SlideShare una empresa de Scribd logo
1 de 32
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Non-isentropic stochastic inflation, single field
potentials and Planck data
Leandro A. da Silva, Rudnei O. Ramos1
XXXIV Encontro Nacional de F´
ısica de Part´
ıculas e Campos

27/08/2013

1

Universidade do Estado do Rio de Janeiro

Final remarks
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Two main questions:
How the introduction of dissipative and temperature effects
impacts the compatibility between theoretical predictions and
observational data?
Can temperature and dissipation stop eternal self-reproduction
of the universe?
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Warm inflation:

Same basic ideas of standard inflation.
Inflaton interacts with its environment → radiation production
during inflation.
No reheating mechanism is necessary.
Smooth transition to radiation domination era.
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Warm inflation
Microscopic motivation:
L[φ, χ, σ] = L[φ] + L[χ] + L[σ] + Lint [φ, χ] + Lint [χ, σ]
Procedure: functional integration over χ e σ.
Non-equilibrium dynamics → Real time formalism
Markovian approximation (local dissipation) → system
characteristic time scale
relaxation time scale
Effective equation of motion:
∂
1
∂2
+ (3H + Υ) − 2
2
∂t
∂t a

2

Φ+

∂Veff (Φ)
= ξT
∂Φ

Final remarks
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Warm inflation: basic equations
1
∂2
∂
+ (3H + Υ) − 2
∂t2
∂t a

2

Φ+

∂V (Φ)
= ξT
∂Φ

ξT (x, t)ξT (x , t ) = 2ΥT a−3 δ(x − x )δ(t − t )
a=−
¨

8π
˙
ρr + Φ2 − V (Φ) a
3m2
pl

a˙
˙
˙
˙
ρΦ = −3 Φ2 − ΥΦ2 + ξT Φ ,
˙
a
=

m2
pl
16π

< 1 + Q,

V
V

2

,

η=

η <1+Q

m2
pl
8π
e

a
˙
˙
˙
ρr = −4 ρr + ΥΦ2 − ξT Φ
˙
a
V
V

,

β=

β <1+Q,

m2
pl
8π

ΥV
ΥV
Q≡

Υ
3H

Final remarks
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Contributions to the power spectrum
Important characteristic of inflation: Natural mechanism to generation of
nearly scale invariant density perturbations.
Cold inflation: quantum fluctuations contributions
Warm inflation: thermal fluctuations contributions
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Contributions to the power spectrum
Important characteristic of inflation: Natural mechanism to generation of
nearly scale invariant density perturbations.
Cold inflation: quantum fluctuations contributions
Warm inflation: thermal fluctuations contributions
⇓
extreme cases...

Non-isentropic stochastic inflation:
Quantum and thermal fluctuations taken in account explicitly
and in a transparent way.
Recovers standard results both from cold and warm inflation.
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Extending Starobinsky I: perturbative approach
Central idea:
Φ(x, t) → Φ> (x, t) + Φ< (x, t)
Φ> (x, t) → ϕ(t) + δϕ(x, t)
Mode separation implemented through an “Window
function”: W (k, t) ≡ θ(k − aH)
Goal: Effective dynamics for δϕ.

Φ< (x, t) ≡ φq (x, t) =

d3 k
W (k, t) φk (t)e−ik·x ak + φ∗ (t)eik·x a†
ˆ
ˆk
k
3/2
(2π)

√
H π
(1)
φk (τ ) =
(|τ |)3/2 Hµ (k|τ |) ,
2
where µ =

9/4 − 3η.
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Extending Starobinsky I: perturbative approach
∂ϕ
∂2ϕ
+ [3H + Υ(ϕ)]
+ V,ϕ (ϕ) = 0 ,
2
∂t
∂t
1 2
∂2
∂
˜
−
+ [3H + Υ(ϕ)]
+ Υ,ϕ (ϕ)ϕ + V,ϕϕ (ϕ) δϕ = ξq + ξT ,
˙
∂t2
∂t a2
˜
ξq = −

∂2
1
∂
− 2
+ [3H + Υ(ϕ)]
2
∂t
∂t a

2

+ Υ,ϕ (ϕ)ϕ + V,ϕϕ (ϕ) φq ,
˙

˜
ξq → generalized quantum noise term
˜
˜
ξq (x, t), ξq (x , t ) = 0 → classical behavior preserved
Equation of motion as a function of z = k/(aH):
1
η − βQ/(1 + Q)
δϕ (k, z) − (3Q + 2)δϕ (k, z) + 1 + 3
δϕ(k, z) =
z
z2
1
˜
ξT (k, z) + ξq (k, z) .
H 2z2
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Extending Starobinsky I: perturbative approach
Using the EoM solution, we define the inflaton power spectrum:

