SlideShare una empresa de Scribd logo
1 de 5
Descargar para leer sin conexión
Solutions to Worksheet for Section 5.5
                               Integration by Substitution
                                                V63.0121, Calculus I
                                                    December 7, 2009


  Find the following integrals. In the case of an indefinite integral, your answer should be the
most general antiderivative. In the case of a definite integral, your answer should be a number.




In these problems, a substitution is given.

  1.        (3x − 5)17 dx, u = 3x − 5


                                                                                   1
       Solution. As suggested, we let u = 3x − 5. Then du = 3 dx so dx =             du. Thus
                                                                                   3
                                                1                1 1 18     1
                           (3x − 5)17 dx =            u17 du =    · u +C =    (3x − 5)18 + C
                                                3                3 18      54


            4
  2.            x   x2 + 9 dx, u = x2 + 9
        0


       Solution. We have du = 2x dx, which takes care of the x and dx that appear in the integrand.
       The limits are changed to u(0) = 9 and u(4) = 25. Thus
                                        4                                         25
                                                          1 25 √          1 2
                                            x x2 + 9 dx =         u du = · u3/2
                                    0                     2 9             2 3     9
                                                          1                98
                                                         = · (125 − 27) =     .
                                                          3                 3


                √
            e x      √
  3.        √ dx, u = x.
              x



                                                            1
1
       Solution. We have du = √ dx, which means that
                             2 x
                                                 √
                                                e x
                                                √ dx = 2          eu du = 2eu + C
                                                  x


          cos 3x dx
  4.                  , u = 5 + 2 sin 3x
         5 + 2 sin 3x

       Solution. We have du = 6 cos 3x dx, so
                               cos 3x dx     1       du  1            1
                                           =            = ln |u| + C = ln |5 + 2 sin 3x| + C
                              5 + 2 sin 3x   6        u  6            6




In these problems, you need to determine the substitution yourself.

  5.     (4 − 3x)7 dx.

                                                          1
       Solution. Let u = 4 − 3x, so du = −3x dx and dx = − du. Thus
                                                          3
                                                 1                   u8         1
                              (4 − 3x)7 dx = −         u7 du = −        + C = − (4 − 3x)8 + C
                                                 3                   24        24


         π/3
  6.           csc2 (5x) dx
        π/4

                                                                 1
       Solution. Let u = 5x, so du = 5 dx and dx =                 du. So
                                                                 5
                                      π/3                         5π/3
                                                             1
                                            csc2 (5x) dx =               csc2 u du
                                     π/4                     5   5π/4
                                                                           5π/3
                                                                 1
                                                        =−         cot u
                                                                 5         5π/4
                                                             1  5π                    5π
                                                        =      cot            − cot
                                                             5   4                     3
                                                               √
                                                          1      3
                                                        =   1+
                                                          5     3




                                                             2
3
                         −1
  7.        x2 e3x            dx


                                                                          1
       Solution. Let u = 3x3 − 1, so du = 9x2 dx and dx =                   du. So
                                                                          9
                                                   3
                                                       −1      1          1
                                          x2 e3x            dx =   eu du = eu + C
                                                               9          9
                                                               1 3x3 −1
                                                              = e       .
                                                               9




Sometimes there is more than one way to skin a cat:
                      x
  8. Find                dx, both by long division and by substituting u = 1 + x.
                     1+x

       Solution. Long division yields
                                                         x       1
                                                            =1−
                                                        1+x     1+x
       So
                                                        x                   dx
                                                           dx = x −
                                                       1+x                 1+x
       To find the leftover integral, let u = 1 + x. Then du = dx and so
                                                dx                 du
                                                   =                  = ln |u| + C
                                               1+x                  u
       Therefore
                                               x
                                                  dx = x − ln |x + 1| + C
                                              1+x
       Making the substitution immediately gives du = dx and x = u − 1. So

                                         x                    u−1                    1
                                            dx =                  du =        1−         du
                                        1+x                    u                     u
                                                       = u − ln |u| + C
                                                       = x + 1 − ln |x + 1| + C

       It may appear that the two solutions are “different.” But the difference is a constant, and we
       know that antiderivatives are only unique up to addition of a constant.

