SlideShare una empresa de Scribd logo
1 de 107
Descargar para leer sin conexión
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢
ΕΠΑΝΑΛΗΧΗ ΢ΣΑ
ΜΑΘΗΜΑΣΙΚΑ Ο.Π.
Γ΄ ΛΤΚΕΙΟΤ
ΑΝΑΛΤΣΙΚΗ ΘΕΨΡΙΑ – ΘΕΨΡΗΜΑΣΑ ΜΕ ΑΠΟΔΕΙΞΕΙ΢
ΕΡΨΣΗ΢ΕΙ΢ & Α΢ΚΗ΢ΕΙ΢ ΑΞΙΟΛΟΓΗ΢Η΢
ΘΕΜΑΣΑ ΕΞΕΣΑ΢ΕΨΝ - ΠΡΟΣΕΙΝΟΜΕΝΑ ΘΕΜΑΣΑ
ΜΕΘΟΔΟΛΟΓΙΑ - ΠΑΡΑΣΗΡΗ΢ΕΙ΢
ΜΑΡΣΙΟ΢ 2018
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 1 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 2
Οι παρακάτω ςημειώςεισ βαςίςτηκαν ςτη θεωρία του ςχολικού
βιβλίου, ςτα έντυπα του Κ.Ε.Ε. (1999 – 2001) και ςτη θεματοδοςία των
Πανελλαδικών Εξετάςεων ςτα Μαθηματικά Κατεύθυνςησ τησ Γ΄
Λυκείου.
Στισ επόμενεσ ςελίδεσ έγινε προςπάθεια για την - όςο το
δυνατό, πιο προςεκτική - επιλογή και ταξινόμηςη των ερωτήςεων
αξιολόγηςησ και των αςκήςεων ανάπτυξησ του Κ.Ε.Ε., για την
καλύτερη κατανόηςη των βαςικών εννοιών τησ εξεταςτέασ ύλησ.
Τα θέματα αξιολόγηςησ και κατανόηςησ τησ θεωρίασ
ςυμπληρώνονται από επιλεγμένα θέματα Πανελλαδικών και
Πανελληνίων εξετάςεων (κατευθύνςεων και δεςμών) παλαιοτέρων
ετών, καθώσ και από επαναληπτικά προτεινόμενα θέματα (ςύμφωνα
με την νέα εξεταςτέα ύλη 2017 – 2018), που αντλήθηκαν από την
υπάρχουςα βιβλιογραφία και προςωπικέσ ςημειώςεισ.
Ελπίζω αυτή η προςπάθεια να αποτελέςει ένα ακόμη χρήςιμο
βοήθημα ςτα χέρια των ςυναδέλφων και των μαθητών τουσ, ςτουσ
οποίουσ εύχομαι κάθε επιτυχία ςτισ επερχόμενεσ εξετάςεισ.
Βαςίλησ Θ. Καραγεώργοσ
Καθηγητήσ ΠΕ-03
ΓΕΛ Λιβανατών Υθ/δασ
e-mail : bkarag@gmail.com
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 2 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 3
ΠΕΡΙΕΦΟΜΕΝΑ
Α) ΘΕΨΡΙΑ
1. Οριςμοί Εννοιών – Θεωρήματα (χωρίσ
αποδείξεισ) – Γεωμετρικέσ Ερμηνείεσ
4
2. Θεωρήματα με Αποδείξεισ 21
3. Φρήςιμεσ Προτάςεισ και Παρατηρήςεισ 28
Β) ΕΡΨΣΗ΢ΕΙ΢ ΑΞΙΟΛΟΓΗ΢Η΢ - Α΢ΚΗ΢ΕΙ΢ – ΘΕΜΑΣΑ
1. Πραγματικέσ ΢υναρτήςεισ
Πρϊξεισ – Μονοτονύα – Αντύςτροφη ΢υνϊρτηςη
30
2. Όρια – ΢υνέχεια ΢υνάρτηςησ – ΢υνέχεια ςε
Κλειςτό Διάςτημα (Θ. Bolzano)
38
3. Διαφορικόσ Λογιςμόσ Ι
Παρϊγωγοσ ςε ςημεύο – Παρϊγωγοσ ΢υνϊρτηςησ – Κανόνεσ
Παραγώγιςησ – Εφαπτομϋνη Καμπύλησ – Ρυθμόσ Μεταβολόσ
46
4. Διαφορικόσ Λογιςμόσ ΙΙ
Θ. Rolle – Θεώρημα Μϋςησ Σιμόσ – ΢υνϋπειεσ ΘΜΣ (΢ταθερό
΢υνϊρτηςη – Μονοτονύα ΢υνϊρτηςησ) – Θ. Fermat – Ακρότατα
΢υνϊρτηςησ – Κυρτότητα και ΢ημεύα Καμπόσ – Αςύμπτωτεσ -
Κανόνεσ De L’Hospital – Μελϋτη ΢υνϊρτηςησ
54
5. Ολοκληρωτικόσ Λογιςμόσ
Αρχικό ΢υνϊρτηςη – Οριςμϋνο Ολοκλόρωμα – Μϋθοδοι
Τπολογιςμού Οριςμϋνου Ολοκληρώματοσ – Εμβαδόν Επιπϋδου
Φωρύου
73
Γ) ΕΡΨΣΗ΢ΕΙ΢ ΢ωςτού - Λάθουσ ΠΑΝΕΛΛΑΔΙΚΨΝ
ΕΞΕΣΑ΢ΕΨΝ 2000 – 2015
87
Δ) ΓΕΝΙΚΑ ΘΕΜΑΣΑ ΕΞΕΣΑ΢ΕΨΝ & ΠΡΟΣΕΙΝΟΜΕΝΑ 93
Ε) ΜΕΘΟΔΟΛΟΓΙΑ – ΢Τ΢ΣΗΜΑΣΟΠΟΙΗ΢Η 103
Ε) ΒΙΒΛΙΟΓΡΑΥΙΑ – ΠΗΓΕ΢ 107
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 3 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 4
 ΟΡΙ΢ΜΟΙ ΕΝΝΟΙΨΝ – ΘΕΨΡΗΜΑΣΑ (χωρίσ αποδείξεισ)
και ΓΕΨΜΕΣΡΙΚΕ΢ ΕΡΜΗΝΕΙΕ΢
ΠΡΑΓΜΑΣΙΚΕ΢ ΢ΤΝΑΡΣΗ΢ΕΙ΢ – ΟΡΙΟ ΚΑΙ ΢ΤΝΕΦΕΙΑ ΢ΤΝΑΡΣΗ΢Η΢
1. Σι ονομάζεται πραγματική ςυνάρτηςη ;
Έςτω Α ϋνα υποςύνολο του ΙR, τότε πραγματική ςυνάρτηςη με πεδίο οριςμού το Α, ονομϊζουμε μια
διαδικαςύα f , με την οπούα κϊθε ςτοιχεύο Ax αντιςτοιχύζεται ςε ϋνα μόνο πραγματικό αριθμό y. Σο y
ονομϊζεται τιμή τησ f ςτο x και ςυμβολύζεται με )(xf .
2. Σι ονομάζεται ςύνολο τιμών μιασ ςυνάρτηςησ ;
Σο ςύνολο που ϋχει για ςτοιχεύα του τισ τιμϋσ τησ f ςε όλα τα x A , λϋγεται ςύνολο τιμών τησ f και
ςυμβολύζεται με )(Af . Εύναι δηλαδό: f(A) {y|y f(x) , x A} .
 ΠΡΟ΢ΟΦΗ
Όταν λϋμε ότι “Η ςυνάρτηςη f είναι οριςμένη ς’ ένα ςύνολο Β”, εννοούμε ότι το Β εύναι υποςύνολο του
πεδύου οριςμού τησ. ΢την περύπτωςη αυτό με f(B) θα ςυμβολύζουμε το ςύνολο των τιμών τησ f για κϊθε x B .
Εύναι δηλαδό: f(B) {y|y f(x) , x B} .
3. Σι είναι η ςυντομογραφία μιασ ςυνάρτηςησ;
Για να οριςτεύ μια ςυνϊρτηςη, f αρκεύ να δοθούν δύο ςτοιχεύα:
το πεδύο οριςμού τησ και
η τιμό τησ, )(xf , για κϊθε x του πεδύου οριςμού τησ.
΢υνόθωσ, όμωσ, αναφερόμαςτε ςε μια ςυνϊρτηςη f δύνοντασ μόνο τον τύπο με τον οπούο εκφρϊζεται το )(xf .
Σότε θ ε ω ρ ο ύ μ ε ς υ μ β α τ ι κ ά ότι το πεδύο οριςμού τησ f εύναι το ςύνολο όλων των πραγματικών αριθμών
x, για τουσ οπούουσ το )(xf ϋχει νόημα.
4. Σι ονομάζεται γραφική παράςταςη ςυνάρτηςησ;
Έςτω f ςυνϊρτηςη με πεδύο οριςμού Α και Oxy ϋνα ςύςτημα ςυντεταγμϋνων ςτο επύπεδο. Σο ςύνολο των
ςημεύων ),( yxM του επιπϋδου, για τα οπούα ιςχύει )(xfy , δηλαδό το ςύνολο των ςημεύων ))(,( xfxM ,
Ax , λϋγεται γραφική παράςταςη τησ f και ςυμβολύζεται με fC .
5. Πωσ βρίςκουμε το πεδίο οριςμού Α, το ςύνολο τιμών f(A) και την τιμή τησ f ςτο 0
x A όταν
δίνεται η γραφική παράςταςη Cf μιασ ςυνάρτηςησ f.
α) Σο πεδύο οριςμού τησ f εύναι το ςύνολο Α των τετμημϋνων των ςημεύων τησ fC .
β) Σο ςύνολο τιμών τησ f εύναι το ςύνολο )(Af των τεταγμϋνων των ςημεύων τησ fC .
γ) Η τιμό τησ f ςτο Ax0 εύναι η τεταγμϋνη του ςημεύου τομόσ τησ ευθεύασ 0xx και τησ fC .
Cf
O
y
x
(α)
Α
Cf
O
y
x
(β)
f(Α)
Cf
O
x=x0
A(x0,f(x0))
x0
y
x
(γ)
f(x0)
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 4 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 5
6. Πωσ βρίςκουμε τισ γραφικέσ παραςτάςεισ των ςυναρτήςεων -f και |f | όταν δίνεται η γραφική
παράςταςη Cf, μιασ ςυνάρτηςησ f.
α) Η γραφικό παρϊςταςησ τησ ςυνϊρτηςησ f εύναι ςυμμετρικό, ωσ
προσ τον ϊξονα x x , τησ γραφικόσ παρϊςταςησ τησ f, γιατύ
αποτελεύται από τα ςημεύα M (x, f(x)) που εύναι ςυμμετρικϊ των
M(x,f(x)) , ωσ προσ τον ϊξονα x x .
β) Η γραφικό παρϊςταςη τησ || f αποτελεύται από τα τμόματα τησ
fC που βρύςκονται πϊνω από τον ϊξονα x x και από τα
ςυμμετρικϊ, ωσ προσ τον ϊξονα x x , των τμημϊτων τησ fC που
βρύςκονται κϊτω από τον ϊξονα αυτόν.
7. Πότε δυο ςυναρτήςεισ λέγονται ίςεσ;
Δύο ςυναρτόςεισ f και g λϋγονται ίςεσ όταν: i) ϋχουν το ύδιο πεδύο οριςμού Α και
ii) για κϊθε Ax ιςχύει )()( xgxf .
 ΢ΦΟΛΙΑ
Έςτω f, g δύο ςυναρτόςεισ με πεδύα οριςμού Α, Β αντι-
ςτούχωσ και Γ ϋνα υποςύνολο των Α και Β.
Αν για κϊθε Γx ιςχύει )()( xgxf , τότε λϋμε ότι
οι ςυναρτόςεισ f και g είναι ίςεσ ςτο ςύνολο Γ.
8. Πωσ ορίζονται οι πράξεισ μεταξύ ςυναρτήςεων ;
Ορύζουμε ωσ ϊθροιςμα, διαφορϊ, γινόμενο και πηλύκο, αντύςτοιχα, δύο ςυναρτόςεων f, g τισ ςυναρτόςεισ με
τύπουσ:
(f g)(x) f(x) g(x) , (f g)(x) f(x) g(x) , (fg)(x) f(x)g(x) ,
f f(x)
(x)
g g(x)
.
Σο πεδύο οριςμού των gf , gf και fg εύναι η τομό A B των πεδύων οριςμού Α και Β των ςυναρτόςεων f
και g αντιςτούχωσ, ενώ το πεδύο οριςμού τησ
g
f
εύναι το ςύνολο Δ= Axx |{ και Bx , με }0)(xg .
9. Σι ονομάζεται ςύνθεςη ςυναρτήςεων ;
Αν f, g εύναι δύο ςυναρτόςεισ με πεδύο οριςμού Α, Β αντιςτούχωσ,
τότε ονομϊζουμε ςύνθεςη τησ f με την g, και τη ςυμβολύζουμε με
gof , τη ςυνϊρτηςη με τύπο: (gof)(x) g(f(x)).
Σο πεδύο οριςμού τησ gof αποτελεύται από όλα τα ςτοιχεύα x του
πεδύου οριςμού τησ f για τα οπούα το ( )f x ανόκει ςτο πεδύο
οριςμού τησ g. Δηλαδό εύναι το ςύνολο 1 { | ( ) }A x A f x B .
Εύναι φανερό ότι η gof ορύζεται αν 1A , δηλαδό αν f(A) B .
10. Πότε μια ςυνάρτηςη λέγεται γνηςίωσ αύξουςα και πότε γνηςίωσ φθίνουςα ςε ένα διάςτημα Δ του
πεδίου οριςμού τησ;
Μια ςυνϊρτηςη f λϋγεται :
γνηςίωσ αύξουςα ς’ ϋνα διάςτημα Δ του πεδύου οριςμού τησ, όταν για οποιαδόποτε Γxx 21 , με 21 xx
ιςχύει: )()( 21 xfxf .
γνηςίωσ φθίνουςα ς’ ϋνα διάςτημα Δ του πεδύου οριςμού τησ, όταν για οποιαδόποτε Γxx 21 , με 21 xx
ιςχύει: )()( 21 xfxf .
O
y
x
Μ΄(x, f (x))
y=f (x)
y= f (x)
Μ(x,f (x))
O
y
x
y=f (x)y=| f (x)|
g f
g(B)A
g
Bf(A)
f
A1
g( f(x))
f(x)
x

x
y
Ο
Γ
A
B
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 5 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 6
Αν μια ςυνϊρτηςη f εύναι γνηςύωσ αύξουςα ό γνηςύωσ φθύνουςα ς’ ϋνα διϊςτημα Δ του πεδύου οριςμού τησ,
τότε λϋμε ότι η f εύναι γνηςίωσ μονότονη ςτο Δ.
11. Πότε μια ςυνάρτηςη παρουςιάζει μέγιςτο και πότε ελάχιςτο ;
Μια ςυνϊρτηςη f με πεδύο οριςμού Α θα λϋμε ότι:
Παρουςιϊζει ςτο Ax0 (ολικό) μέγιςτο, το )( 0xf , όταν )()( 0xfxf για κϊθε Ax .
Παρουςιϊζει ςτο Ax0 (ολικό) ελάχιςτο, το )( 0xf , όταν )()( 0xfxf για κϊθε Ax .
Σο (ολικό) μϋγιςτο και το (ολικό) ελϊχιςτο μιασ ςυνϊρτηςησ f λϋγονται (ολικϊ) ακρότατα τησ f.
12. Πότε μια ςυνάρτηςη λέγεται 1-1;
Μια ςυνϊρτηςη :f A R λϋγεται ςυνάρτηςη 11 , όταν για οποιαδόποτε Axx 21 , ιςχύει η ςυνεπαγωγό:
αν 21 xx , τότε )()( 21 xfxf .
Με απαγωγή ςε άτοπο προκύπτει: Μια ςυνϊρτηςη :f A R εύναι ςυνάρτηςη 11 , αν και μόνο αν για
οποιαδόποτε Axx 21 , ιςχύει : αν )()( 21 xfxf , τότε 21 xx .
 ΢ΦΟΛΙΑ
Από τον παραπϊνω οριςμό προκύπτει ότι μια ςυνάρτηςη f είναι 11 , αν και μόνο αν:
— Για κάθε ςτοιχείο y του ςυνόλου τιμών τησ η εξίςωςη yxf )( έχει ακριβώσ μια λύςη ωσ προσ x.
— Δεν υπάρχουν ςημεία τησ γραφικήσ τησ παράςταςησ με την ίδια τεταγμένη. Αυτό ςημαύνει ότι κϊθε
οριζόντια ευθεύα τϋμνει τη γραφικό παρϊςταςη τησ f το πολύ ςε ϋνα ςημεύο (΢χ.β).
x
y
συνάρτηση 1-1
O
α
O x2x1
BA
x
y
συνάρτηση όχι 1-1
β
O x
y
y=g(x)
γ
Αν μια ςυνάρτηςη είναι γνηςίωσ μονότονη, τότε προφανώσ, είναι ςυνάρτηςη "11" .
Έτςι, οι ςυναρτόςεισ βαxxf )(1 , 0α , 3
2 )( αxxf , 0α , x
αxf )(3 , 10 α και xxf αlog)(4 , 10 α ,
εύναι ςυναρτόςεισ 11 . Τπϊρχουν, όμωσ, ςυναρτόςεισ που εύναι 11 αλλϊ δεν εύναι γνηςύωσ μονότονεσ, όπωσ
για παρϊδειγμα η ςυνϊρτηςη
0,
1
0,
)(
x
x
xx
xg (΢χ.γ).
13. Σι ονομάζεται αντίςτροφη ςυνάρτηςη;
Έςτω μια 11 ςυνϊρτηςη :f A R. Tότε για κϊθε ςτοιχεύο y του ςυνόλου τιμών )(Af , τησ f υπϊρχει
μοναδικό ςτοιχεύο x του πεδύου οριςμού τησ Α για το οπούο ιςχύει yxf )( . Επομϋνωσ ορύζεται μια ςυνϊρτηςη
: ( )g f A R με την οπούα κϊθε )(Afy αντιςτοιχύζεται ςτο μοναδικό Ax για το οπούο ιςχύει yxf )( .
H ςυνϊρτηςη g λϋγεται αντίςτροφη ςυνάρτηςη τησ f και
ςυμβολύζεται με 1
f . Επομϋνωσ ϋχουμε xyfyxf )()( 1
,
οπότε: Axxxff ,))((1
και )(,))(( 1
Afyyyff .
14. Σι γνωρίζετε για τισ γραφικέσ παραςτάςεισ των
ςυναρτήςεων f και f-1;
Οι γραφικϋσ παραςτϊςεισ C και C των ςυναρτόςεων f και
1
f
εύναι ςυμμετρικϋσ ωσ προσ την ευθεύα y x που διχοτομεύ τισ
γωνύεσ xOy και x Oy .
y=x
C΄
C
O x
M΄(β,α)
M(α,β)
y
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 6 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 7
15. Γιατί οι γραφικέσ παραςτάςεισ C και C΄ των ςυναρτήςεων f και f-1 είναι ςυμμετρικέσ ωσ προσ την
ευθεία y=x που διχοτομεί τισ γωνίεσ ˆxOy και ˆx΄Oy΄ .
Ασ πϊρουμε μια 1-1 ςυνϊρτηςη f και ασ θεωρόςουμε τισ γραφικϋσ παραςτϊςεισ C και C΄ των f και τησ 1
f ςτο
ύδιο ςύςτημα αξόνων. Επειδό
1
( ) ( )f x y f y x , αν ϋνα ςημεύο ( , )M ανόκει ςτη γραφικό παρϊςταςη C
τησ f , τότε το ςημεύο ( , ) θα ανόκει ςτη γραφικό παρϊςταςη C΄ τησ 1
f και αντιςτρόφωσ. Σα ςημεύα,
όμωσ, αυτϊ εύναι ςυμμετρικϊ ωσ προσ την ευθεύα που διχοτομεύ τισ γωνύεσ ˆxOy και ˆx Oy . Επομϋνωσ:
Οι γραφικέσ παραςτάςεισ C και C΄ των ςυναρτήςεων f και 1
f είναι ςυμμετρικέσ ωσ προσ την ευθεία
y x που διχοτομεί τισ γωνίεσ ˆxOy και ˆx Oy .
16. Ποια είναι η έννοια του ορίου;
Όταν οι τιμϋσ μιασ ςυνϊρτηςησ f προςεγγύζουν όςο θϋλουμε ϋναν πραγματικό αριθμό , καθώσ το x
προςεγγύζει με οποιονδόποτε τρόπο τον αριθμό x0 , τότε ςυμβολύζουμε : )(lim
0
xf
xx
και διαβϊζουμε: “το όριο
τησ f , όταν το x τεύνει ςτο x0, εύναι ” ό “το όριο τησ f ςτο x0 εύναι ”.
f(x)
f(x)
f x( )0 
(a)
O x0 xx x
y
f(x0)
(β)
f(x)
f(x)
O x0

xx x
y
(γ)
f(x)
f(x)
O x0

xx x
y
 ΢ΦΟΛΙΟ
Για να αναζητόςουμε το όριο τησ f ςτο 0x , πρϋπει η f να ορύζεται “κοντϊ ςτο 0x ”, δηλαδό η f να εύναι οριςμϋνη
τουλϊχιςτον ςε ϋνα ςύνολο τησ μορφόσ: ),(),( 00 βxxα ό ),( 0xα ό ),( 0 βx .
17. Ποιεσ είναι οι άμεςεσ ςυνέπειεσ του οριςμού του ορίου ;
α) )(lim
0
xf
xx
0))((lim
0
xf
xx
β) )(lim
0
xf
xx
)(lim 0
0
hxf
h
18. Πωσ ςυνδέεται το όριο με τα πλευρικά όρια ;
Αν μια ςυνϊρτηςη f εύναι οριςμϋνη ςε ϋνα ςύνολο τησ μορφόσ ),(),( 00 βxxα , τότε ιςχύει η ιςοδυναμύα:
)(lim
0
xf
xx
)(lim)(lim
00
xfxf
xxxx
19. Ποιεσ ανιςότητεσ ιςχύουν ςτα όρια ; (όριο και διάταξη)
Αν 0)(lim
0
xf
xx
, τότε 0)(xf ενώ αν 0)(lim
0
xf
xx
, τότε 0)(xf , κοντά ςτο 0x
Αν οι ςυναρτόςεισ gf , ϋχουν όριο ςτο 0x και ιςχύει )()( xgxf κοντά ςτο 0x , τότε )(lim)(lim
00
xgxf
xxxx
20. Ποιεσ είναι οι ιδιότητεσ των ορίων ςε ςημείο x0 ;
Αν υπάρχουν τα όρια των ςυναρτόςεων f και g ςτο 0x , τότε:
1. )(lim)(lim))()((lim
000
xgxfxgxf
xxxxxx
2. )(lim))((lim
00
xfκxκf
xxxx
, για κϊθε κ R
3. )(lim)(lim))()((lim
000
xgxfxgxf
xxxxxx
4.
)(lim
)(lim
)(
)(
lim
0
0
0 xg
xf
xg
xf
xx
xx
xx
, εφόςον 0)(lim
0
xg
xx
5. )(lim|)(|lim
00
xfxf
xxxx
6. k
xx
k
xx
xfxf )(lim)(lim
00
, όταν 0)(xf κοντά ςτο 0x
7.
ν
xx
ν
xx
xfxf )(lim)]([lim
00
,
*
ν N
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 7 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 8
21. Να διατυπώςετε το κριτήριο παρεμβολήσ .
Έςτω οι ςυναρτόςεισ hgf ,, . Αν )()()( xgxfxh κοντϊ ςτο 0x και
)(lim)(lim
00
xgxh
xxxx
, τότε )(lim
0
xf
xx
.
Παράδειγμα: για 0x ϋχουμε: ||
1
ημ|| x
x
xx και επειδό
0||lim)||(lim
00
xx
xx
, ςύμφωνα με το κριτόριο παρεμβολόσ, ϋχουμε:
0
1
ημlim
0 x
x
x
.
22. Ποια είναι τα βαςικά τριγωνομετρικά όρια ;
α) 1
ημ
lim
0 x
x
x
β) 0
1συν
lim
0 x
x
x
 ΢ημείωςη : | ημx| | x| , για κάθε x (η ιςότητα ιςχύει μόνο όταν 0x ).
 Επύςησ, από τισ γραφικϋσ παραςτϊςεισ των y = x και y = ημx , διαπιςτώνουμε εύκολα ότι ιςχύουν οι
ανιςώςεισ: ημx < x , για κάθε x > 0 και ημx > x , για κάθε x < 0.
23. Πωσ υπολογίζουμε το όριο ςύνθετησ ςυνάρτηςησ ;
Για να υπολογύςουμε το ))((lim
0
xgf
xx
, εργαζόμαςτε ωσ εξόσ:
Θϋτουμε )(xgu και υπολογύζουμε το )(lim
0
0 xgu
xx
και το )(lim
0
uf
uu
 (αν υπϊρχουν) .
Αποδεικνύεται ότι, αν 0)( uxg κοντϊ ςτο 0x , τότε το ζητούμενο όριο εύναι ύςο με  , δηλαδό ιςχύει:
)(lim))((lim
00
ufxgf
uuxx
.
24. Ποιεσ είναι οι ιδιότητεσ των μη πεπεραςμένων ορίων ςε ςημείο x0 R;
Αν )(lim
0
xf
xx
, τότε 0)(xf , ενώ αν )(lim
0
xf
xx
, τότε 0)(xf κοντϊ ςτο 0x .
Αν )(lim
0
xf
xx
, τότε ))((lim
0
xf
xx
, ενώ αν )(lim
0
xf
xx
, τότε ))((lim
0
xf
xx
.
Αν )(lim
0
xf
xx
ό , τότε 0
)(
1
lim
0 xfxx
.
Αν 0)(lim
0
xf
xx
και 0)(xf κοντϊ ςτο 0x , τότε
)(
1
lim
0 xfxx
, ενώ αν 0)(xf κοντϊ ςτο 0x , τότε
)(
1
lim
0 xfxx
.
Αν )(lim
0
xf
xx
ό , τότε |)(|lim
0
xf
xx
και αν )(lim
0
xf
xx
, τότε k
xx
xf )(lim
0
.
Αν )(lim
0
xf
xx
και ιςχύει )()( xgxf κοντά ςτο 0x , τότε
0x x
lim g(x) .
Αν
0x x
lim g(x) και ιςχύει )()( xgxf κοντά ςτο 0x , τότε
0x x
lim f(x) .
20
1
lim
xx
και γενικϊ ν20
1
lim
xx
,
*
xx
1
lim
0
και γενικϊ 12
0
1
lim ν
x x
, ενώ
xx
1
lim
0
και 12
0
1
lim ν
xx
,
*
δεν υπϊρχει ςτο μηδϋν το όριο τησ 12
1
)( ν
x
xf ,
*
.
O

