SlideShare una empresa de Scribd logo
1 de 20
Fine Structure of Gene
By,
KayeenVadakkan
Assistant Professor,
Department of Biotechnology
St. Mary's CollegeThrissur,
Kerala , India
Objectives
To understand the history of gene
To learn structure of prokaryotic gene
To delineate eukaryotic gene
To study salient features and characteristics of gene
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Prelude
• Double stranded structure of DNA
• 5’ and 3’ concept
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Introduction and History of gene
Definition
A gene is a specific sequence of DNA containing genetic information required to make a specific
protein.
Types of Gene based on organism
• Prokaryotic gene ( which is seen in prokaryotes, example : Bacteria, Cyanobacteria)
• Eukaryotic gene (Which is seen in higher organisms such as Plants, Animals)
Types of gene based on activity
1. House keeping genes ( genes which are always active )
2. Specific genes. (Those genes which are getting active only during some special condition)
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Types of gene based oh behavior.
1. Basic genes: These are the fundamental genes that bring about expression of particular
character.
2. Lethal genes: These bring about the death their possessor.
3. Multiple gene: When two or more pairs of independent genes act together to produce a single
phenotypic trait.
4. Cumulative gene: Some genes have additive effects on the action of other genes. These are
called cumulative genes.
5. Pleiotropic genes: The genes which produce changes in more than one character is called
pleiotropic gene.
6. Modifying gene: The gene which cannot produce a character by itself but interacts with other
to produce a modified effect is called modifier gene.
7. Inhibitory gene: The gene which suppresses or inhibits the expression of another gene is
called inhibitory gene
Introduction and History of gene (Continues)
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Introduction and History of gene (continues)
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
• The classical principles of genetics were deduced by Gregor Mendel in 1865 on the basis of
breeding experiments with peas.
• He assumed that each trait is determined by a pair of inherited ‘factors’ which are now
called gene.
• In 1909 Wilhelm Johannsen coined the term ‘GENE’.
Figure 1: Concept of Gene
Prokaryotic gene structure
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Figure 2: Prokaryotic gene structure
Prokaryotic gene structure (Continues)
Prokaryotic Gene is composed of three regions:
1.Promoter region
2.RNA coding sequence
3.Terminator region
 Prokaryotic gene is continues and uninterested where there is no introns present
 The region 5’ of the promoter sequence is called upstream sequence and the
region 3’ of the terminator sequence is called downstream sequence.
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Prokaryotic gene structure (Continues)
Promoter region:
 This is situated on upstream of the sequence that codes for RNA.
 This is the site that interact RNA polymerase before RNA synthesis (Transcription).
 Promoter region provides the location and direction to initiate transcription
Figure 3 : prokaryotic
promoter region
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Prokaryotic gene structure (Continues)
Figure 4: Prokaryotic promoter region
At -10 there is a sequence TATAAT or PRIBNOW BOX.
At -35 another consensus sequence TTGACA
These two are the most important promoter elements recognized by
transcription factors.
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Prokaryotic gene structure (Continues)
RNA coding sequence:
 The DNA sequence that will become copied into an RNA molecule (RNA transcript).
Starts with an initiator codon and ends with termination codon
No introns (uninterrupted).
Collinear to its mRNA.
Any nucleotide present on the left is denoted by (-)symbol and the region is called
upstream element. E.g. -10,-20,-35 etc. Any sequence to the right of the start is
downstream elements and numbered as +10,+35 etc.).
Terminator region:
 The region that signal the RNA polymerase to stop transcription from DNA template.
Transcription termination occur through Rho dependent or Rho independent manner
.
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Eukaryotic gene structure
 Eukaryotic gene are complex structures compared that prokaryotic gene.
 They are composed of following regions
 Exons
 Introns
 Promoter sequences
 Terminator sequences
 Upstream sequences
 Downstream sequences
 Enhancers and silencers(upstream or downstream)
 Signals (Upstream sequence signal for addition of cap. Downstream sequences signal for
addition of poly A tail.)
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Eukaryotic gene structure (Continues)
Figure 5: Eukaryotic gene structure
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Exons
• Coding sequence, transcribed and translated.
• Coding for amino acids in the polypeptide chain.
• Vary in number ,sequence and length. A gene starts and ends with exons.(5’ to 3’).
• Some exon includes untranslated(UTR)region.
Introns
• Coding sequences are separated by noncoding sequences called introns.
• They are removed when the primary transcript is processed to give the mature RNA
• All introns share the base sequence GT in the 5’end and AG in the 3’end.
• Introns were 1st discovered in 1977 independently by Phillip Sharp and Richard Roberts.
Eukaryotic gene structure (Continues)
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Eukaryotic gene structure (Continues)
Significance of Introns
• Introns don't specify the synthesis of proteins but have other important cellular
activities.
• Many introns encodes RNA’s that are major regulators of gene expression.
• Contain regulatory sequences that control trancription and mRNA processing.
• Introns allow exons to be joined in different combinations(alternative splicing),
resulting in the synthesis of different proteins from the same gene.
• Important role in evolution by facilitating recombination between exons of different
genes(exon shuffling).
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Eukaryotic gene structure (Continues)
Promoters
A promoter is a regulatory region of DNA located upstream controlling gene expression.
1. Core promoter – transcription start site(-34) Binding site for RNA polymerase and it is
a general transcription factor binding sites.
2. Proximal promoter-contain. primary regulatory element.
• These together are responsible for binding of RNA polymerase II which is responsible
for transcription.
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Eukaryotic gene structure (Continues)
Upstream (5’end)
• 5’UTR serve several functions including mRNA transport and initiation of
translation.
• Signal for addition of cap(7 methyl guanisine) to the 5’end of the mRNA.
• The cap facilitates the initiation of translation.
• Stabilization of mRNA.
Downstream (3’end)
• 3’UTR serves to add mRNA
• stability and attachment site for poly-A-tail.
• The translation termination codon TAA.
• AATAA sequence signal for addition of poly A tail.
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
Eukaryotic gene structure (Continues)
Terminator
Recognized by RNA polymerase as a signal to stop transcription
Enhancer
Enhances the transcription of a gene upto few thousand bp upstream.
Silencers
Reduce or shut down the expression of a near by gene.
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
• Number of genes in each organism is more than the number of chromosomes; hence
several genes are located on each chromosome.
• The genes are arranged in a single linear order like beads on a string.
• Each gene occupies specific position called locus.
• If the position of gene changes, character changes.
• Genes can be transmitted from parent to off springs.
• Genes may exist in several alternate formed called alleles.
• Genes are capable of combined together or can be replicated during a cell division.
• Genes may undergo for sudden changes in position and composition called mutation.
• Genes are capable of self duplication producing their own exact copies.
Salient features of gene
Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
REFRENCES
• The Cell (fifth edition) by Geoffrey M. Cooper and Robert E. Hausman.
• Genes IX by Benjamin Lewin.

