transmission experiments (1Gbps) [2]:                  Data out
      • -38 dBm sensitivity @ BER 10 -9

      • 18 MHz linewidth tolerance @ BER 10-3
      • 100 MHz detuning tolerance
      • WDM Channel spacing of 3 GHz @ 1 dB Penalty BER 10-9
       [2] J. M. Fabrega and J. Prat, OSA Optics Letters, vol. 32, no. 5, pp. 463-465, March 2007
UPC   Network topology and wavelength plan



             GCO
       Ring+trees PON (SARDANA-like)
                                                                     x/y coupler x/y coupler
                        RNn
              West
                                                                                  50/50
        CO    East
                                                                     RNn          coupler


                               RN2
                       RN1               CPE
              1:K power
              splitter                             CPE
                       2 splitters        CPE
       CPE                         CPE
                       per RN
                                                                                      4 GHz
        CPE   CPE
                                                ..................

                                                                                               λ
                                                           C band
UPC   Central Office scheme



          GCO
       DFB lasers + splitters + switches + EDFA
       Double fiber architecture
       ∙ No Rayleigh Backscattering

                              CO               West




                              Optical switch   East
                      Tx/Rx
UPC   WDM tree PON experiments



           GCO
       Transmission experiments at 1 Gbps
       DPSK modulation format
       CO output power: 0 dBm
       Losses
       ∙ 30 km fiber spool      5.2 dB
       ∙ 4 Remote nodes
             1.6 dB for pass-through
             13.2 dB for drop
       ∙ Second distribution stage
             Emulated by means of a VOA
             21 dB losses to the link 1:128 splitting ratio
       Overall splitting ratio: 4x2x128=1024 homes
                                                            0

                                                           -10
                                             Power (dBm)




                                                           -20

                                                           -30

                                                           -40

                                                           -50

                                                           -60
                                                                 0   500      1000       1500   2000
                                                                           Frequency (MHz)
UPC   Experimental results



                             GCO
                            0

                                                                                     RN1
                            -2
                                                                                     RN2
                                                                                     RN4
                            -4
            lo g (B E R )




                            -6
                                                                                                      BER floor due to
                            -8                                                                        phase noise and
                                                                                                      mixer electronics.
                      -10
                                                                                                      FEC required for
                                                                                                      resilience
                      -12
                                 -52   -50     -48     -46       -44      -42       -40      -38
                                                         Pin (dBm)
      10-9 (*10-6 )                              Normal Operation                                     Resilient mode

                                         RN1           RN2               RN4                RN1           RN2            RN4

      Sensitivity                      -43 dBm       -41.3 dBm         -44.3 dBm*         -40.8 dBm     -41.6 dBm      -40-2 dBm
      Link Losses                      39.4 dB        41 dB             44.2 dB            44.2 dB        41 dB         39.4 dB
      PowerBudget                      42.9 dB        41.2 dB          -44.2 dBm           40.7 dB       41.5 dB        40.1 dB
UPC   Conclusions



            GCO
        A combined ring-tree access network
       topology has been demonstrated
       ∙   Flexible, scalable
       ∙   large number of users (up to 1024
                                        1024)
       ∙   Large capacity (more than 1 Tb/s)
       ∙   completely passive outside plant
       ∙   wavelength-transparent remote nodes
             GPON ODN compatible
       Transmission experiments at 1 Gb/s
       ∙   sensitivity of -43 dBm in RN1, after 30 km
       ∙   Power budget of 42.9 dB (49 dB at 10-3)
       ∙   4 GHz channel spacing
       ∙   FEC is convenient for robutsness.
UPC   Acknowledgements



          GCO
        Dr.-Ing. Ronald Freund (HHI)
        Dr. Carlos Bock (UEssex)




                      Thanks!!
                                         jprat@tsc.upc.edu
                                       www.tsc.upc.edu/gco

Más contenido relacionado

La actualidad más candente

MIMO Channel Capacity
MIMO Channel CapacityMIMO Channel Capacity
MIMO Channel CapacityPei-Che Chang
 