Ch
Cf
Cg
βα x0 x
y
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 8 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 9
΄Οριο αθροίςματοσ και γινομένου ςυναρτήςεων
Αν το όριο τησ f εύναι: α R α R - -
και το όριο τησ g εύναι: - - -
τότε το όριο τησ gf είναι: - - ; ;
Αν το όριο τησ f εύναι:
α>0 α<0 α>0 α<0 0 0 + + - -
και το όριο τησ g εύναι:
+ + - - + - + - + -
τότε το όριο τησ f·g είναι:
+ - - + ; ; + - - +
΢τουσ πύνακεσ των παραπϊνω θεωρημϊτων, όπου υπϊρχει ερωτηματικό, ςημαύνει ότι το όριο (αν υπϊρχει)
εξαρτϊται κϊθε φορϊ από τισ ςυναρτόςεισ που παύρνουμε. ΢τισ περιπτώςεισ αυτϋσ λϋμε ότι ϋχουμε
απροςδιόριςτη μορφή.
Δηλαδό, απροςδιόριςτεσ μορφϋσ για τα όρια αθρούςματοσ και γινομϋνου ςυναρτόςεων εύναι οι:
)()( και )(0 .
και απροςδιόριςτεσ μορφϋσ για τα όρια τησ διαφορϊσ και του πηλύκου ςυναρτόςεων εύναι οι:
)()( , )()( και
0
0
, .
25. Ποιεσ είναι οι ιδιότητεσ των ορίων ςυνάρτηςησ ςτο άπειρο;
Για τα όρια ςτα , ιςχύουν οι γνωςτϋσ ιδιότητεσ των ορύων ςτο 0x με την προώπόθεςη ότι:
οι ςυναρτόςεισ εύναι οριςμϋνεσ ςε κατϊλληλα ςύνολα τησ μορφόσ ),(α ό ),( β και
δεν καταλόγουμε ςε απροςδιόριςτη μορφό.
Για τον υπολογιςμό του ορύου ςτο ό ενόσ μεγϊλου αριθμού ςυναρτόςεων χρειαζόμαςτε τα παρακϊτω
βαςικϊ όρια:
ν
x
xlim και 0
1
lim νx x
,
*
,
περιττόςαν,-
άρτιοςαν,
lim
ν
ν
xν
x
και 0
1
lim νx x
,
*
26. Ποιο είναι το όριο πολυωνυμικήσ και ρητήσ ςυνάρτηςησ αν το x τείνει ςτο ;
Για την πολυωνυμικό ςυνϊρτηςη 0
1
1)( αxαxαxP ν
ν
ν
ν  , με 0να ιςχύει:
)(lim)(lim ν
ν
xx
xαxP και )(lim)(lim ν
ν
xx
xαxP
Για τη ρητό ςυνϊρτηςη
01
1
1
01
1
1
)(
βxβxβxβ
αxαxαxα
xf κ
κ
κ
κ
ν
ν
ν
ν