Más contenido relacionado

La actualidad más candente

Dna replication eukaryotes
Dna replication eukaryotesDna replication eukaryotes
Dna replication eukaryotesPARADHI
 
Molecular Cloning - Vectors: Types & Characteristics
Molecular Cloning -  Vectors: Types & CharacteristicsMolecular Cloning -  Vectors: Types & Characteristics
Molecular Cloning - Vectors: Types & CharacteristicsSruthy Chandran
 
Regulation of gene expression in prokaryotes
Regulation of gene expression in prokaryotesRegulation of gene expression in prokaryotes
Regulation of gene expression in prokaryotesgohil sanjay bhagvanji
 
Dna repair
Dna repairDna repair
Dna repairpravee14
 
Genome organization in prokaryotes
Genome organization in prokaryotesGenome organization in prokaryotes
Genome organization in prokaryotesSangeeta Das
 
Prokaryotic and eukaryotic gene structures
Prokaryotic and eukaryotic gene structuresProkaryotic and eukaryotic gene structures
Prokaryotic and eukaryotic gene structurestusharamodugu
 
Regulation of gene expression in eukaryotes
Regulation of gene expression in eukaryotesRegulation of gene expression in eukaryotes
Regulation of gene expression in eukaryotesKristu Jayanti College
 
Gene mapping methods
Gene mapping methodsGene mapping methods
Gene mapping methodsMEENAKSHI DAS
 
Dna replication in prokaryotes
Dna replication in prokaryotesDna replication in prokaryotes
Dna replication in prokaryotesFatima Parvez
 
Gene regulation in eukaryotes
Gene regulation in eukaryotesGene regulation in eukaryotes
Gene regulation in eukaryotesIqra Wazir
 
Dna supercoiling and role of topoisomerases
Dna supercoiling and role of topoisomerasesDna supercoiling and role of topoisomerases
Dna supercoiling and role of topoisomerasesYashwanth B S
 
