SlideShare una empresa de Scribd logo
1 de 19
PROTOCOLOS Y SEGMENTACIÓN DE REDES Leonardo González Villarreal UNAED Villa Manuel
IEEE corresponde a lassiglas de The Institute of Electrical and Electronics Engineers, el Instituto de Ingenieros Eléctricos y Electrónicos, una asociación técnico-profesional  mundial dedicada a la estandarización, entre otras cosas. Es la mayor asociación internacional sin fines de lucro formada por profesionales de las nuevas tecnologías, como ingenieros de telecomunicaciones, ingenieros electrónicos, Ingenieros en informática.
Historia IEEE En febrero de 1980 se formó en el IEEE un comité de redes locales con la intención de estandarizar un sistema de 1 o 2 Mbps, que básicamente era Ethernet (el de la época). Le tocó el número 802. Decidieron estandarizar el nivel físico, el de enlace y superiores. Dividieron el nivel de enlace en dos subniveles: el de enlace lógico, encargado de la lógica de re-envíos, control de flujo y comprobación de errores, y el subnivel de acceso al medio, encargado de arbitrar los conflictos de acceso simultaneo a la red por parte de las estaciones. Para final de año ya se había ampliado el estándar para incluir el TokenRing (Red en anillo con paso de testigo) de IBM y un año después, y por presiones de grupos industriales, se incluyó Token Bus (Red en bus con paso de testigo), que incluía opciones de tiempo real y redundancia, y que se suponía idóneo para ambientes de fábrica.
Cada uno de estos tres "estándares" tenía un nivel físico diferente, un subnivel de acceso al medio distinto pero con algún rasgo común (espacio de direcciones y comprobación de errores), y un nivel de enlace lógico único para todos ellos. Después se fueron ampliando los campos de trabajo, se incluyeron redes de área metropolitana (alguna decena de kilómetros), personal (unos pocos metros) y regional (algún centenar de kilómetros), se incluyeron redes inalámbricas (WLAN), métodos de seguridad, etc.
IEEE 802.5 Este estándar define una red con topología de anillo la cual usa token (paquete de datos) para transmitir información a otra. En una estación de trabajo la cual envía un mensaje lo sitúa dentro de un token y lo direcciona especificamentea un destino, la estacion destino copia el mensaje y lo envía a un tokende regreso a la estación origen la cual borra el mensaje y pasa el token a la siguiente estación. Las redes de tipo token ring tienen una topología en anillo y están definidas en la especificación IEEE 802.5 para la velocidad de transmisión de 4 Mbits/s. Existen redes token ring de 16 Mbits/s, pero no están definidas en ninguna especificación de IEEE.
Los grupos locales de dispositivos en una red Token Ring se conectan a través de una unidad de interfaz llamada MAU. La MAU contiene un pequeño transformador de aislamiento para cada dispositivo conectado, el cual brinda protección similar a la de Local Talk. El estándar IEEE 802.5 para las redes TokenRing no contiene ninguna referencia específica a los requisitos de aislamiento. Por lo tanto la susceptibilidad de las redes Token Ring a las interferencias puede variar significativamente entre diferentes fabricantes. Las redes Token Ring utilizan un sofisticado sistema de prioridad que permite designarles a los usuarios un tipo de prioridad en base a su uso de la red. Los framesen redes Token Ring tienen dos campos que controlan la prioridad: el campo de prioridad y un campo reservado.
Las redes Token Ring emplean varios mecanismos para detectar y corregir las fallas en la red. Por ejemplo: se selecciona una estación en una red TokenRing para que trabaje como monitor de la red. Esta estación que puede ser cualquiera de la red, centraliza los recursos en base a tiempos y sistemas de mantenimiento para las estaciones. Una de estas funciones es resetear las constantes frames que circulan en el anillo. Cuando un dispositivo que envía falla, este frame puede continuar circulando en el anillo, esto previene a otras estaciones de transmitir en ese momento. El monitor detecta dichos frames y los elimina del anillo generando uno nuevo.
Definición de FDDI. Las redes FDDI (FiberDistributed Data Interface - Interfaz de Datos Distribuida por Fibra ) surgieron a mediados de los años ochenta para dar soporte a las estaciones de trabajo de alta velocidad, que habían llevado las capacidades de las tecnologías Ethernet y Token Ring existentes hasta el límite de sus posibilidades. Están implementadas mediante una física de estrella (lo más normal) y lógica de anillo doble de token, uno transmitiendo en el sentido de las agujas del reloj (anillo principal ) y el otro en dirección contraria (anillo de respaldo o back up), que ofrece una velocidad de 100 Mbps sobre distancias de hasta 200 metros, soportando hasta 1000 estaciones conectadas. Su uso más normal es como una tecnología de backbone para conectar entre sí redes LAN de cobre o computadores de alta velocidad.
Ethernet/IEEE 802.3 Está diseñado de manera que no se puede transmitir más de una información a la vez. El objetivo es que no se pierda ninguna información, y se controla con un sistema conocido como CSMA/CD(CarrierSenseMultiple Access withCollisionDetection, Detección de Portadora con Acceso Múltiple y Detección de Colisiones), cuyo principio de funcionamiento consiste en que una estación, para transmitir, debe detectar la presencia de una señal portadora y, si existe, comienza a transmitir.
