SlideShare una empresa de Scribd logo
1 de 25
Vector Calculus
Vector Calculus

      COORDINATE SYSTEMS

• RECTANGULAR or Cartesian
  • CYLINDRICAL                  Choice is based on
  • SPHERICAL                    symmetry of
                                 problem

     Examples:
    Sheets - RECTANGULAR
    Wires/Cables - CYLINDRICAL
    Spheres - SPHERICAL
Cylindrical Symmetry   Spherical Symmetry
Cartesian Coordinates Or Rectangular Coordinates


         P (x, y,                              z
         z)
        −∞ < x < ∞                                       P(x,y,z)
        −∞ < y < ∞
                                                               y
        −∞ < z < ∞
                                           x
  A vector A in Cartesian coordinates can be written as

      ( Ax , Ay , Az )   or   Ax a x + Ay a y + Az a z
where ax,ay and az are unit vectors along x, y and z-directions.
Cylindrical Coordinates
                                                            z
 P (ρ, Φ, z)
                 0≤ρ <∞
                                                        z

                                                                    P(ρ, Φ, z)
                 0 ≤ φ < 2π
                 −∞ < z < ∞                         x       Φ
                                                                ρ         y



 A vector A in Cylindrical coordinates can be written as

      ( Aρ , Aφ , Az )    or   Aρ aρ + Aφ aφ + Az a z
where aρ,aΦ and az are unit vectors along ρ, Φ and z-directions.
               x= ρ cos Φ, y=ρ sin Φ,    z=z
                                         y
           ρ = x + y , φ = tan
                     2     2        −1
                                           ,z = z
                                         x
The relationships between (ax,ay, az) and (aρ,aΦ, az)are

              a x = cos φaρ − sin φaφ
              a y = sin φaρ − cos φaφ
              az = az
       or
              aρ = cos φa x + sin φa y
              aφ = − sin φa x + cos φa y
              az = az
Then the relationships between (Ax,Ay, Az) and (Aρ, AΦ, Az)are

A = ( Ax cos φ + Ay sin φ )aρ + (− Ax sin φ + Ay cos φ )aφ + Az a z
Aρ = Ax cos φ + Ay sin φ
              Aφ = − Ax sin φ + Ay cos φ
              Az = Az
In matrix form we can write

          Aρ   cos φ       sin φ   0  Ax 
          A  = − sin φ     cos φ   0  Ay 
          φ                          
          Az   0
                             0     1  Az 
                                        
Spherical Coordinates
                                                            z
   P (r, θ, Φ)    0≤r <∞                                          P(r, θ, Φ)
                                                            θ r
                  0 ≤θ ≤π
                  0 ≤ φ < 2π                      x     Φ
                                                                          y


A vector A in Spherical coordinates can be written as
       ( Ar , Aθ , Aφ )    or    Ar ar + Aθ aθ + Aφ aφ
 where ar, aθ, and aΦ are unit vectors along r, θ, and Φ-directions.
              x=r sin θ cos Φ, y=r sin θ sin Φ,   Z=r cos θ

                                          x2 + y2           −1 y
       r = x 2 + y 2 + z 2 , θ = tan −1           , φ = tan
                                            z                  x
The relationships between (ax,ay, az) and (ar,aθ,aΦ)are
         a x = sin θ cos φar + cos θ cos φaθ − sin φaφ
         a y = sin θ sin φar + cos θ sin φaθ + cos φaφ
         a z = cos θar − sin θaθ
   or
          ar = sin θ cos φa x + sin θ sin φa y + cos θa z
          aθ = cos θ cos φa x + cos θ sin φa y − sin θa z
          aφ = − sin φa x + cos φa y
Then the relationships between (Ax,Ay, Az) and (Ar, Aθ,and AΦ)are
        A = ( Ax sin θ cos φ + Ay sin θ sin φ + Az cos θ )ar
        + ( Ax cos θ cos φ + Ay cos θ sin φ − Az sin θ )aθ
        + (− Ax sin φ + Ay cos φ )aφ
Ar = Ax sin θ cos φ + Ay sin θ sin φ + Az cos θ
       Aθ = Ax cos θ cos φ + Ay cos θ sin φ − Az sin θ
       Aφ = − Ax sin φ + Ay cos φ
In matrix form we can write