Pδϕ =

k3
2π 2

d3 k
(th)
(qu)
δϕ(k, z)δϕ(k , z) = Pδϕ (z) + Pδϕ (z)
(2π)3
2

3Q 2α 2ν−2α Γ (α) Γ (ν − 1) Γ (α − ν + 3/2)
√ 2 z
1
2 π
Γ ν − 2 Γ (α + ν − 1/2)

≈

HT
4π 2

+

H
coth
T

zH 2η
z
2T

,
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Extending Starobinsky I: perturbative approach
Using the EoM solution, we define the inflaton power spectrum:

Pδϕ =

k3
2π 2

d3 k
(th)
(qu)
δϕ(k, z)δϕ(k , z) = Pδϕ (z) + Pδϕ (z)
(2π)3
2

3Q 2α 2ν−2α Γ (α) Γ (ν − 1) Γ (α − ν + 3/2)
√ 2 z
1
2 π
Γ ν − 2 Γ (α + ν − 1/2)

≈

HT
4π 2

+

H
coth
T

zH 2η
z
2T

,

As expected, nearly scale invariant.
Alternative derivation of the enhancement term (Mohanty et al,
Phys. Rev. Lett. 97, 251301 (2006))
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Extending Starobinsky I: perturbative approach
Using the EoM solution, we define the inflaton power spectrum:

Pδϕ =

k3
2π 2

d3 k
(th)
(qu)
δϕ(k, z)δϕ(k , z) = Pδϕ (z) + Pδϕ (z)
(2π)3
2

3Q 2α 2ν−2α Γ (α) Γ (ν − 1) Γ (α − ν + 3/2)
√ 2 z
1
2 π
Γ ν − 2 Γ (α + ν − 1/2)

≈

HT
4π 2

+

H
coth
T

zH 2η
z
2T

,

Recovers all results of cold and warm inflation:
Q
1 and T
H ⇒ Pδϕ ∝ HT (Berera and Fang, Phys.
Rev. Lett. 74 (1995))
√
Q
1 and T
H ⇒ Pδϕ ∝ T HΥ (Hall, Moss and Berera,
Phys. Rev. D 69, 083525 (2004) )
Q
1 and T
H ⇒ Pδϕ ∝ H 2 (cold inflation)
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Extending Starobinsky I: perturbative approach
V (φ) =

4
λMpl
p

φ
Mpl

p

,

Υ(φ, T ) = Cφ

φ2a T c
,
m2b
X

c + 2a − 2b = 1

Figure: blue lines, Υ(φ), red Υ = cte. Dashed lines p = 2, full lines
p = 4, dotted lines p = 6
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Cosmological parameters:
Curvature perturbations:
H2
P = ∆2 (k0 )
R
˙ δϕ
φ2
8 H2
∆2 = 2
h
Mpl 4π 2

∆2 =
R

ns −1

k
k0

Spectral index (and running ns ):
ns − 1 =

d ln ∆2
R
d ln k

ns ≡

dns
d ln k

Tensor-to-scalar ratio:
r≡

∆2
4 H2
h
2 = (1 + Q)2 π 2 P
∆R
δϕ

Final remarks
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Cosmological parameters:
Some interesting limits:
spectral index:
Q → 0 and T → 0
ns = 1 + 2η − 6ε
r ≈ 16
1 and T
H ⇒
1
9
9
3
− ε − β + η + O(1/Q3/2 ) + O(1/(Q3/2 T 2 ))
ns = 1 +
Q
4
4
2
16 H
r≈ √
3πT Q5/2
(Hall, Moss and Berera, Phys. Rev. D 69, 083525 (2004) )
Q

Q
1 and T
H
ns = 1 + 2η − 6ε + (8ε − 2η)Q + O(Q2 )
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Cosmological parameters: WMAP-9yr (arXiv:1212.5226)

Figure: Green, eCMB, red, eCMB+BAO+H0 .Light colors → 95% CL,
dark colors → 68% CL.
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Cosmological parameters: Planck (arXiv:1303.5082)

Final remarks
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Cosmological parameters: WMAP-9yr (arXiv:1212.5226)
Outline

Warm inflation

Starobinsky I

Results: V ∝ φ2 68%CL

Observations

Starobinsky II

Final remarks
Outline

Warm inflation

Starobinsky I

Results: V ∝ φ4 95%CL

Observations

Starobinsky II

Final remarks
Outline

Warm inflation

Starobinsky I

Results: V ∝ φ6 95%CL

Observations

Starobinsky II

Final remarks
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Extending Starobinsky II: large scales

Similar prescription: Φ(x, t) = ϕ(x, t) + φq (x, t)
Large scales (

¨
H −1 ): ≈ homogeneous dynamics, Φ ≈ 0

Resulting equation of motion:
ϕ=−
˙

V,ϕ (ϕ)
H 3/2
+
3H(1 + Q)
2π

1+

2
eH/T

Two-point function:
ζ(t)ζ(t ) = δ(t − t ) .