                       2z dz
                              , both by substituting u = z 2 + 1 and u =
                                                                                3
  9. Find            √
                     3
                                                                                    z 2 + 1.
                       z2 + 1


                                                               3
Solution. In the first substitution, du = 2z dz and the integral becomes
                                 du                       3 2/3    3
                                 √ =     u−1/3 du =         u + C = (z 2 + 1)2/3
                                 3
                                   u                      2        2

       In the second, u3 = z 2 + 1 and 3u2 du = 2z dz. The integral becomes
                             3u2                         3 3      3
                                 du =     3u2 du =         u + C = (z 2 + 1)2/3 + C.
                              u                          2        2
                             The second one is a dirtier substitution, but the integration is cleaner.




Use the trigonometric identity

                        cos 2α = cos2 α − sin2 α = 2 cos2 α − 1 = 1 − 2 sin2 α

to find

 10.        sin2 x dx


       Solution. Using cos 2α = 1 − 2 sin2 α, we get
                                                          1 − cos 2α
                                            sin2 α =
                                                              2
       So
                                                   1 1
                                       sin2 x dx =   − cos 2x dx
                                                   2 2
                                                 x 1
                                                = − sin 2x + C.
                                                 2 4



 11.        cos2 x dx

       Solution. Using cos 2α = 2 cos2 α − 1, we get
                                                          1 + cos 2α
                                            sin2 α =
                                                              2
       So
                                                   1 1
                                       sin2 x dx =   + cos 2x dx
                                                   2 2
                                                 x 1
                                                = + sin 2x + C.
                                                 2 4



                                                     4
12.   Find
                                              sec x dx

by multiplying the numerator and denominator by sec x + tan x.
Solution. We have
                                              sec x(sec x + tan x)
                                sec x dx =                         dx
                                                  sec x + tan x
                                              sec2 x + sec x tan x
                                        =                          dx
                                                 tan x + sec x
Now notice the numerator is the derivative of the denominator. So the substitution u = tan x+sec x
gives
                                  sec x dx = ln |sec x + tan x| + C.




                                                5

Más contenido relacionado

La actualidad más candente

Matematika Kalkulus ( Limit )
Matematika Kalkulus ( Limit )Matematika Kalkulus ( Limit )
Matematika Kalkulus ( Limit )fdjouhana
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialZerick Lucernas
 
Sifat Limit Fungsi Aljabar dan Contoh Soal
Sifat Limit Fungsi Aljabar dan Contoh SoalSifat Limit Fungsi Aljabar dan Contoh Soal
Sifat Limit Fungsi Aljabar dan Contoh SoalAsrifida Juwita Tanjung
 
Multiplying Polynomials I
Multiplying Polynomials IMultiplying Polynomials I
Multiplying Polynomials IIris
 
Ecuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoEcuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoterzaga
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009akabaka12
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Matthew Leingang
 
Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Matthew Leingang
 
Adding and subtracting polynomials
Adding and subtracting polynomialsAdding and subtracting polynomials
Adding and subtracting polynomialsholmsted
 
Fermat and euler theorem
Fermat and euler theoremFermat and euler theorem
Fermat and euler theoremJanani S
 
Linear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otcLinear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otckjalili
 
Higher order derivatives for N -body simulations
Higher order derivatives for N -body simulationsHigher order derivatives for N -body simulations
Higher order derivatives for N -body simulationsKeigo Nitadori
 

La actualidad más candente (20)

Limits
LimitsLimits
Limits
 
Prime
PrimePrime
Prime
 
Sect2 1
Sect2 1Sect2 1
Sect2 1
 
Matematika Kalkulus ( Limit )
Matematika Kalkulus ( Limit )Matematika Kalkulus ( Limit )
Matematika Kalkulus ( Limit )
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
 
Sifat Limit Fungsi Aljabar dan Contoh Soal
Sifat Limit Fungsi Aljabar dan Contoh SoalSifat Limit Fungsi Aljabar dan Contoh Soal
Sifat Limit Fungsi Aljabar dan Contoh Soal
 