Report :- MIMO features In WiMAX and LTE: An Overview
Report :- MIMO features In WiMAX and LTE: An OverviewReport :- MIMO features In WiMAX and LTE: An Overview
Report :- MIMO features In WiMAX and LTE: An OverviewPrav_Kalyan
 
Ofdm for optical communications co ofdm
Ofdm for optical communications co ofdmOfdm for optical communications co ofdm
Ofdm for optical communications co ofdmJayakumar M
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDMPei-Che Chang
 
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...Rupesh Sharma
 
Modulation of digital and analog data
Modulation of digital and analog dataModulation of digital and analog data
Modulation of digital and analog dataPuspa Dhamayanti
 
Lect 11.regenerative repeaters
Lect 11.regenerative repeatersLect 11.regenerative repeaters
Lect 11.regenerative repeatersNebiye Slmn
 
Optical Fibre & Introduction to TDM & DWDM
Optical Fibre & Introduction to TDM & DWDMOptical Fibre & Introduction to TDM & DWDM
Optical Fibre & Introduction to TDM & DWDMHasna Heng
 
Presentation12
Presentation12Presentation12
Presentation12fadocs
 
Mimo ofdm wireless communications with matlab
Mimo ofdm wireless communications with matlabMimo ofdm wireless communications with matlab
Mimo ofdm wireless communications with matlabntnam113
 
OFDM (Orthogonal Frequency Division Multiplexing )
OFDM (Orthogonal Frequency Division Multiplexing �)OFDM (Orthogonal Frequency Division Multiplexing �)
OFDM (Orthogonal Frequency Division Multiplexing )Juan Camilo Sacanamboy
 
SMPTE_DFW_ATSC_MH_How_it_Works
SMPTE_DFW_ATSC_MH_How_it_WorksSMPTE_DFW_ATSC_MH_How_it_Works
SMPTE_DFW_ATSC_MH_How_it_WorksDale Rochon
 

La actualidad más candente (20)

MIMO Channel Capacity
MIMO Channel CapacityMIMO Channel Capacity
MIMO Channel Capacity
 
Report :- MIMO features In WiMAX and LTE: An Overview
Report :- MIMO features In WiMAX and LTE: An OverviewReport :- MIMO features In WiMAX and LTE: An Overview
Report :- MIMO features In WiMAX and LTE: An Overview
 
Ofdm for optical communications co ofdm
Ofdm for optical communications co ofdmOfdm for optical communications co ofdm
Ofdm for optical communications co ofdm
 
Ofdm communication system
Ofdm communication systemOfdm communication system
Ofdm communication system
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDM
 
Ofdm(tutorial)
Ofdm(tutorial)Ofdm(tutorial)
Ofdm(tutorial)
 
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
 
OFDM Final
OFDM FinalOFDM Final
OFDM Final
 
Modulation of digital and analog data
Modulation of digital and analog dataModulation of digital and analog data
Modulation of digital and analog data
 
Vblast
VblastVblast
Vblast
 
Lect 11.regenerative repeaters
Lect 11.regenerative repeatersLect 11.regenerative repeaters
Lect 11.regenerative repeaters
 
Optical Fibre & Introduction to TDM & DWDM
Optical Fibre & Introduction to TDM & DWDMOptical Fibre & Introduction to TDM & DWDM
Optical Fibre & Introduction to TDM & DWDM
 
Presentation12
Presentation12Presentation12
Presentation12
 
PAPR Reduction
PAPR ReductionPAPR Reduction
PAPR Reduction
 
Mimo ofdm wireless communications with matlab
Mimo ofdm wireless communications with matlabMimo ofdm wireless communications with matlab
Mimo ofdm wireless communications with matlab
 
Lte course
Lte courseLte course
Lte course
 
OFDM (Orthogonal Frequency Division Multiplexing )
OFDM (Orthogonal Frequency Division Multiplexing �)OFDM (Orthogonal Frequency Division Multiplexing �)
OFDM (Orthogonal Frequency Division Multiplexing )
 