, 0να , 0κβ ιςχύει:
κ
κ
ν
ν
xx xβ
xα
xf lim)(lim και κ
κ
ν
ν
xx xβ
xα
xf lim)(lim
27. Ποια είναι τα όρια εκθετικήσ και λογαριθμικήσ ςυνάρτηςησ, αν το x τείνει ςτο ;
Αν 1α τότε: 0lim x
x
α , x
x
αlim , xα
x
loglim
0
, xα
x
loglim .
Αν 10 α τότε: x
x
αlim , 0lim x
x
α , xα
x
loglim
0
, xα
x
loglim
28. Σι ονομάζεται ακολουθία;
Ακολουθία ονομϊζεται κϊθε πραγματικό ςυνϊρτηςη *
α: .
29. Να διατυπώςετε τον οριςμό του πεπεραςμένου όριου ακολουθίασ.
Θα λϋμε ότι η ακολουθύα )( να ϋχει όριο το  ℝ και θα γρϊφουμε ν
ν
αlim , όταν για κϊθε 0ε , υπϊρχει
*
0
ν τϋτοιο, ώςτε για κϊθε 0νν να ιςχύει: εαν ||  .
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 9 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 10
30. Πότε η f λέγεται ςυνεχήσ ςτο x0 του πεδίου οριςμού τησ;
΄Εςτω μια ςυνϊρτηςη f και 0x ϋνα ςημεύο του πεδύου οριςμού τησ. Θα λϋμε ότι η f εύναι ςυνεχήσ ςτο 0x ,
όταν: )()(lim 0
0
xfxf
xx
.
31. Πότε μια ςυνάρτηςη f δεν είναι ςυνεχήσ ςε ένα ςημείο x0 του πεδίου οριςμού τησ;
Μια ςυνϊρτηςη f δεν είναι ςυνεχόσ ςε ϋνα ςημεύο 0x του πεδύου οριςμού τησ όταν:
α) Δεν υπϊρχει το όριό τησ ςτο 0x ό
β) Τπϊρχει το όριό τησ ςτο 0x , αλλϊ εύναι διαφορετικό από την τιμό τησ, )( 0xf , ςτο ςημεύο 0x .
32. Πότε η ςυνάρτηςη f λέγεται ςυνεχήσ ςτο πεδίο οριςμού τησ;
Θα λϋμε ότι η f εύναι ςυνεχόσ ςτο πεδύο οριςμού τησ, όταν η f εύναι ςυνεχόσ ςε κϊθε ςημεύο του πεδύου οριςμού
τησ Α, δηλαδό όταν ιςχύει: )()(lim 0
0
xfxf
xx
, για κϊθε 0x Α.
33. Ποιεσ ςυναρτήςεισ είναι ςυνεχείσ;
Κάθε πολυωνυμική ςυνάρτηςη Ρ είναι ςυνεχήσ, αφού για κϊθε 0x ιςχύει: )()(lim 0
0
xPxP
xx
.
Κάθε ρητή ςυνάρτηςη
Q
P
είναι ςυνεχήσ, αφού ιςχύει:
)(
)(
)(
)(
lim
0
0
0 xQ
xP
xQ
xP
xx
για κϊθε 0x του πεδύου οριςμού τησ.
Οι ςυναρτήςεισ xxf ημ)( και xxg σσν)( είναι ςυνεχείσ, αφού για κϊθε x ιςχύει:
0
0
ημημlim xx
xx
και 0
0
συνσυνlim xx
xx
.
Οι ςυναρτήςεισ x
αxf )( και xxg αlog)( , 10 α είναι ςυνεχείσ.
34. Σι γνωρίζετε για τισ πράξεισ μεταξύ ςυνεχών ςυναρτήςεων;
Αν οι ςυναρτόςεισ f , g εύναι ςυνεχεύσ ςτο 0x , τότε και οι ςυναρτόςεισ: gf , fc (c R ) , gf ,
g
f
,
|| f και ν f ,εύναι ςυνεχεύσ ςτο 0x , με την προώπόθεςη ότι ορύζονται ςε ϋνα διϊςτημα που περιϋχει το 0x .
Επιπλϋον, αν η ςυνάρτηςη f είναι ςυνεχήσ ςτο 0x και η ςυνάρτηςη g είναι ςυνεχήσ ςτο )( 0xf , τότε
η ςύνθεςή τουσ gof είναι ςυνεχήσ ςτο 0x .
35. Πότε η f λέγεται ςυνεχήσ ςε ένα ανοικτό διάςτημα (α,β);
Μια ςυνϊρτηςη f θα λϋμε ότι εύναι ςυνεχήσ ςε ένα ανοικτό διάςτημα ),( βα , όταν εύναι ςυνεχόσ ςε κϊθε
ςημεύο του ),( βα .
36. Πότε η f λέγεται ςυνεχήσ ςε ένα κλειςτό διάςτημα [α,β- ;
Μια ςυνϊρτηςη f θα λϋμε ότι εύναι ςυνεχήσ ςε ένα κλειςτό διάςτημα ],[ βα , όταν εύναι ςυνεχόσ ςε κϊθε
ςημεύο του ),( βα και επιπλϋον :
x
lim f(x) f( ) και
x
lim f(x) f( ) .
37. Να διατυπώςετε το Θεώρημα Bolzano.
Έςτω μια ςυνϊρτηςη f , οριςμϋνη ςε ϋνα κλειςτό διϊςτημα ],[ βα . Αν
η f εύναι ςυνεχόσ ςτο ],[ βα και, επιπλϋον, ιςχύει 0)()( βfαf , τότε
υπϊρχει ϋνα, τουλϊχιςτον, ),(0 βαx τϋτοιο, ώςτε 0)( 0xf ( δηλ.
η εξύςωςη f(x)=0 ϋχει μύα τουλϊχιςτον ρύζα ςτο (α,β) ).
38. Να ερμηνεύςετε γεωμετρικά το Θεώρημα Bolzano.
Θεωρούμε τη γραφικό παρϊςταςη μιασ ςυνεχούσ ςυνϊρτηςησ f ςτο
],[ βα . Επειδό τα ςημεύα ))(,( αfαA και ))(,( βfβB βρύςκονται
εκατϋρωθεν του ϊξονα xx , η γραφικό παρϊςταςη τησ f τϋμνει τον
ϊξονα ςε ϋνα τουλϊχιςτον ςημεύο.
x0x0
x0
y
B(β,f(β))
Α(α,f(α))f(a)
f(β)
O β
a
x
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 10 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 11
 ΢ΦΟΛΙΟ
Από το θεώρημα του Bolzano προκύπτει ότι:
Αν μια ςυνϊρτηςη f εύναι ςυνεχήσ ςε ένα διάςτημα Δ και δε μηδενίζεται ς’ αυτό, τότε αυτό ό εύναι
θετικό για κϊθε Γx ό εύναι αρνητικό για κϊθε Γx , δηλαδό διατηρεί πρόςημο ςτο διάςτημα Δ.
Μια ςυνεχόσ ςυνϊρτηςη f διατηρεύ πρόςημο ςε καθϋνα από το διαςτόματα ςτα οπούα οι διαδοχικϋσ ρύζεσ
τησ χωρύζουν το πεδύο οριςμού τησ.
39. Πωσ μπορούμε να προςδιορίςουμε το πρόςημο μιασ ςυνεχούσ ςυνάρτηςησ f ;
Ο προςδιοριςμόσ του προςόμου ςυνεχούσ ςυνϊρτηςησ γύνεται ωσ εξόσ:
α) Βρύςκουμε τισ ρύζεσ τησ f.
β) ΢ε καθϋνα από τα υποδιαςτόματα που ορύζουν οι διαδοχικϋσ ρύζεσ, επιλϋγουμε τυχαύα ϋνα ςημεύο 0x και
βρύςκουμε το πρόςημο τησ τιμόσ f( 0x ). Σο πρόςημο αυτό εύναι και το πρόςημο τησ f ςτο αντύςτοιχο
διϊςτημα.
40. Να διατυπώςετε το Θεώρημα Ενδιάμεςων Σιμών ςυνεχούσ ςυνάρτηςησ ςτο [α,β].
Έςτω μια ςυνϊρτηςη f, η οπούα εύναι οριςμϋνη ςε ϋνα κλειςτό διϊςτημα [α,β-. Αν η f εύναι ςυνεχόσ ςτο [α,β- και
f(α) f(β)≠ , τότε για κϊθε αριθμό η μεταξύ των f(α) και f(β) υπϊρχει ϋνασ, τουλϊχιςτον 0
x (α,β) , ώςτε
0
f(x ) = η. (Θεώρημα ενδιϊμεςων τιμών)
 ΢ΦΟΛΙΑ
Αν μια ςυνϊρτηςη f δεν εύναι ςυνεχόσ ςτο διϊςτημα ],[ βα , τότε,
όπωσ φαύνεται και ςτο διπλανό ςχόμα, δεν παύρνει υποχρεωτικϊ
όλεσ τισ ενδιϊμεςεσ τιμϋσ.
Με τη βοόθεια του θεωρόματοσ ενδιαμϋςων τιμών αποδεικνύεται ότι:
Η εικόνα )(Γf ενόσ διαςτήματοσ Δ μέςω μιασ ςυνεχούσ
και μη ςταθερήσ ςυνάρτηςησ f είναι διάςτημα.
41. Να διατυπώςετε το Θεώρημα Μέγιςτησ - ελάχιςτησ τιμήσ.
Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο ],[ βα , τότε η f παύρνει ςτο ],[ βα μια μϋγιςτη τιμό Μ και μια ελϊχιςτη
τιμό m. Δηλαδό, υπϊρχουν ],[, 21 βαxx τϋτοια, ώςτε, αν )( 1xfm και )( 2xfM , να ιςχύει :
Mxfm )( , για κάθε ],[ βαx .
 ΢ΦΟΛΙΟ
Από το θεώρημα Μϋγιςτησ-Ελϊχιςτησ Σιμόσ και το θεώρημα Ενδιϊμεςων Σιμών προκύπτει ότι το ςύνολο
τιμών μιασ ςυνεχούσ και μη ςταθερόσ ςυνϊρτηςησ f , με πεδύο οριςμού το ],[ βα εύναι το κλειςτό διϊςτημα
],[ Mm , όπου m η ελϊχιςτη και Μ η μϋγιςτη τιμό τησ. Δηλ.: f ([α,β] )= ],[ Mm
42. Ποιο είναι το ςύνολο τιμών μιασ ςυνεχούσ και γνηςίωσ μονότονησ ςυνάρτηςησ, οριςμένησ ςε
διάςτημα ;
Aν μια ςυνϊρτηςη f εύναι γνηςίωσ αύξουςα και ςυνεχήσ ςε ϋνα ανοικτό διϊςτημα ),( βα , τότε το ςύνολο
τιμών τησ ςτο διϊςτημα αυτό εύναι το διϊςτημα ),( ΒΑ , όπου:
)(lim xfΑ
αx
και )(lim xfB
βx
.
Αν, όμωσ, η f εύναι γνηςίωσ φθίνουςα και ςυνεχήσ ςτο ),( βα , τότε το ςύνολο τιμών τησ ςτο διϊςτημα
αυτό εύναι το αντύςτοιχο διϊςτημα ),( AB
Ανϊλογα ςυμπερϊςματα ϋχουμε και όταν μια ςυνϊρτηςη f εύναι ςυνεχόσ και γνηςύωσ μονότονη ςε
διαςτόματα τησ μορφόσ ],[ βα , ),[ βα και ],( βα ό ακόμη και ςτην περύπτωςη που τα ϊκρα δεν εύναι
πεπεραςμϋνα.
y
f(a)
f(β)
O
y=η
η
xβa
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 11 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 12
ΔΙΑΥΟΡΙΚΟ΢ ΛΟΓΙ΢ΜΟ΢
43. Πότε μια ςυνάρτηςη λέγεται παραγωγίςιμη ςτο x0 και τι ονομάζουμε παράγωγο τησ f ςτο x0 ;
Μια ςυνϊρτηςη f λϋμε ότι εύναι παραγωγίςιμη ς’ ένα ςημείο 0x του πεδύου οριςμού τησ, αν υπϊρχει το
0
0 )()(
lim
0 xx
xfxf
xx
και εύναι πραγματικόσ αριθμόσ. Σο όριο αυτό ονομϊζεται παράγωγοσ τησ f ςτο 0x και
ςυμβολύζεται με )( 0xf . Δηλαδό:
0
0
0
)()(
lim)(
0 xx
xfxf
xf
xx
.
44. Πωσ ορίζεται η εφαπτομένη ςτο ςημείο A(x0,f(x0)) τησ Cf;
Έςτω f μια ςυνϊρτηςη και ))(,( 00 xfxA ϋνα ςημεύο τησ fC . Αν υπϊρχει το
0
0
0
)()(
lim
xx
xfxf
xx
και εύναι ο
πραγματικόσ αριθμόσ f΄(x0) , τότε ορύζουμε ωσ εφαπτομϋνη τησ fC ςτο ςημεύο τησ Α, την ευθεύα ε που
διϋρχεται από το Α και ϋχει ςυντελεςτό διεύθυνςησ λ= f΄(x0).
Επομϋνωσ, η εξύςωςη τησ εφαπτομϋνησ ςτο ςημεύο ))(,( 00 xfxA εύναι : 0
'( )y f x f x x x0 0
( ) ( ) .
45. Ποιοσ είναι ο ςυμβολιςμόσ του Leibniz και ποιοσ του Lagrange για την παράγωγο τησ f ςτο x0.
Ο Leibniz ςυμβολύςε την παρϊγωγο ςτο 0x με
dx
xdf )( 0
ό 0
)(
xx
dx
xdf
.
Ο ςυμβολιςμόσ )( 0xf εύναι μεταγενϋςτεροσ και οφεύλεται ςτον Lagrange.
Αν ςτην ιςότητα
0
0
0
0
)()(
lim)(
xx
xfxf
xf
xx
θϋςουμε hxx 0 , τότε:
h
xfhxf
xf
h
)()(
lim)( 00
0
0 .
Πολλϋσ φορϋσ το 0xxh ςυμβολύζεται με xΓ , ενώ το )()( 00 xfhxf )()( 00 xfxΓxf ςυμβολύζεται
)( 0xfΓ , οπότε ο παραπϊνω τύποσ γρϊφεται:
Δx
xΔf
xf
Δx
)(
lim)( 0
0
0 .
46. Ποια είναι η γεωμετρική ερμηνεία του παράγωγου αριθμού f΄(x0) ςε ένα ςημείο Α(xο,f(xο)) τησ
γραφικήσ παράςταςησ Cf μιασ ςυνάρτηςησ;
Ο ςυντελεςτόσ διεύθυνςησ τησ εφαπτομϋνησ ε τησ γραφικόσ παρϊςταςησ fC μιασ παραγωγύςιμησ ςυνϊρτηςησ
f, ςτο ςημεύο ))(,( 00 xfxA εύναι η παρϊγωγοσ τησ f ςτο 0x .
47. Σι ονομάζεται κλίςη τησ γραφικήσ παράςταςησ μιασ παραγωγίςιμησ ςυνάρτηςησ ςε ένα ςημείο
τησ Α(xο,f(xο));
Σην κλύςη )( 0xf τησ εφαπτομϋνησ ε ςτο ))(,( 00 xfxA θα τη λϋμε και κλίςη τησ γραφικήσ παράςταςησ fC
ςτο Α ό κλίςη τησ f ςτο 0x .
48. Πότε μια ςυνάρτηςη f λέγεται παραγωγίςιμη ςτο πεδίο οριςμού τησ ;
Έςτω f μια ςυνϊρτηςη με πεδύο οριςμού ϋνα ςύνολο Α. Θα λϋμε ότι: H f εύναι παραγωγύςιμη ςτο Α ό, απλϊ,
παραγωγίςιμη, όταν εύναι παραγωγύςιμη ςε κϊθε ςημεύο Ax0 .
49. Πότε μια ςυνάρτηςη f λέγεται παραγωγίςιμη ςε ένα ανοικτό διάςτημα (α,β) του πεδίου οριςμού
τησ;
Η f εύναι παραγωγίςιμη ςε ένα ανοικτό διάςτημα ),( βα του πεδύου οριςμού τησ, όταν εύναι παραγωγύςιμη
ςε κϊθε ςημεύο ),(0 βαx .
50. Πότε μια ςυνάρτηςη f λέγεται παραγωγίςιμη ςε ένα κλειςτό διάςτημα [α,β- του πεδίου
οριςμού τησ;
Η f εύναι παραγωγίςιμη ςε ένα κλειςτό διάςτημα ],[ βα του πεδύου οριςμού τησ, όταν εύναι παραγωγύςιμη
ςτο ),( βα και επιπλϋον ιςχύει: +
x α
f(x) - f(α)
lim R
x - α
και -
x β
f(x) - f(β)
lim R
x - β
.
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 12 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 13
51. Σι ονομάζεται πρώτη παράγωγοσ ςυνάρτηςησ ;
Έςτω f μια ςυνϊρτηςη με πεδύο οριςμού Α και 1
A τo ςύνολο των ςημεύων του Α ςτα οπούα αυτό εύναι
παραγωγύςιμη. Αντιςτοιχύζοντασ κϊθε 1
x A ςτο y= f (x) , ορύζουμε τη ςυνϊρτηςη
1
: , ώστε : ( )f A R x f x , που ονομϊζεται πρώτη παράγωγοσ τησ f ό απλϊ παράγωγοσ τησ f.
Ο τύποσ τησ ςυνϊρτηςησ f΄ εύναι:
f(x + h) - f(x)
f (x) = lim
hh 0
, 1Ax .
52. ΠΑΡΑΓΨΓΟΙ ΢ΣΟΙΦΕΙΨΔΨΝ ΢ΤΝΑΡΣΗ΢ΕΨΝ
΢υνάρτηςη f Παράγωγοσ f΄ Διάςτημα που παραγωγίζεται η f
c (c) =0
x (x) =1
xν , ν ν ν-1
(x ) = νx
xκ , κ - κ κ-1
(x ) = κx
xα , α -
α α-1
(x ) =αx
[0, ) με α>1,
(0, ) με α<1
lnx
1
(lnx) =
x
(0, )
logax α
1
(log x) =
xlnα
(0, )
ln|x|
1
(ln| x|) =
x
x
1
( x) =
2 x
(0, )
ex x x
(e ) =e
αx , α>0
x x
(α ) =α lnα
ημx (ημx) =ςυνx
ςυνx (ςυνx) =-ημx
εφx 2
2
1
(εφx) = =1+εφ x
ςυν x
Α={x /x κπ+
π
2
,κ }
ςφx
2
2
1
(ςφx) =- =-(1+ςφ x)
ημ x
Α={x /x κπ , κ }
53. Σι ονομάζεται δεύτερη παράγωγοσ και τι ν-οςτή παράγωγοσ ςυνάρτηςησ ;
Έςτω f μια ςυνϊρτηςη με πεδύο οριςμού Α και 1A τo ςύνολο των ςημεύων του Α ςτα οπούα αυτό εύναι
παραγωγύςιμη και f ΄ η πρώτη παρϊγωγοσ τησ f. Αν υποθϋςουμε ότι το 1Α εύναι διϊςτημα ό ϋνωςη
διαςτημϊτων, τότε η παρϊγωγοσ τησ f , αν υπϊρχει, λϋγεται δεύτερη παρϊγωγοσ τησ f και ςυμβολύζεται f .
Επαγωγικϊ ορύζεται η νιοςτή παράγωγοσ τησ f, με 3ν , και ςυμβολύζεται με )(ν
f . Δηλαδό:
][ 1)()( νν
ff , 3ν .
54. Πωσ παραγωγίζεται μια ςύνθετη ςυνάρτηςη ;
Αν η ςυνϊρτηςη g εύναι παραγωγύςιμη ςτο 0x και η f εύναι παραγωγύςιμη ςτο )( 0xg , τότε η
ςυνϊρτηςη gf  εύναι παραγωγύςιμη ςτο 0x και ιςχύει 0 0 0
(f o g) (x )= f (g(x ))g (x ) .
55. Σι είναι ο κανόνασ τησ αλυςίδασ;
Αν μια ςυνϊρτηςη g εύναι παραγωγύςιμη ςε ϋνα διϊςτημα Δ και η f εύναι παραγωγύςιμη ςτο )(Γg , τότε η
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 13 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 14
ςυνϊρτηςη gf  εύναι παραγωγύςιμη ςτο Δ και ιςχύει: )())(()))((( xgxgfxgf .
Δηλαδό, αν )(xgu , τότε: uufuf )())(( .
Με το ςυμβολιςμό του Leibniz, αν )(ufy και )(xgu , ϋχουμε τον τύπο
dx
du
du
dy
dx
dy
που εύναι γνωςτόσ ωσ
κανόνασ τησ αλυςίδασ.
56. Σι ονομάζεται ρυθμόσ μεταβολήσ του y ωσ προσ το x ςτο ςημείο x0 όταν y=f(x) και f είναι μια
ςυνάρτηςη παραγωγίςιμη ςτο x0;
Αν δύο μεταβλητϊ μεγϋθη yx, ςυνδϋονται με τη ςχϋςη )(xfy , όταν f εύναι μια ςυνϊρτηςη παραγωγύςιμη
ςτο 0x , τότε ονομϊζουμε ρυθμό μεταβολήσ του y ωσ προσ το x ςτο ςημείο 0x την παρϊγωγο )( 0xf .
57. Να διατυπώςετε το Θεώρημα Rolle
Αν μια ςυνϊρτηςη f εύναι:
ςυνεχόσ ςτο κλειςτό διϊςτημα ],[ βα
παραγωγύςιμη ςτο ανοικτό ),( βα , και ιςχύει
)()( βfαf
τότε υπϊρχει ϋνα, τουλϊχιςτον, ),( βαξ τϋτοιο, ώςτε: 0)(ξf
58. Να ερμηνεύςετε γεωμετρικά το Θεώρημα Rolle
Σο Θεώρημα Rolle γεωμετρικϊ, ςημαύνει ότι υπϊρχει ϋνα, τουλϊχιςτον, ),( βαξ τϋτοιο, ώςτε η εφαπτομϋνη
τησ fC ςτο ))(,( ξfξM να εύναι παρϊλληλη ςτον ϊξονα των x.
59. Να διατυπώςετε το Θεώρημα Μέςησ Σιμήσ Διαφορικού Λογιςμού (Θ.Μ.Σ.).
Αν μια ςυνϊρτηςη f εύναι: i. ςυνεχόσ ςτο κλειςτό διϊςτημα ],[ βα και
ii. παραγωγύςιμη ςτο ανοικτό διϊςτημα ),( βα
τότε υπϊρχει ϋνα, τουλϊχιςτον, ),( βαξ τϋτοιο, ώςτε:
αβ
αfβf
ξf
)()(
)( .
60. Να ερμηνεύςετε γεωμετρικά το Θεώρημα Μέςησ Σιμήσ του
Διαφορικού Λογιςμού.
Γεωμετρικϊ, το Θεώρημα Μϋςησ Σιμόσ ςημαύνει ότι υπϊρχει ϋνα, τουλϊχιςτον, ),( βαξ τϋτοιο, ώςτε η
εφαπτομϋνη τησ γραφικόσ παρϊςταςησ τησ f ςτο ςημεύο ))(,( ξfξM να εύναι παρϊλληλη τησ ευθεύασ ΑΒ, όπου
Α(α,f(α)) και Β(β,f(β)).
 ΠΑΡΑΣΗΡΗ΢ΕΙ΢
Ψσ άμεςεσ ςυνέπειεσ του Θ.Μ.Σ. προκύπτουν:
1. Έςτω μια ςυνάρτηςη f οριςμένη ςε ένα διάςτημα Δ. Αν η f είναι ςυνεχήσ ςτο Δ και f΄(x)=0 για κάθε εςωτερικό
ςημείο x του Δ, τότε η f είναι ςταθερή ςε όλο το διάςτημα Δ.
2. Έςτω δυο ςυναρτήςεισ f,g οριςμένεσ ςε ένα διάςτημα Δ. Αν οι f,g είναι ςυνεχείσ ςτο Δ και f΄(x)=g΄(x) για κάθε
εςωτερικό ςημείο x του Δ, τότε υπάρχει ςταθερά c τέτοια, ώςτε για κάθε xєΔ, να ιςχύει: f(x)=g(x)+c.
3. Αν η ςυνάρτηςη f είναι παραγωγίςιμη ςτο διάςτημα Δ, τότε ιςχύει η ιςοδυναμία:
f΄(x)= f(x) f(x)= c·ex, c R.
4. Έςτω μια ςυνάρτηςη f, η οποία είναι ςυνεχήσ ςε ένα διάςτημα Δ.
Αν f΄(x)>0 ςε κάθε εςωτερικό ςημείο x του Δ, τότε η f είναι γν. αύξουςα ςε όλο το Δ.
Αν f΄(x)<0 ςε κάθε εςωτερικό ςημείο x του Δ, τότε η f είναι γν. φθίνουςα ςε όλο το Δ.
61. Σι ονομάζεται τοπικό μέγιςτο και τι τοπικό ελάχιςτο τησ f ;
Μια ςυνϊρτηςη f, με πεδύο οριςμού Α, θα λϋμε ότι παρουςιϊζει ςτο Ax0 τοπικό μέγιςτο, όταν
υπϊρχει 0δ , τϋτοιο ώςτε : )()( 0xfxf για κϊθε ),( 00 δxδxAx .
Σο 0x λϋγεται θϋςη ό ςημεύο τοπικού μεγύςτου, ενώ το )( 0xf τοπικό μϋγιςτο τησ f.
Β(β,f(β))
βξ΄ξa x
y
Ο
M(ξ,f(ξ))
A(α,f(α))
y
O xβξ΄ξα
Μ(ξ,f(ξ))
Β(β,f(β))
Α(α,f(α))
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 14 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 15
Μύα ςυνϊρτηςη f, με πεδύο οριςμού Α, θα λϋμε ότι παρουςιϊζει ςτο Ax0 τοπικό ελάχιςτο, όταν
υπϊρχει 0δ , τϋτοιο ώςτε : )()( 0xfxf , για κϊθε ),( 00 δxδxAx .
Σο 0x λϋγεται θϋςη ό ςημεύο τοπικού ελαχύςτου, ενώ το )( 0xf τοπικό ελϊχιςτο τησ f.
 ΢ΦΟΛΙΑ
Ένα τοπικό μϋγιςτο μπορεύ να εύναι μικρότερο από ϋνα τοπικό ελϊχιςτο (΢χ.α).
y
x4x3x2x1
(a)
O x
(β)
y
O
min
max
a β
x
x4x3x2x1
Αν μια ςυνϊρτηςη f παρουςιϊζει μϋγιςτο, τότε αυτό θα εύναι το μεγαλύτερο από τα τοπικϊ μϋγιςτα, ενώ αν
παρουςιϊζει, ελϊχιςτο, τότε αυτό θα εύναι το μικρότερο από τα τοπικϊ ελϊχιςτα. (ςχ.β).
Σο μεγαλύτερο όμωσ από τα τοπικϊ μϋγιςτα μύασ ςυνϊρτηςησ δεν εύναι πϊντοτε μϋγιςτο αυτόσ. Επύςησ το
μικρότερο από τα τοπικϊ ελϊχιςτα μύασ ςυνϊρτηςησ δεν εύναι πϊντοτε ελϊχιςτο τησ ςυνϊρτηςησ (ςχ.α).
62. Να διατυπώςετε το Θεώρημα Fermat.
Έςτω μια ςυνϊρτηςη f οριςμϋνη ς’ ϋνα διϊςτημα Δ και 0x ϋνα εςωτερικό ςημεύο του Δ. Αν η f παρουςιϊζει
τοπικό ακρότατο ςτο 0x και εύναι παραγωγίςιμη ςτο ςημεύο αυτό, τότε: 0)( 0xf .
63. Ποιεσ είναι οι πιθανέσ θέςεισ των τοπικών ακροτάτων μιασ ςυνάρτηςησ f ;
Σα εςωτερικϊ ςημεύα του Δ ςτα οπούα η παρϊγωγοσ τησ f μηδενύζεται.
Σα εςωτερικϊ ςημεύα του Δ ςτα οπούα η f δεν παραγωγύζεται.
Σα ϊκρα του Δ (αν ανόκουν ςτο πεδύο οριςμού τησ).
64. Ποια ονομάζουμε κρίςιμα ςημεία μιασ ςυνάρτηςησ f οριςμένησ ςε ένα διάςτημα Δ;
Σα εςωτερικϊ ςημεύα του Δ ςτα οπούα η f δεν παραγωγύζεται ό η παρϊγωγόσ τησ εύναι ύςη με το μηδϋν,
λϋγονται κρύςιμα ςημεύα τησ f ςτο διϊςτημα Δ.
65. Πωσ ςχετίζεται η f΄ με τα τοπικά ακρότατα; (κριτήριο 1ησ παραγώγου)
Έςτω μια ςυνϊρτηςη f παραγωγύςιμη ς’ ϋνα διϊςτημα ),( βα , με εξαύρεςη ύςωσ ϋνα ςημεύο του 0x , ςτο οπούο
όμωσ η f εύναι ςυνεχήσ.
i. Αν 0)(xf ςτο ),( 0xα και 0)(xf ςτο ),( 0 βx , τότε το )( 0xf εύναι τοπ. μϋγιςτο τησ f.
ii. Αν 0)(xf ςτο ),( 0xα και 0)(xf ςτο ),( 0 βx , τότε το )( 0xf εύναι τοπ. ελϊχιςτο τησ f.
iii. Aν η )(xf διατηρεύ πρόςημο ςτο ),(),( 00 βxxα , τότε το )( 0xf δεν εύναι τοπικό ακρότατο και η f
εύναι γνηςύωσ μονότονη ςτο ),( βα .
66. Πότε μια ςυνάρτηςη ονομάζεται κυρτή ή κοίλη ς’ ένα διάςτημα Δ;
Έςτω μύα ςυνϊρτηςη f ςυνεχόσ ς’ ϋνα διϊςτημα Δ και παραγωγύςιμη ςτο εςωτερικό του Δ. Θα λϋμε ότι:
Η ςυνϊρτηςη f ςτρϋφει τα κοίλα προσ τα άνω ό εύναι κυρτή ςτο Δ, αν η f εύναι γνηςύωσ αύξουςα ςτο
εςωτερικό του Δ.
Η ςυνϊρτηςη f ςτρϋφει τα κοίλα προσ τα κάτω ό εύναι κοίλη ςτο Δ, αν η f εύναι γνηςύωσ φθύνουςα ςτο
εςωτερικό του Δ.
 ΠΑΡΑΣΗΡΗ΢Η
Αν μια ςυνάρτηςη f είναι κυρτή (κοίλη) ςε ένα διάςτημα Δ, τότε η γραφική τησ παράςταςη βρίςκεται πάνω (κάτω)
από την εφαπτομένη ςε κάθε ςημείο xєΔ, με εξαίρεςη το ςημείο επαφήσ.
Ωσ άμεςη ςυνέπεια προκύπτουν οι βαςικέσ ανιςώςεισ: lnx ≤ x-1, x>0 και ex ≥ x+1, xєR .
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 15 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 16
67. Πωσ εξηγείτε γεωμετρικά η έννοια τησ κυρτότητασ ςυνάρτηςησ ςε διάςτημα Δ.
Εποπτικϊ, μύα ςυνϊρτηςη f εύναι κυρτό (αντιςτούχωσ κούλη) ςε
ϋνα διϊςτημα Δ, όταν ϋνα κινητό, που κινεύται πϊνω ςτη fC , για
να διαγρϊψει το τόξο που αντιςτοιχεύ ςτο διϊςτημα Δ πρϋπει να
ςτραφεύ κατϊ τη θετικό (αντιςτούχωσ αρνητικό) φορϊ.
68. Πωσ ςχετίζεται η δεύτερη παράγωγοσ με την κυρτότητα ;
΄Εςτω μια ςυνϊρτηςη f ςυνεχόσ ς’ ϋνα διϊςτημα Δ και δυο φορϋσ παραγωγύςιμη ςτο εςωτερικό του Δ.
Αν 0)(xf για κϊθε εςωτερικό ςημεύο x του Δ, τότε η f εύναι κυρτό ςτο Δ.
Αν 0)(xf για κϊθε εςωτερικό ςημεύο x του Δ, τότε η f εύναι κούλη ςτο Δ.
69. Σι ονομάζεται ςημείο καμπήσ τησ γραφικήσ παράςταςησ μιασ ςυνάρτηςησ ;
Έςτω μια ςυνϊρτηςη f παραγωγύςιμη ς’ ϋνα διϊςτημα ),( βα , με εξαύρεςη ύςωσ ϋνα ςημεύο του 0x . Αν η f
εύναι κυρτό ςτο ),( 0xα και κούλη ςτο ),( 0 βx , ό αντιςτρόφωσ, και η fC ϋχει εφαπτομϋνη ςτο ςημεύο
))(,( 00 xfxA , τότε το ςημεύο ))(,( 00 xfxA ονομϊζεται ςημείο καμπήσ τησ γραφικόσ παρϊςταςησ τησ f.
70. Πωσ ςχετίζεται η f΄΄ με το ςημείο καμπήσ ;
Αν το ))(,( 00 xfxA εύναι ςημεύο καμπόσ τησ γραφικόσ παρϊςταςησ τησ f και η f εύναι δυο φορϋσ
παραγωγύςιμη, τότε 0)( 0xf .
Έςτω μια ςυνϊρτηςη f οριςμϋνη ς’ ϋνα διϊςτημα ),( βα και ),(0 βαx . Αν η f αλλϊζει πρόςημο
εκατϋρωθεν του 0x και ορύζεται εφαπτομϋνη τησ fC ςτο ))(,( 00 xfxA , τότε το ))(,( 00 xfxA εύναι ςημεύο
καμπόσ.
71. Σι ονομάζεται κατακόρυφη αςύμπτωτη τησ γραφικήσ παράςταςησ τησ f ;
Αν ϋνα τουλϊχιςτον από τα όρια )(lim
0
xf
xx
, )(lim
0
xf
xx
εύναι ό , τότε η ευθεύα 0xx λϋγεται
κατακόρυφη αςύμπτωτη τησ γραφικόσ παρϊςταςησ τησ f.
72. Σι ονομάζεται οριζόντια αςύμπτωτη τησ γραφικήσ παράςταςησ τησ f ;
Αν )(lim xf
x
(αντιςτούχωσ ))(lim xf
x
, τότε η ευθεύα y λϋγεται οριζόντια αςύμπτωτη τησ
γραφικόσ παρϊςταςησ τησ f ςτο (αντιςτούχωσ ςτο ).
73. Σι ονομάζεται πλάγια αςύμπτωτη τησ γραφικήσ παράςταςησ τησ f ;
Η ευθεύα βxλy λϋγεται αςύμπτωτη τησ γραφικόσ παρϊςταςησ τησ f ςτο , αν
0)]()([lim βxλxf
x
και ςτο αν 0)]()([lim βxλxf
x
.
74. Πωσ υπολογίζουμε τα λ και β ώςτε η ευθεία y = λx +β να είναι αςύμπτωτη τησ γραφικήσ
παράςταςησ τησ f ςτο , αντιςτοίχωσ ςτο .
Η ευθεύα βxλy εύναι αςύμπτωτη τησ γραφικόσ παρϊςταςησ τησ f ςτο , αν και μόνο αν:
x +
f(x)
lim = λ
x
και
x +
lim[f(x)- λx-= β , ό αντιςτούχωσ ςτο , αν και μόνο αν:
x
f(x)
lim = λ
x
και
x
lim[f(x)- λx-=β .
 ΢ΦΟΛΙΑ
Αποδεικνύεται ότι:
i) Οι πολυωνυμικϋσ ςυναρτόςεισ βαθμού μεγαλύτερου ό ύςου του 2 δεν ϋχουν αςύμπτωτεσ.
ii) Οι ρητϋσ ςυναρτόςεισ
)(
)(
xQ
xP
, με βαθμό του αριθμητό )(xP μεγαλύτερο τουλϊχιςτον κατϊ δύο του βαθμού
του παρονομαςτό, δεν ϋχουν πλϊγιεσ αςύμπτωτεσ.
΢ύμφωνα με τουσ παραπάνω οριςμούσ, αςύμπτωτεσ τησ Cf μιασ ςυνάρτηςησ f αναζητούμε:
i) ΢τα ϊκρα των διαςτημϊτων του πεδύου οριςμού τησ ςτα οπούα η f δεν ορύζεται.
ii) ΢τα ςημεύα του πεδύου οριςμού τησ, ςτα οπούα η f δεν εύναι ςυνεχόσ.
iii) ΢τα , , εφόςον η ςυνϊρτηςη εύναι οριςμϋνη ςε διϊςτημα τησ μορφόσ ),(α ό αντιςτούχωσ ),( α .
+
y
O x
Cf
+
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 16 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 17
75. Ποιοι είναι οι κανόνεσ De l΄ Hospital ;
ΘΕΨΡΗΜΑ 1ο (μορφή
0
0
) Αν 0)(lim
0
xf
xx
, 0)(lim
0
xg
xx
, 0 R { , }x και υπϊρχει
το
)(
)(
lim
0 xg
xf
xx
(πεπεραςμϋνο ό ϊπειρο), τότε:
)(
)(
lim
)(
)(
lim
00 xg
xf
xg
xf
xxxx
.
ΘΕΨΡΗΜΑ 2ο (μορφή ) Αν
0x x
lim f(x) ό και )(lim
0
xg
xx
ό , 0 R { , }x και
υπϊρχει το
)(
)(
lim
0 xg
xf
xx
(πεπεραςμϋνο ό ϊπειρο), τότε:
)(
)(
lim
)(
)(
lim
00 xg
xf
xg
xf
xxxx
.
 ΢ΦΟΛΙΟ
Σα παραπϊνω θεωρόματα ιςχύουν και για πλευρικϊ όρια και μπορούμε, αν χρειϊζεται, να τα εφαρμόςουμε
περιςςότερεσ φορϋσ, αρκεύ να πληρούνται οι προώποθϋςεισ τουσ.
ΟΛΟΚΛΗΡΨΣΙΚΟ΢ ΛΟΓΙ΢ΜΟ΢
76. Σι ονομάζεται Αρχική ςυνάρτηςη ή παράγουςα τησ f ςτο Δ ;
Έςτω f μια ςυνϊρτηςη οριςμϋνη ςε ϋνα διϊςτημα Δ. Αρχική ςυνάρτηςη ό παράγουςα τησ f ςτο Δ
ονομϊζεται κϊθε ςυνϊρτηςη F που εύναι παραγωγύςιμη ςτο Δ και ιςχύει:
)()( xfxF , για κϊθε Γx .
77. ΠΙΝΑΚΑ΢ ΚΤΡΙΟΣΕΡΨΝ ΠΑΡΑΓΟΤ΢ΨΝ (βαςικών & ςύνθετων ςυν/ςεων)
ςυνάρτηςη f παράγουςα F
ςύνθετη
ςυνάρτηςη
παράγουςα
0 c f΄(x) f(x)+c
1 x+c f(x) f΄(x)
1
2
f2(x)+c
xα
α+1
x
α +1
+c fα(x) f΄(x)
1
α +1
fα+1(x)+c
1
x
2 x +c
f (x)
f(x)
2 f(x) +c
ημx -ςυνx+c ημf(x) f΄(x) -ςυνf(x)+c
ςυνx ημx+c ςυνf(x) f΄(x) ημf(x)+c
2
1
ςυν x
εφx+c 2
1
f (x)
ςυν f(x)
εφf(x)+c
2
1
ημ x
-ςφx+c 2
1
f (x)
ημ f(x)
-ςφf(x)+c
ex ex +c ef(x) f΄(x) ef(x) +c
1
x
ln|x|+c
f (x)
f(x)
ln|f(x)|+c
αx
x
α
lnα
+c αf(x) f΄(x)
f(x)
α
lnα
+c
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 17 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 18
78. Σι ονομάζεται εμβαδόν του επίπεδου χωρίου Ψ.
Έςτω f μια ςυνεχόσ ςυνϊρτηςη ςε διϊςτημα ],[ βα , με 0)(xf για κϊθε ],[ βαx και Ω το χωρύο που ορύζεται
από τη γραφικό παρϊςταςη τησ f, τον ϊξονα των x και τισ ευθεύεσ x , x .
Για να ορύςουμε το εμβαδόν του χωρύου Ω εργαζόμαςτε ωσ
εξόσ:
Φωρύζουμε το διϊςτημα ],[ βα ςε ν ιςομόκη υποδιαςτόματα,
μόκουσ
ν
αβ
xΓ , με τα ςημεύα βxxxxα ν...210 .
΢ε κϊθε υποδιϊςτημα ],[ 1 κκ xx επιλϋγουμε αυθαύρετα ϋνα
ςημεύο κξ και ςχηματύζουμε τα ορθογώνια που ϋχουν βϊςη
xΓ και ύψη τα )( κξf . Σο ϊθροιςμα των εμβαδών των
ορθογωνύων αυτών εύναι:
xΓξfξfxΓξfxΓξfxΓξfS ννν )]()([)()()( 121  .
Yπολογύζουμε το ν
ν
Slim .
Αποδεικνύεται ότι το ν
ν
Slim υπϊρχει ςτο ℝ και εύναι ανεξϊρτητο από την επιλογό των ςημεύων κξ . Σο όριο αυτό
ονομϊζεται εμβαδόν του επιπϋδου χωρύου Ω και ςυμβολύζεται με )(ΩΕ . Εύναι φανερό ότι 0)(ΩΔ .
79. Σι ονομάζεται οριςμένο ολοκλήρωμα τησ ςυνεχούσ ςυνάρτηςησ f από το α ςτο β.
Έςτω μια ςυνϊρτηςη f ς υ ν ε χ ή σ ςτο ],[ βα . Με τα
ςημεύα βxxxxα ν...210 χωρύζουμε το
διϊςτημα ],[ βα ςε ν ιςομόκη υποδιαςτόματα μόκουσ
x .
΢τη ςυνϋχεια επιλϋγουμε αυθαύρετα ϋνα ],[ 1 κκκ xxξ ,
για κϊθε }...,,2,1{ νκ , και ςχηματύζουμε το ϊθροιςμα:
xΓξfxΓξfxΓξfxΓξfS νκν )()()()( 21  , που
ςυμβολύζεται:
ν
κ
κν xΓξfS
1
)( . (ϊθροιςμα RIEMANN).
Aποδεικνύεται ότι:
“Σο όριο του αθροίςματοσ νS , δηλαδή το
ν
κ
κ
ν
Δxξf
1
)(lim υπάρχει ςτο ℝ και είναι ανεξάρτητο από
την επιλογή των ενδιάμεςων ςημείων κξ ”. Σο παραπάνω όριο ονομάζεται οριςμένο ολοκλήρωμα τησ
ςυνεχούσ ςυνάρτηςησ f από το α ςτο β, ςυμβολίζεται με
β
α
dxxf )( και διαβάζεται “ολοκλήρωμα τησ f
από το α ςτο β”. Δηλαδή,
1
f(x)dx lim f( ) x .
Οι αριθμού α και β ονομϊζονται όρια τησ ολοκλόρωςησ.
Εύναι, επύςησ, χρόςιμο να επεκτεύνουμε τον παραπϊνω οριςμό και για τισ περιπτώςεισ που εύναι
βα ό βα , ωσ εξόσ:
β
α
α
β
dxxfdxxf )()( και
α
α
dxxf 0)( .
 ΢ΦΟΛΙΟ
Ιςχύει
β
α
cdx = c(β-α)
Αν 0c , τότε το
β
α
cdx εκφρϊζει το εμβαδόν
ενόσ ορθογωνύου με βϊςη αβ και ύψοσ c.
Δx
β a
v
xν-1x2 ...x1 xν=βα=x0 ξνξk
Ω
ξ2ξ1O
x
y=f(x)
y
f(ξ1) f(ξ2)
f(ξk)
f(ξν)
xk ...xk-1
xv-1 ξv
y=f(x)
ξk
ξ2ξ1
x
x2x1 xv=βa=x0O
y
10
βαO x
y=c
y
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 18 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 19
80. Ποιεσ είναι οι ιδιότητεσ του οριςμένου ολοκληρώματοσ ;
Έςτω gf , ςυνεχεύσ ςυναρτόςεισ ςτο ],[ βα και μλ, R. Σότε ιςχύουν:
1.
β
α
β
α
dxxfλdxxfλ )()(
2.
β
α
β
α
β
α
dxxgdxxfdxxgxf )()()]()([
και γενικϊ ιςχύει:
β
α
β
α
β
α
dxxgμdxxfλdxxgμxfλ )()()]()([ .
3. Αν η f εύναι ςυνεχόσ ςε διϊςτημα Δ και , , , τότε ιςχύει :
β
γ
γ
α
β
α
dxxfdxxfdxxf )()()(
 ΢ΗΜΕΙΨ΢Η
Αν 0)(xf και βγα , η παραπϊνω ιδιότητα δηλώνει ότι:
)()()( 21 ΩΔΩΔΩΔ
αφού
γ
α
dxxfΩΔ )()( 1 ,
β
γ
dxxfΩΔ )()( 2 και
β
α
dxxfΩΔ )()( .
4. Έςτω f μια ςυνεχήσ ςυνάρτηςη ςε ένα διάςτημα ],[ βα . Αν 0)(xf για κάθε ],[ βαx και η
ςυνάρτηςη f δεν είναι παντού μηδέν ςτο ],[ βα , τότε
β
α
dxxf 0)( .
 ΢ΗΜΕΙΨ΢Η
Αν η ςυνάρτηςη f είναι ςυνεχήσ και ιςχύει 0)(xf για κάθε ],[ βαx , τότε f(x)dx 0 .
΢υνεπώσ ιςχύουν:
α. Αν οι ςυναρτόςεισ f, g εύναι ςυνεχεύσ, ώςτε f (x) g(x) για κϊθε ],[ βαx , τότε f(x)dx g(x)dx .
β. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ, ώςτε 0)(xf για κϊθε ],[ βαx και f(x)dx 0, τότε f(x) 0 για κϊθε
],[ βαx .
81. Να διατυπώςετε το θεώρημα, το οποίο μασ εξαςφαλίζει την ύπαρξη παράγουςασ μιασ ςυνεχούσ
ςυνάρτηςησ f ςε ένα διάςτημα Δ.
Αν f εύναι μια ςυνεχόσ ςυνϊρτηςη ςε ϋνα διϊςτημα Δ και α εύναι ϋνα ςημεύο του Δ, τότε η ςυνϊρτηςη
x
α
dttfxF )()( , Γx , εύναι μια παρϊγουςα τησ f ςτο Δ. Δηλαδό ιςχύει: )()( xfdttf
x
a
, για κϊθε Γx .
 ΢ΦΟΛΙΟ
Εποπτικϊ, το ςυμπϋραςμα του παραπϊνω θεωρόματοσ
προκύπτει ωσ εξόσ:
hx
x
dttfxFhxF )()()( =Ε(Ω) hxf )( .
Άρα, για μικρϊ 0h εύναι )(
)()(
xf
h
xFhxF
,
οπότε )(
)()(
lim)(
0
xf
h
xFhxF
xF
h
βγα
Ω2Ω1
O x
y=f (x)
y
βxαO
x
F(x)
f(x)
y=f(x)
y
x+h
f(x+h)
Ω
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 19 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 20
82. Ποιοσ είναι ο τύποσ τησ ολοκλήρωςησ κατά παράγοντεσ ςτα οριςμένα ολοκληρώματα;
β
α
β
α
β
α dxxgxfxgxfdxxgxf )()()]()([)()( όπου gf , εύναι ςυνεχεύσ ςυναρτόςεισ ςτο ],[ βα .
83. Ποιοσ είναι ο τύποσ τησ ολοκλήρωςησ με αντικατάςταςη ςτα οριςμένα ολοκληρώματα;
Ιςχύει :
β
α
u
u
duufdxxgxgf
2
1
)()())(( , όπου gf , εύναι ςυνεχεύσ ςυναρτόςεισ, )(xgu , dxxgdu )( και
)(1 αgu , )(2 βgu .
84. Πωσ ορίζεται το εμβαδόν Ε(Ψ) ενόσ χωρίου που περικλείεται από τη γραφική παραςτάςη τησ f ,
τον άξονα xx΄ και τισ ευθείεσ x=α και x= β ;
Ιςχύει :
β
α
E(Ω)= | f(x)| dx .
΢ύνεπώσ το
β
α
dxxf )( εύναι ύςο με το ϊθροιςμα των εμβαδών
των χωρύων που βρύςκονται πϊνω από τον ϊξονα xx μεύον
το ϊθροιςμα των εμβαδών των χωρύων που βρύςκονται κϊτω
από τον ϊξονα xx .
85. Πωσ ορίζεται το εμβαδόν Ε(Ψ) ενόσ χωρίου που περικλείεται από τισ ευθείεσ x=α, x= β και τισ
γραφικέσ παραςτάςεισ των f και g ;
Ιςχύει :
β
α
dxxgxfΩE |)()(|)( .
x
++ β
a
y
Ο
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 20 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 21
 ΘΕΨΡΗΜΑΣΑ με ΑΠΟΔΕΙΞΕΙ΢
ΟΡΙΟ-΢ΤΝΕΦΕΙΑ ΢ΤΝΑΡΣΗ΢Η΢
1. Για το πολυώνυμο P(x) να δείξετε ότι :
x x
0
0
limP(x) = P(x )
Απόδειξη
Έςτω το πολυώνυμο 01
1
1)( αxαxαxαxP ν
ν
ν
ν  και 0x R .
΢ύμφωνα με τισ ιδιότητεσ των ορύων ϋχουμε:
)(lim)(lim 0
1
1
00
αxαxαxP ν
ν
ν
ν
xxxx
 0
0
1
1
00
lim)(lim)(lim αxαxα
xx
ν
ν
xx
ν
ν
xx
 =
0
0
1
0
1
0
limlimlim αxαxα
xx
ν
xx
ν
ν
xx
ν  )( 00
1
010 xPαxαxα ν
ν
ν
ν  .
2. Δείξετε ότι :
0
x x
0
0
P(x )P(x)
lim =
Q(x) Q(x )
, εφόςον 0
Q(x ) 0
Απόδειξη
Έςτω η ρητό ςυνϊρτηςη
P(x)
f(x) =
Q(x)
, όπου )(xP , )(xQ πολυώνυμα του x και 0x R με 0)( 0xQ .
Σότε,
)(
)(
)(lim
)(lim
)(
)(
lim)(lim
0
0
0
0
00 xQ
xP
xQ
xP
xQ
xP
xf
xx
xx
xxxx
.
3. Έςτω μια ςυνάρτηςη f, η οποία είναι οριςμένη ςε ένα κλειςτό διάςτημα [α,β- . Αν η f είναι ςυνεχήσ
ςτο [α,β- και f(α) f(β)≠ , να δείξετε ότι, για κάθε αριθμό η μεταξύ των f(α) και f(β) υπάρχει ένασ,
τουλάχιςτον 0
x (α,β) , ώςτε 0
f(x ) = η. (Θεώρημα ενδιάμεςων τιμών)
Απόδειξη
Ασ υποθϋςουμε ότι )()( βfαf . Σότε θα ιςχύει )()( βfηαf .
Αν θεωρόςουμε τη ςυνϊρτηςη ηxfxg )()( , ],[ βαx ,
παρατηρούμε ότι:
η g εύναι ςυνεχόσ ςτο ],[ βα και
0)()( βgαg , αφού 0)()( ηαfαg και 0)()( ηβfβg .
Επομϋνωσ, ςύμφωνα με το θεώρημα του Bolzano, υπϊρχει
),(0 βαx τϋτοιο, ώςτε 0)()( 00 ηxfxg , οπότε ηxf )( 0 .
x0x0 x0
y
B(β,f(β))
f(a)
f(β)
O β
y=η
η
a x
Α(α,f(α))
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 21 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 22
ΔΙΑΥΟΡΙΚΟ΢ ΛΟΓΙ΢ΜΟ΢
4. Αν η ςυνάρτηςη f είναι παραγωγίςιμη ςε ςημείο 0
x , τότε είναι και ςυνεχήσ ς΄αυτό.
Απόδειξη
Για 0xx ϋχουμε: )(
)()(
)()( 0
0
0
0 xx
xx
xfxf
xfxf .
Οπότε )(
)()(
lim)]()([lim 0
0
0
0
0
0
xx
xx
xfxf
xfxf
xxxx
)(lim
)()(
lim 0
00
0
0
xx
xx
xfxf
xxxx
00)( 0xf ,
αφού η f εύναι παραγωγύςιμη ςτο 0x . Αρα , )()(lim 0
0
xfxf
xx
, δηλαδό η f εύναι ςυνεχόσ ςτο 0x .
 ΢ΦΟΛΙΟ
Αν μια ςυνάρτηςη f δεν είναι ςυνεχήσ ς’ ένα ςημείο 0x , τότε, ςύμφωνα με το προηγούμενο θεώρημα, δεν
μπορεί να είναι παραγωγίςιμη ςτο 0x .
 ΢ΦΟΛΙΟ
Σα όρια 1
ημ
lim
0 x
x
x
και 0
1συν
lim
0 x
x
x
, εύναι οι παρϊγωγοι ςτο 00x των ςυναρτόςεων xxf ημ)( και
xxg συν)( αντιςτούχωσ, αφού: )0(
0
0ημημ
lim
ημ
lim
00
f
x
x
x
x
xx
=1
και )0(
0
0συνσυν
lim
1συν
lim
00
g
x
x
x
x
xx
=0.
5. ΄Εςτω η ςταθερή ςυνάρτηςη f(x) = c , c . Δείξετε ότι η ςυνάρτηςη f είναι
παραγωγίςιμη ςτο R και ιςχύει f (x) = 0 , δηλαδή (c)΄= 0 .
Απόδειξη
Αν 0x εύναι ϋνα ςημεύο του R, τότε για 0xx ιςχύει: 0
)()(
00
0
xx
cc
xx
xfxf
.
Επομϋνωσ, 0
)()(
lim
0
0
0 xx
xfxf
xx
, δηλαδό 0)(c .
6. Έςτω η ςυνάρτηςη f(x) = x . Δείξετε ότι η ςυνάρτηςη f είναι παραγωγίςιμη ςτο
R και ιςχύει f (x) = 1 , δηλαδή (x)΄=1 .
Απόδειξη
Αν 0x εύναι ϋνα ςημεύο του R, τότε για 0xx ιςχύει: 1
)()(
0
0
0
0
xx
xx
xx
xfxf
.
Επομϋνωσ, 11lim
)()(
lim
00
0
0 xxxx xx
xfxf
, δηλαδό 1)(x .
7. Έςτω η ςυνάρτηςη ν
f(x) = x , ν - *0, 1+ . Δείξετε ότι η ςυνάρτηςη f είναι
παραγωγίςιμη ςτο R και ιςχύει
ν-1
f (x)= νx , δηλαδή
ν ν-1
(x ) = νx .
Απόδειξη
Αν 0x εύναι ϋνα ςημεύο του R, τότε για 0xx ιςχύει:
1
00
21
0
1
00
21
0
0
0
0
0 ))(()()( ννν
ννννν
xxxx
xx
xxxxxx
xx
xx
xx
xfxf