−1

ζ(t)

Final remarks
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Extending Starobinsky II: large scales
Associated Fokker-Planck equation:
∂
∂
1 ∂2
P (ϕ, t) = −
D(1) P (ϕ, t) +
D(2) P (ϕ, t)
∂t
∂ϕ
2 ∂ϕ2
≡ LF P P (ϕ, t)
Drift and difusion coefficients:
V,ϕ (ϕ)
≡ −f (ϕ) ,
3H(1 + Q)
H3
2
= 2 1 + H/T
.
4π
e
−1

D(1) = −
D(2)

Final remarks
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Extending Starobinsky II: large scales
Eternal inflation:

Inflation doesn’t end globally
Qualitative condition to self-reproduction regime of H-regions:
f (ϕ)
H(ϕ)

D(2)
H(ϕ)
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Extending Starobinsky II: large scales
Global picture: physical probability distribution function, PV :
∂
∂
∂PV
=
−D(1) (ϕ)PV +
D(2) (ϕ)PV
∂t
∂ϕ
∂ϕ
PV (ϕ, t) ≡

PV (ϕ, t)
exp 3 dtH

+3 [H(ϕ) − H ] PV
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Extending Starobinsky II: large scales
Global picture: physical probability distribution function, PV :
∂
∂
∂PV
=
−D(1) (ϕ)PV +
D(2) (ϕ)PV
∂t
∂ϕ
∂ϕ
PV (ϕ, t) ≡

+3 [H(ϕ) − H ] PV

PV (ϕ, t)
exp 3 dtH

Dimensionless version:


∂
∂ 
x2n−1
PV (x, t ) = −
PV (x, t )
∂t
∂x xn 1 + γ
3xn
2
3n
∂
λ x
2
3 n
+
1 + xn /T
PV (x, t ) +
[x − xn ] PV (x, t ) ,
∂x2 12n2 8π 2
2n
e
−1
V (ϕ) =

4
λMp
2n

ϕ
Mp

2n
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Extending Starobinsky II: large scales
Transforming to a Schr¨dinger-like equation:
o
dx

σ→

D(2) (x)
1
∂
(2) (x) ∂σ
D

∂
→
∂x
Pn (x) →

1
1
exp
(2) (x)−3/4
2
D

dx

D(1) (x)
ψn (σ) ,
D(2) (x)

∂2
ψn (σ) − VS (σ)ψn (σ) = Λn ψn (σ) ,
∂σ 2
where
(2)

(2)

(2)

(1)

3 (D,x )2 D,xx D,x D(1) D,x
(D(1) )2
VS (σ) =
−
−
+
+
.
16 D(2)
4
2
2D(2)
4D(2)
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Extending Starobinsky II: large scales
Schr¨dinger-like equation ⇒ Sturm-Liouville problem:
o
L≡

d
d
p(x)
y + q(x)y = −λw(x)y
dx
dx

ca y(a) + da y (a) = 0
cb y(b) + db y (b) = 0 .
cn φn (x)

y(x) =
n

Lφn = −λn w(x)φn
λ0 < λ1 < λ2 . . .

−py
λ0 = miny(x)

dy
dx

b

b
a

+
a
b
a

dx p

dy
dx

dx y 2 w(x)

2

− qy 2
(Rayleigh quotient)
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Extending Starobinsky II: large scales

Eternal inflation case:
Cn ψn (σ)eΛn t

Ψ(σ, t) =
n

dσ
Λ0 = −minψ(σ)

dψn
dσ

2

2
+ VS (σ)ψn

2
dσ ψn

Λ0 > 0 ⇔ there is some interval σ1 < σ < σ2 so that VS < 0
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Extending Starobinsky II: large scales
Ex.: φ4 potential.
Cold limit:
n=2
VS
=−

3 −2 5
σ − + σ 2 − 3π
16
2

3 −1
σ
λ

Final remarks
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Extending Starobinsky II: large scales
High dissipation and temperature limit:
n=2
VS
=

Then, if λT <

288π 2
γ(γ+2)

72π 2
288π 2 − γλT (2 + γ) σ −2
(γλT )2

eternal self-reproduction is suppressed!