Final ppt
Final pptFinal ppt
Final ppt
 
WDM Basics
WDM BasicsWDM Basics
WDM Basics
 
SMPTE_DFW_ATSC_MH_How_it_Works
SMPTE_DFW_ATSC_MH_How_it_WorksSMPTE_DFW_ATSC_MH_How_it_Works
SMPTE_DFW_ATSC_MH_How_it_Works
 

Destacado

Low Cost Transceiver For Ultra Dense WDM Access Networks
Low Cost Transceiver For Ultra Dense WDM Access NetworksLow Cost Transceiver For Ultra Dense WDM Access Networks
Low Cost Transceiver For Ultra Dense WDM Access NetworksJosep Fabrega
 
ITRI 5G Tech. -- UDN (Ultra Dense Network)
ITRI 5G Tech. -- UDN (Ultra Dense Network)ITRI 5G Tech. -- UDN (Ultra Dense Network)
ITRI 5G Tech. -- UDN (Ultra Dense Network)Stanley Tseng
 
Technologies for future mobile transport networks
Technologies for future mobile transport networksTechnologies for future mobile transport networks
Technologies for future mobile transport networksITU
 
Joint InBand Backhauling and Interference Mitigation in 5G Heterogeneous Netw...
Joint InBand Backhauling and Interference Mitigation in 5G Heterogeneous Netw...Joint InBand Backhauling and Interference Mitigation in 5G Heterogeneous Netw...
Joint InBand Backhauling and Interference Mitigation in 5G Heterogeneous Netw...TrungKienVu3
 
20150519.io t.london
20150519.io t.london20150519.io t.london
20150519.io t.londonHamid Falaki
 
Device to Device communication
Device to Device communicationDevice to Device communication
Device to Device communicationSharu Sparky
 
A survey on Device-to-Device Communication
A survey on Device-to-Device CommunicationA survey on Device-to-Device Communication
A survey on Device-to-Device CommunicationKuldeep Narayan Singh
 
GSA presentation at GTI spectrum workshop at ITU bangkok
GSA presentation at GTI spectrum workshop at ITU bangkokGSA presentation at GTI spectrum workshop at ITU bangkok
GSA presentation at GTI spectrum workshop at ITU bangkokSitha Sok
 
5G Spectrum in EUROPE
5G Spectrum in EUROPE5G Spectrum in EUROPE
5G Spectrum in EUROPESitha Sok
 
Enabling D2D communication in mmWave 5G networks
Enabling D2D communication in mmWave 5G networks Enabling D2D communication in mmWave 5G networks
Enabling D2D communication in mmWave 5G networks Bayar shahab
 
An introduction to MIMO
An introduction to MIMOAn introduction to MIMO
An introduction to MIMOAli Rahmanpour
 
Millimeter wave mobile communication for 5G cellular.
Millimeter  wave  mobile communication for 5G cellular.Millimeter  wave  mobile communication for 5G cellular.
Millimeter wave mobile communication for 5G cellular.Apurv Modi
 

Destacado (20)

Low Cost Transceiver For Ultra Dense WDM Access Networks
Low Cost Transceiver For Ultra Dense WDM Access NetworksLow Cost Transceiver For Ultra Dense WDM Access Networks
Low Cost Transceiver For Ultra Dense WDM Access Networks
 
ITRI 5G Tech. -- UDN (Ultra Dense Network)
ITRI 5G Tech. -- UDN (Ultra Dense Network)ITRI 5G Tech. -- UDN (Ultra Dense Network)
ITRI 5G Tech. -- UDN (Ultra Dense Network)
 
Technologies for future mobile transport networks
Technologies for future mobile transport networksTechnologies for future mobile transport networks
Technologies for future mobile transport networks
 
Joint InBand Backhauling and Interference Mitigation in 5G Heterogeneous Netw...
Joint InBand Backhauling and Interference Mitigation in 5G Heterogeneous Netw...Joint InBand Backhauling and Interference Mitigation in 5G Heterogeneous Netw...
Joint InBand Backhauling and Interference Mitigation in 5G Heterogeneous Netw...
 
