SlideShare una empresa de Scribd logo
1 de 75
Descargar para leer sin conexión
Axioms on the Set of Real Numbers

                          Mathematics 4


                            June 7, 2011




Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   1 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms
    Commutativity Axioms




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms
    Commutativity Axioms
    Distributive Property of Multiplication over Addition




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms
    Commutativity Axioms
    Distributive Property of Multiplication over Addition
    Existence of an Identity Element




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms
    Commutativity Axioms
    Distributive Property of Multiplication over Addition
    Existence of an Identity Element
    Existence of an Inverse Element




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms: Closure




Closure Axioms
Addition: ∀ a, b ∈ R : (a + b) ∈ R.
Multiplication: ∀ a, b ∈ R, (a · b) ∈ R.




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   3 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+




      Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−




      Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}




      Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}
  4   {2, 4, 6, 8, 10, ...}




      Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}
  4   {2, 4, 6, 8, 10, ...}
  5   {−2, −1, 0, 1, 2, 3, ...}




      Mathematics 4 ()            Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}
  4   {2, 4, 6, 8, 10, ...}
  5   {−2, −1, 0, 1, 2, 3, ...}
  6   Q




      Mathematics 4 ()            Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}
  4   {2, 4, 6, 8, 10, ...}
  5   {−2, −1, 0, 1, 2, 3, ...}
  6   Q
  7   Q




      Mathematics 4 ()            Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Associativity




Associativity Axioms




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Associativity




Associativity Axioms
    Addition




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Associativity




Associativity Axioms
    Addition
    ∀ a, b, c ∈ R, (a + b) + c = a + (b + c)




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Associativity




Associativity Axioms
    Addition
    ∀ a, b, c ∈ R, (a + b) + c = a + (b + c)
    Multiplication




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Associativity




Associativity Axioms
    Addition
    ∀ a, b, c ∈ R, (a + b) + c = a + (b + c)
    Multiplication
    ∀ a, b, c ∈ R, (a · b) · c = a · (b · c)




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Commutativity




Commutativity Axioms




    Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: Commutativity




Commutativity Axioms
   Addition




    Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: Commutativity




Commutativity Axioms
   Addition
   ∀ a, b ∈ R, a + b = b + a




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: Commutativity




Commutativity Axioms
   Addition
   ∀ a, b ∈ R, a + b = b + a
   Multiplication




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: Commutativity




Commutativity Axioms
   Addition
   ∀ a, b ∈ R, a + b = b + a
   Multiplication
   ∀ a, b ∈ R, a · b = b · a




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: DPMA




Distributive Property of Multiplication over Addition
∀ a, b, c ∈ R, c · (a + b) = c · a + c · b




      Mathematics 4 ()       Axioms on the Set of Real Numbers   June 7, 2011   7 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element
    Addition




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element
    Addition
    ∃! 0 : a + 0 = a for a ∈ R.




     Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element
    Addition
    ∃! 0 : a + 0 = a for a ∈ R.
    Multiplication




     Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element
    Addition
    ∃! 0 : a + 0 = a for a ∈ R.
    Multiplication
    ∃! 1 : a · 1 = a and 1 · a = a for a ∈ R.




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element
    Addition




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element
    Addition
    ∀ a ∈ R, ∃! (-a) : a + (−a) = 0




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element
    Addition
    ∀ a ∈ R, ∃! (-a) : a + (−a) = 0
    Multiplication




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element
    Addition
    ∀ a ∈ R, ∃! (-a) : a + (−a) = 0
    Multiplication
                        1          1
    ∀ a ∈ R − {0}, ∃!   a   : a·   a   =1




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Equality Axioms




Equality Axioms




    Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a
 2   Symmetry: ∀ a, b ∈ R : a = b → b = a




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a
 2   Symmetry: ∀ a, b ∈ R : a = b → b = a
 3   Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a
 2   Symmetry: ∀ a, b ∈ R : a = b → b = a
 3   Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c
 4   Addition PE: ∀ a, b, c ∈ R : a = b → a + c = b + c