Final remarks
Outline

Warm inflation

Starobinsky I

Observations

Starobinsky II

Final remarks

Answers to the proposed questions:

Non-isentropic stochastic polynomial chaotic inflation model is
viable in face of the most recent results for the cosmological
parameters. (more details and results: Rudnei O. Ramos and L. A.
da Silva JCAP03(2013)032)
Temperature and dissipative effects can suppress the eternal
self-reproduction of H-regions.

Más contenido relacionado

La actualidad más candente

Hyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDHyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDChristos Kallidonis
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures? Alessandro Palmeri
 
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Alessandro Palmeri
 
Hyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDHyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDChristos Kallidonis
 
Heat problems
Heat problemsHeat problems
Heat problemsHo Linh
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997JOAQUIN REA
 
Research Project Primus
Research Project PrimusResearch Project Primus
Research Project PrimusPredrag Terzic
 
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...Sérgio Sacani
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Alexander Litvinenko
 
Autoregression
AutoregressionAutoregression
Autoregressionjchristo06
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landauangely alcendra
 
Response spectra
Response spectraResponse spectra
Response spectra321nilesh
 
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3SEENET-MTP
 
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014SOCIEDAD JULIO GARAVITO
 
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...Jurgen Riedel
 
Earth 0205-response spectrum
Earth 0205-response spectrumEarth 0205-response spectrum
Earth 0205-response spectrumtharwat sakr
 

La actualidad más candente (19)

Hyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDHyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCD
 
Starobinsky astana 2017
Starobinsky astana 2017Starobinsky astana 2017
Starobinsky astana 2017
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
 
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
 
Hyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDHyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCD
 
Heat problems
Heat problemsHeat problems
Heat problems
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
 
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
 
Research Project Primus
Research Project PrimusResearch Project Primus
Research Project Primus
 
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...
 
Autoregression
AutoregressionAutoregression
Autoregression
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
 
Response spectra
Response spectraResponse spectra
Response spectra
 
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
 
Graph Kernelpdf
Graph KernelpdfGraph Kernelpdf
Graph Kernelpdf
 
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
 
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
 
Earth 0205-response spectrum
Earth 0205-response spectrumEarth 0205-response spectrum
Earth 0205-response spectrum
 

Destacado

Dinâmica estocástica em neurociência teórica II
Dinâmica estocástica em neurociência teórica IIDinâmica estocástica em neurociência teórica II
Dinâmica estocástica em neurociência teórica IILeandro da Silva
 
Efeitos de memória em teoria de campos
Efeitos de memória em teoria de camposEfeitos de memória em teoria de campos
Efeitos de memória em teoria de camposLeandro da Silva
 
Dinâmica não-markoviana: uma abordagem via equação de Langevin
Dinâmica não-markoviana: uma abordagem via equação de LangevinDinâmica não-markoviana: uma abordagem via equação de Langevin
Dinâmica não-markoviana: uma abordagem via equação de LangevinLeandro da Silva
 
Inflação estocástica não-isentrópica (defesa de tese)
Inflação estocástica não-isentrópica (defesa de tese)Inflação estocástica não-isentrópica (defesa de tese)
Inflação estocástica não-isentrópica (defesa de tese)Leandro da Silva
 
Dinâmica estocástica em neurociência teórica
Dinâmica estocástica em neurociência teóricaDinâmica estocástica em neurociência teórica
Dinâmica estocástica em neurociência teóricaLeandro da Silva
 

Destacado (11)

Defesa de dissertação
Defesa de dissertaçãoDefesa de dissertação
Defesa de dissertação
 
Dinâmica estocástica em neurociência teórica II
Dinâmica estocástica em neurociência teórica IIDinâmica estocástica em neurociência teórica II
Dinâmica estocástica em neurociência teórica II
 
Efeitos de memória em teoria de campos
Efeitos de memória em teoria de camposEfeitos de memória em teoria de campos
Efeitos de memória em teoria de campos
 
ENFPC 2010
ENFPC 2010ENFPC 2010
ENFPC 2010
 
Dinâmica não-markoviana: uma abordagem via equação de Langevin
Dinâmica não-markoviana: uma abordagem via equação de LangevinDinâmica não-markoviana: uma abordagem via equação de Langevin
Dinâmica não-markoviana: uma abordagem via equação de Langevin
 
ENFPC 2012
ENFPC 2012 ENFPC 2012
ENFPC 2012
 
Formação de estruturas
Formação de estruturasFormação de estruturas
Formação de estruturas
 
Inflação estocástica não-isentrópica (defesa de tese)
Inflação estocástica não-isentrópica (defesa de tese)Inflação estocástica não-isentrópica (defesa de tese)
Inflação estocástica não-isentrópica (defesa de tese)
 