20150519.io t.london
20150519.io t.london20150519.io t.london
20150519.io t.london
 
Kdl Presentation
Kdl PresentationKdl Presentation
Kdl Presentation
 
LTE-U
LTE-ULTE-U
LTE-U
 
MY PPt
MY PPtMY PPt
MY PPt
 
Device to Device communication
Device to Device communicationDevice to Device communication
Device to Device communication
 
A survey on Device-to-Device Communication
A survey on Device-to-Device CommunicationA survey on Device-to-Device Communication
A survey on Device-to-Device Communication
 
GSA presentation at GTI spectrum workshop at ITU bangkok
GSA presentation at GTI spectrum workshop at ITU bangkokGSA presentation at GTI spectrum workshop at ITU bangkok
GSA presentation at GTI spectrum workshop at ITU bangkok
 
5G Spectrum in EUROPE
5G Spectrum in EUROPE5G Spectrum in EUROPE
5G Spectrum in EUROPE
 
Enabling D2D communication in mmWave 5G networks
Enabling D2D communication in mmWave 5G networks Enabling D2D communication in mmWave 5G networks
Enabling D2D communication in mmWave 5G networks
 
WPT
WPTWPT
WPT
 
D2D - Device to Device Communication
D2D - Device to Device CommunicationD2D - Device to Device Communication
D2D - Device to Device Communication
 
MILLIMETER WAVE FOR 5G CELLULAR
MILLIMETER WAVE FOR 5G CELLULARMILLIMETER WAVE FOR 5G CELLULAR
MILLIMETER WAVE FOR 5G CELLULAR
 
5G TECHNOLOGY
5G TECHNOLOGY5G TECHNOLOGY
5G TECHNOLOGY
 
An introduction to MIMO
An introduction to MIMOAn introduction to MIMO
An introduction to MIMO
 
Millimeter wave mobile communication for 5G cellular.
Millimeter  wave  mobile communication for 5G cellular.Millimeter  wave  mobile communication for 5G cellular.
Millimeter wave mobile communication for 5G cellular.
 
Mimo
MimoMimo
Mimo
 

Similar a Ultra-Dense, Transparent and Resilient Ring-Tree Access Network using Coupler-based Remote Nodes and Homodyne Transceivers

Sec1 V1d0 Aug13 2008 Draft
Sec1 V1d0 Aug13 2008 DraftSec1 V1d0 Aug13 2008 Draft
Sec1 V1d0 Aug13 2008 Draftovophagy
 
Novel ICI Supressing Receiver for High-Mobility DVB-T2 Reception with Large F...
Novel ICI Supressing Receiver for High-Mobility DVB-T2 Reception with Large F...Novel ICI Supressing Receiver for High-Mobility DVB-T2 Reception with Large F...
Novel ICI Supressing Receiver for High-Mobility DVB-T2 Reception with Large F...TSC University of Mondragon
 
History of 100G and Internet2
History of 100G and Internet2History of 100G and Internet2
History of 100G and Internet2Ed Dodds
 
10 gpon information technology interfaces, 2007. iti 2007. 29th internationa...
10 gpon  information technology interfaces, 2007. iti 2007. 29th internationa...10 gpon  information technology interfaces, 2007. iti 2007. 29th internationa...
10 gpon information technology interfaces, 2007. iti 2007. 29th internationa...ngoctrampnt
 
INITIAL OBSERVATION RESULTS FOR PRECIPITATION ON THE KU-BAND BROADBAND RADAR ...
INITIAL OBSERVATION RESULTS FOR PRECIPITATION ON THE KU-BAND BROADBAND RADAR ...INITIAL OBSERVATION RESULTS FOR PRECIPITATION ON THE KU-BAND BROADBAND RADAR ...
INITIAL OBSERVATION RESULTS FOR PRECIPITATION ON THE KU-BAND BROADBAND RADAR ...grssieee
 
2Fonet GEPON Presentation
2Fonet GEPON Presentation2Fonet GEPON Presentation
2Fonet GEPON PresentationScorpAL
 