   Ar   sin θ cos φ        sin θ sin φ   cos θ   Ax 
    
   Aθ  = cos θ cos φ       cos θ sin φ   − sin θ   Ay 
                                                     
   Aφ   − sin φ               cos φ         0   Az 
                                                  
z                                                            z
                  P(r, θ, Φ)
                               Cartesian Coordinates                         P(x,y,z)
            θ r                       P(x, y, z)                                   y

                          y                                       x
x       Φ




    Spherical Coordinates                               Cylindrical Coordinates
          P(r, θ, Φ)                                z          P(ρ, Φ, z)

                                                z
                                                            P(ρ, Φ, z)



                                                        r         y
                                            x       Φ
Differential Length, Area and Volume
                    Cartesian Coordinates

Differential displacement
dl = dxa x + dya y + dza z



Differential area

  dS = dydza x = dxdza y = dxdya z
 Differential Volume
                          dV = dxdydz
Cylindrical Coordinates



                      ρ ρ

           ρ                             ρ

                                     ρ


                            ρ   ρρ




      ρ

           ρ      ρ
Differential Length, Area and Volume

                    Cylindrical Coordinates
Differential displacement
                dl = dρa ρ + ρdφaφ + dza z

Differential area

          dS = ρdφdza ρ = dρdzaφ = ρdρdφa z
 Differential Volume
                         dV = ρdρdφdz
Spherical Coordinates
Differential Length, Area and Volume

                    Spherical Coordinates
Differential displacement
               dl = drar + rdθaθ + r sin θdφaφ

Differential area

   dS = r sin θdθdφar = r sin θdrdφaθ = rdrdθaφ
           2


 Differential Volume

                      dV = r sin θdrdθdφ
                             2
Line, Surface and Volume Integrals

Line Integral

                      ∫ A.dl
                       L


Surface Integral
                   ψ = ∫ A.dS
                           S


 Volume Integral

                      ∫ p dv
                      V
                               v
Gradient, Divergence and Curl

  The Del Operator

• Gradient of a scalar function is a
  vector quantity.
                                       ∇f     Vector


• Divergence of a vector is a scalar
                                       ∇. A
  quantity.
• Curl of a vector is a vector
                                       ∇× A
  quantity.
• The Laplacian of a scalar A          ∇ A
                                        2
Del Operator

Cartesian Coordinates
                               ∂    ∂     ∂
                            ∇ = ax + a y + az
                               ∂x   ∂y    ∂z
Cylindrical Coordinates
                              ∂      1 ∂      ∂
                          ∇=    aρ +      aφ + a z
                             ∂ρ      ρ ∂φ     ∂z
Spherical Coordinates

                      ∂     1 ∂          1     ∂
                   ∇ = ar +      aθ +            aφ
                      ∂r    r ∂θ      r sin θ ∂φ
Gradient of a Scalar

The gradient of a scalar field V is a vector that represents
both the magnitude and the direction of the maximum space
rate of increase of V.
                   ∂V      ∂V      ∂V
              ∇V =    ax +    ay +    az
                   ∂x      ∂y      ∂z
                  ∂V      1 ∂V      ∂V
             ∇V =    aρ +      aφ +    az
                  ∂ρ      ρ ∂φ      ∂z
                ∂V      1 ∂V         1 ∂V
           ∇V =    ar +      aθ +            aφ
                ∂r      r ∂θ      r sin θ ∂φ
Divergence of a Vector
The divergence of A at a given point P is the outward flux per
unit volume as the volume shrinks about P.
                                                 ∫ A.dS
                         divA = ∇. A = lim       S
                                         ∆v →0       ∆v
                    ∂A ∂A ∂A
             ∇. A =   +  +
                    ∂x ∂y ∂z
                  1 ∂            1 ∂Aφ ∂Az
           ∇. A =      ( ρAρ ) +      +
                  ρ ∂ρ           ρ ∂φ   ∂z
Curl of a Vector

The curl of A is an axial vector whose magnitude is the
maximum circulation of A per unit area tends to zero and
whose direction is the normal direction of the area when the
area is oriented to make the circulation maximum.
                                   A.dl 
                                  ∫ 
            curlA = ∇ × A =  lim L       an
                             ∆s →0 ∆S 
                                        