Transcription in eukaryotes
Transcription in eukaryotesTranscription in eukaryotes
Transcription in eukaryotesHemantkrdu
 

La actualidad más candente (20)

Dna replication eukaryotes
Dna replication eukaryotesDna replication eukaryotes
Dna replication eukaryotes
 
Tetrad analysis
Tetrad analysisTetrad analysis
Tetrad analysis
 
Molecular Cloning - Vectors: Types & Characteristics
Molecular Cloning -  Vectors: Types & CharacteristicsMolecular Cloning -  Vectors: Types & Characteristics
Molecular Cloning - Vectors: Types & Characteristics
 
Regulation of gene expression in prokaryotes
Regulation of gene expression in prokaryotesRegulation of gene expression in prokaryotes
Regulation of gene expression in prokaryotes
 
Dna repair
Dna repairDna repair
Dna repair
 
Restriction Mapping
Restriction MappingRestriction Mapping
Restriction Mapping
 
Genome organization in prokaryotes
Genome organization in prokaryotesGenome organization in prokaryotes
Genome organization in prokaryotes
 
Prokaryotic and eukaryotic gene structures
Prokaryotic and eukaryotic gene structuresProkaryotic and eukaryotic gene structures
Prokaryotic and eukaryotic gene structures
 
Regulation of gene expression in eukaryotes
Regulation of gene expression in eukaryotesRegulation of gene expression in eukaryotes
Regulation of gene expression in eukaryotes
 
Gene mapping ppt
Gene mapping pptGene mapping ppt
Gene mapping ppt
 
Sos repair
Sos repairSos repair
Sos repair
 
Gene mapping methods
Gene mapping methodsGene mapping methods
Gene mapping methods
 
Dna sequencing
Dna sequencingDna sequencing
Dna sequencing
 
Cloning vectors
Cloning vectorsCloning vectors
Cloning vectors
 
Dna replication in prokaryotes
Dna replication in prokaryotesDna replication in prokaryotes
Dna replication in prokaryotes
 
Gene expression
Gene expressionGene expression
Gene expression
 
Genome mapping
Genome mapping Genome mapping
Genome mapping
 
Gene regulation in eukaryotes
Gene regulation in eukaryotesGene regulation in eukaryotes
Gene regulation in eukaryotes
 
Dna supercoiling and role of topoisomerases
Dna supercoiling and role of topoisomerasesDna supercoiling and role of topoisomerases
Dna supercoiling and role of topoisomerases
 
Transcription in eukaryotes
Transcription in eukaryotesTranscription in eukaryotes
Transcription in eukaryotes
 

Similar a Gene structure

Introns: structure and functions
Introns: structure and functionsIntrons: structure and functions
Introns: structure and functionsbhagatyogesh12
 
Genetic fine structure
Genetic fine structureGenetic fine structure
Genetic fine structureSujan Karki
 
1.introduction to genetic engineering and restriction enzymes
1.introduction to genetic engineering and restriction enzymes1.introduction to genetic engineering and restriction enzymes
1.introduction to genetic engineering and restriction enzymesGetachew Birhanu
 
Genome organization ,gene expression sand regulation
Genome organization ,gene expression sand regulation Genome organization ,gene expression sand regulation
Genome organization ,gene expression sand regulation sukanyakk
 
Lecture 3 Early Embryogenesis and Cell Fate How is blas.pdf
Lecture 3  Early Embryogenesis and Cell Fate   How is blas.pdfLecture 3  Early Embryogenesis and Cell Fate   How is blas.pdf
Lecture 3 Early Embryogenesis and Cell Fate How is blas.pdfresponse3
 
Gene_Expression.pptx
Gene_Expression.pptxGene_Expression.pptx
Gene_Expression.pptxBlackHunt1
 
Concept of Genes by Danish Shafi Mir 22MBI20005.pptx
Concept of Genes by Danish Shafi Mir 22MBI20005.pptxConcept of Genes by Danish Shafi Mir 22MBI20005.pptx
Concept of Genes by Danish Shafi Mir 22MBI20005.pptxTHEFPS
 
Regulation of eukaryotic gene expression
Regulation of eukaryotic gene expressionRegulation of eukaryotic gene expression
Regulation of eukaryotic gene expressionMd Murad Khan
 
IB Biology 7.2-7.3 Slides: AHL Transcription & Translation
IB Biology 7.2-7.3 Slides: AHL Transcription & TranslationIB Biology 7.2-7.3 Slides: AHL Transcription & Translation
IB Biology 7.2-7.3 Slides: AHL Transcription & TranslationJacob Cedarbaum
 