Towards Terabit per Second Optical Networking
Towards Terabit per Second Optical NetworkingTowards Terabit per Second Optical Networking
Towards Terabit per Second Optical NetworkingCPqD
 
Communications Service Provider Networks
Communications Service Provider NetworksCommunications Service Provider Networks
Communications Service Provider NetworksAnuradha Udunuwara
 
High Capacity Optical Access Networks
High Capacity Optical Access NetworksHigh Capacity Optical Access Networks
High Capacity Optical Access NetworksCPqD
 
Gpon the technology --rev 1
Gpon the technology --rev 1Gpon the technology --rev 1
Gpon the technology --rev 1guerrid
 
Gpon the technology --rev 1
Gpon the technology --rev 1Gpon the technology --rev 1
Gpon the technology --rev 1guerrid
 
Green Telecom & IT Workshop: Wireline access india_vetter
Green Telecom & IT Workshop: Wireline access india_vetterGreen Telecom & IT Workshop: Wireline access india_vetter
Green Telecom & IT Workshop: Wireline access india_vetterBellLabs
 
Long Distance Connectivity Using WDM Technology at SHARE
Long Distance Connectivity Using WDM Technology at SHARELong Distance Connectivity Using WDM Technology at SHARE
Long Distance Connectivity Using WDM Technology at SHAREADVA
 
Timing and synchronization for 5G over optical networks
Timing and synchronization for 5G over optical networksTiming and synchronization for 5G over optical networks
Timing and synchronization for 5G over optical networksADVA
 
A System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical NetworksA System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical NetworksCedric Lam
 
Overview of Photonics Research at Calit2: Scaling from Nanometers to the Earth
Overview of Photonics Research at Calit2: Scaling from Nanometers to the EarthOverview of Photonics Research at Calit2: Scaling from Nanometers to the Earth
Overview of Photonics Research at Calit2: Scaling from Nanometers to the EarthLarry Smarr
 

Similar a Ultra-Dense, Transparent and Resilient Ring-Tree Access Network using Coupler-based Remote Nodes and Homodyne Transceivers (20)

Sec1 V1d0 Aug13 2008 Draft
Sec1 V1d0 Aug13 2008 DraftSec1 V1d0 Aug13 2008 Draft
Sec1 V1d0 Aug13 2008 Draft
 
Wcdma Training
Wcdma TrainingWcdma Training
Wcdma Training
 
Novel ICI Supressing Receiver for High-Mobility DVB-T2 Reception with Large F...
Novel ICI Supressing Receiver for High-Mobility DVB-T2 Reception with Large F...Novel ICI Supressing Receiver for High-Mobility DVB-T2 Reception with Large F...
Novel ICI Supressing Receiver for High-Mobility DVB-T2 Reception with Large F...
 
History of 100G and Internet2
History of 100G and Internet2History of 100G and Internet2
History of 100G and Internet2
 
10 gpon information technology interfaces, 2007. iti 2007. 29th internationa...
10 gpon  information technology interfaces, 2007. iti 2007. 29th internationa...10 gpon  information technology interfaces, 2007. iti 2007. 29th internationa...
10 gpon information technology interfaces, 2007. iti 2007. 29th internationa...
 
07114069
0711406907114069
07114069
 
INITIAL OBSERVATION RESULTS FOR PRECIPITATION ON THE KU-BAND BROADBAND RADAR ...
INITIAL OBSERVATION RESULTS FOR PRECIPITATION ON THE KU-BAND BROADBAND RADAR ...INITIAL OBSERVATION RESULTS FOR PRECIPITATION ON THE KU-BAND BROADBAND RADAR ...
INITIAL OBSERVATION RESULTS FOR PRECIPITATION ON THE KU-BAND BROADBAND RADAR ...
 