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a
 2   Symmetry: ∀ a, b ∈ R : a = b → b = a
 3   Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c
 4   Addition PE: ∀ a, b, c ∈ R : a = b → a + c = b + c
 5   Multiplication PE: ∀ a, b, c ∈ R : a = b → a · c = b · c




     Mathematics 4 ()      Axioms on the Set of Real Numbers    June 7, 2011   10 / 14
Theorems from the Field and Equality Axioms




Cancellation for Addition: ∀ a, b, c ∈ R : a + c = b + c → a = c
            a+c=b+c                    Given
  a + c + (−c) = b + c + (−c)          APE
 a + (c + (−c)) = b + (c + (−c))       APA
            a+0=b+0                    ∃ additive inverses
                  a=b                  ∃ additive identity




     Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   11 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)
    ∀ a, b ∈ R : (−a) · (−b) = a · b




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)
    ∀ a, b ∈ R : (−a) · (−b) = a · b
    ∀ a, b ∈ R : − (a + b) = (−a) + (−b)




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)
    ∀ a, b ∈ R : (−a) · (−b) = a · b
    ∀ a, b ∈ R : − (a + b) = (−a) + (−b)
    Cancellation Law for Multiplication:
    ∀ a, b, c ∈ R, c = 0 : ac = bc → a = b




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)
    ∀ a, b ∈ R : (−a) · (−b) = a · b
    ∀ a, b ∈ R : − (a + b) = (−a) + (−b)
    Cancellation Law for Multiplication:
    ∀ a, b, c ∈ R, c = 0 : ac = bc → a = b
                         1
    ∀ a ∈ R, a = 0 :          =a
                      (1/a)


    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Order Axioms




Order Axioms: Trichotomy
∀ a, b ∈ R, only one of the following is true:




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   13 / 14
Order Axioms




Order Axioms: Trichotomy
∀ a, b ∈ R, only one of the following is true:
  1   a>b




      Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   13 / 14
Order Axioms




Order Axioms: Trichotomy
∀ a, b ∈ R, only one of the following is true:
  1   a>b
  2   a=b




      Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   13 / 14
Order Axioms




Order Axioms: Trichotomy
∀ a, b ∈ R, only one of the following is true:
  1   a>b
  2   a=b
  3   a<b




      Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   13 / 14
Order Axioms



Order Axioms: Inequalities




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c
 2   Addition Property of Inequality




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c
 2   Addition Property of Inequality
     ∀ a, b, c ∈ R : a > b → a + c > b + c




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c
 2   Addition Property of Inequality
     ∀ a, b, c ∈ R : a > b → a + c > b + c
 3   Multiplication Property of Inequality




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c
 2   Addition Property of Inequality
     ∀ a, b, c ∈ R : a > b → a + c > b + c
 3   Multiplication Property of Inequality
     ∀ a, b, c ∈ R, c > 0 : a > b → a · c > b · c




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Theorems from the Order Axioms

Prove the following theorems




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0




    Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a
    (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0)




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a
    (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0)
    (4-6) 1 > 0




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a
    (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0)
    (4-6) 1 > 0
    ∀ a, b, c ∈ R : (a > b) ∧ (0 > c) → b · c > a · c




    Mathematics 4 ()       Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a
    (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0)
    (4-6) 1 > 0
    ∀ a, b, c ∈ R : (a > b) ∧ (0 > c) → b · c > a · c
                         1
    ∀ a ∈ R: a > 0 → > 0
                         a


    Mathematics 4 ()       Axioms on the Set of Real Numbers   June 7, 2011   15 / 14

Más contenido relacionado

Destacado

6.4.1 sum and difference formulas
6.4.1 sum and difference formulas6.4.1 sum and difference formulas
6.4.1 sum and difference formulas
Northside ISD
 
GCSE Foundation Maths
GCSE Foundation MathsGCSE Foundation Maths
GCSE Foundation Maths
Qwizdom UK
 