Multiplying Polynomials I
Multiplying Polynomials IMultiplying Polynomials I
Multiplying Polynomials I
 
Ecuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoEcuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo grado
 
Ch08
Ch08Ch08
Ch08
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)
 
Imc2017 day1-solutions
Imc2017 day1-solutionsImc2017 day1-solutions
Imc2017 day1-solutions
 
Sect1 2
Sect1 2Sect1 2
Sect1 2
 
Chapter 2(limits)
Chapter 2(limits)Chapter 2(limits)
Chapter 2(limits)
 
Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)
 
Adding and subtracting polynomials
Adding and subtracting polynomialsAdding and subtracting polynomials
Adding and subtracting polynomials
 
Multiplying polynomials
Multiplying polynomialsMultiplying polynomials
Multiplying polynomials
 
Fermat and euler theorem
Fermat and euler theoremFermat and euler theorem
Fermat and euler theorem
 
Linear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otcLinear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otc
 
Higher order derivatives for N -body simulations
Higher order derivatives for N -body simulationsHigher order derivatives for N -body simulations
Higher order derivatives for N -body simulations
 

Similar a Lesson 29: Integration by Substition (worksheet solutions)

Lesson 29: Integration by Substition (worksheet)
Lesson 29: Integration by Substition (worksheet)Lesson 29: Integration by Substition (worksheet)
Lesson 29: Integration by Substition (worksheet)Matthew Leingang
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMatthew Leingang
 
January 23
January 23January 23
January 23khyps13
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Matthew Leingang
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMel Anthony Pepito
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMatthew Leingang
 
Engr 213 final sol 2009
Engr 213 final sol 2009Engr 213 final sol 2009
Engr 213 final sol 2009akabaka12
 
Sulalgtrig7e Isg 1 4
Sulalgtrig7e Isg 1 4Sulalgtrig7e Isg 1 4
Sulalgtrig7e Isg 1 4Joseph Eulo
 
Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010akabaka12
 
Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationtutulk
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMatthew Leingang
 

Similar a Lesson 29: Integration by Substition (worksheet solutions) (20)

Lesson 29: Integration by Substition (worksheet)
Lesson 29: Integration by Substition (worksheet)Lesson 29: Integration by Substition (worksheet)
Lesson 29: Integration by Substition (worksheet)
 
125 5.3
125 5.3125 5.3
125 5.3
 
125 5.1
125 5.1125 5.1
125 5.1
 
125 11.1
125 11.1125 11.1
125 11.1
 
125 5.2
125 5.2125 5.2
125 5.2
 
4.5 5.5 notes 1
4.5 5.5  notes 14.5 5.5  notes 1
4.5 5.5 notes 1
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
January 23
January 23January 23
January 23
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Engr 213 final sol 2009
Engr 213 final sol 2009Engr 213 final sol 2009
Engr 213 final sol 2009
 
Week 2
Week 2 Week 2
Week 2
 
Sulalgtrig7e Isg 1 4
Sulalgtrig7e Isg 1 4Sulalgtrig7e Isg 1 4
Sulalgtrig7e Isg 1 4
 
AP Calculus Project
AP Calculus ProjectAP Calculus Project
AP Calculus Project
 
Lesson 15: The Chain Rule
Lesson 15: The Chain RuleLesson 15: The Chain Rule
Lesson 15: The Chain Rule
 
Em04 il
Em04 ilEm04 il
Em04 il
 
Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010
 
Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integration
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 

Más de Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 

Más de Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 

Último

Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform EngineeringMarcus Vechiato
 
Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxFIDO Alliance
 
Oauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftOauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftshyamraj55
 
Long journey of Ruby Standard library at RubyKaigi 2024
Long journey of Ruby Standard library at RubyKaigi 2024Long journey of Ruby Standard library at RubyKaigi 2024
Long journey of Ruby Standard library at RubyKaigi 2024Hiroshi SHIBATA
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!Memoori
 