, οπότε:
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 22 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 23
1
0
1
0
1
0
1
0
1
00
21
00
0
0
)(lim
)()(
lim ννννννν
xxxx
xνxxxxxxx
xx
xfxf
 , δηλαδό 1
)( νν
xνx .
8. Έςτω f(x) = x . Δείξετε ότι για κάθε x (0,+ ) ιςχύει
1
f (x) =
2 x
.
Απόδειξη
Αν 0x εύναι ϋνα ςημεύο του ),0( , τότε για 0xx ιςχύει:
000
0
00
00
0
0
0
0 1
)()(
)()(
xxxxxx
xx
xxxx
xxxx
xx
xx
xx
xfxf
,
Οπότε:
00
00
0
0 2
11
lim
)()(
lim
xxxxx
xfxf
xxxx
, δηλαδό
x
x
2
1
.
9. Αν οι ςυναρτήςεισ f, g είναι παραγωγίςιμεσ ςτο 0
x , τότε η ςυνάρτηςη f + g είναι παραγωγίςιμη
ςτο 0
x και ιςχύει: 0 0 0
(f + g) (x ) = f (x )+ g (x ) .
Απόδειξη
Για 0xx ,ιςχύει:
0
0
0
0
0
00
0
0 )()()()()()()()())(())((
xx
xgxg
xx
xfxf
xx
xgxfxgxf
xx
xgfxgf
.
Επειδό οι ςυναρτόςεισ gf , εύναι παραγωγύςιμεσ ςτο 0x , ϋχουμε:
),()(
)()(
lim
)()(
lim
))(())((
lim 00
0
0
00
0
00
0
0
xgxf
xx
xgxg
xx
xfxf
xx
xgfxgf
xxxxxx
Δηλαδό : )()()()( 000 xgxfxgf .
10. Έςτω η ςυνάρτηςη -ν
f(x) = x , *
ν . Η ςυνάρτηςη f είναι παραγωγίςιμη ςτο R* και ιςχύει
-ν-1
f (x) = -νx , δηλαδή -ν -ν-1
(x ) = -νx .
Απόδειξη
Για κϊθε *
x R ϋχουμε:
1
2
1
2
)(
)(1)1(1
)( ν
ν
ν
ν
νν
ν
ν
xν
x
xν
x
xx
x
x .
Γνωρύζουμε, όμωσ, ότι : 1
)( νν
xνx , για κϊθε φυςικό 1ν .
Επομϋνωσ, αν {0, 1}Z , τότε : 1
)( κκ
κxx .
11. Έςτω η ςυνάρτηςη f(x) = εφx . Η ςυνάρτηςη f είναι παραγωγίςιμη ςτο D = -{x | ςυνx = 0+f
και ιςχύει
2
1
f (x)=
ςυν x
, δηλαδή: 2
1
(εφx) =
ςυν x
.
Απόδειξη
x
xxxx
x
xxxx
x
x
x 22
συν
ημημσυνσυν
συν
)συν(ημσυν)ημ(
συν
ημ
)ευ(
xx
xx
22
22
συν
1
συν
ημσυν
.
12. Η ςυνάρτηςη
α
f(x)= x , α είναι παραγωγίςιμη ςτο (0,+ ) και ιςχύει
α-1
f (x)=αx ,
δηλαδή:
α α-1
(x ) =αx .
Απόδειξη
Αν
xαα
exy ln
και θϋςουμε xαu ln , τότε ϋχουμε u
ey .
Επομϋνωσ, 1ln 1
)( ααxαuu
xα
x
α
x
x
αeueey .
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 23 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 24
13. Η ςυνάρτηςη x
f(x)=α , α > 0 είναι παραγωγίςιμη ςτο R και ιςχύει x
f (x)=α lnα , δηλαδή :
x x
(α ) =α lnα
Απόδειξη
Αν
αxx
eαy ln
και θϋςουμε αxu ln , τότε ϋχουμε u
ey .
Επομϋνωσ, αααeueey xαxuu
lnln)( ln
.
14. Η ςυνάρτηςη f(x)= ln| x | ,
*
x είναι παρ/μη ςτο
*
και ιςχύει
1
(ln| x |) =
x
Απόδειξη
Αν 0x , τότε
x
xx
1
)(ln)||(ln , ενώ αν 0x , τότε : )ln(||ln xx ,
οπότε, αν θϋςουμε )ln( xy και xu , ϋχουμε uy ln .
Επομϋνωσ,
xx
u
u
uy
1
)1(
11
)(ln και ϊρα
x
x
1
)||(ln .
15. Έςτω μια ςυνάρτηςη f οριςμένη ςε ένα διάςτημα Δ. Αν η f είναι ςυνεχήσ ςτο Δ
και f (x)= 0 για κάθε εςωτερικό ςημείο x του Δ, τότε η f είναι ςταθερή ςε
όλο το διάςτημα Δ.
Απόδειξη
Αρκεύ να αποδεύξουμε ότι για οποιαδόποτε Γxx 21 , ιςχύει )()( 21 xfxf . Πρϊγματι
Αν 21 xx , τότε προφανώσ )()( 21 xfxf .
Αν 21 xx , τότε ςτο διϊςτημα ],[ 21 xx η f ικανοποιεύ τισ υποθϋςεισ του θεωρόματοσ μϋςησ τιμόσ. Επομϋνωσ,
υπϊρχει ),( 21 xxξ τϋτοιο, ώςτε
12
12 )()(
)(
xx
xfxf
ξf (1)
Επειδό το ξ εύναι εςωτερικό ςημεύο του Δ, ιςχύει 0)(ξf , οπότε , λόγω τησ (1), εύναι )()( 21 xfxf . Αν 12 xx ,
τότε ομούωσ αποδεικνύεται ότι )()( 21 xfxf .
΢ε όλεσ, λοιπόν, τισ περιπτώςεισ εύναι )()( 21 xfxf .
16. Έςτω δυο ςυναρτήςεισ f,g οριςμένεσ ςε ένα διάςτημα Δ. Αν οι f,g είναι ςυνεχείσ ςτο Δ και
f (x)= g (x) για κάθε εςωτερικό ςημείο x του Δ, τότε υπάρχει ςταθερά c τέτοια, ώςτε για κάθε
x Δ να ιςχύει: f(x)= g(x)+c
Απόδειξη
Η ςυνϊρτηςη gf εύναι ςυνεχόσ ςτο Δ και για κϊθε εςωτερικό
ςημεύο Γx ιςχύει : 0)()()()( xgxfxgf .
Επομϋνωσ, ςύμφωνα με το προηγούμενο θεώρημα, η ςυνϊρτηςη
gf εύναι ςταθερό ςτο Δ.
Άρα, υπϊρχει ςταθερϊ c τϋτοια, ώςτε για κϊθε Γx να ιςχύει
cxgxf )()( , οπότε cxgxf )()( .
 ΢ΦΟΛΙΟ
Σο παραπϊνω θεώρημα (15), καθώσ και το πόριςμϊ του (16) ιςχύουν μόνο ςε διϊςτημα και όχι ςε ϋνωςη
διαςτημϊτων.
Για παρϊδειγμα, ϋςτω η ςυνϊρτηςη:
0,1
0,1
)(
x
x
xf . Παρατηρούμε ότι, αν και 0)(xf για κϊθε
),0()0,(x , εντούτοισ η f δεν εύναι ςταθερό ςτο ),0()0,( .
y
O x
y=g(x)+c
y=g(x)
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 24 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 25
17. Έςτω μια ςυνάρτηςη f, η οποία είναι ςυνεχήσ ςε ένα διάςτημα Δ.
Αν f (x)> 0 ςε κάθε εςωτερικό ςημείο x του Δ, τότε η f είναι γν. αύξουςα ςε όλο το Δ.
Αν f (x)< 0 ςε κάθε εςωτερικό ςημείο x του Δ, τότε η f είναι γν. φθίνουςα ςε όλο το Δ.
Απόδειξη
Αποδεικνύουμε το θεώρημα ςτην περύπτωςη που εύναι 0)(xf .
Έςτω Γxx 21 , με 21 xx . Θα δεύξουμε ότι )()( 21 xfxf .
Πρϊγματι, ςτο διϊςτημα ],[ 21 xx η f ικανοποιεύ τισ προώποθϋςεισ του Θ.Μ.Σ. Επομϋνωσ, υπϊρχει ),( 21 xxξ
τϋτοιο, ώςτε
12
12 )()(
)(
xx
xfxf
ξf , οπότε ϋχουμε ))(()()( 1212 xxξfxfxf .
Επειδό 0)(ξf και 012 xx , ϋχουμε 0)()( 12 xfxf , οπότε )()( 21 xfxf .
΢την περύπτωςη που εύναι 0)(xf εργαζόμαςτε αναλόγωσ.
 ΢ΦΟΛΙΟ
Σο αντύςτροφο του παραπϊνω θεωρόματοσ δεν ιςχύει. Δηλαδό, αν η f εύναι
γνηςύωσ αύξουςα (αντιςτούχωσ γνηςύωσ φθύνουςα) ςτο Δ, η παρϊγωγόσ τησ δεν
είναι υποχρεωτικά θετικό (αντιςτούχωσ αρνητικό) ςτο εςωτερικό του Δ.
Παρϊδειγμα: η ςυνϊρτηςη 3
)( xxf , αν και εύναι γνηςύωσ αύξουςα
ςτο R, ϋχει παρϊγωγο 2
3)( xxf η οπούα δεν εύναι θετικό ςε όλο το R, αφού
0)0(f . Ιςχύει όμωσ 0)(xf για κϊθε x ℝ.
18. (Θεώρημα Fermat) Έςτω μια ςυνάρτηςη f οριςμένη ς’ ένα διάςτημα Δ και 0x εςωτερικό
ςημείο του Δ. Αν η f παρουςιάζει τοπικό ακρότατο ςτο 0x και είναι παραγωγίςιμη ς΄αυτό, τότε:
0f (x )= 0
Απόδειξη
Ασ υποθϋςουμε ότι η f παρουςιϊζει ςτο 0x τοπικό μϋγιςτο. Επειδό
το 0x εύναι εςωτερικό ςημεύο του Δ και η f παρουςιϊζει ς’ αυτό
τοπικό μϋγιςτο, υπϊρχει 0δ τϋτοιο, ώςτε Γδxδx ),( 00 και
)()( 0xfxf , για κϊθε ),( 00 δxδxx . (1)
Επειδό, επιπλϋον, η f εύναι παραγωγύςιμη ςτο 0x , ιςχύει:
0
0
00
0
0
0
)()(
lim
)()(
lim)(
xx
xfxf
xx
xfxf
xf
xxxx
. Επομϋνωσ:
αν ),( 00 xδxx , τότε, λόγω τησ (1), θα εύναι 0
)()(
0
0
xx
xfxf
, οπότε: 0
)()(
lim)(
0
0
0
0
xx
xfxf
xf
xx
. (2)
αν ),( 00 δxxx , τότε, λόγω τησ (1), θα εύναι 0
)()(
0
0
xx
xfxf
, οπότε: 0
)()(
lim)(
0
0
0
0
xx
xfxf
xf
xx
. (3)
Έτςι , από τισ (2) και (3) ϋχουμε 0)( 0xf .
Η απόδειξη για τοπικό ελϊχιςτο εύναι ανϊλογη.
19. Έςτω μια ςυνάρτηςη f παραγωγίςιμη ς’ ένα διάςτημα (α, β) , με εξαίρεςη ίςωσ ένα ςημείο του 0
x
, ςτο οποίο όμωσ η f είναι ςυνεχήσ.
i) Αν f (x)> 0 ςτο 0(α,x ) και f (x)< 0 ςτο 0(x ,β) , τότε το 0f(x ) είναι τοπικό μέγιςτο τησ f. (΢χ.α)
ii) Αν f (x)< 0 ςτο 0(α,x ) και f (x)> 0 ςτο 0(x ,β) , τότε το 0f(x ) είναι τοπικό ελάχιςτο τησ f.
iii) Aν η f (x) διατηρεί πρόςημο ςτο 0 0(α,x )U(x ,β) , τότε το 0f(x ) δεν είναι τοπικό ακρότατο και η f
είναι γνηςίωσ μονότονη ςτο (α, β) . (΢χ.β).
Απόδειξη
y
O
f(x0)
x0 δ x0+δx0 x
x
y=x3
y
Ο
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 25 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 26
i) Eπειδό 0)(xf για κϊθε ),( 0xαx και η f εύναι ςυνεχόσ ςτο 0x , η f εύναι γνηςύωσ αύξουςα ςτο ],( 0xα .
Έτςι ϋχουμε: )()( 0xfxf , για κϊθε ],( 0xαx . (1)
Επειδό 0)(xf για κϊθε ),( 0 βxx και η f εύναι ςυνεχόσ ςτο 0x , η f εύναι γνηςύωσ φθύνουςα ςτο ),[ 0 βx .
Έτςι ϋχουμε: )()( 0xfxf , για κϊθε ),[ 0 βxx . (2)
y
O
f(x0)
f΄<0
f΄>0
βa x0 x
y
O
f΄<0f΄>0
βa x0 x
α
f(x0)
Επομϋνωσ, λόγω των (1) και (2), ιςχύει: )()( 0xfxf , για κϊθε ),( βαx ,
που ςημαύνει ότι το )( 0xf εύναι μϋγιςτο τησ f ςτο ),( βα και ϊρα τοπικό μϋγιςτο αυτόσ.
ii) Εργαζόμαςτε αναλόγωσ.
iii) Έςτω ότι: 0)(xf , για κϊθε ),(),( 00 βxxαx . Επειδό η f εύναι ςυνεχόσ ςτο 0x θα εύναι γνηςύωσ
αύξουςα ςε κϊθε ϋνα από τα διαςτόματα ],( 0xα και ),[ 0 βx . Επομϋνωσ, για 201 xxx ιςχύει
)()()( 201 xfxfxf . Άρα το )( 0xf δεν εύναι τοπικό ακρότατο τησ f.
y
O
f΄>0
f΄>0
βa x0 x
y
O
f΄>0
f΄>0
βa x0 x
β
Θα δεύξουμε, τώρα, ότι η f εύναι γνηςύωσ αύξουςα ςτο ),( βα .
Πρϊγματι, ϋςτω ),(, 21 βαxx με 21 xx .
— Αν ],(, 021 xαxx , επειδό η f εύναι γνηςύωσ αύξουςα ςτο ],( 0xα , θα ιςχύει )()( 21 xfxf .
— Αν ),[, 021 βxxx , επειδό η f εύναι γνηςύωσ αύξουςα ςτο ),[ 0 βx , θα ιςχύει )()( 21 xfxf .
— Σϋλοσ, αν 201 xxx , τότε όπωσ εύδαμε )()()( 201 xfxfxf .
Επομϋνωσ, ςε κϊθε περύπτωςη ιςχύει )()( 21 xfxf , οπότε η f εύναι γνηςύωσ αύξουςα ςτο ),( βα .
Ομούωσ, αν 0)(xf για κϊθε ),(),( 00 βxxαx .
ΟΛΟΚΛΗΡΨΣΙΚΟ΢ ΛΟΓΙ΢ΜΟ΢
20. Έςτω f μια ςυνάρτηςη οριςμένη ςε ένα διάςτημα Δ. Αν F είναι μια παράγουςα τησ f ςτο Δ, τότε:
α) όλεσ οι ςυναρτήςεισ τησ μορφήσ G(x)= F(x)+c , c R, είναι παράγουςεσ τησ f ςτο Δ
β) κάθε άλλη παράγουςα G τησ f ςτο Δ παίρνει τη μορφή G(x)= F(x)+c , c R .
Απόδειξη
α) Κϊθε ςυνϊρτηςη τησ μορφόσ cxFxG )()( , όπου c R, εύναι μια παρϊγουςα τησ f ςτο Δ,
αφού )()())(()( xfxFcxFxG , για κϊθε Γx .
β) Έςτω G εύναι μια ϊλλη παρϊγουςα τησ f ςτο Δ.
Σότε για κϊθε Γx ιςχύουν )()( xfxF και )()( xfxG , οπότε )()( xFxG , για κϊθε Γx .
Άρα, ςύμφωνα με γνωςτό πόριςμα, υπϊρχει c R, ώςτε : cxFxG )()( , για κϊθε Γx .
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 26 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 27
21. (Θεμελιώδεσ θεώρημα του ολοκληρωτικού λογιςμού)
Έςτω f μια ςυνεχήσ ςυνάρτηςη ς’ ένα διάςτημα [α,β- .
Αν G είναι μια παράγουςα τησ f ςτο [α,β- , τότε
β
α
f(t)dt = G(β)-G(α)
Απόδειξη
΢ύμφωνα με προηγούμενο θεώρημα, η ςυνϊρτηςη
x
α
dttfxF )()( εύναι μια παρϊγουςα τησ f ςτο ],[ βα .
Επειδό και η G εύναι μια παρϊγουςα τησ f ςτο ],[ βα , θα υπϊρχει c R, ώςτε να ιςχύει : cxFxG )()( (1)
Από την (1), για αx , ϋχουμε
α
α
ccdttfcαFαG )()()( , οπότε )(αGc .
Επομϋνωσ, )()()( αGxFxG , και για βx , προκύπτει :
β
α
αGdttfαGβFβG )()()()()(
΄Αρα :
β
α
αGβGdttf )()()( .
 ΠΑΡΑΣΗΡΗ΢Η
Πολλϋσ φορϋσ, για να απλοποιόςουμε τισ εκφρϊςεισ μασ, ςυμβολύζουμε τη διαφορϊ )()( αGβG με β
αxG )]([ ,
οπότε το παραπϊνω θεώρημα γρϊφεται: f(x)dx [G(x)] G(β)-G(α) .
22. Έςτω δυο ςυναρτήςεισ f και g, ςυνεχείσ ςτο διάςτημα [α,β- με f(x) g(x) για κάθε x [α,β- και
Ψ το επίπεδο χωρίο που περικλείεται από τισ γραφικέσ παραςτάςεισ των f,g και τισ ευθείεσ
x = α και x = β. Σότε το εμβαδόν του χωρίου Ψ είναι
β
α
E(Ω) = (f(x)- g(x))dx .
Απόδειξη
Αν 0)()( xgxf για κϊθε x [α,β] παρατηρούμε ςτα ςχόματα (α),(β),(γ), ότι:
β
α
β
α
β
α
dxxgxfdxxgdxxfΩΔΩΔΩΔ ))()(()()()()()( 21 .
Ω
(α)
O x
y=g(x)
y=f(x)
y
Ω1
(β)
O x
y=f(x)
y
Ω2
(γ)
O x
y=g(x)
y
Επομϋνωσ,
β
α
dxxgxfΩE ))()(()( (1)
Αν f(x) g(x) για κϊθε x [α,β] και επειδό οι ςυναρτόςεισ gf , εύναι ςυνεχεύσ ςτο ],[ βα , θα υπϊρχει
αριθμόσ c ℝ τϋτοιοσ ώςτε 0)()( cxgcxf , για κϊθε ],[ βαx . Εύναι φανερό ότι το χωρύο Ω ςτα
παρακϊτω ςχόματα ϋχει το ύδιο εμβαδόν με το χωρύο Ω
βα
(α)
Ω
O x
y
y=g(x)
y=f(x)
βα
(β)
O x
y
y=f(x)+c
y=g(x)+c
Επομϋνωσ, ςύμφωνα με τον τύπο (1), ϋχουμε:
β
α
β
α
dxxgxfdxcxgcxfΩΔΩΔ ))()(()])(())([()()( .
Άρα:
β
α
dxxgxfΩE ))()(()(
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 27 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 28
 ΦΡΗ΢ΙΜΕ΢ ΠΡΟΣΑ΢ΕΙ΢ και ΠΑΡΑΣΗΡΗ΢ΕΙ΢
1. Αν η ςυνϊρτηςη f με πεδύο οριςμού Α, εύναι γνηςύωσ μονότονη ςτο Α, τότε αντιςτρϋφεται και η f-1 εύναι
επύςησ γνηςύωσ μονότονη ςτο f(Α), με το ύδιο εύδοσ μονοτονύασ.
2. Αν η ςυνϊρτηςη f εύναι γνηςύωσ αύξουςα ςτο Α τότε η εξύςωςη f(x) = f-1(x) εύναι ιςοδύναμη με την
εξύςωςη f(x) = x.
3. Αν η ςυνϊρτηςη f εύναι (1-1) και ςυνεχόσ ςτο διϊςτημα Δ, τότε εύναι γνηςύωσ μονότονη ςτο Δ.
4. Αν για τισ ςυναρτόςεισ f,g ιςχύει f(x) ≥ g(x) , κοντϊ ςτο x0 , τότε εύναι:
Α. αν
0x x
lim g(x) , τότε
0x x
lim f (x)
Β. αν
0x x
lim f (x) , τότε
0x x
lim g(x)
5. Αν η ςυνϊρτηςη f δεν εύναι ςυνεχόσ ςε ςημεύο x0 τότε δεν εύναι ούτε παραγωγύςιμη ςτο ςημεύο αυτό.
6. Αν η ςυνϊρτηςη f εύναι παραγωγύςιμη ςτο διϊςτημα Δ και η εξύςωςη f(x)=0 ϋχει ν ρύζεσ ςτο Δ, τότε η
εξύςωςη f΄(x)=0 ϋχει τουλϊχιςτον (ν-1) ρύζεσ ςτο Δ.
7. Αν η ςυνϊρτηςη f εύναι παραγωγύςιμη ςτο διϊςτημα Δ τότε μεταξύ δύο διαδοχικών ριζών τησ f΄, υπϊρχει
το πολύ μύα ρύζα τησ f.
8. Αν η ςυνϊρτηςη f εύναι παραγωγύςιμη ςτο διϊςτημα Δ και ιςχύει f΄(x) ≠ 0 για κϊθε εςωτερικό ςημεύο του
Δ, τότε η f εύναι ςυνϊρτηςη (1-1).
9. Αν η ςυνϊρτηςη f εύναι παραγωγύςιμη ςτο διϊςτημα Δ, με ςυνεχό παρϊγωγο ςτο Δ και ιςχύει f΄(x) ≠ 0 για
κϊθε εςωτερικό ςημεύο του Δ, τότε η f εύναι γνηςύωσ μονότονη ςτο διϊςτημα Δ.
10. (Γενίκευςη ΘΜΣ – Θεώρημα CAUCHY) Αν οι ςυναρτόςεισ f, g εύναι ςυνεχεύσ ςτο [α,β] με g(α)≠g(β), και
παραγωγύςιμεσ ςτο(α,β) με g΄(x)≠0 για κϊθε x ( , ) , τότε υπϊρχει ϋνα τουλϊχιςτον ξ ( , )ώςτε να
ιςχύει:
f΄( ) f( ) f( )
g΄( ) g( ) g( )
.
11. (Ανιςότητεσ JENSENS) Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςε διϊςτημα Δ, παραγωγύςιμη
και κυρτό ςτο εςωτερικό του Δ, τότε ιςχύει:
f( ) f( )
f
2 2
, για κϊθε , ,
ενώ αν η f εύναι κούλη ςτο εςωτερικό του Δ, τότε ιςχύει:
f( ) f( )
f
2 2
, για κϊθε , .
12. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,β] με f(α)=f(β)=0, παραγωγύςιμη και κυρτό ςτο (α,β), τότε ιςχύει
f(x)<0 για κϊθε x ( , ).
13. Κϊθε ςυνεχόσ ςυνϊρτηςη f ςε διϊςτημα Δ, ϋχει παρϊγουςα ςτο διϊςτημα Δ.
14. Έςτω ςυνϊρτηςη f ςυνεχόσ ςτο διϊςτημα Δ, με f(x) ≠ 0 για κϊθε x . Αν επιπλϋον ιςχύει f(x)dx 0 ,
με α,β Δ , τότε α=β.
15. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,β], με f(x)≥0 για κϊθε x [ , ] και ιςχύει f(x)dx 0 , τότε
f(x)=0 για κϊθε x [ , ] .
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 28 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 29
16. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο διϊςτημα Δ και ιςχύει f(x) > 0 για κϊθε x και υπϊρχουν , ,
ώςτε f(x)dx 0, με , τότε α>β.
17. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,β], χωρύσ να εύναι παντού ύςη με το μηδϋν και ιςχύει f(x)dx 0 ,
τότε η f παύρνει δύο τουλϊχιςτον ετερόςημεσ τιμϋσ ςτο [α,β].
18. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,β], τότε υπϊρχει ξ [ , ] ώςτε να ιςχύει f(x)dx f( )( ) .
19. Αν οι ςυναρτόςεισ f, g εύναι ςυνεχεύσ και ιςχύει f(x)≥g(x) για κϊθε x [ , ] , τότε ιςχύει
f(x)dx g(x)dx .
20. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,β], τότε f (x)dx f (x) dx .
21. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,β], τότε υπϊρχουν m,M , ώςτε να ιςχύει:
m( ) f(x)dx M( ) .
22. Αν η ςυνϊρτηςη f:[-α,α] εύναι ςυνεχόσ και ϊρτια, τότε :
0
f (x)dx 2 f (x)dx .
23. Αν η ςυνϊρτηςη f:[-α,α] εύναι ςυνεχόσ και περιττό, τότε : f(x)dx 0.
Επιπλέον, για τον υπολογιςμό εμβαδών επιπέδων χωρίων Ω ςε διαςτήματα τησ μορφήσ:
[α,β) ή (α,β] ή [α,+∞) ή (-∞,α] (όπωσ αςκ.5 –ςελ.232 και αςκ.9 – ςελ.235, του ςχολικού βιβλίου), ιςχύουν οι
παρακάτω προτάςεισ, με την προώπόθεςη ότι υπάρχει το όριο του 2ου μέλουσ τησ ιςότητασ :
24. Α. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,β), τότε ιςχύει :
x
x
f(t)dt lim f(t)dt .
Β. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο (α,β], τότε ιςχύει :
xx
f(t)dt lim f(t)dt .
25. Α. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,+∞), τότε ιςχύει :
x
x
f(t)dt lim f(t)dt .
Β. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο (-∞,α], τότε ιςχύει :
xx
f(t)dt lim f(t)dt .
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 29 of 107
ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ
ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 30
Ι. ΠΡΑΓΜΑΣΙΚΕ΢ ΢ΤΝΑΡΣΗ΢ΕΙ΢
Ερωτήςεισ τύπου «΢ωςτό - Λάθοσ»
1. Αν Α = Ν - {0, 1}, τότε η αντιςτοιχύα f : Α {0, 1} με
f (x) =
αξηζκόοζύλζεηνοείλαηxηναλ,1
αξηζκόονοείλαη πξώηxηναλ0,
εύναι ςυνϊρτηςη. ΢ Λ
2. Για τη ςυνϊρτηςη f (x) = lnx, x > 0, ιςχύει f (x y) = f (x) + f (y) για κϊθε x, y > 0. ΢ Λ
3. Για τη ςυνϊρτηςη f (x) = ex, x R, ιςχύει f (x + y) = f (x) f (y) για κϊθε x, y R. ΢ Λ
4. Η γραφικό παρϊςταςη τησ ςυνϊρτηςησ f βρύςκεται κϊτω από τον ϊξονα x΄x. ΢ Λ
5. Δύνεται η ςυνϊρτηςη y = f (x). Οι τετμημϋνεσ των ςημεύων τομόσ τησ Cf με τον ϊξονα x΄x μπορούν
να βρεθούν, αν θϋςουμε όπου y = 0 και λύςουμε την εξύςωςη. ΢ Λ
6. Δύο ςυναρτόςεισ f, g εύναι ύςεσ, αν υπϊρχουν κϊποια x R, ώςτε να ιςχύει f (x) = g (x). ΢ Λ
7. Για να ορύζονται το ϊθροιςμα και το γινόμενο δύο ςυναρτόςεων f και g θα πρϋπει τα πεδύα
οριςμού τουσ να ϋχουν κοινϊ ςτοιχεύα. ΢ Λ
8. Αν η ςυνϊρτηςη f εύναι 1 - 1, οι ςυναρτόςεισ g, h ϋχουν πεδύο οριςμού το R και ιςχύει
f (g(x)) = f (h(x)) για κϊθε x R, τότε οι ςυναρτόςεισ g και h εύναι ύςεσ. ΢ Λ
9. Η ςυνϊρτηςη f (x) =
x
x2
, x 0, εύναι ςταθερό. ΢ Λ
10. Αν το ςύνολο τιμών τησ f εύναι το διϊςτημα (α, β), τότε η f δεν ϋχει ελϊχιςτο ούτε μϋγιςτο. ΢ Λ
11. Μια ςυνϊρτηςη f ϋχει πεδύο οριςμού το R, εύναι γνηςύωσ αύξουςα και ϋχει ςύνολο τιμών
το (0, + ). Σότε η ςυνϊρτηςη
f
1
εύναι γνηςύωσ φθύνουςα ςτο R. ΢ Λ
12. Δύνεται ςυνϊρτηςη f με πεδύο οριςμού ϋνα διϊςτημα Δ. Αν ο λόγοσ
21
21
x-x
)(xf-)(xf
εύναι θετικόσ
για κϊθε x1, x2 Δ, με x1 x2, τότε η ςυνϊρτηςη εύναι γνηςύωσ αύξουςα ςτο Δ.
΢ Λ
13. Αν μια ςυνϊρτηςη f εύναι γνηςύωσ αύξουςα ς’ ϋνα διϊςτημα Δ, τότε η ςυνϊρτηςη (- f) εύναι
γνηςύωσ φθύνουςα ςτο Δ. ΢ Λ
14. Η ςυνϊρτηςη f (x) =
x
1
εύναι γνηςύωσ φθύνουςα ςτο ςύνολο (- , 0) (0, + ).
΢ Λ
15. Αν μια περιττό ςυνϊρτηςη f παρουςιϊζει μϋγιςτο ςτο ςημεύο x0, τότε θα παρουςιϊζει ελϊχιςτο
ςτο ςημεύο - x0. ΢ Λ
16. Αν μια ϊρτια ςυνϊρτηςη f παρουςιϊζει ακρότατο ςτο ςημεύο x0, τότε παρουςιϊζει το
ύδιο εύδοσ ακροτϊτου ςτο ςημεύο - x0. ΢ Λ
17. Αν μια ςυνϊρτηςη f εύναι ϊρτια, τότε μπορεύ να εύναι 1 - 1. ΢ Λ
18. Αν μια ςυνϊρτηςη f εύναι 1 - 1, τότε εύναι πϊντοτε περιττό. ΢ Λ
19. Η ςυνϊρτηςη f (x) = xν, ν Ν* εύναι:
i) ϊρτια, αν ο ν εύναι ϊρτιοσ
ii) περιττό, αν ο ν εύναι περιττόσ.
΢ Λ
΢ Λ
20. Αν η ςυνϊρτηςη f εύναι 1 - 1, τότε ιςχύουν:
i) f (f -1 (x)) = x για κϊθε x που ανόκει ςτο ςύνολο τιμών τησ f
ii) f -1 (f (x)) = x για κϊθε x Df.
΢ Λ
΢ Λ
21. Έςτω η ςυνϊρτηςη f (x) = x2, x [0, + ). Σότε κϊθε κοινό ςημεύο των γραφικών παραςτϊςεων
22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 30 of 107
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)
Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)