Ethernet Es la tecnología de red de área local más extendida en la actualidad. Fue diseñado originalmente por Digital, Intel y Xerox por lo cual, la especificación original se conoce como Ethernet DIX. Posteriormente en 1983, fue formalizada por el IEEE como el estándar Ethernet 802.3. La velocidad de transmisión de datos en Ethernet es de 10Mbits/s en las configuraciones habituales pudiendo llegar a ser de 100Mbits/s en las especificaciones Fast Ethernet. Al principio, sólo se usaba cable coaxial con una topología en BUS, sin embargo esto ha cambiado y ahora se utilizan nuevas tecnologías como el cable de par trenzado (10 Base-T), fibra óptica (10 Base-FL) y las conexiones a 100 Mbits/s (100 Base-X o Fast Ethernet). La especificación actual se llama IEEE 802.3u.
CSMA/CD (Ethernet) CSMA/CD, siglas que corresponden a CarrierSenseMultiple Access withCollisionDetection (inglés: "Acceso Múltiple con Escucha de Portadora y Detección de Colisiones"), es una técnica usada en redes Ethernet para mejorar sus prestaciones. Anteriormente a esta técnica se usaron las de Aloha puro y Aloharanurado, pero ambas presentaban muy bajas prestaciones. Por ello apareció primeramente la técnica CSMA que fue posteriormente refinada a la técnica CSMA/CD. En el método de acceso CSMA/CD, los dispositivos de networking que tienen datos para transmitir funcionan en el modo "escuchar antes de transmitir". Esto significa que cuando un nodo desea enviar datos, primero debe determinar si los medios de networking están ocupados.
Funcionamiento de CSMA/CD El primer paso a la hora de transmitir será, obviamente, saber si el medio está libre. Y ¿cómo podemos saberlo? Pues nos quedamos calladitos y escuchamos lo que dicen los demás. Si hay portadora en el medio, es que está ocupado y, por tanto, seguimos escuchando; en caso contrario, el medio está libre y podemos transmitir. A continuación, esperamos un tiempo mínimo necesario para poder diferenciar bien una trama de otra y comenzamos a transmitir. Si durante la transmisión de una trama se detecta una colisión, entonces las estaciones que colisionan abortan el envío de la trama y envían una señal de reinicio. Después de una colisión, las estaciones esperan un tiempo aleatorio (Tiempo de Backoff) para volver a transmitir una trama.
Segmentación de la red Hay dos motivos fundamentales para dividir una LAN en segmentos. El primer motivo es aislar el tráfico entre fragmentos, y obtener un ancho de banda mayor por usuario. Si la LAN no se divide en segmentos, las LAN cuyo tamaño sea mayor que un grupo de trabajo pequeño se congestionarían rápidamente con tráfico y saturación y virtualmente no ofrecerían ningún ancho de banda. La adición de dispositivos como, por ejemplo, puentes, switches y routers dividen la LAN en partes mas pequeñas, mas eficaces y fáciles de administrar.
Segmentación mediante switches Una LAN que usa una topología Ethernet crea una red que funciona como si sólo tuviera dos nodos el nodo emisor y el nodo receptor. Estos dos nodos comparten un ancho de banda de 100 Mbps, lo que significa que prácticamente todo el ancho de banda está disponible para la transmisión de datos. Una LAN Ethernet permite que la topología LAN funcione más rápida y eficientemente que una LAN Ethernet estándar, ya que usa el ancho de banda de modo muy eficiente. En esta implementación Ethernet, el ancho de banda disponible puede alcanzar casi un 100%.  Es importante observar que aunque 100% del ancho de banda puede estar disponible, las redes Ethernet tienen un mejor rendimiento cuando se mantiene por debajo del 30-40% de la capacidad total. El uso de ancho de banda que supere el límite recomendado tiene como resultado un aumento en la cantidad de colisiones (saturación de información). El propósito de la conmutación de LAN es aliviar las insuficiencias de ancho de banda y los cuellos de botella de la red como, por ejemplo, los que se producen entre un grupo de PC y un servidor de archivos remoto.
Un switch LAN es un puente multipuerto de alta velocidad que tiene un puerto para cada nodo, o segmento, de la LAN. El switch divide la LAN en microsegmentos, creando de tal modo segmentos mas aliviados de tráfico. Cada nodo está directamente conectado a uno de sus puertos, o a un segmento que está conectado a uno de los puertos del switch. Esto crea una conexión de 100 Mbps entre cada nodo y cada segmento del switch. Un ordenador conectado directamente a un switch Ethernet está en su propio dominio de colisión y tiene acceso a los 100 Mbps completos. Cuando una trama entra a un switch, se lee para obtener la dirección origen o destino. Luego, el switch determina cuál es la acción de transmisión que se llevará a cabo basándose en lo que sabe a partir de la información que ha leído en la trama. Si la dirección destino se encuentra ubicada en otro segmento, la trama se conmuta a su destino
Ethernet conmutada ,[object Object]
Los hosts se conectan mediante enlaces punto a punto a un conmutador de tramas Ethernet, formándose típicamente estructuras en árbol.
Utiliza enlaces de par trenzado (distancias cortas) o fibra óptica (distancias largas).