2Fonet GEPON Presentation
2Fonet GEPON Presentation2Fonet GEPON Presentation
2Fonet GEPON Presentation
 
Aon Vs. Pon
Aon Vs. PonAon Vs. Pon
Aon Vs. Pon
 
Towards Terabit per Second Optical Networking
Towards Terabit per Second Optical NetworkingTowards Terabit per Second Optical Networking
Towards Terabit per Second Optical Networking
 
Communications Service Provider Networks
Communications Service Provider NetworksCommunications Service Provider Networks
Communications Service Provider Networks
 
High Capacity Optical Access Networks
High Capacity Optical Access NetworksHigh Capacity Optical Access Networks
High Capacity Optical Access Networks
 
Gpon the technology --rev 1
Gpon the technology --rev 1Gpon the technology --rev 1
Gpon the technology --rev 1
 
Gpon the technology --rev 1
Gpon the technology --rev 1Gpon the technology --rev 1
Gpon the technology --rev 1
 
Green Telecom & IT Workshop: Wireline access india_vetter
Green Telecom & IT Workshop: Wireline access india_vetterGreen Telecom & IT Workshop: Wireline access india_vetter
Green Telecom & IT Workshop: Wireline access india_vetter
 
Long Distance Connectivity Using WDM Technology at SHARE
Long Distance Connectivity Using WDM Technology at SHARELong Distance Connectivity Using WDM Technology at SHARE
Long Distance Connectivity Using WDM Technology at SHARE
 
Timing and synchronization for 5G over optical networks
Timing and synchronization for 5G over optical networksTiming and synchronization for 5G over optical networks
Timing and synchronization for 5G over optical networks
 
A System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical NetworksA System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical Networks
 
Overview of Photonics Research at Calit2: Scaling from Nanometers to the Earth
Overview of Photonics Research at Calit2: Scaling from Nanometers to the EarthOverview of Photonics Research at Calit2: Scaling from Nanometers to the Earth
Overview of Photonics Research at Calit2: Scaling from Nanometers to the Earth
 
PON testing.pdf
PON testing.pdfPON testing.pdf
PON testing.pdf
 

Ultra-Dense, Transparent and Resilient Ring-Tree Access Network using Coupler-based Remote Nodes and Homodyne Transceivers