Circles - analysis problems
Circles - analysis problemsCircles - analysis problems
Circles - analysis problems
Leo Crisologo
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
Mel Anthony Pepito
 
7_Intro_to_Functions
7_Intro_to_Functions7_Intro_to_Functions
7_Intro_to_Functions
nechamkin
 
5.2.1 trigonometric functions
5.2.1 trigonometric functions5.2.1 trigonometric functions
5.2.1 trigonometric functions
Northside ISD
 
Solid geometry ii slide
Solid geometry ii   slideSolid geometry ii   slide
Solid geometry ii slide
Raihana Azman
 

Destacado (20)

Functions
FunctionsFunctions
Functions
 
Theorems on polynomial functions
Theorems on polynomial functionsTheorems on polynomial functions
Theorems on polynomial functions
 
Fraction rules
Fraction rulesFraction rules
Fraction rules
 
Differentiation
Differentiation Differentiation
Differentiation
 
6.4.1 sum and difference formulas
6.4.1 sum and difference formulas6.4.1 sum and difference formulas
6.4.1 sum and difference formulas
 
GCSE Foundation Maths
GCSE Foundation MathsGCSE Foundation Maths
GCSE Foundation Maths
 
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
 
Graphing trigonometric functions
Graphing trigonometric functionsGraphing trigonometric functions
Graphing trigonometric functions
 
Circles - analysis problems
Circles - analysis problemsCircles - analysis problems
Circles - analysis problems
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Low stakes testing in the mathematics classroom
Low stakes testing in the mathematics classroomLow stakes testing in the mathematics classroom
Low stakes testing in the mathematics classroom
 
Introduction to fourier analysis
Introduction to fourier analysisIntroduction to fourier analysis
Introduction to fourier analysis
 
Infinite series &amp; sequence
Infinite series &amp; sequenceInfinite series &amp; sequence
Infinite series &amp; sequence
 
Obj. 49 Solid Geometry
Obj. 49 Solid GeometryObj. 49 Solid Geometry
Obj. 49 Solid Geometry
 
Chapter 6 Probability
Chapter 6  ProbabilityChapter 6  Probability
Chapter 6 Probability
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
7_Intro_to_Functions
7_Intro_to_Functions7_Intro_to_Functions
7_Intro_to_Functions
 
5.2.1 trigonometric functions
5.2.1 trigonometric functions5.2.1 trigonometric functions
5.2.1 trigonometric functions
 
Sequence and series
Sequence and seriesSequence and series
Sequence and series
 
Solid geometry ii slide
Solid geometry ii   slideSolid geometry ii   slide
Solid geometry ii slide
 

Más de Leo Crisologo (15)

Inverse of functions
Inverse of functionsInverse of functions
Inverse of functions
 
Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?
 
Permutations and combinations examples
Permutations and combinations examplesPermutations and combinations examples
Permutations and combinations examples
 
Permutations
PermutationsPermutations
Permutations
 
Counting examples
Counting examplesCounting examples
Counting examples
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbers
 
Right triangle problems
Right triangle problemsRight triangle problems
Right triangle problems
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functions
 
Circles and Tangent Lines
Circles and Tangent LinesCircles and Tangent Lines
Circles and Tangent Lines
 
Circles - Degenerate and Null cases
Circles - Degenerate and Null casesCircles - Degenerate and Null cases
Circles - Degenerate and Null cases
 
Circles Lecture - Part 1
Circles Lecture - Part 1Circles Lecture - Part 1
Circles Lecture - Part 1
 
Math 4 lecture on Graphing Rational Functions
Math 4 lecture on Graphing Rational FunctionsMath 4 lecture on Graphing Rational Functions
Math 4 lecture on Graphing Rational Functions
 
Math 1 Orientation Presentation
Math 1 Orientation PresentationMath 1 Orientation Presentation
Math 1 Orientation Presentation
 