Más contenido relacionado

Destacado

C:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De RedesC:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De Redeszuritam
 
PROTOCOLO RIP V1 Y RIP V2 - REDES DE DATOS
PROTOCOLO RIP V1 Y RIP V2 - REDES DE DATOSPROTOCOLO RIP V1 Y RIP V2 - REDES DE DATOS
PROTOCOLO RIP V1 Y RIP V2 - REDES DE DATOSJAV_999
 
Sesión 6 - Administración de Sistemas de Encaminamiento
Sesión 6 - Administración de Sistemas de EncaminamientoSesión 6 - Administración de Sistemas de Encaminamiento
Sesión 6 - Administración de Sistemas de Encaminamientoecollado
 
Ventajas y desventajas de las redes sociales
Ventajas y desventajas de las redes socialesVentajas y desventajas de las redes sociales
Ventajas y desventajas de las redes socialesPess457
 
14 dispositivos de usuario y red
14 dispositivos de usuario y red14 dispositivos de usuario y red
14 dispositivos de usuario y redNicolas Barone
 
Puentes o bridges
Puentes o bridgesPuentes o bridges
Puentes o bridgesanzudiaz
 
Segmentación de mercados y comportamiento del consumidor
Segmentación de mercados y comportamiento del consumidorSegmentación de mercados y comportamiento del consumidor
Segmentación de mercados y comportamiento del consumidorGeovanny Calle
 