Dinâmica estocástica em neurociência teórica
Dinâmica estocástica em neurociência teóricaDinâmica estocástica em neurociência teórica
Dinâmica estocástica em neurociência teórica
 
Supercondutividade II
Supercondutividade IISupercondutividade II
Supercondutividade II
 
Supercondutividade
SupercondutividadeSupercondutividade
Supercondutividade
 

Similar a ENFPC 2013

Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusSEENET-MTP
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics conceptsMuhammad IrfaN
 
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Claudio Attaccalite
 
Theoretical Spectroscopy Lectures: real-time approach 2
Theoretical Spectroscopy Lectures: real-time approach 2Theoretical Spectroscopy Lectures: real-time approach 2
Theoretical Spectroscopy Lectures: real-time approach 2Claudio Attaccalite
 
Light induced real-time dynamics for electrons
Light induced real-time dynamics for electronsLight induced real-time dynamics for electrons
Light induced real-time dynamics for electronsClaudio Attaccalite
 
Quantum gravitational corrections to particle creation by black holes
Quantum gravitational corrections to particle creation by black holesQuantum gravitational corrections to particle creation by black holes
Quantum gravitational corrections to particle creation by black holesSérgio Sacani
 
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...RohitNukte
 
Achieving the Neel state in an optical lattice
Achieving the Neel state in an optical latticeAchieving the Neel state in an optical lattice
Achieving the Neel state in an optical latticeUtrecht University
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structuresHaHoangJR
 
Calculating Non-adiabatic Pressure Perturbations during Multi-field Inflation
Calculating Non-adiabatic Pressure Perturbations during Multi-field InflationCalculating Non-adiabatic Pressure Perturbations during Multi-field Inflation
Calculating Non-adiabatic Pressure Perturbations during Multi-field InflationIan Huston
 
Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...
Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...
Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...PhD ISG, Sapienza University of Rome
 
Quantum information probes
Quantum information probes Quantum information probes
Quantum information probes SM588
 
Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solidsClaudio Attaccalite
 
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical Implications
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical ImplicationsWave-packet Treatment of Neutrinos and Its Quantum-mechanical Implications
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical ImplicationsCheng-Hsien Li
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisVjekoslavKovac1
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flowsVjekoslavKovac1
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...VjekoslavKovac1
 

Similar a ENFPC 2013 (20)

Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present status
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics concepts
 
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
 
Theoretical Spectroscopy Lectures: real-time approach 2
Theoretical Spectroscopy Lectures: real-time approach 2Theoretical Spectroscopy Lectures: real-time approach 2
Theoretical Spectroscopy Lectures: real-time approach 2
 
Light induced real-time dynamics for electrons
Light induced real-time dynamics for electronsLight induced real-time dynamics for electrons
Light induced real-time dynamics for electrons
 
Quantum gravitational corrections to particle creation by black holes
Quantum gravitational corrections to particle creation by black holesQuantum gravitational corrections to particle creation by black holes
Quantum gravitational corrections to particle creation by black holes
 
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
 
Achieving the Neel state in an optical lattice
Achieving the Neel state in an optical latticeAchieving the Neel state in an optical lattice
Achieving the Neel state in an optical lattice
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structures
 
Calculating Non-adiabatic Pressure Perturbations during Multi-field Inflation
Calculating Non-adiabatic Pressure Perturbations during Multi-field InflationCalculating Non-adiabatic Pressure Perturbations during Multi-field Inflation
Calculating Non-adiabatic Pressure Perturbations during Multi-field Inflation
 
Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...
Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...
Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...
 
Lecture 2 sapienza 2017
Lecture 2 sapienza 2017Lecture 2 sapienza 2017
Lecture 2 sapienza 2017
 
Quantum information probes
Quantum information probes Quantum information probes
Quantum information probes
 
Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solids
 
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical Implications
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical ImplicationsWave-packet Treatment of Neutrinos and Its Quantum-mechanical Implications
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical Implications
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
Presentation
PresentationPresentation
Presentation
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
 

Último

🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfhans926745
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 

Último (20)

🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 

ENFPC 2013

  • 1. Outline Warm inflation Starobinsky I Observations Starobinsky II Non-isentropic stochastic inflation, single field potentials and Planck data Leandro A. da Silva, Rudnei O. Ramos1 XXXIV Encontro Nacional de F´ ısica de Part´ ıculas e Campos 27/08/2013 1 Universidade do Estado do Rio de Janeiro Final remarks
  • 2. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Two main questions: How the introduction of dissipative and temperature effects impacts the compatibility between theoretical predictions and observational data? Can temperature and dissipation stop eternal self-reproduction of the universe?
  • 3. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Warm inflation: Same basic ideas of standard inflation. Inflaton interacts with its environment → radiation production during inflation. No reheating mechanism is necessary. Smooth transition to radiation domination era.
  • 4. Outline Warm inflation Starobinsky I Observations Starobinsky II Warm inflation Microscopic motivation: L[φ, χ, σ] = L[φ] + L[χ] + L[σ] + Lint [φ, χ] + Lint [χ, σ] Procedure: functional integration over χ e σ. Non-equilibrium dynamics → Real time formalism Markovian approximation (local dissipation) → system characteristic time scale relaxation time scale Effective equation of motion: ∂ 1 ∂2 + (3H + Υ) − 2 2 ∂t ∂t a 2 Φ+ ∂Veff (Φ) = ξT ∂Φ Final remarks
  • 5. Outline Warm inflation Starobinsky I Observations Starobinsky II Warm inflation: basic equations 1 ∂2 ∂ + (3H + Υ) − 2 ∂t2 ∂t a 2 Φ+ ∂V (Φ) = ξT ∂Φ ξT (x, t)ξT (x , t ) = 2ΥT a−3 δ(x − x )δ(t − t ) a=− ¨ 8π ˙ ρr + Φ2 − V (Φ) a 3m2 pl a˙ ˙ ˙ ˙ ρΦ = −3 Φ2 − ΥΦ2 + ξT Φ , ˙ a = m2 pl 16π < 1 + Q, V V 2 , η= η <1+Q m2 pl 8π e a ˙ ˙ ˙ ρr = −4 ρr + ΥΦ2 − ξT Φ ˙ a V V , β= β <1+Q, m2 pl 8π ΥV ΥV Q≡ Υ 3H Final remarks
  • 6. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Contributions to the power spectrum Important characteristic of inflation: Natural mechanism to generation of nearly scale invariant density perturbations. Cold inflation: quantum fluctuations contributions Warm inflation: thermal fluctuations contributions
  • 7. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Contributions to the power spectrum Important characteristic of inflation: Natural mechanism to generation of nearly scale invariant density perturbations. Cold inflation: quantum fluctuations contributions Warm inflation: thermal fluctuations contributions ⇓ extreme cases... Non-isentropic stochastic inflation: Quantum and thermal fluctuations taken in account explicitly and in a transparent way. Recovers standard results both from cold and warm inflation.
  • 8. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Extending Starobinsky I: perturbative approach Central idea: Φ(x, t) → Φ> (x, t) + Φ< (x, t) Φ> (x, t) → ϕ(t) + δϕ(x, t) Mode separation implemented through an “Window function”: W (k, t) ≡ θ(k − aH) Goal: Effective dynamics for δϕ. Φ< (x, t) ≡ φq (x, t) = d3 k W (k, t) φk (t)e−ik·x ak + φ∗ (t)eik·x a† ˆ ˆk k 3/2 (2π) √ H π (1) φk (τ ) = (|τ |)3/2 Hµ (k|τ |) , 2 where µ = 9/4 − 3η.
  • 9. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Extending Starobinsky I: perturbative approach ∂ϕ ∂2ϕ + [3H + Υ(ϕ)] + V,ϕ (ϕ) = 0 , 2 ∂t ∂t 1 2 ∂2 ∂ ˜ − + [3H + Υ(ϕ)] + Υ,ϕ (ϕ)ϕ + V,ϕϕ (ϕ) δϕ = ξq + ξT , ˙ ∂t2 ∂t a2 ˜ ξq = − ∂2 1 ∂ − 2 + [3H + Υ(ϕ)] 2 ∂t ∂t a 2 + Υ,ϕ (ϕ)ϕ + V,ϕϕ (ϕ) φq , ˙ ˜ ξq → generalized quantum noise term ˜ ˜ ξq (x, t), ξq (x , t ) = 0 → classical behavior preserved Equation of motion as a function of z = k/(aH): 1 η − βQ/(1 + Q) δϕ (k, z) − (3Q + 2)δϕ (k, z) + 1 + 3 δϕ(k, z) = z z2 1 ˜ ξT (k, z) + ξq (k, z) . H 2z2