  • 1. UPC-GCO UPC- GCO Ultra-Dense, Transparent and Resilient Ring-Tree Access Network using Coupler-based Remote Nodes and Homodyne Transceivers Universitat Politècnica de Catalunya Josep M. Fabrega and Josep Prat jprat@tsc.upc.edu Universitat Politècnica de Catalunya (UPC) Dept. of Signal Theory and Communications (TSC) Optical Communications Group (GCO) www.tsc.upc.edu/gco
  • 2. UPC Optical access evolution GCO ngPON FTTH ultra- COST dense WDM-PON FTTH WDM-PON FTTH-PtP FTTH FTTH TIME WDM&TDM-PON CATV xDSL G/E-PON CAPACITY ADSL POTs WDM - PON TIME
  • 3. UPC Introduction GCO 1000 wavelengts Low-speed ∙ Rb = BWu ∙ Lambda-to-the-user WDM TIME Few wavelengths TDM High-speed ∙ Rb>>BWu ∙ Power consumption
  • 4. UPC Introduction GCO Migration from TDM/WDM to pure WDM Ultra-dense WDM PONs ∙ Multiple low capacity channels E.g. 1 Gbps OL 3 GHz ........................... λ More than 1500 ch. at C band
  • 5. UPC Introduction GCO ∙ IM-DD systems limited by: Sensitivity Optical filters selectivity λ LO 3 GHz ........................... λ Optical ∙ Coherent systems Input - I p(t) + Heterodyne – Image frequency problems Local Laser Homodyne – oPLL (phase lock problems) – IQ, Feed-Forward, Phase Diversity
  • 6. UPC Introduction DPSK GCO Downstream Transceiver IM or PM - + Data Data and Phase recovery Local laser Data Receiver
  • 7. UPC Time Switching Phase Diversity Receiver GCO Phase diversity achieved by switching local laser phase 3 dB penalty with respect to an ideal homodyne system due to the phase switching Several schemes proposed I Q I Q t t0 t0+T/2 t0+T t0+3T/2 t0+2T
  • 8. UPC Time Switching Phase Diversity Receiver GCO I’ Tb/2 Optical Tb Input - Q’ + Tb 90º Phase 0º Vout Scrambler CLK Recovery Laser I’ + Vout Q’ Data out [1] J. Prat and J. M. Fabrega, ECOC 2005, Glasgow, Scotland, sept. 2005, paper We.P.104
  • 9. Time Switching Phase & Polarization UPC Diversity Receiver GCO 3Tb/2 Optical Tb Input - Tb/2 + Tb V Tb/4 Pol. H Scrambler Tb Tb 90º freq. Phase 0º doubler Scrambler CLK Recovery Laser Data out [3] J. M. Fabrega and J. Prat, OFC 2006, Anaheim CA, March 2007, paper JThB45
  • 10. UPC Time Switching Phase Diversity Receiver GCO ES(t) I (t) If(t) - P + ELO(t) Tb Tb/2 Phase CLK Scrambler 90º Recovery 0º Laser Transmission experiments (1Gbps) [2]: Data out • -38 dBm sensitivity @ BER 10 -9 • 18 MHz linewidth tolerance @ BER 10-3 • 100 MHz detuning tolerance • WDM Channel spacing of 3 GHz @ 1 dB Penalty BER 10-9 [2] J. M. Fabrega and J. Prat, OSA Optics Letters, vol. 32, no. 5, pp. 463-465, March 2007
  • 11. UPC Network topology and wavelength plan GCO Ring+trees PON (SARDANA-like) x/y coupler x/y coupler RNn West 50/50 CO East RNn coupler RN2 RN1 CPE 1:K power splitter CPE 2 splitters CPE CPE CPE per RN 4 GHz CPE CPE .................. λ C band
  • 12. UPC Central Office scheme GCO DFB lasers + splitters + switches + EDFA Double fiber architecture ∙ No Rayleigh Backscattering CO West Optical switch East Tx/Rx
  • 13. UPC WDM tree PON experiments GCO Transmission experiments at 1 Gbps DPSK modulation format CO output power: 0 dBm Losses ∙ 30 km fiber spool 5.2 dB ∙ 4 Remote nodes 1.6 dB for pass-through 13.2 dB for drop ∙ Second distribution stage Emulated by means of a VOA 21 dB losses to the link 1:128 splitting ratio Overall splitting ratio: 4x2x128=1024 homes 0 -10 Power (dBm) -20 -30 -40 -50 -60 0 500 1000 1500 2000 Frequency (MHz)
  • 14. UPC Experimental results GCO 0 RN1 -2 RN2 RN4 -4 lo g (B E R ) -6 BER floor due to -8 phase noise and mixer electronics. -10 FEC required for resilience -12 -52 -50 -48 -46 -44 -42 -40 -38 Pin (dBm) 10-9 (*10-6 ) Normal Operation Resilient mode RN1 RN2 RN4 RN1 RN2 RN4 Sensitivity -43 dBm -41.3 dBm -44.3 dBm* -40.8 dBm -41.6 dBm -40-2 dBm Link Losses 39.4 dB 41 dB 44.2 dB 44.2 dB 41 dB 39.4 dB PowerBudget 42.9 dB 41.2 dB -44.2 dBm 40.7 dB 41.5 dB 40.1 dB
  • 15. UPC Conclusions GCO A combined ring-tree access network topology has been demonstrated ∙ Flexible, scalable ∙ large number of users (up to 1024 1024) ∙ Large capacity (more than 1 Tb/s) ∙ completely passive outside plant ∙ wavelength-transparent remote nodes GPON ODN compatible Transmission experiments at 1 Gb/s ∙ sensitivity of -43 dBm in RN1, after 30 km ∙ Power budget of 42.9 dB (49 dB at 10-3) ∙ 4 GHz channel spacing ∙ FEC is convenient for robutsness.
  • 16. UPC Acknowledgements GCO Dr.-Ing. Ronald Freund (HHI) Dr. Carlos Bock (UEssex) Thanks!! jprat@tsc.upc.edu www.tsc.upc.edu/gco