Más contenido relacionado

La actualidad más candente

Επαναληπτικό διαγώνισμα μέχρι την αντίστροφη συνάρτηση - Αρσάκειο 2017 - 18
Επαναληπτικό διαγώνισμα μέχρι την αντίστροφη συνάρτηση - Αρσάκειο 2017 - 18Επαναληπτικό διαγώνισμα μέχρι την αντίστροφη συνάρτηση - Αρσάκειο 2017 - 18
Επαναληπτικό διαγώνισμα μέχρι την αντίστροφη συνάρτηση - Αρσάκειο 2017 - 18Μάκης Χατζόπουλος
 
75 ερωτήσεις Σ-Λ στο Κεφάλαιο 1ο Ανάλυσης (word+mathtype)
75 ερωτήσεις Σ-Λ  στο Κεφάλαιο 1ο Ανάλυσης (word+mathtype)75 ερωτήσεις Σ-Λ  στο Κεφάλαιο 1ο Ανάλυσης (word+mathtype)
75 ερωτήσεις Σ-Λ στο Κεφάλαιο 1ο Ανάλυσης (word+mathtype)Μάκης Χατζόπουλος
 
Διαγωνισμα Αρσάκειο μέχρι αντίστροφη συνάρτηση
Διαγωνισμα Αρσάκειο μέχρι αντίστροφη συνάρτησηΔιαγωνισμα Αρσάκειο μέχρι αντίστροφη συνάρτηση
Διαγωνισμα Αρσάκειο μέχρι αντίστροφη συνάρτησηΜάκης Χατζόπουλος
 
Θέματα Ανάλυσης για διδασκαλία στην τάξη (Διαφορικός και Ολοκληρωτικός Λογισμός
Θέματα Ανάλυσης για διδασκαλία στην τάξη (Διαφορικός και Ολοκληρωτικός ΛογισμόςΘέματα Ανάλυσης για διδασκαλία στην τάξη (Διαφορικός και Ολοκληρωτικός Λογισμός
Θέματα Ανάλυσης για διδασκαλία στην τάξη (Διαφορικός και Ολοκληρωτικός ΛογισμόςΜάκης Χατζόπουλος
 
γενικό διαγώνισμα
γενικό διαγώνισμαγενικό διαγώνισμα
γενικό διαγώνισμαChristos Loizos
 
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο ΑνάλυσηςΤεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο ΑνάλυσηςΜάκης Χατζόπουλος
 
Prosomiosi prosanatolismou thetikis_5
Prosomiosi prosanatolismou thetikis_5Prosomiosi prosanatolismou thetikis_5
Prosomiosi prosanatolismou thetikis_5Christos Loizos
 
2ο διαγώνισμα προσομοίωσης_2016_2017
2ο διαγώνισμα προσομοίωσης_2016_20172ο διαγώνισμα προσομοίωσης_2016_2017
2ο διαγώνισμα προσομοίωσης_2016_2017Christos Loizos
 
Διαγώνισμα στο Διαφορικό Λογισμό μέχρι σημεία καμπής
Διαγώνισμα στο Διαφορικό Λογισμό μέχρι σημεία καμπήςΔιαγώνισμα στο Διαφορικό Λογισμό μέχρι σημεία καμπής
Διαγώνισμα στο Διαφορικό Λογισμό μέχρι σημεία καμπήςΜάκης Χατζόπουλος
 
Diag oria synexeia(2016-17)
Diag oria synexeia(2016-17)Diag oria synexeia(2016-17)
Diag oria synexeia(2016-17)Christos Loizos
 
Ανάλυση έως αντίστροφη από το θωμά ραϊκόφτσαλη
Ανάλυση έως αντίστροφη από το θωμά ραϊκόφτσαληΑνάλυση έως αντίστροφη από το θωμά ραϊκόφτσαλη
Ανάλυση έως αντίστροφη από το θωμά ραϊκόφτσαληΜάκης Χατζόπουλος
 
Diagwnisma prosomoiwshs 2016
Diagwnisma prosomoiwshs 2016Diagwnisma prosomoiwshs 2016
Diagwnisma prosomoiwshs 2016Christos Loizos
 
Διαγώνισμα 1ου τετραμήνου 3ο ΓΕΛ Κηφισιάς 2018
Διαγώνισμα 1ου τετραμήνου 3ο ΓΕΛ Κηφισιάς 2018Διαγώνισμα 1ου τετραμήνου 3ο ΓΕΛ Κηφισιάς 2018
Διαγώνισμα 1ου τετραμήνου 3ο ΓΕΛ Κηφισιάς 2018Μάκης Χατζόπουλος
 
Τα διαγωνίσματα προσομοίωσης του "Είμαστε μέσα..."
Τα διαγωνίσματα προσομοίωσης του "Είμαστε μέσα..."Τα διαγωνίσματα προσομοίωσης του "Είμαστε μέσα..."
Τα διαγωνίσματα προσομοίωσης του "Είμαστε μέσα..."Μάκης Χατζόπουλος
 
Διαγωνίσματα προσομοίωση 2019 - Β Ψυχικού και Α Εκάλης - Αρσάκεια Λύκεια
Διαγωνίσματα προσομοίωση 2019 - Β Ψυχικού και Α Εκάλης - Αρσάκεια Λύκεια Διαγωνίσματα προσομοίωση 2019 - Β Ψυχικού και Α Εκάλης - Αρσάκεια Λύκεια
Διαγωνίσματα προσομοίωση 2019 - Β Ψυχικού και Α Εκάλης - Αρσάκεια Λύκεια Μάκης Χατζόπουλος
 
2o diagwnisma synarthseis_oria_synexeia
2o diagwnisma synarthseis_oria_synexeia2o diagwnisma synarthseis_oria_synexeia
2o diagwnisma synarthseis_oria_synexeiaChristos Loizos
 

La actualidad más candente (20)

Επαναληπτικό διαγώνισμα μέχρι την αντίστροφη συνάρτηση - Αρσάκειο 2017 - 18
Επαναληπτικό διαγώνισμα μέχρι την αντίστροφη συνάρτηση - Αρσάκειο 2017 - 18Επαναληπτικό διαγώνισμα μέχρι την αντίστροφη συνάρτηση - Αρσάκειο 2017 - 18
Επαναληπτικό διαγώνισμα μέχρι την αντίστροφη συνάρτηση - Αρσάκειο 2017 - 18
 
Διαγώνισμα ΕΠΑΛ 2017
Διαγώνισμα ΕΠΑΛ 2017Διαγώνισμα ΕΠΑΛ 2017
Διαγώνισμα ΕΠΑΛ 2017
 
75 ερωτήσεις Σ-Λ στο Κεφάλαιο 1ο Ανάλυσης (word+mathtype)
75 ερωτήσεις Σ-Λ  στο Κεφάλαιο 1ο Ανάλυσης (word+mathtype)75 ερωτήσεις Σ-Λ  στο Κεφάλαιο 1ο Ανάλυσης (word+mathtype)
75 ερωτήσεις Σ-Λ στο Κεφάλαιο 1ο Ανάλυσης (word+mathtype)
 
Διαγωνισμα Αρσάκειο μέχρι αντίστροφη συνάρτηση
Διαγωνισμα Αρσάκειο μέχρι αντίστροφη συνάρτησηΔιαγωνισμα Αρσάκειο μέχρι αντίστροφη συνάρτηση
Διαγωνισμα Αρσάκειο μέχρι αντίστροφη συνάρτηση
 
Θέματα Ανάλυσης για διδασκαλία στην τάξη (Διαφορικός και Ολοκληρωτικός Λογισμός
Θέματα Ανάλυσης για διδασκαλία στην τάξη (Διαφορικός και Ολοκληρωτικός ΛογισμόςΘέματα Ανάλυσης για διδασκαλία στην τάξη (Διαφορικός και Ολοκληρωτικός Λογισμός
Θέματα Ανάλυσης για διδασκαλία στην τάξη (Διαφορικός και Ολοκληρωτικός Λογισμός
 
γενικό διαγώνισμα
γενικό διαγώνισμαγενικό διαγώνισμα
γενικό διαγώνισμα
 
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο ΑνάλυσηςΤεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
 
Prosomiosi prosanatolismou thetikis_5
Prosomiosi prosanatolismou thetikis_5Prosomiosi prosanatolismou thetikis_5
Prosomiosi prosanatolismou thetikis_5
 
2ο διαγώνισμα προσομοίωσης_2016_2017
2ο διαγώνισμα προσομοίωσης_2016_20172ο διαγώνισμα προσομοίωσης_2016_2017
2ο διαγώνισμα προσομοίωσης_2016_2017
 
Διαγώνισμα στο Διαφορικό Λογισμό μέχρι σημεία καμπής
Διαγώνισμα στο Διαφορικό Λογισμό μέχρι σημεία καμπήςΔιαγώνισμα στο Διαφορικό Λογισμό μέχρι σημεία καμπής
Διαγώνισμα στο Διαφορικό Λογισμό μέχρι σημεία καμπής
 
Diag oria synexeia(2016-17)
Diag oria synexeia(2016-17)Diag oria synexeia(2016-17)
Diag oria synexeia(2016-17)
 
Ανάλυση έως αντίστροφη από το θωμά ραϊκόφτσαλη
Ανάλυση έως αντίστροφη από το θωμά ραϊκόφτσαληΑνάλυση έως αντίστροφη από το θωμά ραϊκόφτσαλη
Ανάλυση έως αντίστροφη από το θωμά ραϊκόφτσαλη
 
ΕΠΑΝΑΛΗΨΗ ΟΡΙΑ ΣΥΝΕΧΕΙΑ....
ΕΠΑΝΑΛΗΨΗ ΟΡΙΑ ΣΥΝΕΧΕΙΑ....ΕΠΑΝΑΛΗΨΗ ΟΡΙΑ ΣΥΝΕΧΕΙΑ....
ΕΠΑΝΑΛΗΨΗ ΟΡΙΑ ΣΥΝΕΧΕΙΑ....
 
θέματα οεφε 2001 2015
θέματα οεφε 2001 2015θέματα οεφε 2001 2015
θέματα οεφε 2001 2015
 
Diagwnisma prosomoiwshs 2016
Diagwnisma prosomoiwshs 2016Diagwnisma prosomoiwshs 2016
Diagwnisma prosomoiwshs 2016
 
Διαγώνισμα 1ου τετραμήνου 3ο ΓΕΛ Κηφισιάς 2018
Διαγώνισμα 1ου τετραμήνου 3ο ΓΕΛ Κηφισιάς 2018Διαγώνισμα 1ου τετραμήνου 3ο ΓΕΛ Κηφισιάς 2018
Διαγώνισμα 1ου τετραμήνου 3ο ΓΕΛ Κηφισιάς 2018
 
Τα διαγωνίσματα προσομοίωσης του "Είμαστε μέσα..."
Τα διαγωνίσματα προσομοίωσης του "Είμαστε μέσα..."Τα διαγωνίσματα προσομοίωσης του "Είμαστε μέσα..."
Τα διαγωνίσματα προσομοίωσης του "Είμαστε μέσα..."
 