Ajay TRANSPOSABLE GENETICS ASSIGNMENT.pptx
Ajay TRANSPOSABLE GENETICS ASSIGNMENT.pptxAjay TRANSPOSABLE GENETICS ASSIGNMENT.pptx
Ajay TRANSPOSABLE GENETICS ASSIGNMENT.pptxAjayKumarYadav534912
 
Differentiated Fern Research Paper
Differentiated Fern Research PaperDifferentiated Fern Research Paper
Differentiated Fern Research PaperAlison Reed
 
Bacterial Genetics.PPTX
Bacterial Genetics.PPTXBacterial Genetics.PPTX
Bacterial Genetics.PPTXnursena14
 
Control of gene expression in plants
Control of gene expression in plantsControl of gene expression in plants
Control of gene expression in plantsAbhilash Panju
 

Similar a Gene structure (20)

Introns: structure and functions
Introns: structure and functionsIntrons: structure and functions
Introns: structure and functions
 
Genetic control
Genetic controlGenetic control
Genetic control
 
Genetic control
Genetic controlGenetic control
Genetic control
 
Genetic fine structure
Genetic fine structureGenetic fine structure
Genetic fine structure
 
1.introduction to genetic engineering and restriction enzymes
1.introduction to genetic engineering and restriction enzymes1.introduction to genetic engineering and restriction enzymes
1.introduction to genetic engineering and restriction enzymes
 
Genome organization ,gene expression sand regulation
Genome organization ,gene expression sand regulation Genome organization ,gene expression sand regulation
Genome organization ,gene expression sand regulation
 
Microbial genetics notes
Microbial genetics notesMicrobial genetics notes
Microbial genetics notes
 
0.PDF
0.PDF0.PDF
0.PDF
 
Gene structure L2.pdf
Gene structure L2.pdfGene structure L2.pdf
Gene structure L2.pdf
 
Lecture 3 Early Embryogenesis and Cell Fate How is blas.pdf
Lecture 3  Early Embryogenesis and Cell Fate   How is blas.pdfLecture 3  Early Embryogenesis and Cell Fate   How is blas.pdf
Lecture 3 Early Embryogenesis and Cell Fate How is blas.pdf
 
Gene_Expression.pptx
Gene_Expression.pptxGene_Expression.pptx
Gene_Expression.pptx
 
Concept of Genes by Danish Shafi Mir 22MBI20005.pptx
Concept of Genes by Danish Shafi Mir 22MBI20005.pptxConcept of Genes by Danish Shafi Mir 22MBI20005.pptx
Concept of Genes by Danish Shafi Mir 22MBI20005.pptx
 
Regulation of eukaryotic gene expression
Regulation of eukaryotic gene expressionRegulation of eukaryotic gene expression
Regulation of eukaryotic gene expression
 
IB Biology 7.2-7.3 Slides: AHL Transcription & Translation
IB Biology 7.2-7.3 Slides: AHL Transcription & TranslationIB Biology 7.2-7.3 Slides: AHL Transcription & Translation
IB Biology 7.2-7.3 Slides: AHL Transcription & Translation
 
Transposons is.pptx
Transposons is.pptxTransposons is.pptx
Transposons is.pptx
 
Ajay TRANSPOSABLE GENETICS ASSIGNMENT.pptx
Ajay TRANSPOSABLE GENETICS ASSIGNMENT.pptxAjay TRANSPOSABLE GENETICS ASSIGNMENT.pptx
Ajay TRANSPOSABLE GENETICS ASSIGNMENT.pptx
 
Transposons is.pptx
Transposons is.pptxTransposons is.pptx
Transposons is.pptx
 
Differentiated Fern Research Paper
Differentiated Fern Research PaperDifferentiated Fern Research Paper
Differentiated Fern Research Paper
 
Bacterial Genetics.PPTX
Bacterial Genetics.PPTXBacterial Genetics.PPTX
Bacterial Genetics.PPTX
 
Control of gene expression in plants
Control of gene expression in plantsControl of gene expression in plants
Control of gene expression in plants
 

Más de Kayeen Vadakkan

Más de Kayeen Vadakkan (20)

Proteins.pptx
Proteins.pptxProteins.pptx
Proteins.pptx
 
Amino Acids.pptx
Amino Acids.pptxAmino Acids.pptx
Amino Acids.pptx
 
Metabolism of Nucleic Acids
Metabolism of Nucleic Acids  Metabolism of Nucleic Acids
Metabolism of Nucleic Acids
 