Math 1 Course Outline 2009-2010
Math 1 Course Outline 2009-2010Math 1 Course Outline 2009-2010
Math 1 Course Outline 2009-2010
 
Math 3 Student Orientation Presentation
Math 3 Student Orientation PresentationMath 3 Student Orientation Presentation
Math 3 Student Orientation Presentation
 

Último

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Último (20)

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 

Math 4 axioms on the set of real numbers

  • 1. Axioms on the Set of Real Numbers Mathematics 4 June 7, 2011 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 1 / 14
  • 2. Field Axioms Fields A field is a set where the following axioms hold: Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 3. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 4. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 5. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Commutativity Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 6. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Commutativity Axioms Distributive Property of Multiplication over Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 7. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Commutativity Axioms Distributive Property of Multiplication over Addition Existence of an Identity Element Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 8. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Commutativity Axioms Distributive Property of Multiplication over Addition Existence of an Identity Element Existence of an Inverse Element Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 9. Field Axioms: Closure Closure Axioms Addition: ∀ a, b ∈ R : (a + b) ∈ R. Multiplication: ∀ a, b ∈ R, (a · b) ∈ R. Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 3 / 14
  • 10. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 11. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 12. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 13. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 14. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} 4 {2, 4, 6, 8, 10, ...} Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 15. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} 4 {2, 4, 6, 8, 10, ...} 5 {−2, −1, 0, 1, 2, 3, ...} Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 16. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} 4 {2, 4, 6, 8, 10, ...} 5 {−2, −1, 0, 1, 2, 3, ...} 6 Q Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 17. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} 4 {2, 4, 6, 8, 10, ...} 5 {−2, −1, 0, 1, 2, 3, ...} 6 Q 7 Q Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 18. Field Axioms: Associativity Associativity Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 19. Field Axioms: Associativity Associativity Axioms Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 20. Field Axioms: Associativity Associativity Axioms Addition ∀ a, b, c ∈ R, (a + b) + c = a + (b + c) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 21. Field Axioms: Associativity Associativity Axioms Addition ∀ a, b, c ∈ R, (a + b) + c = a + (b + c) Multiplication Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 22. Field Axioms: Associativity Associativity Axioms Addition ∀ a, b, c ∈ R, (a + b) + c = a + (b + c) Multiplication ∀ a, b, c ∈ R, (a · b) · c = a · (b · c) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 23. Field Axioms: Commutativity Commutativity Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 24. Field Axioms: Commutativity Commutativity Axioms Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 25. Field Axioms: Commutativity Commutativity Axioms Addition ∀ a, b ∈ R, a + b = b + a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 26. Field Axioms: Commutativity Commutativity Axioms Addition ∀ a, b ∈ R, a + b = b + a Multiplication Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 27. Field Axioms: Commutativity Commutativity Axioms Addition ∀ a, b ∈ R, a + b = b + a Multiplication ∀ a, b ∈ R, a · b = b · a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 28. Field Axioms: DPMA Distributive Property of Multiplication over Addition ∀ a, b, c ∈ R, c · (a + b) = c · a + c · b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 7 / 14
  • 29. Field Axioms: Existence of an Identity Element Existence of an Identity Element Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 30. Field Axioms: Existence of an Identity Element Existence of an Identity Element Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 31. Field Axioms: Existence of an Identity Element Existence of an Identity Element Addition ∃! 0 : a + 0 = a for a ∈ R. Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 32. Field Axioms: Existence of an Identity Element Existence of an Identity Element Addition ∃! 0 : a + 0 = a for a ∈ R. Multiplication Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 33. Field Axioms: Existence of an Identity Element Existence of an Identity Element Addition ∃! 0 : a + 0 = a for a ∈ R. Multiplication ∃! 1 : a · 1 = a and 1 · a = a for a ∈ R. Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 34. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 35. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 36. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Addition ∀ a ∈ R, ∃! (-a) : a + (−a) = 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 37. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Addition ∀ a ∈ R, ∃! (-a) : a + (−a) = 0 Multiplication Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 38. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Addition ∀ a ∈ R, ∃! (-a) : a + (−a) = 0 Multiplication 1 1 ∀ a ∈ R − {0}, ∃! a : a· a =1 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 39. Equality Axioms Equality Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 40. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 41. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a 2 Symmetry: ∀ a, b ∈ R : a = b → b = a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 42. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a 2 Symmetry: ∀ a, b ∈ R : a = b → b = a 3 Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 43. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a 2 Symmetry: ∀ a, b ∈ R : a = b → b = a 3 Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c 4 Addition PE: ∀ a, b, c ∈ R : a = b → a + c = b + c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 44. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a 2 Symmetry: ∀ a, b ∈ R : a = b → b = a 3 Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c 4 Addition PE: ∀ a, b, c ∈ R : a = b → a + c = b + c 5 Multiplication PE: ∀ a, b, c ∈ R : a = b → a · c = b · c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 45. Theorems from the Field and Equality Axioms Cancellation for Addition: ∀ a, b, c ∈ R : a + c = b + c → a = c a+c=b+c Given a + c + (−c) = b + c + (−c) APE a + (c + (−c)) = b + (c + (−c)) APA a+0=b+0 ∃ additive inverses a=b ∃ additive identity Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 11 / 14
  • 46. Theorems from the Field and Equality Axioms Prove the following theorems Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 47. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 48. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 49. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 50. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 51. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 52. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) ∀ a, b ∈ R : (−a) · (−b) = a · b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 53. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) ∀ a, b ∈ R : (−a) · (−b) = a · b ∀ a, b ∈ R : − (a + b) = (−a) + (−b) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 54. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) ∀ a, b ∈ R : (−a) · (−b) = a · b ∀ a, b ∈ R : − (a + b) = (−a) + (−b) Cancellation Law for Multiplication: ∀ a, b, c ∈ R, c = 0 : ac = bc → a = b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 55. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) ∀ a, b ∈ R : (−a) · (−b) = a · b ∀ a, b ∈ R : − (a + b) = (−a) + (−b) Cancellation Law for Multiplication: ∀ a, b, c ∈ R, c = 0 : ac = bc → a = b 1 ∀ a ∈ R, a = 0 : =a (1/a) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 56. Order Axioms Order Axioms: Trichotomy ∀ a, b ∈ R, only one of the following is true: Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 13 / 14
  • 57. Order Axioms Order Axioms: Trichotomy ∀ a, b ∈ R, only one of the following is true: 1 a>b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 13 / 14
  • 58. Order Axioms Order Axioms: Trichotomy ∀ a, b ∈ R, only one of the following is true: 1 a>b 2 a=b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 13 / 14
  • 59. Order Axioms Order Axioms: Trichotomy ∀ a, b ∈ R, only one of the following is true: 1 a>b 2 a=b 3 a<b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 13 / 14
  • 60. Order Axioms Order Axioms: Inequalities Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 61. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 62. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 63. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c 2 Addition Property of Inequality Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 64. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c 2 Addition Property of Inequality ∀ a, b, c ∈ R : a > b → a + c > b + c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 65. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c 2 Addition Property of Inequality ∀ a, b, c ∈ R : a > b → a + c > b + c 3 Multiplication Property of Inequality Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 66. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c 2 Addition Property of Inequality ∀ a, b, c ∈ R : a > b → a + c > b + c 3 Multiplication Property of Inequality ∀ a, b, c ∈ R, c > 0 : a > b → a · c > b · c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 67. Theorems from the Order Axioms Prove the following theorems Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 68. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 69. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 70. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 71. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 72. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 73. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0) (4-6) 1 > 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 74. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0) (4-6) 1 > 0 ∀ a, b, c ∈ R : (a > b) ∧ (0 > c) → b · c > a · c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 75. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0) (4-6) 1 > 0 ∀ a, b, c ∈ R : (a > b) ∧ (0 > c) → b · c > a · c 1 ∀ a ∈ R: a > 0 → > 0 a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14