104 ερωτήσεις θεωρίας
104 ερωτήσεις θεωρίας104 ερωτήσεις θεωρίας
104 ερωτήσεις θεωρίας
 
Διαγωνίσματα προσομοίωση 2019 - Β Ψυχικού και Α Εκάλης - Αρσάκεια Λύκεια
Διαγωνίσματα προσομοίωση 2019 - Β Ψυχικού και Α Εκάλης - Αρσάκεια Λύκεια Διαγωνίσματα προσομοίωση 2019 - Β Ψυχικού και Α Εκάλης - Αρσάκεια Λύκεια
Διαγωνίσματα προσομοίωση 2019 - Β Ψυχικού και Α Εκάλης - Αρσάκεια Λύκεια
 
2o diagwnisma synarthseis_oria_synexeia
2o diagwnisma synarthseis_oria_synexeia2o diagwnisma synarthseis_oria_synexeia
2o diagwnisma synarthseis_oria_synexeia
 

Similar a Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)

Η γραφική παράσταση μιας συνάρτησης .pdf
Η γραφική παράσταση μιας συνάρτησης .pdfΗ γραφική παράσταση μιας συνάρτησης .pdf
Η γραφική παράσταση μιας συνάρτησης .pdfΜαυρουδης Μακης
 
Διαγώνισμα προσομοίωσης Γ Λυκείου
Διαγώνισμα προσομοίωσης Γ ΛυκείουΔιαγώνισμα προσομοίωσης Γ Λυκείου
Διαγώνισμα προσομοίωσης Γ ΛυκείουΜάκης Χατζόπουλος
 
Θεωρία μαθηματικά προσανατολισμού Γ λυκείου
Θεωρία μαθηματικά προσανατολισμού Γ λυκείουΘεωρία μαθηματικά προσανατολισμού Γ λυκείου
Θεωρία μαθηματικά προσανατολισμού Γ λυκείουΘανάσης Δρούγας
 
Επανάληψη Γ Λυκείου για τις ενδοσχολικές εξετάσεις 2017
Επανάληψη Γ Λυκείου για τις ενδοσχολικές εξετάσεις 2017Επανάληψη Γ Λυκείου για τις ενδοσχολικές εξετάσεις 2017
Επανάληψη Γ Λυκείου για τις ενδοσχολικές εξετάσεις 2017Μάκης Χατζόπουλος
 
Οδηγός Επανάληψης Γ΄ Λυκείου [2019]
Οδηγός Επανάληψης Γ΄ Λυκείου [2019]Οδηγός Επανάληψης Γ΄ Λυκείου [2019]
Οδηγός Επανάληψης Γ΄ Λυκείου [2019]Μάκης Χατζόπουλος
 
Φυλλάδιο θεωρίας 2020 για τη Γ Λυκείου
Φυλλάδιο θεωρίας 2020 για τη Γ ΛυκείουΦυλλάδιο θεωρίας 2020 για τη Γ Λυκείου
Φυλλάδιο θεωρίας 2020 για τη Γ ΛυκείουΜάκης Χατζόπουλος
 
1ο Διαγώνισμα στο 1ο κεφάλαιο Ανάλυσης από το study4exams
1ο Διαγώνισμα στο 1ο κεφάλαιο Ανάλυσης από το study4exams1ο Διαγώνισμα στο 1ο κεφάλαιο Ανάλυσης από το study4exams
1ο Διαγώνισμα στο 1ο κεφάλαιο Ανάλυσης από το study4examsΜάκης Χατζόπουλος
 
θεωρια μαθηματικων κατευθυνσησ Neo σχ. έτος 2015-16
θεωρια μαθηματικων κατευθυνσησ Neo σχ. έτος 2015-16θεωρια μαθηματικων κατευθυνσησ Neo σχ. έτος 2015-16
θεωρια μαθηματικων κατευθυνσησ Neo σχ. έτος 2015-16Christos Loizos
 
1ο διαγωνισμα καφαλαιο 2
1ο διαγωνισμα καφαλαιο 21ο διαγωνισμα καφαλαιο 2
1ο διαγωνισμα καφαλαιο 2Omer Cho
 
10 συνδυαστικά θέματα
10 συνδυαστικά θέματα10 συνδυαστικά θέματα
10 συνδυαστικά θέματαChristos Loizos
 
Prosomiosi prosanatolismou thetikis_plus_lyseis_5
Prosomiosi prosanatolismou thetikis_plus_lyseis_5Prosomiosi prosanatolismou thetikis_plus_lyseis_5
Prosomiosi prosanatolismou thetikis_plus_lyseis_5Christos Loizos
 
Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...
Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...
Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...Μάκης Χατζόπουλος
 
Mathematica gr μαθ θετ κατ λύσεις θεμάτων 2016
Mathematica gr μαθ θετ κατ λύσεις θεμάτων 2016Mathematica gr μαθ θετ κατ λύσεις θεμάτων 2016
Mathematica gr μαθ θετ κατ λύσεις θεμάτων 2016Θανάσης Δρούγας
 
επαναληπτικές ασκήσεις 100+1
επαναληπτικές ασκήσεις 100+1επαναληπτικές ασκήσεις 100+1
επαναληπτικές ασκήσεις 100+1Christos Loizos
 
Εκπαιδευτήρια Δούκα - Διαγώνισμα προσομοίωσης Γ΄ Λυκείου
Εκπαιδευτήρια Δούκα - Διαγώνισμα προσομοίωσης Γ΄ ΛυκείουΕκπαιδευτήρια Δούκα - Διαγώνισμα προσομοίωσης Γ΄ Λυκείου
Εκπαιδευτήρια Δούκα - Διαγώνισμα προσομοίωσης Γ΄ ΛυκείουΜάκης Χατζόπουλος
 
Μαθηματικά Γενικής Παιδείας - Φυλλάδιο του 2016
Μαθηματικά Γενικής Παιδείας - Φυλλάδιο του 2016 Μαθηματικά Γενικής Παιδείας - Φυλλάδιο του 2016
Μαθηματικά Γενικής Παιδείας - Φυλλάδιο του 2016 General Lyceum "Menelaos Lountemis"
 

Similar a Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107) (20)

Η γραφική παράσταση μιας συνάρτησης .pdf
Η γραφική παράσταση μιας συνάρτησης .pdfΗ γραφική παράσταση μιας συνάρτησης .pdf
Η γραφική παράσταση μιας συνάρτησης .pdf
 
Διαγώνισμα προσομοίωσης Γ Λυκείου
Διαγώνισμα προσομοίωσης Γ ΛυκείουΔιαγώνισμα προσομοίωσης Γ Λυκείου
Διαγώνισμα προσομοίωσης Γ Λυκείου
 
Θεωρία μαθηματικά προσανατολισμού Γ λυκείου
Θεωρία μαθηματικά προσανατολισμού Γ λυκείουΘεωρία μαθηματικά προσανατολισμού Γ λυκείου
Θεωρία μαθηματικά προσανατολισμού Γ λυκείου
 
Επανάληψη Γ Λυκείου για τις ενδοσχολικές εξετάσεις 2017
Επανάληψη Γ Λυκείου για τις ενδοσχολικές εξετάσεις 2017Επανάληψη Γ Λυκείου για τις ενδοσχολικές εξετάσεις 2017
Επανάληψη Γ Λυκείου για τις ενδοσχολικές εξετάσεις 2017
 
Οδηγός Επανάληψης Γ΄ Λυκείου [2019]
Οδηγός Επανάληψης Γ΄ Λυκείου [2019]Οδηγός Επανάληψης Γ΄ Λυκείου [2019]
Οδηγός Επανάληψης Γ΄ Λυκείου [2019]
 
Φυλλάδιο θεωρίας 2020 για τη Γ Λυκείου
Φυλλάδιο θεωρίας 2020 για τη Γ ΛυκείουΦυλλάδιο θεωρίας 2020 για τη Γ Λυκείου
Φυλλάδιο θεωρίας 2020 για τη Γ Λυκείου
 
1ο Διαγώνισμα στο 1ο κεφάλαιο Ανάλυσης από το study4exams
1ο Διαγώνισμα στο 1ο κεφάλαιο Ανάλυσης από το study4exams1ο Διαγώνισμα στο 1ο κεφάλαιο Ανάλυσης από το study4exams
1ο Διαγώνισμα στο 1ο κεφάλαιο Ανάλυσης από το study4exams
 
Mk ed1 ekf
Mk ed1 ekfMk ed1 ekf
Mk ed1 ekf
 
θεωρια μαθηματικων κατευθυνσησ Neo σχ. έτος 2015-16
θεωρια μαθηματικων κατευθυνσησ Neo σχ. έτος 2015-16θεωρια μαθηματικων κατευθυνσησ Neo σχ. έτος 2015-16
θεωρια μαθηματικων κατευθυνσησ Neo σχ. έτος 2015-16
 
90 Επαναληπτικά θέματα Γ Λυκείου
90 Επαναληπτικά θέματα Γ Λυκείου90 Επαναληπτικά θέματα Γ Λυκείου
90 Επαναληπτικά θέματα Γ Λυκείου
 
Eπαναληψη 2018
Eπαναληψη 2018Eπαναληψη 2018
Eπαναληψη 2018
 
1ο διαγωνισμα καφαλαιο 2
1ο διαγωνισμα καφαλαιο 21ο διαγωνισμα καφαλαιο 2
1ο διαγωνισμα καφαλαιο 2
 
10 συνδυαστικά θέματα
10 συνδυαστικά θέματα10 συνδυαστικά θέματα
10 συνδυαστικά θέματα
 
Prosomiosi prosanatolismou thetikis_plus_lyseis_5
Prosomiosi prosanatolismou thetikis_plus_lyseis_5Prosomiosi prosanatolismou thetikis_plus_lyseis_5
Prosomiosi prosanatolismou thetikis_plus_lyseis_5
 
Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...
Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...
Τρίωρο διαγώνισμα προσομοίωσης Γ Λυκείου από την Περιφερειακή Εκπαίδευση Βορε...
 
Mathematica gr μαθ θετ κατ λύσεις θεμάτων 2016
Mathematica gr μαθ θετ κατ λύσεις θεμάτων 2016Mathematica gr μαθ θετ κατ λύσεις θεμάτων 2016
Mathematica gr μαθ θετ κατ λύσεις θεμάτων 2016
 
επαναληπτικές ασκήσεις 100+1
επαναληπτικές ασκήσεις 100+1επαναληπτικές ασκήσεις 100+1
επαναληπτικές ασκήσεις 100+1
 
Εκπαιδευτήρια Δούκα - Διαγώνισμα προσομοίωσης Γ΄ Λυκείου
Εκπαιδευτήρια Δούκα - Διαγώνισμα προσομοίωσης Γ΄ ΛυκείουΕκπαιδευτήρια Δούκα - Διαγώνισμα προσομοίωσης Γ΄ Λυκείου
Εκπαιδευτήρια Δούκα - Διαγώνισμα προσομοίωσης Γ΄ Λυκείου
 
μεθοδολογια συναρτησεων 2
μεθοδολογια συναρτησεων 2μεθοδολογια συναρτησεων 2
μεθοδολογια συναρτησεων 2
 
Μαθηματικά Γενικής Παιδείας - Φυλλάδιο του 2016
Μαθηματικά Γενικής Παιδείας - Φυλλάδιο του 2016 Μαθηματικά Γενικής Παιδείας - Φυλλάδιο του 2016
Μαθηματικά Γενικής Παιδείας - Φυλλάδιο του 2016
 

Más de Μάκης Χατζόπουλος

Σχόλια, κριτική, εκτιμήσεις και προτάσεις για τις εκλογές της ΕΜΕ
Σχόλια, κριτική, εκτιμήσεις και προτάσεις για τις εκλογές της ΕΜΕΣχόλια, κριτική, εκτιμήσεις και προτάσεις για τις εκλογές της ΕΜΕ
Σχόλια, κριτική, εκτιμήσεις και προτάσεις για τις εκλογές της ΕΜΕΜάκης Χατζόπουλος
 
Τι ΔΕΝ πρέπει να δούμε στις Πανελλαδικές Εξετάσεις;
Τι ΔΕΝ πρέπει να δούμε στις Πανελλαδικές Εξετάσεις; Τι ΔΕΝ πρέπει να δούμε στις Πανελλαδικές Εξετάσεις;
Τι ΔΕΝ πρέπει να δούμε στις Πανελλαδικές Εξετάσεις; Μάκης Χατζόπουλος
 
ΕΜΕ τεύχος 120: Α΄ Γυμνασίου ασκήσεις
ΕΜΕ τεύχος 120: Α΄ Γυμνασίου ασκήσειςΕΜΕ τεύχος 120: Α΄ Γυμνασίου ασκήσεις
ΕΜΕ τεύχος 120: Α΄ Γυμνασίου ασκήσειςΜάκης Χατζόπουλος
 
Μια γνωστή άσκηση του σχολικού βιβλίου με προεκτάσεις
Μια γνωστή άσκηση του σχολικού βιβλίου με προεκτάσειςΜια γνωστή άσκηση του σχολικού βιβλίου με προεκτάσεις
Μια γνωστή άσκηση του σχολικού βιβλίου με προεκτάσειςΜάκης Χατζόπουλος
 
Επαναληπτικό διαγώνισμα Γ Λυκείου [21/5/2021]
Επαναληπτικό διαγώνισμα Γ Λυκείου [21/5/2021]Επαναληπτικό διαγώνισμα Γ Λυκείου [21/5/2021]
Επαναληπτικό διαγώνισμα Γ Λυκείου [21/5/2021]Μάκης Χατζόπουλος
 
Διδακτικά σενάρια στη Γ΄ Λυκείου
Διδακτικά σενάρια στη Γ΄ Λυκείου Διδακτικά σενάρια στη Γ΄ Λυκείου
Διδακτικά σενάρια στη Γ΄ Λυκείου Μάκης Χατζόπουλος
 
2 Κριτήρια Αξιολόγησης από τον Βασίλη Παπαδάκη και Φάνη Μαργαρώνη
2 Κριτήρια Αξιολόγησης από τον Βασίλη Παπαδάκη και Φάνη Μαργαρώνη2 Κριτήρια Αξιολόγησης από τον Βασίλη Παπαδάκη και Φάνη Μαργαρώνη
2 Κριτήρια Αξιολόγησης από τον Βασίλη Παπαδάκη και Φάνη ΜαργαρώνηΜάκης Χατζόπουλος
 
Επαναληπτικό διαγώνισμα Β Λυκείου Άλγεβρα - Πολυώνυμα
Επαναληπτικό διαγώνισμα Β Λυκείου Άλγεβρα - ΠολυώνυμαΕπαναληπτικό διαγώνισμα Β Λυκείου Άλγεβρα - Πολυώνυμα
Επαναληπτικό διαγώνισμα Β Λυκείου Άλγεβρα - ΠολυώνυμαΜάκης Χατζόπουλος
 
Διαγώνισμα Β Λυκείου επαναληπτικό
Διαγώνισμα Β Λυκείου επαναληπτικόΔιαγώνισμα Β Λυκείου επαναληπτικό
Διαγώνισμα Β Λυκείου επαναληπτικόΜάκης Χατζόπουλος
 
H εισήγηση στο Εκπαιδευτικό σεμινάριο που διεξάχθηκε από τα Φροντιστήρια "Εν ...
H εισήγηση στο Εκπαιδευτικό σεμινάριο που διεξάχθηκε από τα Φροντιστήρια "Εν ...H εισήγηση στο Εκπαιδευτικό σεμινάριο που διεξάχθηκε από τα Φροντιστήρια "Εν ...
H εισήγηση στο Εκπαιδευτικό σεμινάριο που διεξάχθηκε από τα Φροντιστήρια "Εν ...Μάκης Χατζόπουλος
 
Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου
Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου
Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου Μάκης Χατζόπουλος
 
Διδακτικό σενάριο Α΄ Λυκείου [2021]
Διδακτικό σενάριο Α΄ Λυκείου [2021]Διδακτικό σενάριο Α΄ Λυκείου [2021]
Διδακτικό σενάριο Α΄ Λυκείου [2021]Μάκης Χατζόπουλος
 
Διαγώνισμα Γ Λυκείου ( 2.6 έως 2.10) από το Καλαμαρί
Διαγώνισμα Γ Λυκείου ( 2.6 έως 2.10) από το ΚαλαμαρίΔιαγώνισμα Γ Λυκείου ( 2.6 έως 2.10) από το Καλαμαρί
Διαγώνισμα Γ Λυκείου ( 2.6 έως 2.10) από το ΚαλαμαρίΜάκης Χατζόπουλος
 
Εργασία τμήματος Α1 - Αποδείξεις Ιδ και Κρ - Ορισμοί
Εργασία τμήματος Α1 - Αποδείξεις Ιδ και Κρ - ΟρισμοίΕργασία τμήματος Α1 - Αποδείξεις Ιδ και Κρ - Ορισμοί
Εργασία τμήματος Α1 - Αποδείξεις Ιδ και Κρ - ΟρισμοίΜάκης Χατζόπουλος
 

Más de Μάκης Χατζόπουλος (20)

Εσείς πώς τα διδάσκετε;
Εσείς πώς τα διδάσκετε;Εσείς πώς τα διδάσκετε;
Εσείς πώς τα διδάσκετε;
 
Σχόλια, κριτική, εκτιμήσεις και προτάσεις για τις εκλογές της ΕΜΕ
Σχόλια, κριτική, εκτιμήσεις και προτάσεις για τις εκλογές της ΕΜΕΣχόλια, κριτική, εκτιμήσεις και προτάσεις για τις εκλογές της ΕΜΕ
Σχόλια, κριτική, εκτιμήσεις και προτάσεις για τις εκλογές της ΕΜΕ
 
Πανελλαδικές Εξετάσεις 2021 ΕΠΑΛ
Πανελλαδικές Εξετάσεις 2021 ΕΠΑΛΠανελλαδικές Εξετάσεις 2021 ΕΠΑΛ
Πανελλαδικές Εξετάσεις 2021 ΕΠΑΛ
 
Τι ΔΕΝ πρέπει να δούμε στις Πανελλαδικές Εξετάσεις;
Τι ΔΕΝ πρέπει να δούμε στις Πανελλαδικές Εξετάσεις; Τι ΔΕΝ πρέπει να δούμε στις Πανελλαδικές Εξετάσεις;
Τι ΔΕΝ πρέπει να δούμε στις Πανελλαδικές Εξετάσεις;
 
ΕΜΕ τεύχος 120: Α΄ Γυμνασίου ασκήσεις
ΕΜΕ τεύχος 120: Α΄ Γυμνασίου ασκήσειςΕΜΕ τεύχος 120: Α΄ Γυμνασίου ασκήσεις
ΕΜΕ τεύχος 120: Α΄ Γυμνασίου ασκήσεις
 
Μια γνωστή άσκηση του σχολικού βιβλίου με προεκτάσεις
Μια γνωστή άσκηση του σχολικού βιβλίου με προεκτάσειςΜια γνωστή άσκηση του σχολικού βιβλίου με προεκτάσεις
Μια γνωστή άσκηση του σχολικού βιβλίου με προεκτάσεις
 
Ξεφτέρης Μαστερίδης σενάριο 3ο
Ξεφτέρης Μαστερίδης σενάριο 3οΞεφτέρης Μαστερίδης σενάριο 3ο
Ξεφτέρης Μαστερίδης σενάριο 3ο
 
Επαναληπτικό διαγώνισμα Γ Λυκείου [21/5/2021]
Επαναληπτικό διαγώνισμα Γ Λυκείου [21/5/2021]Επαναληπτικό διαγώνισμα Γ Λυκείου [21/5/2021]
Επαναληπτικό διαγώνισμα Γ Λυκείου [21/5/2021]
 
45+1 Θέματα Γ Λυκείου
45+1 Θέματα Γ Λυκείου 45+1 Θέματα Γ Λυκείου
45+1 Θέματα Γ Λυκείου
 
Διδακτικά σενάρια στη Γ΄ Λυκείου
Διδακτικά σενάρια στη Γ΄ Λυκείου Διδακτικά σενάρια στη Γ΄ Λυκείου
Διδακτικά σενάρια στη Γ΄ Λυκείου
 
2 Κριτήρια Αξιολόγησης από τον Βασίλη Παπαδάκη και Φάνη Μαργαρώνη
2 Κριτήρια Αξιολόγησης από τον Βασίλη Παπαδάκη και Φάνη Μαργαρώνη2 Κριτήρια Αξιολόγησης από τον Βασίλη Παπαδάκη και Φάνη Μαργαρώνη
2 Κριτήρια Αξιολόγησης από τον Βασίλη Παπαδάκη και Φάνη Μαργαρώνη
 
Σωστό - Λάθος Γ Λυκείου 2021
Σωστό - Λάθος Γ Λυκείου 2021Σωστό - Λάθος Γ Λυκείου 2021
Σωστό - Λάθος Γ Λυκείου 2021
 
Επαναληπτικό διαγώνισμα Β Λυκείου Άλγεβρα - Πολυώνυμα
Επαναληπτικό διαγώνισμα Β Λυκείου Άλγεβρα - ΠολυώνυμαΕπαναληπτικό διαγώνισμα Β Λυκείου Άλγεβρα - Πολυώνυμα
Επαναληπτικό διαγώνισμα Β Λυκείου Άλγεβρα - Πολυώνυμα
 
Διαγώνισμα Β Λυκείου επαναληπτικό
Διαγώνισμα Β Λυκείου επαναληπτικόΔιαγώνισμα Β Λυκείου επαναληπτικό
Διαγώνισμα Β Λυκείου επαναληπτικό
 
H εισήγηση στο Εκπαιδευτικό σεμινάριο που διεξάχθηκε από τα Φροντιστήρια "Εν ...
H εισήγηση στο Εκπαιδευτικό σεμινάριο που διεξάχθηκε από τα Φροντιστήρια "Εν ...H εισήγηση στο Εκπαιδευτικό σεμινάριο που διεξάχθηκε από τα Φροντιστήρια "Εν ...
H εισήγηση στο Εκπαιδευτικό σεμινάριο που διεξάχθηκε από τα Φροντιστήρια "Εν ...
 
Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου
Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου
Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου
 
Διδακτικό σενάριο Α΄ Λυκείου [2021]
Διδακτικό σενάριο Α΄ Λυκείου [2021]Διδακτικό σενάριο Α΄ Λυκείου [2021]
Διδακτικό σενάριο Α΄ Λυκείου [2021]
 
Διαγώνισμα Γ Λυκείου ( 2.6 έως 2.10) από το Καλαμαρί
Διαγώνισμα Γ Λυκείου ( 2.6 έως 2.10) από το ΚαλαμαρίΔιαγώνισμα Γ Λυκείου ( 2.6 έως 2.10) από το Καλαμαρί
Διαγώνισμα Γ Λυκείου ( 2.6 έως 2.10) από το Καλαμαρί
 
Κεφάλαιο 7ο - Α΄ Γυμνασίου
Κεφάλαιο 7ο - Α΄ ΓυμνασίουΚεφάλαιο 7ο - Α΄ Γυμνασίου
Κεφάλαιο 7ο - Α΄ Γυμνασίου
 
Εργασία τμήματος Α1 - Αποδείξεις Ιδ και Κρ - Ορισμοί
Εργασία τμήματος Α1 - Αποδείξεις Ιδ και Κρ - ΟρισμοίΕργασία τμήματος Α1 - Αποδείξεις Ιδ και Κρ - Ορισμοί
Εργασία τμήματος Α1 - Αποδείξεις Ιδ και Κρ - Ορισμοί
 

Último

ΑΝΑΓΕΝΝΗΣΗ, ΕΙΡΗΝΗ ΓΚΑΒΛΟΥ- ΜΑΙΡΗ ΔΗΜΑΚΟΠΟΥΛΟΥ
ΑΝΑΓΕΝΝΗΣΗ, ΕΙΡΗΝΗ ΓΚΑΒΛΟΥ- ΜΑΙΡΗ ΔΗΜΑΚΟΠΟΥΛΟΥ ΑΝΑΓΕΝΝΗΣΗ, ΕΙΡΗΝΗ ΓΚΑΒΛΟΥ- ΜΑΙΡΗ ΔΗΜΑΚΟΠΟΥΛΟΥ
ΑΝΑΓΕΝΝΗΣΗ, ΕΙΡΗΝΗ ΓΚΑΒΛΟΥ- ΜΑΙΡΗ ΔΗΜΑΚΟΠΟΥΛΟΥ Iliana Kouvatsou
 
ΒΥΖΑΝΤΙΝΗ ΚΟΥΖΙΝΑ ΚΑΙ ΜΟΔΑ, ΕΛΕΑΝΑ ΣΤΑΥΡΟΠΟΥΛΟΥ.pptx
ΒΥΖΑΝΤΙΝΗ ΚΟΥΖΙΝΑ ΚΑΙ ΜΟΔΑ, ΕΛΕΑΝΑ ΣΤΑΥΡΟΠΟΥΛΟΥ.pptxΒΥΖΑΝΤΙΝΗ ΚΟΥΖΙΝΑ ΚΑΙ ΜΟΔΑ, ΕΛΕΑΝΑ ΣΤΑΥΡΟΠΟΥΛΟΥ.pptx
ΒΥΖΑΝΤΙΝΗ ΚΟΥΖΙΝΑ ΚΑΙ ΜΟΔΑ, ΕΛΕΑΝΑ ΣΤΑΥΡΟΠΟΥΛΟΥ.pptxIliana Kouvatsou
 
-Διψήφιοι αριθμοί-δεκαδες μονάδες-θέση ψηφίου Α- Β τάξη
-Διψήφιοι  αριθμοί-δεκαδες μονάδες-θέση ψηφίου Α- Β τάξη-Διψήφιοι  αριθμοί-δεκαδες μονάδες-θέση ψηφίου Α- Β τάξη
-Διψήφιοι αριθμοί-δεκαδες μονάδες-θέση ψηφίου Α- Β τάξηΟΛΓΑ ΤΣΕΧΕΛΙΔΟΥ
 
ΘΕΣΣΑΛΟΝΙΚΗ Η ΔΕΥΤΕΡΗ ΠΟΛΗ ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΑΥΤΟΚΡΑΤΟΡΙΑΣ, ΔΑΝΑΗ ΠΑΝΟΥ
ΘΕΣΣΑΛΟΝΙΚΗ Η ΔΕΥΤΕΡΗ ΠΟΛΗ ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΑΥΤΟΚΡΑΤΟΡΙΑΣ, ΔΑΝΑΗ ΠΑΝΟΥΘΕΣΣΑΛΟΝΙΚΗ Η ΔΕΥΤΕΡΗ ΠΟΛΗ ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΑΥΤΟΚΡΑΤΟΡΙΑΣ, ΔΑΝΑΗ ΠΑΝΟΥ
ΘΕΣΣΑΛΟΝΙΚΗ Η ΔΕΥΤΕΡΗ ΠΟΛΗ ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΑΥΤΟΚΡΑΤΟΡΙΑΣ, ΔΑΝΑΗ ΠΑΝΟΥIliana Kouvatsou
 
Παρουσίαση δράσεων στην Τεχνόπολη. 2023-2024
Παρουσίαση δράσεων στην Τεχνόπολη. 2023-2024Παρουσίαση δράσεων στην Τεχνόπολη. 2023-2024
Παρουσίαση δράσεων στην Τεχνόπολη. 2023-2024Tassos Karampinis
 
ΔΙΑΣΗΜΕΣ ΒΥΖΑΝΤΙΝΕΣ ΠΡΙΓΚΙΠΙΣΣΕΣ,ΕΦΗ ΨΑΛΛΙΔΑ
ΔΙΑΣΗΜΕΣ ΒΥΖΑΝΤΙΝΕΣ ΠΡΙΓΚΙΠΙΣΣΕΣ,ΕΦΗ ΨΑΛΛΙΔΑΔΙΑΣΗΜΕΣ ΒΥΖΑΝΤΙΝΕΣ ΠΡΙΓΚΙΠΙΣΣΕΣ,ΕΦΗ ΨΑΛΛΙΔΑ
ΔΙΑΣΗΜΕΣ ΒΥΖΑΝΤΙΝΕΣ ΠΡΙΓΚΙΠΙΣΣΕΣ,ΕΦΗ ΨΑΛΛΙΔΑIliana Kouvatsou
 
Σχέσεις στην εφηβεία_έρωτας
Σχέσεις                     στην εφηβεία_έρωταςΣχέσεις                     στην εφηβεία_έρωτας
Σχέσεις στην εφηβεία_έρωταςDimitra Mylonaki
 
Inclusion - Εργασία για τη συμπερίληψη 2ο Γυμνάσιο Αλεξανδρούπολης
Inclusion - Εργασία για τη συμπερίληψη 2ο Γυμνάσιο ΑλεξανδρούποληςInclusion - Εργασία για τη συμπερίληψη 2ο Γυμνάσιο Αλεξανδρούπολης
Inclusion - Εργασία για τη συμπερίληψη 2ο Γυμνάσιο Αλεξανδρούπολης2ο Γυμνάσιο Αλεξ/πολης
 
Safe Driving - Εργασία για την ασφαλή οδήγηση 2ο Γυμνάσιο Αλεξανδρούπολης
Safe Driving - Εργασία για την ασφαλή οδήγηση 2ο Γυμνάσιο ΑλεξανδρούποληςSafe Driving - Εργασία για την ασφαλή οδήγηση 2ο Γυμνάσιο Αλεξανδρούπολης
Safe Driving - Εργασία για την ασφαλή οδήγηση 2ο Γυμνάσιο Αλεξανδρούπολης2ο Γυμνάσιο Αλεξ/πολης
 