Colisiones dominios de colisión y segmentación
Colisiones dominios de colisión y segmentaciónColisiones dominios de colisión y segmentación
Colisiones dominios de colisión y segmentaciónBetty Ayllon
 
Tecnología en gestión de redes de datos
Tecnología en gestión de redes de datosTecnología en gestión de redes de datos
Tecnología en gestión de redes de datosAnni Tuberquia Florez
 

Destacado (20)

C:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De RedesC:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De Redes
 
PROTOCOLO RIP V1 Y RIP V2 - REDES DE DATOS
PROTOCOLO RIP V1 Y RIP V2 - REDES DE DATOSPROTOCOLO RIP V1 Y RIP V2 - REDES DE DATOS
PROTOCOLO RIP V1 Y RIP V2 - REDES DE DATOS
 
Rangos de IPs Públicas y Privadas
Rangos de IPs Públicas y PrivadasRangos de IPs Públicas y Privadas
Rangos de IPs Públicas y Privadas
 
Protocolos de red
Protocolos de redProtocolos de red
Protocolos de red
 
Puentes o Bridges
Puentes o BridgesPuentes o Bridges
Puentes o Bridges
 
Sesión 6 - Administración de Sistemas de Encaminamiento
Sesión 6 - Administración de Sistemas de EncaminamientoSesión 6 - Administración de Sistemas de Encaminamiento
Sesión 6 - Administración de Sistemas de Encaminamiento
 
Bebes a
Bebes aBebes a
Bebes a
 
19.Redes Segmentacion
19.Redes Segmentacion19.Redes Segmentacion
19.Redes Segmentacion
 
Ventajas y desventajas de las redes sociales
Ventajas y desventajas de las redes socialesVentajas y desventajas de las redes sociales
Ventajas y desventajas de las redes sociales
 
puente de red
puente de redpuente de red
puente de red
 
14 dispositivos de usuario y red
14 dispositivos de usuario y red14 dispositivos de usuario y red
14 dispositivos de usuario y red
 
Puentes o bridges
Puentes o bridgesPuentes o bridges
Puentes o bridges
 
Segmentación de mercados y comportamiento del consumidor
Segmentación de mercados y comportamiento del consumidorSegmentación de mercados y comportamiento del consumidor
Segmentación de mercados y comportamiento del consumidor
 
Bridge
BridgeBridge
Bridge
 
9 modelo tcp-ip
9 modelo tcp-ip9 modelo tcp-ip
9 modelo tcp-ip
 
Protocolo TCP/IP
Protocolo TCP/IPProtocolo TCP/IP
Protocolo TCP/IP
 
Colisiones dominios de colisión y segmentación
Colisiones dominios de colisión y segmentaciónColisiones dominios de colisión y segmentación
Colisiones dominios de colisión y segmentación
 
Bridge 
Bridge Bridge 
Bridge 
 
Tecnología en gestión de redes de datos
Tecnología en gestión de redes de datosTecnología en gestión de redes de datos
Tecnología en gestión de redes de datos
 
Subneteo
SubneteoSubneteo
Subneteo
 

Similar a Protocolos y segmentación de redes

C:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De RedesC:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De Redeszuritam
 
Capadeenlacededatos 100428151122-phpapp02
Capadeenlacededatos 100428151122-phpapp02Capadeenlacededatos 100428151122-phpapp02
Capadeenlacededatos 100428151122-phpapp02luupiiss
 
Capa de enlace de datos
Capa de enlace de datosCapa de enlace de datos
Capa de enlace de datosMartha Solis
 
Enlace de datos.
Enlace  de datos.Enlace  de datos.
Enlace de datos.guest5396be
 
Actividad 3 de redes
Actividad 3 de redesActividad 3 de redes
Actividad 3 de redesMelanie
 