Complement system
Complement systemComplement system
Complement system
 
Cytokines
CytokinesCytokines
Cytokines
 
Antigen processing and MHC
Antigen processing and MHCAntigen processing and MHC
Antigen processing and MHC
 
Hmp pathway
Hmp pathwayHmp pathway
Hmp pathway
 
Gluconeogenecys, glycogenesis, glycogenolysis
Gluconeogenecys, glycogenesis, glycogenolysisGluconeogenecys, glycogenesis, glycogenolysis
Gluconeogenecys, glycogenesis, glycogenolysis
 
Citric acid cycle
Citric acid cycleCitric acid cycle
Citric acid cycle
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
 
Mechanism of vd(j) recombination and generation of antibody diversity
Mechanism of vd(j) recombination and generation of antibody diversityMechanism of vd(j) recombination and generation of antibody diversity
Mechanism of vd(j) recombination and generation of antibody diversity
 
Multigene organization of immunoglobulins
Multigene organization of immunoglobulinsMultigene organization of immunoglobulins
Multigene organization of immunoglobulins
 
Biosynthesis of cholesterol
Biosynthesis of cholesterolBiosynthesis of cholesterol
Biosynthesis of cholesterol
 
Oxidation of lipids
Oxidation of lipidsOxidation of lipids
Oxidation of lipids
 
Biosynthesis of fatty acid
Biosynthesis of fatty acidBiosynthesis of fatty acid
Biosynthesis of fatty acid
 
Enzyme action
Enzyme actionEnzyme action
Enzyme action
 
Genetic codon
Genetic codonGenetic codon
Genetic codon
 
Urea cycle
Urea cycle Urea cycle
Urea cycle
 
Types of RNA
Types of RNATypes of RNA
Types of RNA
 
Pentose phosphate pathway
Pentose phosphate pathwayPentose phosphate pathway
Pentose phosphate pathway
 

Último

Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 

Último (20)

Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 

Gene structure

  • 1. Fine Structure of Gene By, KayeenVadakkan Assistant Professor, Department of Biotechnology St. Mary's CollegeThrissur, Kerala , India
  • 2. Objectives To understand the history of gene To learn structure of prokaryotic gene To delineate eukaryotic gene To study salient features and characteristics of gene Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 3. Prelude • Double stranded structure of DNA • 5’ and 3’ concept Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 4. Introduction and History of gene Definition A gene is a specific sequence of DNA containing genetic information required to make a specific protein. Types of Gene based on organism • Prokaryotic gene ( which is seen in prokaryotes, example : Bacteria, Cyanobacteria) • Eukaryotic gene (Which is seen in higher organisms such as Plants, Animals) Types of gene based on activity 1. House keeping genes ( genes which are always active ) 2. Specific genes. (Those genes which are getting active only during some special condition) Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 5. Types of gene based oh behavior. 1. Basic genes: These are the fundamental genes that bring about expression of particular character. 2. Lethal genes: These bring about the death their possessor. 3. Multiple gene: When two or more pairs of independent genes act together to produce a single phenotypic trait. 4. Cumulative gene: Some genes have additive effects on the action of other genes. These are called cumulative genes. 5. Pleiotropic genes: The genes which produce changes in more than one character is called pleiotropic gene. 6. Modifying gene: The gene which cannot produce a character by itself but interacts with other to produce a modified effect is called modifier gene. 7. Inhibitory gene: The gene which suppresses or inhibits the expression of another gene is called inhibitory gene Introduction and History of gene (Continues) Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 6. Introduction and History of gene (continues) Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur • The classical principles of genetics were deduced by Gregor Mendel in 1865 on the basis of breeding experiments with peas. • He assumed that each trait is determined by a pair of inherited ‘factors’ which are now called gene. • In 1909 Wilhelm Johannsen coined the term ‘GENE’. Figure 1: Concept of Gene
  • 7. Prokaryotic gene structure Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur Figure 2: Prokaryotic gene structure
  • 8. Prokaryotic gene structure (Continues) Prokaryotic Gene is composed of three regions: 1.Promoter region 2.RNA coding sequence 3.Terminator region  Prokaryotic gene is continues and uninterested where there is no introns present  The region 5’ of the promoter sequence is called upstream sequence and the region 3’ of the terminator sequence is called downstream sequence. Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 9. Prokaryotic gene structure (Continues) Promoter region:  This is situated on upstream of the sequence that codes for RNA.  This is the site that interact RNA polymerase before RNA synthesis (Transcription).  Promoter region provides the location and direction to initiate transcription Figure 3 : prokaryotic promoter region Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 10. Prokaryotic gene structure (Continues) Figure 4: Prokaryotic promoter region At -10 there is a sequence TATAAT or PRIBNOW BOX. At -35 another consensus sequence TTGACA These two are the most important promoter elements recognized by transcription factors. Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 11. Prokaryotic gene structure (Continues) RNA coding sequence:  The DNA sequence that will become copied into an RNA molecule (RNA transcript). Starts with an initiator codon and ends with termination codon No introns (uninterrupted). Collinear to its mRNA. Any nucleotide present on the left is denoted by (-)symbol and the region is called upstream element. E.g. -10,-20,-35 etc. Any sequence to the right of the start is downstream elements and numbered as +10,+35 etc.). Terminator region:  The region that signal the RNA polymerase to stop transcription from DNA template. Transcription termination occur through Rho dependent or Rho independent manner . Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 12. Eukaryotic gene structure  Eukaryotic gene are complex structures compared that prokaryotic gene.  They are composed of following regions  Exons  Introns  Promoter sequences  Terminator sequences  Upstream sequences  Downstream sequences  Enhancers and silencers(upstream or downstream)  Signals (Upstream sequence signal for addition of cap. Downstream sequences signal for addition of poly A tail.) Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 13. Eukaryotic gene structure (Continues) Figure 5: Eukaryotic gene structure Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 14. Exons • Coding sequence, transcribed and translated. • Coding for amino acids in the polypeptide chain. • Vary in number ,sequence and length. A gene starts and ends with exons.(5’ to 3’). • Some exon includes untranslated(UTR)region. Introns • Coding sequences are separated by noncoding sequences called introns. • They are removed when the primary transcript is processed to give the mature RNA • All introns share the base sequence GT in the 5’end and AG in the 3’end. • Introns were 1st discovered in 1977 independently by Phillip Sharp and Richard Roberts. Eukaryotic gene structure (Continues) Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 15. Eukaryotic gene structure (Continues) Significance of Introns • Introns don't specify the synthesis of proteins but have other important cellular activities. • Many introns encodes RNA’s that are major regulators of gene expression. • Contain regulatory sequences that control trancription and mRNA processing. • Introns allow exons to be joined in different combinations(alternative splicing), resulting in the synthesis of different proteins from the same gene. • Important role in evolution by facilitating recombination between exons of different genes(exon shuffling). Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 16. Eukaryotic gene structure (Continues) Promoters A promoter is a regulatory region of DNA located upstream controlling gene expression. 1. Core promoter – transcription start site(-34) Binding site for RNA polymerase and it is a general transcription factor binding sites. 2. Proximal promoter-contain. primary regulatory element. • These together are responsible for binding of RNA polymerase II which is responsible for transcription. Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 17. Eukaryotic gene structure (Continues) Upstream (5’end) • 5’UTR serve several functions including mRNA transport and initiation of translation. • Signal for addition of cap(7 methyl guanisine) to the 5’end of the mRNA. • The cap facilitates the initiation of translation. • Stabilization of mRNA. Downstream (3’end) • 3’UTR serves to add mRNA • stability and attachment site for poly-A-tail. • The translation termination codon TAA. • AATAA sequence signal for addition of poly A tail. Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 18. Eukaryotic gene structure (Continues) Terminator Recognized by RNA polymerase as a signal to stop transcription Enhancer Enhances the transcription of a gene upto few thousand bp upstream. Silencers Reduce or shut down the expression of a near by gene. Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 19. • Number of genes in each organism is more than the number of chromosomes; hence several genes are located on each chromosome. • The genes are arranged in a single linear order like beads on a string. • Each gene occupies specific position called locus. • If the position of gene changes, character changes. • Genes can be transmitted from parent to off springs. • Genes may exist in several alternate formed called alleles. • Genes are capable of combined together or can be replicated during a cell division. • Genes may undergo for sudden changes in position and composition called mutation. • Genes are capable of self duplication producing their own exact copies. Salient features of gene Molecular Biology, Kayeen Vadakkan, Department of Biotechnology, St. Mary's College, Thrissur
  • 20. REFRENCES • The Cell (fifth edition) by Geoffrey M. Cooper and Robert E. Hausman. • Genes IX by Benjamin Lewin.