ΠΟΤΕ ΑΝΑΚΑΛΥΦΘΗΚΕ Η ΑΜΕΡΙΚΗ,ΦΙΛΩΝ-ΦΡΑΓΚΟΥ
ΠΟΤΕ ΑΝΑΚΑΛΥΦΘΗΚΕ Η ΑΜΕΡΙΚΗ,ΦΙΛΩΝ-ΦΡΑΓΚΟΥΠΟΤΕ ΑΝΑΚΑΛΥΦΘΗΚΕ Η ΑΜΕΡΙΚΗ,ΦΙΛΩΝ-ΦΡΑΓΚΟΥ
ΠΟΤΕ ΑΝΑΚΑΛΥΦΘΗΚΕ Η ΑΜΕΡΙΚΗ,ΦΙΛΩΝ-ΦΡΑΓΚΟΥIliana Kouvatsou
 
ΙΣΤΟΡΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ: ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ 2ο
ΙΣΤΟΡΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ: ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ  ΜΕΡΟΣ 2οΙΣΤΟΡΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ: ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ  ΜΕΡΟΣ 2ο
ΙΣΤΟΡΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ: ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ 2οΧρύσα Παπακωνσταντίνου
 
Ο ΧΡΙΣΤΟΦΟΡΟΣ ΚΟΛΟΜΒΟΣ ΚΑΙ Η ΑΝΑΚΑΛΥΨΗ ΤΗΣ ΑΜΕΡΙΚΗΣ,ΕΙΡΗΝΗ ΝΤΟΥΣΚΑ-ΠΕΝΥ ΖΑΓΓΟ...
Ο ΧΡΙΣΤΟΦΟΡΟΣ ΚΟΛΟΜΒΟΣ ΚΑΙ Η ΑΝΑΚΑΛΥΨΗ ΤΗΣ ΑΜΕΡΙΚΗΣ,ΕΙΡΗΝΗ ΝΤΟΥΣΚΑ-ΠΕΝΥ ΖΑΓΓΟ...Ο ΧΡΙΣΤΟΦΟΡΟΣ ΚΟΛΟΜΒΟΣ ΚΑΙ Η ΑΝΑΚΑΛΥΨΗ ΤΗΣ ΑΜΕΡΙΚΗΣ,ΕΙΡΗΝΗ ΝΤΟΥΣΚΑ-ΠΕΝΥ ΖΑΓΓΟ...
Ο ΧΡΙΣΤΟΦΟΡΟΣ ΚΟΛΟΜΒΟΣ ΚΑΙ Η ΑΝΑΚΑΛΥΨΗ ΤΗΣ ΑΜΕΡΙΚΗΣ,ΕΙΡΗΝΗ ΝΤΟΥΣΚΑ-ΠΕΝΥ ΖΑΓΓΟ...Iliana Kouvatsou
 
Φλωρεντία, ΔΑΝΑΗ ΠΥΡΠΥΡΗ- ΜΑΡΙΑΝΕΛΑ ΣΤΡΟΓΓΥΛΟΥ
Φλωρεντία, ΔΑΝΑΗ ΠΥΡΠΥΡΗ- ΜΑΡΙΑΝΕΛΑ ΣΤΡΟΓΓΥΛΟΥΦλωρεντία, ΔΑΝΑΗ ΠΥΡΠΥΡΗ- ΜΑΡΙΑΝΕΛΑ ΣΤΡΟΓΓΥΛΟΥ
Φλωρεντία, ΔΑΝΑΗ ΠΥΡΠΥΡΗ- ΜΑΡΙΑΝΕΛΑ ΣΤΡΟΓΓΥΛΟΥIliana Kouvatsou
 
Η ΒΙΟΜΗΧΑΝΙΚΗ ΕΠΑΝΑΣΤΑΣΗ,ΜΠΟΗΣ ΧΡΗΣΤΟΣ - ΜΑΓΟΥΛΑΣ ΘΩΜΑΣ
Η ΒΙΟΜΗΧΑΝΙΚΗ ΕΠΑΝΑΣΤΑΣΗ,ΜΠΟΗΣ ΧΡΗΣΤΟΣ - ΜΑΓΟΥΛΑΣ ΘΩΜΑΣΗ ΒΙΟΜΗΧΑΝΙΚΗ ΕΠΑΝΑΣΤΑΣΗ,ΜΠΟΗΣ ΧΡΗΣΤΟΣ - ΜΑΓΟΥΛΑΣ ΘΩΜΑΣ
Η ΒΙΟΜΗΧΑΝΙΚΗ ΕΠΑΝΑΣΤΑΣΗ,ΜΠΟΗΣ ΧΡΗΣΤΟΣ - ΜΑΓΟΥΛΑΣ ΘΩΜΑΣIliana Kouvatsou
 
ΗΡΑΚΛΕΙΟΣ, ΧΑΡΗΣ ΤΑΣΙΟΥΔΗΣ-ΓΙΩΡΓΟΣ ΤΖΑΝΗΣ
ΗΡΑΚΛΕΙΟΣ, ΧΑΡΗΣ ΤΑΣΙΟΥΔΗΣ-ΓΙΩΡΓΟΣ ΤΖΑΝΗΣΗΡΑΚΛΕΙΟΣ, ΧΑΡΗΣ ΤΑΣΙΟΥΔΗΣ-ΓΙΩΡΓΟΣ ΤΖΑΝΗΣ
ΗΡΑΚΛΕΙΟΣ, ΧΑΡΗΣ ΤΑΣΙΟΥΔΗΣ-ΓΙΩΡΓΟΣ ΤΖΑΝΗΣIliana Kouvatsou
 
Βενετία, μια πόλη πάνω στο νερό, Βασιλική Μπράβου - Αποστολία Μπάρδα
Βενετία, μια πόλη πάνω στο νερό, Βασιλική Μπράβου - Αποστολία ΜπάρδαΒενετία, μια πόλη πάνω στο νερό, Βασιλική Μπράβου - Αποστολία Μπάρδα
Βενετία, μια πόλη πάνω στο νερό, Βασιλική Μπράβου - Αποστολία ΜπάρδαIliana Kouvatsou
 
Η ΚΩΝΣΤΑΝΤΙΝΟΥΠΟΛΗ, ΣΤΑΥΡΟΥΛΑ ΜΠΕΚΙΑΡΗ
Η ΚΩΝΣΤΑΝΤΙΝΟΥΠΟΛΗ,  ΣΤΑΥΡΟΥΛΑ  ΜΠΕΚΙΑΡΗΗ ΚΩΝΣΤΑΝΤΙΝΟΥΠΟΛΗ,  ΣΤΑΥΡΟΥΛΑ  ΜΠΕΚΙΑΡΗ
Η ΚΩΝΣΤΑΝΤΙΝΟΥΠΟΛΗ, ΣΤΑΥΡΟΥΛΑ ΜΠΕΚΙΑΡΗIliana Kouvatsou
 
Παρουσίαση θεατρικού στην Τεχνόπολη. 2023-2024
Παρουσίαση θεατρικού στην Τεχνόπολη. 2023-2024Παρουσίαση θεατρικού στην Τεχνόπολη. 2023-2024
Παρουσίαση θεατρικού στην Τεχνόπολη. 2023-2024Tassos Karampinis
 
Μάχη του Πουατιέ,ΧΡΥΣΑΝΘΟΣ ΚΑΙ ΧΡΥΣΑ ΟΠΡΙΝΕΣΚΟΥ
Μάχη του Πουατιέ,ΧΡΥΣΑΝΘΟΣ ΚΑΙ ΧΡΥΣΑ ΟΠΡΙΝΕΣΚΟΥΜάχη του Πουατιέ,ΧΡΥΣΑΝΘΟΣ ΚΑΙ ΧΡΥΣΑ ΟΠΡΙΝΕΣΚΟΥ
Μάχη του Πουατιέ,ΧΡΥΣΑΝΘΟΣ ΚΑΙ ΧΡΥΣΑ ΟΠΡΙΝΕΣΚΟΥIliana Kouvatsou
 

Último (20)

ΑΝΑΓΕΝΝΗΣΗ, ΕΙΡΗΝΗ ΓΚΑΒΛΟΥ- ΜΑΙΡΗ ΔΗΜΑΚΟΠΟΥΛΟΥ
ΑΝΑΓΕΝΝΗΣΗ, ΕΙΡΗΝΗ ΓΚΑΒΛΟΥ- ΜΑΙΡΗ ΔΗΜΑΚΟΠΟΥΛΟΥ ΑΝΑΓΕΝΝΗΣΗ, ΕΙΡΗΝΗ ΓΚΑΒΛΟΥ- ΜΑΙΡΗ ΔΗΜΑΚΟΠΟΥΛΟΥ
ΑΝΑΓΕΝΝΗΣΗ, ΕΙΡΗΝΗ ΓΚΑΒΛΟΥ- ΜΑΙΡΗ ΔΗΜΑΚΟΠΟΥΛΟΥ
 
ΒΥΖΑΝΤΙΝΗ ΚΟΥΖΙΝΑ ΚΑΙ ΜΟΔΑ, ΕΛΕΑΝΑ ΣΤΑΥΡΟΠΟΥΛΟΥ.pptx
ΒΥΖΑΝΤΙΝΗ ΚΟΥΖΙΝΑ ΚΑΙ ΜΟΔΑ, ΕΛΕΑΝΑ ΣΤΑΥΡΟΠΟΥΛΟΥ.pptxΒΥΖΑΝΤΙΝΗ ΚΟΥΖΙΝΑ ΚΑΙ ΜΟΔΑ, ΕΛΕΑΝΑ ΣΤΑΥΡΟΠΟΥΛΟΥ.pptx
ΒΥΖΑΝΤΙΝΗ ΚΟΥΖΙΝΑ ΚΑΙ ΜΟΔΑ, ΕΛΕΑΝΑ ΣΤΑΥΡΟΠΟΥΛΟΥ.pptx
 
-Διψήφιοι αριθμοί-δεκαδες μονάδες-θέση ψηφίου Α- Β τάξη
-Διψήφιοι  αριθμοί-δεκαδες μονάδες-θέση ψηφίου Α- Β τάξη-Διψήφιοι  αριθμοί-δεκαδες μονάδες-θέση ψηφίου Α- Β τάξη
-Διψήφιοι αριθμοί-δεκαδες μονάδες-θέση ψηφίου Α- Β τάξη
 
ΘΕΣΣΑΛΟΝΙΚΗ Η ΔΕΥΤΕΡΗ ΠΟΛΗ ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΑΥΤΟΚΡΑΤΟΡΙΑΣ, ΔΑΝΑΗ ΠΑΝΟΥ
ΘΕΣΣΑΛΟΝΙΚΗ Η ΔΕΥΤΕΡΗ ΠΟΛΗ ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΑΥΤΟΚΡΑΤΟΡΙΑΣ, ΔΑΝΑΗ ΠΑΝΟΥΘΕΣΣΑΛΟΝΙΚΗ Η ΔΕΥΤΕΡΗ ΠΟΛΗ ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΑΥΤΟΚΡΑΤΟΡΙΑΣ, ΔΑΝΑΗ ΠΑΝΟΥ
ΘΕΣΣΑΛΟΝΙΚΗ Η ΔΕΥΤΕΡΗ ΠΟΛΗ ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΑΥΤΟΚΡΑΤΟΡΙΑΣ, ΔΑΝΑΗ ΠΑΝΟΥ
 
Παρουσίαση δράσεων στην Τεχνόπολη. 2023-2024
Παρουσίαση δράσεων στην Τεχνόπολη. 2023-2024Παρουσίαση δράσεων στην Τεχνόπολη. 2023-2024
Παρουσίαση δράσεων στην Τεχνόπολη. 2023-2024
 
ΔΙΑΣΗΜΕΣ ΒΥΖΑΝΤΙΝΕΣ ΠΡΙΓΚΙΠΙΣΣΕΣ,ΕΦΗ ΨΑΛΛΙΔΑ
ΔΙΑΣΗΜΕΣ ΒΥΖΑΝΤΙΝΕΣ ΠΡΙΓΚΙΠΙΣΣΕΣ,ΕΦΗ ΨΑΛΛΙΔΑΔΙΑΣΗΜΕΣ ΒΥΖΑΝΤΙΝΕΣ ΠΡΙΓΚΙΠΙΣΣΕΣ,ΕΦΗ ΨΑΛΛΙΔΑ
ΔΙΑΣΗΜΕΣ ΒΥΖΑΝΤΙΝΕΣ ΠΡΙΓΚΙΠΙΣΣΕΣ,ΕΦΗ ΨΑΛΛΙΔΑ
 
Σχέσεις στην εφηβεία_έρωτας
Σχέσεις                     στην εφηβεία_έρωταςΣχέσεις                     στην εφηβεία_έρωτας
Σχέσεις στην εφηβεία_έρωτας
 
Inclusion - Εργασία για τη συμπερίληψη 2ο Γυμνάσιο Αλεξανδρούπολης
Inclusion - Εργασία για τη συμπερίληψη 2ο Γυμνάσιο ΑλεξανδρούποληςInclusion - Εργασία για τη συμπερίληψη 2ο Γυμνάσιο Αλεξανδρούπολης
Inclusion - Εργασία για τη συμπερίληψη 2ο Γυμνάσιο Αλεξανδρούπολης
 
Safe Driving - Εργασία για την ασφαλή οδήγηση 2ο Γυμνάσιο Αλεξανδρούπολης
Safe Driving - Εργασία για την ασφαλή οδήγηση 2ο Γυμνάσιο ΑλεξανδρούποληςSafe Driving - Εργασία για την ασφαλή οδήγηση 2ο Γυμνάσιο Αλεξανδρούπολης
Safe Driving - Εργασία για την ασφαλή οδήγηση 2ο Γυμνάσιο Αλεξανδρούπολης
 
ΠΟΤΕ ΑΝΑΚΑΛΥΦΘΗΚΕ Η ΑΜΕΡΙΚΗ,ΦΙΛΩΝ-ΦΡΑΓΚΟΥ
ΠΟΤΕ ΑΝΑΚΑΛΥΦΘΗΚΕ Η ΑΜΕΡΙΚΗ,ΦΙΛΩΝ-ΦΡΑΓΚΟΥΠΟΤΕ ΑΝΑΚΑΛΥΦΘΗΚΕ Η ΑΜΕΡΙΚΗ,ΦΙΛΩΝ-ΦΡΑΓΚΟΥ
ΠΟΤΕ ΑΝΑΚΑΛΥΦΘΗΚΕ Η ΑΜΕΡΙΚΗ,ΦΙΛΩΝ-ΦΡΑΓΚΟΥ
 
ΙΣΤΟΡΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ: ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ 2ο
ΙΣΤΟΡΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ: ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ  ΜΕΡΟΣ 2οΙΣΤΟΡΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ: ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ  ΜΕΡΟΣ 2ο
ΙΣΤΟΡΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ: ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ 2ο
 
Ο ΧΡΙΣΤΟΦΟΡΟΣ ΚΟΛΟΜΒΟΣ ΚΑΙ Η ΑΝΑΚΑΛΥΨΗ ΤΗΣ ΑΜΕΡΙΚΗΣ,ΕΙΡΗΝΗ ΝΤΟΥΣΚΑ-ΠΕΝΥ ΖΑΓΓΟ...
Ο ΧΡΙΣΤΟΦΟΡΟΣ ΚΟΛΟΜΒΟΣ ΚΑΙ Η ΑΝΑΚΑΛΥΨΗ ΤΗΣ ΑΜΕΡΙΚΗΣ,ΕΙΡΗΝΗ ΝΤΟΥΣΚΑ-ΠΕΝΥ ΖΑΓΓΟ...Ο ΧΡΙΣΤΟΦΟΡΟΣ ΚΟΛΟΜΒΟΣ ΚΑΙ Η ΑΝΑΚΑΛΥΨΗ ΤΗΣ ΑΜΕΡΙΚΗΣ,ΕΙΡΗΝΗ ΝΤΟΥΣΚΑ-ΠΕΝΥ ΖΑΓΓΟ...
Ο ΧΡΙΣΤΟΦΟΡΟΣ ΚΟΛΟΜΒΟΣ ΚΑΙ Η ΑΝΑΚΑΛΥΨΗ ΤΗΣ ΑΜΕΡΙΚΗΣ,ΕΙΡΗΝΗ ΝΤΟΥΣΚΑ-ΠΕΝΥ ΖΑΓΓΟ...
 
Φλωρεντία, ΔΑΝΑΗ ΠΥΡΠΥΡΗ- ΜΑΡΙΑΝΕΛΑ ΣΤΡΟΓΓΥΛΟΥ
Φλωρεντία, ΔΑΝΑΗ ΠΥΡΠΥΡΗ- ΜΑΡΙΑΝΕΛΑ ΣΤΡΟΓΓΥΛΟΥΦλωρεντία, ΔΑΝΑΗ ΠΥΡΠΥΡΗ- ΜΑΡΙΑΝΕΛΑ ΣΤΡΟΓΓΥΛΟΥ
Φλωρεντία, ΔΑΝΑΗ ΠΥΡΠΥΡΗ- ΜΑΡΙΑΝΕΛΑ ΣΤΡΟΓΓΥΛΟΥ
 
Ναυμαχία της Ναυαρίνου 20 Οκτωβρίου 1827
Ναυμαχία της Ναυαρίνου 20 Οκτωβρίου 1827Ναυμαχία της Ναυαρίνου 20 Οκτωβρίου 1827
Ναυμαχία της Ναυαρίνου 20 Οκτωβρίου 1827
 
Η ΒΙΟΜΗΧΑΝΙΚΗ ΕΠΑΝΑΣΤΑΣΗ,ΜΠΟΗΣ ΧΡΗΣΤΟΣ - ΜΑΓΟΥΛΑΣ ΘΩΜΑΣ
Η ΒΙΟΜΗΧΑΝΙΚΗ ΕΠΑΝΑΣΤΑΣΗ,ΜΠΟΗΣ ΧΡΗΣΤΟΣ - ΜΑΓΟΥΛΑΣ ΘΩΜΑΣΗ ΒΙΟΜΗΧΑΝΙΚΗ ΕΠΑΝΑΣΤΑΣΗ,ΜΠΟΗΣ ΧΡΗΣΤΟΣ - ΜΑΓΟΥΛΑΣ ΘΩΜΑΣ
Η ΒΙΟΜΗΧΑΝΙΚΗ ΕΠΑΝΑΣΤΑΣΗ,ΜΠΟΗΣ ΧΡΗΣΤΟΣ - ΜΑΓΟΥΛΑΣ ΘΩΜΑΣ
 
ΗΡΑΚΛΕΙΟΣ, ΧΑΡΗΣ ΤΑΣΙΟΥΔΗΣ-ΓΙΩΡΓΟΣ ΤΖΑΝΗΣ
ΗΡΑΚΛΕΙΟΣ, ΧΑΡΗΣ ΤΑΣΙΟΥΔΗΣ-ΓΙΩΡΓΟΣ ΤΖΑΝΗΣΗΡΑΚΛΕΙΟΣ, ΧΑΡΗΣ ΤΑΣΙΟΥΔΗΣ-ΓΙΩΡΓΟΣ ΤΖΑΝΗΣ
ΗΡΑΚΛΕΙΟΣ, ΧΑΡΗΣ ΤΑΣΙΟΥΔΗΣ-ΓΙΩΡΓΟΣ ΤΖΑΝΗΣ
 
Βενετία, μια πόλη πάνω στο νερό, Βασιλική Μπράβου - Αποστολία Μπάρδα
Βενετία, μια πόλη πάνω στο νερό, Βασιλική Μπράβου - Αποστολία ΜπάρδαΒενετία, μια πόλη πάνω στο νερό, Βασιλική Μπράβου - Αποστολία Μπάρδα
Βενετία, μια πόλη πάνω στο νερό, Βασιλική Μπράβου - Αποστολία Μπάρδα
 
Η ΚΩΝΣΤΑΝΤΙΝΟΥΠΟΛΗ, ΣΤΑΥΡΟΥΛΑ ΜΠΕΚΙΑΡΗ
Η ΚΩΝΣΤΑΝΤΙΝΟΥΠΟΛΗ,  ΣΤΑΥΡΟΥΛΑ  ΜΠΕΚΙΑΡΗΗ ΚΩΝΣΤΑΝΤΙΝΟΥΠΟΛΗ,  ΣΤΑΥΡΟΥΛΑ  ΜΠΕΚΙΑΡΗ
Η ΚΩΝΣΤΑΝΤΙΝΟΥΠΟΛΗ, ΣΤΑΥΡΟΥΛΑ ΜΠΕΚΙΑΡΗ
 
Παρουσίαση θεατρικού στην Τεχνόπολη. 2023-2024
Παρουσίαση θεατρικού στην Τεχνόπολη. 2023-2024Παρουσίαση θεατρικού στην Τεχνόπολη. 2023-2024
Παρουσίαση θεατρικού στην Τεχνόπολη. 2023-2024
 
Μάχη του Πουατιέ,ΧΡΥΣΑΝΘΟΣ ΚΑΙ ΧΡΥΣΑ ΟΠΡΙΝΕΣΚΟΥ
Μάχη του Πουατιέ,ΧΡΥΣΑΝΘΟΣ ΚΑΙ ΧΡΥΣΑ ΟΠΡΙΝΕΣΚΟΥΜάχη του Πουατιέ,ΧΡΥΣΑΝΘΟΣ ΚΑΙ ΧΡΥΣΑ ΟΠΡΙΝΕΣΚΟΥ
Μάχη του Πουατιέ,ΧΡΥΣΑΝΘΟΣ ΚΑΙ ΧΡΥΣΑ ΟΠΡΙΝΕΣΚΟΥ
 

Επανάληψη στη Γ Λυκείου Ο.Π (σελίδες 107)