Parcial 3
Parcial 3Parcial 3
Parcial 3UNAED
 
Redes 3
Redes 3Redes 3
Redes 3UNAED
 
Redes 3 parcial
Redes 3 parcialRedes 3 parcial
Redes 3 parcialUNAED
 
R3d3s t3rc3r parcial
R3d3s t3rc3r parcialR3d3s t3rc3r parcial
R3d3s t3rc3r parcialUNAED
 
Redes 3
Redes 3Redes 3
Redes 3UNAED
 
E stándares lucero examen
E stándares lucero examenE stándares lucero examen
E stándares lucero examenguest96b4d12
 
E stándares lucero examen
E stándares lucero examenE stándares lucero examen
E stándares lucero examenguest96b4d12
 
Fundamentos de redes
Fundamentos de redesFundamentos de redes
Fundamentos de redesguest4bd5cc2d
 
tercer parcial de fundamentos de redes
tercer parcial de fundamentos de redestercer parcial de fundamentos de redes
tercer parcial de fundamentos de redesUNAED
 
Tercer parcial fundamentos de redes
Tercer parcial fundamentos de redesTercer parcial fundamentos de redes
Tercer parcial fundamentos de redessamuelpadilla
 

Similar a Protocolos y segmentación de redes (20)

C:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De RedesC:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De Redes
 
Examen redes
Examen redesExamen redes
Examen redes
 
D:\Examen Redes
D:\Examen RedesD:\Examen Redes
D:\Examen Redes
 
Capadeenlacededatos 100428151122-phpapp02
Capadeenlacededatos 100428151122-phpapp02Capadeenlacededatos 100428151122-phpapp02
Capadeenlacededatos 100428151122-phpapp02
 
Capa de enlace de datos
Capa de enlace de datosCapa de enlace de datos
Capa de enlace de datos
 
Enlace de datos.
Enlace  de datos.Enlace  de datos.
Enlace de datos.
 
Fundamentos de redes ismael
Fundamentos de redes ismaelFundamentos de redes ismael
Fundamentos de redes ismael
 
Actividad 3 de redes
Actividad 3 de redesActividad 3 de redes
Actividad 3 de redes
 
Parcial 3
Parcial 3Parcial 3
Parcial 3
 
Redes 3
Redes 3Redes 3
Redes 3
 
Redes 3 parcial
Redes 3 parcialRedes 3 parcial
Redes 3 parcial
 
R3d3s t3rc3r parcial
R3d3s t3rc3r parcialR3d3s t3rc3r parcial
R3d3s t3rc3r parcial
 
Redes 3
Redes 3Redes 3
Redes 3
 
clase2
clase2clase2
clase2
 
E stándares lucero examen
E stándares lucero examenE stándares lucero examen
E stándares lucero examen
 
E stándares lucero examen
E stándares lucero examenE stándares lucero examen
E stándares lucero examen
 
Redes
RedesRedes
Redes
 
Fundamentos de redes
Fundamentos de redesFundamentos de redes
Fundamentos de redes
 
tercer parcial de fundamentos de redes
tercer parcial de fundamentos de redestercer parcial de fundamentos de redes
tercer parcial de fundamentos de redes
 
Tercer parcial fundamentos de redes
Tercer parcial fundamentos de redesTercer parcial fundamentos de redes
Tercer parcial fundamentos de redes
 

Más de lyonglz

Buena noticia
Buena noticiaBuena noticia
Buena noticialyonglz
 
Taxonomias2
Taxonomias2Taxonomias2
Taxonomias2lyonglz
 
Mapas De Aplicaciones
Mapas De AplicacionesMapas De Aplicaciones
Mapas De Aplicacioneslyonglz
 
Tipos De SeñAles
Tipos De SeñAlesTipos De SeñAles
Tipos De SeñAleslyonglz
 
Planeta Web 2 0
Planeta Web 2 0Planeta Web 2 0
Planeta Web 2 0lyonglz
 
Desaprender2
Desaprender2Desaprender2
Desaprender2lyonglz
 

Más de lyonglz (6)