  • 10. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Extending Starobinsky I: perturbative approach Using the EoM solution, we define the inflaton power spectrum: Pδϕ = k3 2π 2 d3 k (th) (qu) δϕ(k, z)δϕ(k , z) = Pδϕ (z) + Pδϕ (z) (2π)3 2 3Q 2α 2ν−2α Γ (α) Γ (ν − 1) Γ (α − ν + 3/2) √ 2 z 1 2 π Γ ν − 2 Γ (α + ν − 1/2) ≈ HT 4π 2 + H coth T zH 2η z 2T ,
  • 11. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Extending Starobinsky I: perturbative approach Using the EoM solution, we define the inflaton power spectrum: Pδϕ = k3 2π 2 d3 k (th) (qu) δϕ(k, z)δϕ(k , z) = Pδϕ (z) + Pδϕ (z) (2π)3 2 3Q 2α 2ν−2α Γ (α) Γ (ν − 1) Γ (α − ν + 3/2) √ 2 z 1 2 π Γ ν − 2 Γ (α + ν − 1/2) ≈ HT 4π 2 + H coth T zH 2η z 2T , As expected, nearly scale invariant. Alternative derivation of the enhancement term (Mohanty et al, Phys. Rev. Lett. 97, 251301 (2006))
  • 12. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Extending Starobinsky I: perturbative approach Using the EoM solution, we define the inflaton power spectrum: Pδϕ = k3 2π 2 d3 k (th) (qu) δϕ(k, z)δϕ(k , z) = Pδϕ (z) + Pδϕ (z) (2π)3 2 3Q 2α 2ν−2α Γ (α) Γ (ν − 1) Γ (α − ν + 3/2) √ 2 z 1 2 π Γ ν − 2 Γ (α + ν − 1/2) ≈ HT 4π 2 + H coth T zH 2η z 2T , Recovers all results of cold and warm inflation: Q 1 and T H ⇒ Pδϕ ∝ HT (Berera and Fang, Phys. Rev. Lett. 74 (1995)) √ Q 1 and T H ⇒ Pδϕ ∝ T HΥ (Hall, Moss and Berera, Phys. Rev. D 69, 083525 (2004) ) Q 1 and T H ⇒ Pδϕ ∝ H 2 (cold inflation)
  • 13. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Extending Starobinsky I: perturbative approach V (φ) = 4 λMpl p φ Mpl p , Υ(φ, T ) = Cφ φ2a T c , m2b X c + 2a − 2b = 1 Figure: blue lines, Υ(φ), red Υ = cte. Dashed lines p = 2, full lines p = 4, dotted lines p = 6
  • 14. Outline Warm inflation Starobinsky I Observations Starobinsky II Cosmological parameters: Curvature perturbations: H2 P = ∆2 (k0 ) R ˙ δϕ φ2 8 H2 ∆2 = 2 h Mpl 4π 2 ∆2 = R ns −1 k k0 Spectral index (and running ns ): ns − 1 = d ln ∆2 R d ln k ns ≡ dns d ln k Tensor-to-scalar ratio: r≡ ∆2 4 H2 h 2 = (1 + Q)2 π 2 P ∆R δϕ Final remarks
  • 15. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Cosmological parameters: Some interesting limits: spectral index: Q → 0 and T → 0 ns = 1 + 2η − 6ε r ≈ 16 1 and T H ⇒ 1 9 9 3 − ε − β + η + O(1/Q3/2 ) + O(1/(Q3/2 T 2 )) ns = 1 + Q 4 4 2 16 H r≈ √ 3πT Q5/2 (Hall, Moss and Berera, Phys. Rev. D 69, 083525 (2004) ) Q Q 1 and T H ns = 1 + 2η − 6ε + (8ε − 2η)Q + O(Q2 )
  • 16. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Cosmological parameters: WMAP-9yr (arXiv:1212.5226) Figure: Green, eCMB, red, eCMB+BAO+H0 .Light colors → 95% CL, dark colors → 68% CL.
  • 17. Outline Warm inflation Starobinsky I Observations Starobinsky II Cosmological parameters: Planck (arXiv:1303.5082) Final remarks
  • 18. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Cosmological parameters: WMAP-9yr (arXiv:1212.5226)
  • 19. Outline Warm inflation Starobinsky I Results: V ∝ φ2 68%CL Observations Starobinsky II Final remarks
  • 20. Outline Warm inflation Starobinsky I Results: V ∝ φ4 95%CL Observations Starobinsky II Final remarks
  • 21. Outline Warm inflation Starobinsky I Results: V ∝ φ6 95%CL Observations Starobinsky II Final remarks