TopCryptoSupers 12thReport OrionX May2024
TopCryptoSupers 12thReport OrionX May2024TopCryptoSupers 12thReport OrionX May2024
TopCryptoSupers 12thReport OrionX May2024Stephen Perrenod
 
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfLinux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfFIDO Alliance
 
Structuring Teams and Portfolios for Success
Structuring Teams and Portfolios for SuccessStructuring Teams and Portfolios for Success
Structuring Teams and Portfolios for SuccessUXDXConf
 
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxHarnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxFIDO Alliance
 
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfThe Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfFIDO Alliance
 
The Metaverse: Are We There Yet?
The  Metaverse:    Are   We  There  Yet?The  Metaverse:    Are   We  There  Yet?
The Metaverse: Are We There Yet?Mark Billinghurst
 
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?Paolo Missier
 
Google I/O Extended 2024 Warsaw
Google I/O Extended 2024 WarsawGoogle I/O Extended 2024 Warsaw
Google I/O Extended 2024 WarsawGDSC PJATK
 
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfIntroduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfFIDO Alliance
 
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdfHow Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdfFIDO Alliance
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptxFIDO Alliance
 
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...ScyllaDB
 
Collecting & Temporal Analysis of Behavioral Web Data - Tales From The Inside
Collecting & Temporal Analysis of Behavioral Web Data - Tales From The InsideCollecting & Temporal Analysis of Behavioral Web Data - Tales From The Inside
Collecting & Temporal Analysis of Behavioral Web Data - Tales From The InsideStefan Dietze
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024Lorenzo Miniero
 

Último (20)

Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform Engineering
 
Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptx
 
Oauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftOauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoft
 
Long journey of Ruby Standard library at RubyKaigi 2024
Long journey of Ruby Standard library at RubyKaigi 2024Long journey of Ruby Standard library at RubyKaigi 2024
Long journey of Ruby Standard library at RubyKaigi 2024
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!
 
TopCryptoSupers 12thReport OrionX May2024
TopCryptoSupers 12thReport OrionX May2024TopCryptoSupers 12thReport OrionX May2024
TopCryptoSupers 12thReport OrionX May2024
 
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfLinux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
 
Structuring Teams and Portfolios for Success
Structuring Teams and Portfolios for SuccessStructuring Teams and Portfolios for Success
Structuring Teams and Portfolios for Success
 
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxHarnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
 
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfThe Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
 
The Metaverse: Are We There Yet?
The  Metaverse:    Are   We  There  Yet?The  Metaverse:    Are   We  There  Yet?
The Metaverse: Are We There Yet?
 
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
 
Google I/O Extended 2024 Warsaw
Google I/O Extended 2024 WarsawGoogle I/O Extended 2024 Warsaw
Google I/O Extended 2024 Warsaw
 
Overview of Hyperledger Foundation
Overview of Hyperledger FoundationOverview of Hyperledger Foundation
Overview of Hyperledger Foundation
 
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfIntroduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
 
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdfHow Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
 
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
 
Collecting & Temporal Analysis of Behavioral Web Data - Tales From The Inside
Collecting & Temporal Analysis of Behavioral Web Data - Tales From The InsideCollecting & Temporal Analysis of Behavioral Web Data - Tales From The Inside
Collecting & Temporal Analysis of Behavioral Web Data - Tales From The Inside
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024
 

Lesson 29: Integration by Substition (worksheet solutions)