Buena noticia
Buena noticiaBuena noticia
Buena noticia
 
Taxonomias2
Taxonomias2Taxonomias2
Taxonomias2
 
Mapas De Aplicaciones
Mapas De AplicacionesMapas De Aplicaciones
Mapas De Aplicaciones
 
Tipos De SeñAles
Tipos De SeñAlesTipos De SeñAles
Tipos De SeñAles
 
Planeta Web 2 0
Planeta Web 2 0Planeta Web 2 0
Planeta Web 2 0
 
Desaprender2
Desaprender2Desaprender2
Desaprender2
 

Protocolos y segmentación de redes

  • 1. PROTOCOLOS Y SEGMENTACIÓN DE REDES Leonardo González Villarreal UNAED Villa Manuel
  • 2. IEEE corresponde a lassiglas de The Institute of Electrical and Electronics Engineers, el Instituto de Ingenieros Eléctricos y Electrónicos, una asociación técnico-profesional mundial dedicada a la estandarización, entre otras cosas. Es la mayor asociación internacional sin fines de lucro formada por profesionales de las nuevas tecnologías, como ingenieros de telecomunicaciones, ingenieros electrónicos, Ingenieros en informática.
  • 3. Historia IEEE En febrero de 1980 se formó en el IEEE un comité de redes locales con la intención de estandarizar un sistema de 1 o 2 Mbps, que básicamente era Ethernet (el de la época). Le tocó el número 802. Decidieron estandarizar el nivel físico, el de enlace y superiores. Dividieron el nivel de enlace en dos subniveles: el de enlace lógico, encargado de la lógica de re-envíos, control de flujo y comprobación de errores, y el subnivel de acceso al medio, encargado de arbitrar los conflictos de acceso simultaneo a la red por parte de las estaciones. Para final de año ya se había ampliado el estándar para incluir el TokenRing (Red en anillo con paso de testigo) de IBM y un año después, y por presiones de grupos industriales, se incluyó Token Bus (Red en bus con paso de testigo), que incluía opciones de tiempo real y redundancia, y que se suponía idóneo para ambientes de fábrica.
  • 4. Cada uno de estos tres "estándares" tenía un nivel físico diferente, un subnivel de acceso al medio distinto pero con algún rasgo común (espacio de direcciones y comprobación de errores), y un nivel de enlace lógico único para todos ellos. Después se fueron ampliando los campos de trabajo, se incluyeron redes de área metropolitana (alguna decena de kilómetros), personal (unos pocos metros) y regional (algún centenar de kilómetros), se incluyeron redes inalámbricas (WLAN), métodos de seguridad, etc.
  • 5. IEEE 802.5 Este estándar define una red con topología de anillo la cual usa token (paquete de datos) para transmitir información a otra. En una estación de trabajo la cual envía un mensaje lo sitúa dentro de un token y lo direcciona especificamentea un destino, la estacion destino copia el mensaje y lo envía a un tokende regreso a la estación origen la cual borra el mensaje y pasa el token a la siguiente estación. Las redes de tipo token ring tienen una topología en anillo y están definidas en la especificación IEEE 802.5 para la velocidad de transmisión de 4 Mbits/s. Existen redes token ring de 16 Mbits/s, pero no están definidas en ninguna especificación de IEEE.
  • 6. Los grupos locales de dispositivos en una red Token Ring se conectan a través de una unidad de interfaz llamada MAU. La MAU contiene un pequeño transformador de aislamiento para cada dispositivo conectado, el cual brinda protección similar a la de Local Talk. El estándar IEEE 802.5 para las redes TokenRing no contiene ninguna referencia específica a los requisitos de aislamiento. Por lo tanto la susceptibilidad de las redes Token Ring a las interferencias puede variar significativamente entre diferentes fabricantes. Las redes Token Ring utilizan un sofisticado sistema de prioridad que permite designarles a los usuarios un tipo de prioridad en base a su uso de la red. Los framesen redes Token Ring tienen dos campos que controlan la prioridad: el campo de prioridad y un campo reservado.