                                         max
Where ΔS is the area bounded by the curve L and an is the unit
vector normal to the surface ΔS
 ax   ay   az               aρ      ρaφ   az 
       ∂     ∂    ∂             1∂          ∂    ∂
∇× A =                    ∇× A =                    
        ∂x   ∂y   ∂z            ρ  ∂ρ      ∂φ    ∂z 
        Ax
             Ay   Az 
                                    Aρ
                                             ρAφ   Az 
                                                       
 Cartesian Coordinates          Cylindrical Coordinates

                      ar     raθ   r sin θaφ 
                1 ∂           ∂         ∂ 
       ∇× A = 2                              
             r sin θ  ∂r     ∂θ        ∂φ 
                      Ar
                             rAθ   r sin θAφ 
                                              
                   Spherical Coordinates
Divergence or Gauss’
                     Theorem
The divergence theorem states that the total outward flux of
a vector field A through the closed surface S is the same as the
volume integral of the divergence of A.


                    ∫ A.dS = ∫ ∇. Adv
                              V
Stokes’ Theorem

Stokes’s theorem states that the circulation of a vector field A around a
closed path L is equal to the surface integral of the curl of A over the open
surface S bounded by L, provided A and × A
                                     ∇            are continuous on S



                       ∫ A.dl = ∫ (∇ × A).dS
                       L         S

Más contenido relacionado

La actualidad más candente

Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
Sanjay Singh
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
Ahmed Haider
 

La actualidad más candente (20)

Differential equations
Differential equationsDifferential equations
Differential equations
 
Vector space
Vector spaceVector space
Vector space
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Tensor 1
Tensor  1Tensor  1
Tensor 1
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
 
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuriLINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
Complex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex DifferentiationComplex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex Differentiation
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Diagonalization
DiagonalizationDiagonalization
Diagonalization
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODE
 
Diagonalization of Matrices
Diagonalization of MatricesDiagonalization of Matrices
Diagonalization of Matrices
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
Divergence theorem
Divergence theoremDivergence theorem
Divergence theorem
 
Multiple ppt
Multiple pptMultiple ppt
Multiple ppt
 
rank of matrix
rank of matrixrank of matrix
rank of matrix
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,Basis
 

Destacado

Application of coordinate system and vectors in the real life
Application of coordinate system and vectors in the real lifeApplication of coordinate system and vectors in the real life
Application of coordinate system and vectors in the real life
Алиакбар Рахимов
 
Applications of analytic functions and vector calculus
Applications of analytic functions and vector calculusApplications of analytic functions and vector calculus
Applications of analytic functions and vector calculus
Poojith Chowdhary
 
Calculus in real life
Calculus in real lifeCalculus in real life
Calculus in real life
Samiul Ehsan
 
18 directional derivatives and gradient
18 directional  derivatives and gradient18 directional  derivatives and gradient
18 directional derivatives and gradient
math267
 

Destacado (20)

Vector Calculus.
Vector Calculus.Vector Calculus.
Vector Calculus.
 
Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus
 
Application of vector integration
Application of vector integration Application of vector integration
Application of vector integration
 
Green's theorem in classical mechanics and electrodynamics
Green's theorem in classical mechanics and electrodynamicsGreen's theorem in classical mechanics and electrodynamics
Green's theorem in classical mechanics and electrodynamics
 
Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes Theorem
 
Application of coordinate system and vectors in the real life
Application of coordinate system and vectors in the real lifeApplication of coordinate system and vectors in the real life
Application of coordinate system and vectors in the real life
 
Applications of analytic functions and vector calculus
Applications of analytic functions and vector calculusApplications of analytic functions and vector calculus
Applications of analytic functions and vector calculus
 
vector application
vector applicationvector application
vector application
 
Vectors
Vectors Vectors
Vectors
 
Calculus in real life
Calculus in real lifeCalculus in real life
Calculus in real life
 
Cylindrical co ordinate system
Cylindrical co ordinate systemCylindrical co ordinate system
Cylindrical co ordinate system
 
Directional derivative and gradient
Directional derivative and gradientDirectional derivative and gradient
Directional derivative and gradient
 
18 directional derivatives and gradient
18 directional  derivatives and gradient18 directional  derivatives and gradient
18 directional derivatives and gradient
 
presentation strategies
presentation strategiespresentation strategies
presentation strategies
 
Vcla 1
Vcla 1Vcla 1
Vcla 1
 
vcla
vclavcla
vcla
 
Coordinate and unit vector
Coordinate and unit vectorCoordinate and unit vector
Coordinate and unit vector
 