  • 1. Solutions to Worksheet for Section 5.5 Integration by Substitution V63.0121, Calculus I December 7, 2009 Find the following integrals. In the case of an indefinite integral, your answer should be the most general antiderivative. In the case of a definite integral, your answer should be a number. In these problems, a substitution is given. 1. (3x − 5)17 dx, u = 3x − 5 1 Solution. As suggested, we let u = 3x − 5. Then du = 3 dx so dx = du. Thus 3 1 1 1 18 1 (3x − 5)17 dx = u17 du = · u +C = (3x − 5)18 + C 3 3 18 54 4 2. x x2 + 9 dx, u = x2 + 9 0 Solution. We have du = 2x dx, which takes care of the x and dx that appear in the integrand. The limits are changed to u(0) = 9 and u(4) = 25. Thus 4 25 1 25 √ 1 2 x x2 + 9 dx = u du = · u3/2 0 2 9 2 3 9 1 98 = · (125 − 27) = . 3 3 √ e x √ 3. √ dx, u = x. x 1
  • 2. 1 Solution. We have du = √ dx, which means that 2 x √ e x √ dx = 2 eu du = 2eu + C x cos 3x dx 4. , u = 5 + 2 sin 3x 5 + 2 sin 3x Solution. We have du = 6 cos 3x dx, so cos 3x dx 1 du 1 1 = = ln |u| + C = ln |5 + 2 sin 3x| + C 5 + 2 sin 3x 6 u 6 6 In these problems, you need to determine the substitution yourself. 5. (4 − 3x)7 dx. 1 Solution. Let u = 4 − 3x, so du = −3x dx and dx = − du. Thus 3 1 u8 1 (4 − 3x)7 dx = − u7 du = − + C = − (4 − 3x)8 + C 3 24 24 π/3 6. csc2 (5x) dx π/4 1 Solution. Let u = 5x, so du = 5 dx and dx = du. So 5 π/3 5π/3 1 csc2 (5x) dx = csc2 u du π/4 5 5π/4 5π/3 1 =− cot u 5 5π/4 1 5π 5π = cot − cot 5 4 3 √ 1 3 = 1+ 5 3 2
  • 3. 3 −1 7. x2 e3x dx 1 Solution. Let u = 3x3 − 1, so du = 9x2 dx and dx = du. So 9 3 −1 1 1 x2 e3x dx = eu du = eu + C 9 9 1 3x3 −1 = e . 9 Sometimes there is more than one way to skin a cat: x 8. Find dx, both by long division and by substituting u = 1 + x. 1+x Solution. Long division yields x 1 =1− 1+x 1+x So x dx dx = x − 1+x 1+x To find the leftover integral, let u = 1 + x. Then du = dx and so dx du = = ln |u| + C 1+x u Therefore x dx = x − ln |x + 1| + C 1+x Making the substitution immediately gives du = dx and x = u − 1. So x u−1 1 dx = du = 1− du 1+x u u = u − ln |u| + C = x + 1 − ln |x + 1| + C It may appear that the two solutions are “different.” But the difference is a constant, and we know that antiderivatives are only unique up to addition of a constant. 2z dz , both by substituting u = z 2 + 1 and u = 3 9. Find √ 3 z 2 + 1. z2 + 1 3
  • 4. Solution. In the first substitution, du = 2z dz and the integral becomes du 3 2/3 3 √ = u−1/3 du = u + C = (z 2 + 1)2/3 3 u 2 2 In the second, u3 = z 2 + 1 and 3u2 du = 2z dz. The integral becomes 3u2 3 3 3 du = 3u2 du = u + C = (z 2 + 1)2/3 + C. u 2 2 The second one is a dirtier substitution, but the integration is cleaner. Use the trigonometric identity cos 2α = cos2 α − sin2 α = 2 cos2 α − 1 = 1 − 2 sin2 α to find 10. sin2 x dx Solution. Using cos 2α = 1 − 2 sin2 α, we get 1 − cos 2α sin2 α = 2 So 1 1 sin2 x dx = − cos 2x dx 2 2 x 1 = − sin 2x + C. 2 4 11. cos2 x dx Solution. Using cos 2α = 2 cos2 α − 1, we get 1 + cos 2α sin2 α = 2 So 1 1 sin2 x dx = + cos 2x dx 2 2 x 1 = + sin 2x + C. 2 4 4
  • 5. 12. Find sec x dx by multiplying the numerator and denominator by sec x + tan x. Solution. We have sec x(sec x + tan x) sec x dx = dx sec x + tan x sec2 x + sec x tan x = dx tan x + sec x Now notice the numerator is the derivative of the denominator. So the substitution u = tan x+sec x gives sec x dx = ln |sec x + tan x| + C. 5