  • 7. Las redes Token Ring emplean varios mecanismos para detectar y corregir las fallas en la red. Por ejemplo: se selecciona una estación en una red TokenRing para que trabaje como monitor de la red. Esta estación que puede ser cualquiera de la red, centraliza los recursos en base a tiempos y sistemas de mantenimiento para las estaciones. Una de estas funciones es resetear las constantes frames que circulan en el anillo. Cuando un dispositivo que envía falla, este frame puede continuar circulando en el anillo, esto previene a otras estaciones de transmitir en ese momento. El monitor detecta dichos frames y los elimina del anillo generando uno nuevo.
  • 8. Definición de FDDI. Las redes FDDI (FiberDistributed Data Interface - Interfaz de Datos Distribuida por Fibra ) surgieron a mediados de los años ochenta para dar soporte a las estaciones de trabajo de alta velocidad, que habían llevado las capacidades de las tecnologías Ethernet y Token Ring existentes hasta el límite de sus posibilidades. Están implementadas mediante una física de estrella (lo más normal) y lógica de anillo doble de token, uno transmitiendo en el sentido de las agujas del reloj (anillo principal ) y el otro en dirección contraria (anillo de respaldo o back up), que ofrece una velocidad de 100 Mbps sobre distancias de hasta 200 metros, soportando hasta 1000 estaciones conectadas. Su uso más normal es como una tecnología de backbone para conectar entre sí redes LAN de cobre o computadores de alta velocidad.
  • 9. Ethernet/IEEE 802.3 Está diseñado de manera que no se puede transmitir más de una información a la vez. El objetivo es que no se pierda ninguna información, y se controla con un sistema conocido como CSMA/CD(CarrierSenseMultiple Access withCollisionDetection, Detección de Portadora con Acceso Múltiple y Detección de Colisiones), cuyo principio de funcionamiento consiste en que una estación, para transmitir, debe detectar la presencia de una señal portadora y, si existe, comienza a transmitir.
  • 10. Ethernet Es la tecnología de red de área local más extendida en la actualidad. Fue diseñado originalmente por Digital, Intel y Xerox por lo cual, la especificación original se conoce como Ethernet DIX. Posteriormente en 1983, fue formalizada por el IEEE como el estándar Ethernet 802.3. La velocidad de transmisión de datos en Ethernet es de 10Mbits/s en las configuraciones habituales pudiendo llegar a ser de 100Mbits/s en las especificaciones Fast Ethernet. Al principio, sólo se usaba cable coaxial con una topología en BUS, sin embargo esto ha cambiado y ahora se utilizan nuevas tecnologías como el cable de par trenzado (10 Base-T), fibra óptica (10 Base-FL) y las conexiones a 100 Mbits/s (100 Base-X o Fast Ethernet). La especificación actual se llama IEEE 802.3u.
  • 11. CSMA/CD (Ethernet) CSMA/CD, siglas que corresponden a CarrierSenseMultiple Access withCollisionDetection (inglés: "Acceso Múltiple con Escucha de Portadora y Detección de Colisiones"), es una técnica usada en redes Ethernet para mejorar sus prestaciones. Anteriormente a esta técnica se usaron las de Aloha puro y Aloharanurado, pero ambas presentaban muy bajas prestaciones. Por ello apareció primeramente la técnica CSMA que fue posteriormente refinada a la técnica CSMA/CD. En el método de acceso CSMA/CD, los dispositivos de networking que tienen datos para transmitir funcionan en el modo "escuchar antes de transmitir". Esto significa que cuando un nodo desea enviar datos, primero debe determinar si los medios de networking están ocupados.
  • 12. Funcionamiento de CSMA/CD El primer paso a la hora de transmitir será, obviamente, saber si el medio está libre. Y ¿cómo podemos saberlo? Pues nos quedamos calladitos y escuchamos lo que dicen los demás. Si hay portadora en el medio, es que está ocupado y, por tanto, seguimos escuchando; en caso contrario, el medio está libre y podemos transmitir. A continuación, esperamos un tiempo mínimo necesario para poder diferenciar bien una trama de otra y comenzamos a transmitir. Si durante la transmisión de una trama se detecta una colisión, entonces las estaciones que colisionan abortan el envío de la trama y envían una señal de reinicio. Después de una colisión, las estaciones esperan un tiempo aleatorio (Tiempo de Backoff) para volver a transmitir una trama.