Power point vector
Power point vectorPower point vector
Power point vector
 
Gps and planimeter
Gps and planimeterGps and planimeter
Gps and planimeter
 
2 vectors
2 vectors2 vectors
2 vectors
 

Similar a Vector calculus

11 equations of planes
11 equations of planes11 equations of planes
11 equations of planes
math267
 
24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinate
math267
 
21 lagrange multipliers
21 lagrange multipliers21 lagrange multipliers
21 lagrange multipliers
math267
 
2 polar graphs
2 polar graphs2 polar graphs
2 polar graphs
math267
 
1 polar coordinates
1 polar coordinates1 polar coordinates
1 polar coordinates
math267
 
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdfMathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
9866560321sv
 
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docxFINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
voversbyobersby
 
3 polar equations
3 polar equations3 polar equations
3 polar equations
math267
 
27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates
math267
 
Algesikum
AlgesikumAlgesikum
Algesikum
J00MZ
 

Similar a Vector calculus (20)

11 equations of planes
11 equations of planes11 equations of planes
11 equations of planes
 
24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinate
 
21 lagrange multipliers
21 lagrange multipliers21 lagrange multipliers
21 lagrange multipliers
 
2 polar graphs
2 polar graphs2 polar graphs
2 polar graphs
 
Cylinderical Coordinate System.pptx
Cylinderical Coordinate System.pptxCylinderical Coordinate System.pptx
Cylinderical Coordinate System.pptx
 
1 polar coordinates
1 polar coordinates1 polar coordinates
1 polar coordinates
 
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdfMathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
 
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docxFINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
 
3 polar equations
3 polar equations3 polar equations
3 polar equations
 
Curve sketching
Curve sketchingCurve sketching
Curve sketching
 
20 polar equations and graphs
20 polar equations and graphs20 polar equations and graphs
20 polar equations and graphs
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
 
1523 double integrals
1523 double integrals1523 double integrals
1523 double integrals
 
11. polar equations and graphs x
11. polar equations and graphs x11. polar equations and graphs x
11. polar equations and graphs x
 
20 polar equations and graphs x
20 polar equations and graphs x20 polar equations and graphs x
20 polar equations and graphs x
 
Algebric Functions.pdf
Algebric Functions.pdfAlgebric Functions.pdf
Algebric Functions.pdf
 
27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates
 
19 polar equations and graphs x
19 polar equations and graphs x19 polar equations and graphs x
19 polar equations and graphs x
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Algesikum
AlgesikumAlgesikum
Algesikum
 

Más de Kumar

Más de Kumar (20)

Graphics devices
Graphics devicesGraphics devices
Graphics devices
 
Fill area algorithms
Fill area algorithmsFill area algorithms
Fill area algorithms
 
region-filling
region-fillingregion-filling
region-filling
 
Bresenham derivation
Bresenham derivationBresenham derivation
Bresenham derivation
 
Bresenham circles and polygons derication
Bresenham circles and polygons dericationBresenham circles and polygons derication
Bresenham circles and polygons derication
 
Introductionto xslt
Introductionto xsltIntroductionto xslt
Introductionto xslt
 
Extracting data from xml
Extracting data from xmlExtracting data from xml
Extracting data from xml
 
Xml basics
Xml basicsXml basics
Xml basics
 
XML Schema
XML SchemaXML Schema
XML Schema
 
Publishing xml
Publishing xmlPublishing xml
Publishing xml
 
DTD
DTDDTD
DTD
 
Applying xml
Applying xmlApplying xml
Applying xml
 
Introduction to XML
Introduction to XMLIntroduction to XML
Introduction to XML
 
How to deploy a j2ee application
How to deploy a j2ee applicationHow to deploy a j2ee application
How to deploy a j2ee application
 
JNDI, JMS, JPA, XML
JNDI, JMS, JPA, XMLJNDI, JMS, JPA, XML
JNDI, JMS, JPA, XML
 
EJB Fundmentals
EJB FundmentalsEJB Fundmentals
EJB Fundmentals
 
JSP and struts programming
JSP and struts programmingJSP and struts programming
JSP and struts programming
 
java servlet and servlet programming
java servlet and servlet programmingjava servlet and servlet programming
java servlet and servlet programming
 
Introduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC DriversIntroduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC Drivers
 
Introduction to J2EE
Introduction to J2EEIntroduction to J2EE
Introduction to J2EE
 

Último

Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Último (20)

Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 

Vector calculus

  • 2. Vector Calculus COORDINATE SYSTEMS • RECTANGULAR or Cartesian • CYLINDRICAL Choice is based on • SPHERICAL symmetry of problem Examples: Sheets - RECTANGULAR Wires/Cables - CYLINDRICAL Spheres - SPHERICAL
  • 3. Cylindrical Symmetry Spherical Symmetry
  • 4. Cartesian Coordinates Or Rectangular Coordinates P (x, y, z z) −∞ < x < ∞ P(x,y,z) −∞ < y < ∞ y −∞ < z < ∞ x A vector A in Cartesian coordinates can be written as ( Ax , Ay , Az ) or Ax a x + Ay a y + Az a z where ax,ay and az are unit vectors along x, y and z-directions.
  • 5. Cylindrical Coordinates z P (ρ, Φ, z) 0≤ρ <∞ z P(ρ, Φ, z) 0 ≤ φ < 2π −∞ < z < ∞ x Φ ρ y A vector A in Cylindrical coordinates can be written as ( Aρ , Aφ , Az ) or Aρ aρ + Aφ aφ + Az a z where aρ,aΦ and az are unit vectors along ρ, Φ and z-directions. x= ρ cos Φ, y=ρ sin Φ, z=z y ρ = x + y , φ = tan 2 2 −1 ,z = z x
  • 6. The relationships between (ax,ay, az) and (aρ,aΦ, az)are a x = cos φaρ − sin φaφ a y = sin φaρ − cos φaφ az = az or aρ = cos φa x + sin φa y aφ = − sin φa x + cos φa y az = az Then the relationships between (Ax,Ay, Az) and (Aρ, AΦ, Az)are A = ( Ax cos φ + Ay sin φ )aρ + (− Ax sin φ + Ay cos φ )aφ + Az a z
  • 7. Aρ = Ax cos φ + Ay sin φ Aφ = − Ax sin φ + Ay cos φ Az = Az In matrix form we can write  Aρ   cos φ sin φ 0  Ax   A  = − sin φ cos φ 0  Ay   φ     Az   0    0 1  Az   
  • 8. Spherical Coordinates z P (r, θ, Φ) 0≤r <∞ P(r, θ, Φ) θ r 0 ≤θ ≤π 0 ≤ φ < 2π x Φ y A vector A in Spherical coordinates can be written as ( Ar , Aθ , Aφ ) or Ar ar + Aθ aθ + Aφ aφ where ar, aθ, and aΦ are unit vectors along r, θ, and Φ-directions. x=r sin θ cos Φ, y=r sin θ sin Φ, Z=r cos θ x2 + y2 −1 y r = x 2 + y 2 + z 2 , θ = tan −1 , φ = tan z x
  • 9. The relationships between (ax,ay, az) and (ar,aθ,aΦ)are a x = sin θ cos φar + cos θ cos φaθ − sin φaφ a y = sin θ sin φar + cos θ sin φaθ + cos φaφ a z = cos θar − sin θaθ or ar = sin θ cos φa x + sin θ sin φa y + cos θa z aθ = cos θ cos φa x + cos θ sin φa y − sin θa z aφ = − sin φa x + cos φa y Then the relationships between (Ax,Ay, Az) and (Ar, Aθ,and AΦ)are A = ( Ax sin θ cos φ + Ay sin θ sin φ + Az cos θ )ar + ( Ax cos θ cos φ + Ay cos θ sin φ − Az sin θ )aθ + (− Ax sin φ + Ay cos φ )aφ
  • 10. Ar = Ax sin θ cos φ + Ay sin θ sin φ + Az cos θ Aθ = Ax cos θ cos φ + Ay cos θ sin φ − Az sin θ Aφ = − Ax sin φ + Ay cos φ In matrix form we can write  Ar   sin θ cos φ sin θ sin φ cos θ   Ax      Aθ  = cos θ cos φ cos θ sin φ − sin θ   Ay     Aφ   − sin φ cos φ 0   Az      
  • 11. z z P(r, θ, Φ) Cartesian Coordinates P(x,y,z) θ r P(x, y, z) y y x x Φ Spherical Coordinates Cylindrical Coordinates P(r, θ, Φ) z P(ρ, Φ, z) z P(ρ, Φ, z) r y x Φ