  • 22. Outline Warm inflation Starobinsky I Observations Starobinsky II Extending Starobinsky II: large scales Similar prescription: Φ(x, t) = ϕ(x, t) + φq (x, t) Large scales ( ¨ H −1 ): ≈ homogeneous dynamics, Φ ≈ 0 Resulting equation of motion: ϕ=− ˙ V,ϕ (ϕ) H 3/2 + 3H(1 + Q) 2π 1+ 2 eH/T Two-point function: ζ(t)ζ(t ) = δ(t − t ) . −1 ζ(t) Final remarks
  • 23. Outline Warm inflation Starobinsky I Observations Starobinsky II Extending Starobinsky II: large scales Associated Fokker-Planck equation: ∂ ∂ 1 ∂2 P (ϕ, t) = − D(1) P (ϕ, t) + D(2) P (ϕ, t) ∂t ∂ϕ 2 ∂ϕ2 ≡ LF P P (ϕ, t) Drift and difusion coefficients: V,ϕ (ϕ) ≡ −f (ϕ) , 3H(1 + Q) H3 2 = 2 1 + H/T . 4π e −1 D(1) = − D(2) Final remarks
  • 24. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Extending Starobinsky II: large scales Eternal inflation: Inflation doesn’t end globally Qualitative condition to self-reproduction regime of H-regions: f (ϕ) H(ϕ) D(2) H(ϕ)
  • 25. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Extending Starobinsky II: large scales Global picture: physical probability distribution function, PV : ∂ ∂ ∂PV = −D(1) (ϕ)PV + D(2) (ϕ)PV ∂t ∂ϕ ∂ϕ PV (ϕ, t) ≡ PV (ϕ, t) exp 3 dtH +3 [H(ϕ) − H ] PV
  • 26. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Extending Starobinsky II: large scales Global picture: physical probability distribution function, PV : ∂ ∂ ∂PV = −D(1) (ϕ)PV + D(2) (ϕ)PV ∂t ∂ϕ ∂ϕ PV (ϕ, t) ≡ +3 [H(ϕ) − H ] PV PV (ϕ, t) exp 3 dtH Dimensionless version:   ∂ ∂  x2n−1 PV (x, t ) = − PV (x, t ) ∂t ∂x xn 1 + γ 3xn 2 3n ∂ λ x 2 3 n + 1 + xn /T PV (x, t ) + [x − xn ] PV (x, t ) , ∂x2 12n2 8π 2 2n e −1 V (ϕ) = 4 λMp 2n ϕ Mp 2n
  • 27. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Extending Starobinsky II: large scales Transforming to a Schr¨dinger-like equation: o dx σ→ D(2) (x) 1 ∂ (2) (x) ∂σ D ∂ → ∂x Pn (x) → 1 1 exp (2) (x)−3/4 2 D dx D(1) (x) ψn (σ) , D(2) (x) ∂2 ψn (σ) − VS (σ)ψn (σ) = Λn ψn (σ) , ∂σ 2 where (2) (2) (2) (1) 3 (D,x )2 D,xx D,x D(1) D,x (D(1) )2 VS (σ) = − − + + . 16 D(2) 4 2 2D(2) 4D(2)
  • 28. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Extending Starobinsky II: large scales Schr¨dinger-like equation ⇒ Sturm-Liouville problem: o L≡ d d p(x) y + q(x)y = −λw(x)y dx dx ca y(a) + da y (a) = 0 cb y(b) + db y (b) = 0 . cn φn (x) y(x) = n Lφn = −λn w(x)φn λ0 < λ1 < λ2 . . . −py λ0 = miny(x) dy dx b b a + a b a dx p dy dx dx y 2 w(x) 2 − qy 2 (Rayleigh quotient)
  • 29. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Extending Starobinsky II: large scales Eternal inflation case: Cn ψn (σ)eΛn t Ψ(σ, t) = n dσ Λ0 = −minψ(σ) dψn dσ 2 2 + VS (σ)ψn 2 dσ ψn Λ0 > 0 ⇔ there is some interval σ1 < σ < σ2 so that VS < 0
  • 30. Outline Warm inflation Starobinsky I Observations Starobinsky II Extending Starobinsky II: large scales Ex.: φ4 potential. Cold limit: n=2 VS =− 3 −2 5 σ − + σ 2 − 3π 16 2 3 −1 σ λ Final remarks
  • 31. Outline Warm inflation Starobinsky I Observations Starobinsky II Extending Starobinsky II: large scales High dissipation and temperature limit: n=2 VS = Then, if λT < 288π 2 γ(γ+2) 72π 2 288π 2 − γλT (2 + γ) σ −2 (γλT )2 eternal self-reproduction is suppressed! Final remarks
  • 32. Outline Warm inflation Starobinsky I Observations Starobinsky II Final remarks Answers to the proposed questions: Non-isentropic stochastic polynomial chaotic inflation model is viable in face of the most recent results for the cosmological parameters. (more details and results: Rudnei O. Ramos and L. A. da Silva JCAP03(2013)032) Temperature and dissipative effects can suppress the eternal self-reproduction of H-regions.