  • 13. Segmentación de la red Hay dos motivos fundamentales para dividir una LAN en segmentos. El primer motivo es aislar el tráfico entre fragmentos, y obtener un ancho de banda mayor por usuario. Si la LAN no se divide en segmentos, las LAN cuyo tamaño sea mayor que un grupo de trabajo pequeño se congestionarían rápidamente con tráfico y saturación y virtualmente no ofrecerían ningún ancho de banda. La adición de dispositivos como, por ejemplo, puentes, switches y routers dividen la LAN en partes mas pequeñas, mas eficaces y fáciles de administrar.
  • 14. Segmentación mediante switches Una LAN que usa una topología Ethernet crea una red que funciona como si sólo tuviera dos nodos el nodo emisor y el nodo receptor. Estos dos nodos comparten un ancho de banda de 100 Mbps, lo que significa que prácticamente todo el ancho de banda está disponible para la transmisión de datos. Una LAN Ethernet permite que la topología LAN funcione más rápida y eficientemente que una LAN Ethernet estándar, ya que usa el ancho de banda de modo muy eficiente. En esta implementación Ethernet, el ancho de banda disponible puede alcanzar casi un 100%. Es importante observar que aunque 100% del ancho de banda puede estar disponible, las redes Ethernet tienen un mejor rendimiento cuando se mantiene por debajo del 30-40% de la capacidad total. El uso de ancho de banda que supere el límite recomendado tiene como resultado un aumento en la cantidad de colisiones (saturación de información). El propósito de la conmutación de LAN es aliviar las insuficiencias de ancho de banda y los cuellos de botella de la red como, por ejemplo, los que se producen entre un grupo de PC y un servidor de archivos remoto.
  • 15. Un switch LAN es un puente multipuerto de alta velocidad que tiene un puerto para cada nodo, o segmento, de la LAN. El switch divide la LAN en microsegmentos, creando de tal modo segmentos mas aliviados de tráfico. Cada nodo está directamente conectado a uno de sus puertos, o a un segmento que está conectado a uno de los puertos del switch. Esto crea una conexión de 100 Mbps entre cada nodo y cada segmento del switch. Un ordenador conectado directamente a un switch Ethernet está en su propio dominio de colisión y tiene acceso a los 100 Mbps completos. Cuando una trama entra a un switch, se lee para obtener la dirección origen o destino. Luego, el switch determina cuál es la acción de transmisión que se llevará a cabo basándose en lo que sabe a partir de la información que ha leído en la trama. Si la dirección destino se encuentra ubicada en otro segmento, la trama se conmuta a su destino
  • 16.
  • 17.
  • 18. Los hosts se conectan mediante enlaces punto a punto a un conmutador de tramas Ethernet, formándose típicamente estructuras en árbol.
  • 19. Utiliza enlaces de par trenzado (distancias cortas) o fibra óptica (distancias largas).
  • 20. Las tasas de transmisión típicas son 100 Mbps y 1 Gbps entre cada par de nodos.
  • 21.
  • 22. Mediante la lectura de los temas que hemos presentado en esta investigación, nos damos cuenta de los diferentes estándares de transmisión de datos a través de una red, su velocidad, ventajas y desventajas, así mismo nos damos cuenta que por medio de la segmentación de redes podemos hacer mas eficientes las transmisiones y transferencia de datos y se pueden evitar al máximo la colisión durante la transmisión de datos lo cual nos lleva a eficientar mucho más nuestras redes y se es posible distribuir el ancho de banda entre todos los equipos conectados a la red. Leonardo González Villarreal UNAED Villa Manuel