  • 12. Differential Length, Area and Volume Cartesian Coordinates Differential displacement dl = dxa x + dya y + dza z Differential area dS = dydza x = dxdza y = dxdya z Differential Volume dV = dxdydz
  • 13. Cylindrical Coordinates ρ ρ ρ ρ ρ ρ ρρ ρ ρ ρ
  • 14. Differential Length, Area and Volume Cylindrical Coordinates Differential displacement dl = dρa ρ + ρdφaφ + dza z Differential area dS = ρdφdza ρ = dρdzaφ = ρdρdφa z Differential Volume dV = ρdρdφdz
  • 16. Differential Length, Area and Volume Spherical Coordinates Differential displacement dl = drar + rdθaθ + r sin θdφaφ Differential area dS = r sin θdθdφar = r sin θdrdφaθ = rdrdθaφ 2 Differential Volume dV = r sin θdrdθdφ 2
  • 17. Line, Surface and Volume Integrals Line Integral ∫ A.dl L Surface Integral ψ = ∫ A.dS S Volume Integral ∫ p dv V v
  • 18. Gradient, Divergence and Curl The Del Operator • Gradient of a scalar function is a vector quantity. ∇f Vector • Divergence of a vector is a scalar ∇. A quantity. • Curl of a vector is a vector ∇× A quantity. • The Laplacian of a scalar A ∇ A 2
  • 19. Del Operator Cartesian Coordinates ∂ ∂ ∂ ∇ = ax + a y + az ∂x ∂y ∂z Cylindrical Coordinates ∂ 1 ∂ ∂ ∇= aρ + aφ + a z ∂ρ ρ ∂φ ∂z Spherical Coordinates ∂ 1 ∂ 1 ∂ ∇ = ar + aθ + aφ ∂r r ∂θ r sin θ ∂φ
  • 20. Gradient of a Scalar The gradient of a scalar field V is a vector that represents both the magnitude and the direction of the maximum space rate of increase of V. ∂V ∂V ∂V ∇V = ax + ay + az ∂x ∂y ∂z ∂V 1 ∂V ∂V ∇V = aρ + aφ + az ∂ρ ρ ∂φ ∂z ∂V 1 ∂V 1 ∂V ∇V = ar + aθ + aφ ∂r r ∂θ r sin θ ∂φ
  • 21. Divergence of a Vector The divergence of A at a given point P is the outward flux per unit volume as the volume shrinks about P. ∫ A.dS divA = ∇. A = lim S ∆v →0 ∆v ∂A ∂A ∂A ∇. A = + + ∂x ∂y ∂z 1 ∂ 1 ∂Aφ ∂Az ∇. A = ( ρAρ ) + + ρ ∂ρ ρ ∂φ ∂z
  • 22. Curl of a Vector The curl of A is an axial vector whose magnitude is the maximum circulation of A per unit area tends to zero and whose direction is the normal direction of the area when the area is oriented to make the circulation maximum.  A.dl   ∫  curlA = ∇ × A =  lim L  an  ∆s →0 ∆S      max Where ΔS is the area bounded by the curve L and an is the unit vector normal to the surface ΔS
  • 23.  ax ay az   aρ ρaφ az  ∂ ∂ ∂ 1∂ ∂ ∂ ∇× A =   ∇× A =    ∂x ∂y ∂z  ρ  ∂ρ ∂φ ∂z   Ax  Ay Az    Aρ  ρAφ Az   Cartesian Coordinates Cylindrical Coordinates  ar raθ r sin θaφ  1 ∂ ∂ ∂  ∇× A = 2   r sin θ  ∂r ∂θ ∂φ   Ar  rAθ r sin θAφ   Spherical Coordinates
  • 24. Divergence or Gauss’ Theorem The divergence theorem states that the total outward flux of a vector field A through the closed surface S is the same as the volume integral of the divergence of A. ∫ A.dS = ∫ ∇. Adv V
  • 25. Stokes’ Theorem Stokes’s theorem states that the circulation of a vector field A around a closed path L is equal to the surface integral of the curl of A over the open surface S bounded by L, provided A and × A ∇ are continuous on S ∫ A.dl = ∫ (∇ × A).dS L S