  • 1. ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ ΕΠΑΝΑΛΗΧΗ ΢ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο.Π. Γ΄ ΛΤΚΕΙΟΤ ΑΝΑΛΤΣΙΚΗ ΘΕΨΡΙΑ – ΘΕΨΡΗΜΑΣΑ ΜΕ ΑΠΟΔΕΙΞΕΙ΢ ΕΡΨΣΗ΢ΕΙ΢ & Α΢ΚΗ΢ΕΙ΢ ΑΞΙΟΛΟΓΗ΢Η΢ ΘΕΜΑΣΑ ΕΞΕΣΑ΢ΕΨΝ - ΠΡΟΣΕΙΝΟΜΕΝΑ ΘΕΜΑΣΑ ΜΕΘΟΔΟΛΟΓΙΑ - ΠΑΡΑΣΗΡΗ΢ΕΙ΢ ΜΑΡΣΙΟ΢ 2018 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 1 of 107
  • 2. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 2 Οι παρακάτω ςημειώςεισ βαςίςτηκαν ςτη θεωρία του ςχολικού βιβλίου, ςτα έντυπα του Κ.Ε.Ε. (1999 – 2001) και ςτη θεματοδοςία των Πανελλαδικών Εξετάςεων ςτα Μαθηματικά Κατεύθυνςησ τησ Γ΄ Λυκείου. Στισ επόμενεσ ςελίδεσ έγινε προςπάθεια για την - όςο το δυνατό, πιο προςεκτική - επιλογή και ταξινόμηςη των ερωτήςεων αξιολόγηςησ και των αςκήςεων ανάπτυξησ του Κ.Ε.Ε., για την καλύτερη κατανόηςη των βαςικών εννοιών τησ εξεταςτέασ ύλησ. Τα θέματα αξιολόγηςησ και κατανόηςησ τησ θεωρίασ ςυμπληρώνονται από επιλεγμένα θέματα Πανελλαδικών και Πανελληνίων εξετάςεων (κατευθύνςεων και δεςμών) παλαιοτέρων ετών, καθώσ και από επαναληπτικά προτεινόμενα θέματα (ςύμφωνα με την νέα εξεταςτέα ύλη 2017 – 2018), που αντλήθηκαν από την υπάρχουςα βιβλιογραφία και προςωπικέσ ςημειώςεισ. Ελπίζω αυτή η προςπάθεια να αποτελέςει ένα ακόμη χρήςιμο βοήθημα ςτα χέρια των ςυναδέλφων και των μαθητών τουσ, ςτουσ οποίουσ εύχομαι κάθε επιτυχία ςτισ επερχόμενεσ εξετάςεισ. Βαςίλησ Θ. Καραγεώργοσ Καθηγητήσ ΠΕ-03 ΓΕΛ Λιβανατών Υθ/δασ e-mail : bkarag@gmail.com 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 2 of 107
  • 3. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 3 ΠΕΡΙΕΦΟΜΕΝΑ Α) ΘΕΨΡΙΑ 1. Οριςμοί Εννοιών – Θεωρήματα (χωρίσ αποδείξεισ) – Γεωμετρικέσ Ερμηνείεσ 4 2. Θεωρήματα με Αποδείξεισ 21 3. Φρήςιμεσ Προτάςεισ και Παρατηρήςεισ 28 Β) ΕΡΨΣΗ΢ΕΙ΢ ΑΞΙΟΛΟΓΗ΢Η΢ - Α΢ΚΗ΢ΕΙ΢ – ΘΕΜΑΣΑ 1. Πραγματικέσ ΢υναρτήςεισ Πρϊξεισ – Μονοτονύα – Αντύςτροφη ΢υνϊρτηςη 30 2. Όρια – ΢υνέχεια ΢υνάρτηςησ – ΢υνέχεια ςε Κλειςτό Διάςτημα (Θ. Bolzano) 38 3. Διαφορικόσ Λογιςμόσ Ι Παρϊγωγοσ ςε ςημεύο – Παρϊγωγοσ ΢υνϊρτηςησ – Κανόνεσ Παραγώγιςησ – Εφαπτομϋνη Καμπύλησ – Ρυθμόσ Μεταβολόσ 46 4. Διαφορικόσ Λογιςμόσ ΙΙ Θ. Rolle – Θεώρημα Μϋςησ Σιμόσ – ΢υνϋπειεσ ΘΜΣ (΢ταθερό ΢υνϊρτηςη – Μονοτονύα ΢υνϊρτηςησ) – Θ. Fermat – Ακρότατα ΢υνϊρτηςησ – Κυρτότητα και ΢ημεύα Καμπόσ – Αςύμπτωτεσ - Κανόνεσ De L’Hospital – Μελϋτη ΢υνϊρτηςησ 54 5. Ολοκληρωτικόσ Λογιςμόσ Αρχικό ΢υνϊρτηςη – Οριςμϋνο Ολοκλόρωμα – Μϋθοδοι Τπολογιςμού Οριςμϋνου Ολοκληρώματοσ – Εμβαδόν Επιπϋδου Φωρύου 73 Γ) ΕΡΨΣΗ΢ΕΙ΢ ΢ωςτού - Λάθουσ ΠΑΝΕΛΛΑΔΙΚΨΝ ΕΞΕΣΑ΢ΕΨΝ 2000 – 2015 87 Δ) ΓΕΝΙΚΑ ΘΕΜΑΣΑ ΕΞΕΣΑ΢ΕΨΝ & ΠΡΟΣΕΙΝΟΜΕΝΑ 93 Ε) ΜΕΘΟΔΟΛΟΓΙΑ – ΢Τ΢ΣΗΜΑΣΟΠΟΙΗ΢Η 103 Ε) ΒΙΒΛΙΟΓΡΑΥΙΑ – ΠΗΓΕ΢ 107 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 3 of 107
  • 4. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 4  ΟΡΙ΢ΜΟΙ ΕΝΝΟΙΨΝ – ΘΕΨΡΗΜΑΣΑ (χωρίσ αποδείξεισ) και ΓΕΨΜΕΣΡΙΚΕ΢ ΕΡΜΗΝΕΙΕ΢ ΠΡΑΓΜΑΣΙΚΕ΢ ΢ΤΝΑΡΣΗ΢ΕΙ΢ – ΟΡΙΟ ΚΑΙ ΢ΤΝΕΦΕΙΑ ΢ΤΝΑΡΣΗ΢Η΢ 1. Σι ονομάζεται πραγματική ςυνάρτηςη ; Έςτω Α ϋνα υποςύνολο του ΙR, τότε πραγματική ςυνάρτηςη με πεδίο οριςμού το Α, ονομϊζουμε μια διαδικαςύα f , με την οπούα κϊθε ςτοιχεύο Ax αντιςτοιχύζεται ςε ϋνα μόνο πραγματικό αριθμό y. Σο y ονομϊζεται τιμή τησ f ςτο x και ςυμβολύζεται με )(xf . 2. Σι ονομάζεται ςύνολο τιμών μιασ ςυνάρτηςησ ; Σο ςύνολο που ϋχει για ςτοιχεύα του τισ τιμϋσ τησ f ςε όλα τα x A , λϋγεται ςύνολο τιμών τησ f και ςυμβολύζεται με )(Af . Εύναι δηλαδό: f(A) {y|y f(x) , x A} .  ΠΡΟ΢ΟΦΗ Όταν λϋμε ότι “Η ςυνάρτηςη f είναι οριςμένη ς’ ένα ςύνολο Β”, εννοούμε ότι το Β εύναι υποςύνολο του πεδύου οριςμού τησ. ΢την περύπτωςη αυτό με f(B) θα ςυμβολύζουμε το ςύνολο των τιμών τησ f για κϊθε x B . Εύναι δηλαδό: f(B) {y|y f(x) , x B} . 3. Σι είναι η ςυντομογραφία μιασ ςυνάρτηςησ; Για να οριςτεύ μια ςυνϊρτηςη, f αρκεύ να δοθούν δύο ςτοιχεύα: το πεδύο οριςμού τησ και η τιμό τησ, )(xf , για κϊθε x του πεδύου οριςμού τησ. ΢υνόθωσ, όμωσ, αναφερόμαςτε ςε μια ςυνϊρτηςη f δύνοντασ μόνο τον τύπο με τον οπούο εκφρϊζεται το )(xf . Σότε θ ε ω ρ ο ύ μ ε ς υ μ β α τ ι κ ά ότι το πεδύο οριςμού τησ f εύναι το ςύνολο όλων των πραγματικών αριθμών x, για τουσ οπούουσ το )(xf ϋχει νόημα. 4. Σι ονομάζεται γραφική παράςταςη ςυνάρτηςησ; Έςτω f ςυνϊρτηςη με πεδύο οριςμού Α και Oxy ϋνα ςύςτημα ςυντεταγμϋνων ςτο επύπεδο. Σο ςύνολο των ςημεύων ),( yxM του επιπϋδου, για τα οπούα ιςχύει )(xfy , δηλαδό το ςύνολο των ςημεύων ))(,( xfxM , Ax , λϋγεται γραφική παράςταςη τησ f και ςυμβολύζεται με fC . 5. Πωσ βρίςκουμε το πεδίο οριςμού Α, το ςύνολο τιμών f(A) και την τιμή τησ f ςτο 0 x A όταν δίνεται η γραφική παράςταςη Cf μιασ ςυνάρτηςησ f. α) Σο πεδύο οριςμού τησ f εύναι το ςύνολο Α των τετμημϋνων των ςημεύων τησ fC . β) Σο ςύνολο τιμών τησ f εύναι το ςύνολο )(Af των τεταγμϋνων των ςημεύων τησ fC . γ) Η τιμό τησ f ςτο Ax0 εύναι η τεταγμϋνη του ςημεύου τομόσ τησ ευθεύασ 0xx και τησ fC . Cf O y x (α) Α Cf O y x (β) f(Α) Cf O x=x0 A(x0,f(x0)) x0 y x (γ) f(x0) 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 4 of 107
  • 5. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 5 6. Πωσ βρίςκουμε τισ γραφικέσ παραςτάςεισ των ςυναρτήςεων -f και |f | όταν δίνεται η γραφική παράςταςη Cf, μιασ ςυνάρτηςησ f. α) Η γραφικό παρϊςταςησ τησ ςυνϊρτηςησ f εύναι ςυμμετρικό, ωσ προσ τον ϊξονα x x , τησ γραφικόσ παρϊςταςησ τησ f, γιατύ αποτελεύται από τα ςημεύα M (x, f(x)) που εύναι ςυμμετρικϊ των M(x,f(x)) , ωσ προσ τον ϊξονα x x . β) Η γραφικό παρϊςταςη τησ || f αποτελεύται από τα τμόματα τησ fC που βρύςκονται πϊνω από τον ϊξονα x x και από τα ςυμμετρικϊ, ωσ προσ τον ϊξονα x x , των τμημϊτων τησ fC που βρύςκονται κϊτω από τον ϊξονα αυτόν. 7. Πότε δυο ςυναρτήςεισ λέγονται ίςεσ; Δύο ςυναρτόςεισ f και g λϋγονται ίςεσ όταν: i) ϋχουν το ύδιο πεδύο οριςμού Α και ii) για κϊθε Ax ιςχύει )()( xgxf .  ΢ΦΟΛΙΑ Έςτω f, g δύο ςυναρτόςεισ με πεδύα οριςμού Α, Β αντι- ςτούχωσ και Γ ϋνα υποςύνολο των Α και Β. Αν για κϊθε Γx ιςχύει )()( xgxf , τότε λϋμε ότι οι ςυναρτόςεισ f και g είναι ίςεσ ςτο ςύνολο Γ. 8. Πωσ ορίζονται οι πράξεισ μεταξύ ςυναρτήςεων ; Ορύζουμε ωσ ϊθροιςμα, διαφορϊ, γινόμενο και πηλύκο, αντύςτοιχα, δύο ςυναρτόςεων f, g τισ ςυναρτόςεισ με τύπουσ: (f g)(x) f(x) g(x) , (f g)(x) f(x) g(x) , (fg)(x) f(x)g(x) , f f(x) (x) g g(x) . Σο πεδύο οριςμού των gf , gf και fg εύναι η τομό A B των πεδύων οριςμού Α και Β των ςυναρτόςεων f και g αντιςτούχωσ, ενώ το πεδύο οριςμού τησ g f εύναι το ςύνολο Δ= Axx |{ και Bx , με }0)(xg . 9. Σι ονομάζεται ςύνθεςη ςυναρτήςεων ; Αν f, g εύναι δύο ςυναρτόςεισ με πεδύο οριςμού Α, Β αντιςτούχωσ, τότε ονομϊζουμε ςύνθεςη τησ f με την g, και τη ςυμβολύζουμε με gof , τη ςυνϊρτηςη με τύπο: (gof)(x) g(f(x)). Σο πεδύο οριςμού τησ gof αποτελεύται από όλα τα ςτοιχεύα x του πεδύου οριςμού τησ f για τα οπούα το ( )f x ανόκει ςτο πεδύο οριςμού τησ g. Δηλαδό εύναι το ςύνολο 1 { | ( ) }A x A f x B . Εύναι φανερό ότι η gof ορύζεται αν 1A , δηλαδό αν f(A) B . 10. Πότε μια ςυνάρτηςη λέγεται γνηςίωσ αύξουςα και πότε γνηςίωσ φθίνουςα ςε ένα διάςτημα Δ του πεδίου οριςμού τησ; Μια ςυνϊρτηςη f λϋγεται : γνηςίωσ αύξουςα ς’ ϋνα διάςτημα Δ του πεδύου οριςμού τησ, όταν για οποιαδόποτε Γxx 21 , με 21 xx ιςχύει: )()( 21 xfxf . γνηςίωσ φθίνουςα ς’ ϋνα διάςτημα Δ του πεδύου οριςμού τησ, όταν για οποιαδόποτε Γxx 21 , με 21 xx ιςχύει: )()( 21 xfxf . O y x Μ΄(x, f (x)) y=f (x) y= f (x) Μ(x,f (x)) O y x y=f (x)y=| f (x)| g f g(B)A g Bf(A) f A1 g( f(x)) f(x) x  x y Ο Γ A B 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 5 of 107
  • 6. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 6 Αν μια ςυνϊρτηςη f εύναι γνηςύωσ αύξουςα ό γνηςύωσ φθύνουςα ς’ ϋνα διϊςτημα Δ του πεδύου οριςμού τησ, τότε λϋμε ότι η f εύναι γνηςίωσ μονότονη ςτο Δ. 11. Πότε μια ςυνάρτηςη παρουςιάζει μέγιςτο και πότε ελάχιςτο ; Μια ςυνϊρτηςη f με πεδύο οριςμού Α θα λϋμε ότι: Παρουςιϊζει ςτο Ax0 (ολικό) μέγιςτο, το )( 0xf , όταν )()( 0xfxf για κϊθε Ax . Παρουςιϊζει ςτο Ax0 (ολικό) ελάχιςτο, το )( 0xf , όταν )()( 0xfxf για κϊθε Ax . Σο (ολικό) μϋγιςτο και το (ολικό) ελϊχιςτο μιασ ςυνϊρτηςησ f λϋγονται (ολικϊ) ακρότατα τησ f. 12. Πότε μια ςυνάρτηςη λέγεται 1-1; Μια ςυνϊρτηςη :f A R λϋγεται ςυνάρτηςη 11 , όταν για οποιαδόποτε Axx 21 , ιςχύει η ςυνεπαγωγό: αν 21 xx , τότε )()( 21 xfxf . Με απαγωγή ςε άτοπο προκύπτει: Μια ςυνϊρτηςη :f A R εύναι ςυνάρτηςη 11 , αν και μόνο αν για οποιαδόποτε Axx 21 , ιςχύει : αν )()( 21 xfxf , τότε 21 xx .  ΢ΦΟΛΙΑ Από τον παραπϊνω οριςμό προκύπτει ότι μια ςυνάρτηςη f είναι 11 , αν και μόνο αν: — Για κάθε ςτοιχείο y του ςυνόλου τιμών τησ η εξίςωςη yxf )( έχει ακριβώσ μια λύςη ωσ προσ x. — Δεν υπάρχουν ςημεία τησ γραφικήσ τησ παράςταςησ με την ίδια τεταγμένη. Αυτό ςημαύνει ότι κϊθε οριζόντια ευθεύα τϋμνει τη γραφικό παρϊςταςη τησ f το πολύ ςε ϋνα ςημεύο (΢χ.β). x y συνάρτηση 1-1 O α O x2x1 BA x y συνάρτηση όχι 1-1 β O x y y=g(x) γ Αν μια ςυνάρτηςη είναι γνηςίωσ μονότονη, τότε προφανώσ, είναι ςυνάρτηςη "11" . Έτςι, οι ςυναρτόςεισ βαxxf )(1 , 0α , 3 2 )( αxxf , 0α , x αxf )(3 , 10 α και xxf αlog)(4 , 10 α , εύναι ςυναρτόςεισ 11 . Τπϊρχουν, όμωσ, ςυναρτόςεισ που εύναι 11 αλλϊ δεν εύναι γνηςύωσ μονότονεσ, όπωσ για παρϊδειγμα η ςυνϊρτηςη 0, 1 0, )( x x xx xg (΢χ.γ). 13. Σι ονομάζεται αντίςτροφη ςυνάρτηςη; Έςτω μια 11 ςυνϊρτηςη :f A R. Tότε για κϊθε ςτοιχεύο y του ςυνόλου τιμών )(Af , τησ f υπϊρχει μοναδικό ςτοιχεύο x του πεδύου οριςμού τησ Α για το οπούο ιςχύει yxf )( . Επομϋνωσ ορύζεται μια ςυνϊρτηςη : ( )g f A R με την οπούα κϊθε )(Afy αντιςτοιχύζεται ςτο μοναδικό Ax για το οπούο ιςχύει yxf )( . H ςυνϊρτηςη g λϋγεται αντίςτροφη ςυνάρτηςη τησ f και ςυμβολύζεται με 1 f . Επομϋνωσ ϋχουμε xyfyxf )()( 1 , οπότε: Axxxff ,))((1 και )(,))(( 1 Afyyyff . 14. Σι γνωρίζετε για τισ γραφικέσ παραςτάςεισ των ςυναρτήςεων f και f-1; Οι γραφικϋσ παραςτϊςεισ C και C των ςυναρτόςεων f και 1 f εύναι ςυμμετρικϋσ ωσ προσ την ευθεύα y x που διχοτομεύ τισ γωνύεσ xOy και x Oy . y=x C΄ C O x M΄(β,α) M(α,β) y 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 6 of 107
  • 7. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 7 15. Γιατί οι γραφικέσ παραςτάςεισ C και C΄ των ςυναρτήςεων f και f-1 είναι ςυμμετρικέσ ωσ προσ την ευθεία y=x που διχοτομεί τισ γωνίεσ ˆxOy και ˆx΄Oy΄ . Ασ πϊρουμε μια 1-1 ςυνϊρτηςη f και ασ θεωρόςουμε τισ γραφικϋσ παραςτϊςεισ C και C΄ των f και τησ 1 f ςτο ύδιο ςύςτημα αξόνων. Επειδό 1 ( ) ( )f x y f y x , αν ϋνα ςημεύο ( , )M ανόκει ςτη γραφικό παρϊςταςη C τησ f , τότε το ςημεύο ( , ) θα ανόκει ςτη γραφικό παρϊςταςη C΄ τησ 1 f και αντιςτρόφωσ. Σα ςημεύα, όμωσ, αυτϊ εύναι ςυμμετρικϊ ωσ προσ την ευθεύα που διχοτομεύ τισ γωνύεσ ˆxOy και ˆx Oy . Επομϋνωσ: Οι γραφικέσ παραςτάςεισ C και C΄ των ςυναρτήςεων f και 1 f είναι ςυμμετρικέσ ωσ προσ την ευθεία y x που διχοτομεί τισ γωνίεσ ˆxOy και ˆx Oy . 16. Ποια είναι η έννοια του ορίου; Όταν οι τιμϋσ μιασ ςυνϊρτηςησ f προςεγγύζουν όςο θϋλουμε ϋναν πραγματικό αριθμό , καθώσ το x προςεγγύζει με οποιονδόποτε τρόπο τον αριθμό x0 , τότε ςυμβολύζουμε : )(lim 0 xf xx και διαβϊζουμε: “το όριο τησ f , όταν το x τεύνει ςτο x0, εύναι ” ό “το όριο τησ f ςτο x0 εύναι ”. f(x) f(x) f x( )0  (a) O x0 xx x y f(x0) (β) f(x) f(x) O x0  xx x y (γ) f(x) f(x) O x0  xx x y  ΢ΦΟΛΙΟ Για να αναζητόςουμε το όριο τησ f ςτο 0x , πρϋπει η f να ορύζεται “κοντϊ ςτο 0x ”, δηλαδό η f να εύναι οριςμϋνη τουλϊχιςτον ςε ϋνα ςύνολο τησ μορφόσ: ),(),( 00 βxxα ό ),( 0xα ό ),( 0 βx . 17. Ποιεσ είναι οι άμεςεσ ςυνέπειεσ του οριςμού του ορίου ; α) )(lim 0 xf xx 0))((lim 0 xf xx β) )(lim 0 xf xx )(lim 0 0 hxf h 18. Πωσ ςυνδέεται το όριο με τα πλευρικά όρια ; Αν μια ςυνϊρτηςη f εύναι οριςμϋνη ςε ϋνα ςύνολο τησ μορφόσ ),(),( 00 βxxα , τότε ιςχύει η ιςοδυναμύα: )(lim 0 xf xx )(lim)(lim 00 xfxf xxxx 19. Ποιεσ ανιςότητεσ ιςχύουν ςτα όρια ; (όριο και διάταξη) Αν 0)(lim 0 xf xx , τότε 0)(xf ενώ αν 0)(lim 0 xf xx , τότε 0)(xf , κοντά ςτο 0x Αν οι ςυναρτόςεισ gf , ϋχουν όριο ςτο 0x και ιςχύει )()( xgxf κοντά ςτο 0x , τότε )(lim)(lim 00 xgxf xxxx 20. Ποιεσ είναι οι ιδιότητεσ των ορίων ςε ςημείο x0 ; Αν υπάρχουν τα όρια των ςυναρτόςεων f και g ςτο 0x , τότε: 1. )(lim)(lim))()((lim 000 xgxfxgxf xxxxxx 2. )(lim))((lim 00 xfκxκf xxxx , για κϊθε κ R 3. )(lim)(lim))()((lim 000 xgxfxgxf xxxxxx 4. )(lim )(lim )( )( lim 0 0 0 xg xf xg xf xx xx xx , εφόςον 0)(lim 0 xg xx 5. )(lim|)(|lim 00 xfxf xxxx 6. k xx k xx xfxf )(lim)(lim 00 , όταν 0)(xf κοντά ςτο 0x 7. ν xx ν xx xfxf )(lim)]([lim 00 , * ν N 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 7 of 107
  • 8. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 8 21. Να διατυπώςετε το κριτήριο παρεμβολήσ . Έςτω οι ςυναρτόςεισ hgf ,, . Αν )()()( xgxfxh κοντϊ ςτο 0x και )(lim)(lim 00 xgxh xxxx , τότε )(lim 0 xf xx . Παράδειγμα: για 0x ϋχουμε: || 1 ημ|| x x xx και επειδό 0||lim)||(lim 00 xx xx , ςύμφωνα με το κριτόριο παρεμβολόσ, ϋχουμε: 0 1 ημlim 0 x x x . 22. Ποια είναι τα βαςικά τριγωνομετρικά όρια ; α) 1 ημ lim 0 x x x β) 0 1συν lim 0 x x x  ΢ημείωςη : | ημx| | x| , για κάθε x (η ιςότητα ιςχύει μόνο όταν 0x ).  Επύςησ, από τισ γραφικϋσ παραςτϊςεισ των y = x και y = ημx , διαπιςτώνουμε εύκολα ότι ιςχύουν οι ανιςώςεισ: ημx < x , για κάθε x > 0 και ημx > x , για κάθε x < 0. 23. Πωσ υπολογίζουμε το όριο ςύνθετησ ςυνάρτηςησ ; Για να υπολογύςουμε το ))((lim 0 xgf xx , εργαζόμαςτε ωσ εξόσ: Θϋτουμε )(xgu και υπολογύζουμε το )(lim 0 0 xgu xx και το )(lim 0 uf uu  (αν υπϊρχουν) . Αποδεικνύεται ότι, αν 0)( uxg κοντϊ ςτο 0x , τότε το ζητούμενο όριο εύναι ύςο με  , δηλαδό ιςχύει: )(lim))((lim 00 ufxgf uuxx . 24. Ποιεσ είναι οι ιδιότητεσ των μη πεπεραςμένων ορίων ςε ςημείο x0 R; Αν )(lim 0 xf xx , τότε 0)(xf , ενώ αν )(lim 0 xf xx , τότε 0)(xf κοντϊ ςτο 0x . Αν )(lim 0 xf xx , τότε ))((lim 0 xf xx , ενώ αν )(lim 0 xf xx , τότε ))((lim 0 xf xx . Αν )(lim 0 xf xx ό , τότε 0 )( 1 lim 0 xfxx . Αν 0)(lim 0 xf xx και 0)(xf κοντϊ ςτο 0x , τότε )( 1 lim 0 xfxx , ενώ αν 0)(xf κοντϊ ςτο 0x , τότε )( 1 lim 0 xfxx . Αν )(lim 0 xf xx ό , τότε |)(|lim 0 xf xx και αν )(lim 0 xf xx , τότε k xx xf )(lim 0 . Αν )(lim 0 xf xx και ιςχύει )()( xgxf κοντά ςτο 0x , τότε 0x x lim g(x) . Αν 0x x lim g(x) και ιςχύει )()( xgxf κοντά ςτο 0x , τότε 0x x lim f(x) . 20 1 lim xx και γενικϊ ν20 1 lim xx , * xx 1 lim 0 και γενικϊ 12 0 1 lim ν x x , ενώ xx 1 lim 0 και 12 0 1 lim ν xx , * δεν υπϊρχει ςτο μηδϋν το όριο τησ 12 1 )( ν x xf , * . O  Ch Cf Cg βα x0 x y 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 8 of 107
  • 9. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 9 ΄Οριο αθροίςματοσ και γινομένου ςυναρτήςεων Αν το όριο τησ f εύναι: α R α R - - και το όριο τησ g εύναι: - - - τότε το όριο τησ gf είναι: - - ; ; Αν το όριο τησ f εύναι: α>0 α<0 α>0 α<0 0 0 + + - - και το όριο τησ g εύναι: + + - - + - + - + - τότε το όριο τησ f·g είναι: + - - + ; ; + - - + ΢τουσ πύνακεσ των παραπϊνω θεωρημϊτων, όπου υπϊρχει ερωτηματικό, ςημαύνει ότι το όριο (αν υπϊρχει) εξαρτϊται κϊθε φορϊ από τισ ςυναρτόςεισ που παύρνουμε. ΢τισ περιπτώςεισ αυτϋσ λϋμε ότι ϋχουμε απροςδιόριςτη μορφή. Δηλαδό, απροςδιόριςτεσ μορφϋσ για τα όρια αθρούςματοσ και γινομϋνου ςυναρτόςεων εύναι οι: )()( και )(0 . και απροςδιόριςτεσ μορφϋσ για τα όρια τησ διαφορϊσ και του πηλύκου ςυναρτόςεων εύναι οι: )()( , )()( και 0 0 , . 25. Ποιεσ είναι οι ιδιότητεσ των ορίων ςυνάρτηςησ ςτο άπειρο; Για τα όρια ςτα , ιςχύουν οι γνωςτϋσ ιδιότητεσ των ορύων ςτο 0x με την προώπόθεςη ότι: οι ςυναρτόςεισ εύναι οριςμϋνεσ ςε κατϊλληλα ςύνολα τησ μορφόσ ),(α ό ),( β και δεν καταλόγουμε ςε απροςδιόριςτη μορφό. Για τον υπολογιςμό του ορύου ςτο ό ενόσ μεγϊλου αριθμού ςυναρτόςεων χρειαζόμαςτε τα παρακϊτω βαςικϊ όρια: ν x xlim και 0 1 lim νx x , * , περιττόςαν,- άρτιοςαν, lim ν ν xν x και 0 1 lim νx x , * 26. Ποιο είναι το όριο πολυωνυμικήσ και ρητήσ ςυνάρτηςησ αν το x τείνει ςτο ; Για την πολυωνυμικό ςυνϊρτηςη 0 1 1)( αxαxαxP ν ν ν ν  , με 0να ιςχύει: )(lim)(lim ν ν xx xαxP και )(lim)(lim ν ν xx xαxP Για τη ρητό ςυνϊρτηςη 01 1 1 01 1 1 )( βxβxβxβ αxαxαxα xf κ κ κ κ ν ν ν ν   , 0να , 0κβ ιςχύει: κ κ ν ν xx xβ xα xf lim)(lim και κ κ ν ν xx xβ xα xf lim)(lim 27. Ποια είναι τα όρια εκθετικήσ και λογαριθμικήσ ςυνάρτηςησ, αν το x τείνει ςτο ; Αν 1α τότε: 0lim x x α , x x αlim , xα x loglim 0 , xα x loglim . Αν 10 α τότε: x x αlim , 0lim x x α , xα x loglim 0 , xα x loglim 28. Σι ονομάζεται ακολουθία; Ακολουθία ονομϊζεται κϊθε πραγματικό ςυνϊρτηςη * α: . 29. Να διατυπώςετε τον οριςμό του πεπεραςμένου όριου ακολουθίασ. Θα λϋμε ότι η ακολουθύα )( να ϋχει όριο το  ℝ και θα γρϊφουμε ν ν αlim , όταν για κϊθε 0ε , υπϊρχει * 0 ν τϋτοιο, ώςτε για κϊθε 0νν να ιςχύει: εαν ||  . 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 9 of 107
  • 10. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 10 30. Πότε η f λέγεται ςυνεχήσ ςτο x0 του πεδίου οριςμού τησ; ΄Εςτω μια ςυνϊρτηςη f και 0x ϋνα ςημεύο του πεδύου οριςμού τησ. Θα λϋμε ότι η f εύναι ςυνεχήσ ςτο 0x , όταν: )()(lim 0 0 xfxf xx . 31. Πότε μια ςυνάρτηςη f δεν είναι ςυνεχήσ ςε ένα ςημείο x0 του πεδίου οριςμού τησ; Μια ςυνϊρτηςη f δεν είναι ςυνεχόσ ςε ϋνα ςημεύο 0x του πεδύου οριςμού τησ όταν: α) Δεν υπϊρχει το όριό τησ ςτο 0x ό β) Τπϊρχει το όριό τησ ςτο 0x , αλλϊ εύναι διαφορετικό από την τιμό τησ, )( 0xf , ςτο ςημεύο 0x . 32. Πότε η ςυνάρτηςη f λέγεται ςυνεχήσ ςτο πεδίο οριςμού τησ; Θα λϋμε ότι η f εύναι ςυνεχόσ ςτο πεδύο οριςμού τησ, όταν η f εύναι ςυνεχόσ ςε κϊθε ςημεύο του πεδύου οριςμού τησ Α, δηλαδό όταν ιςχύει: )()(lim 0 0 xfxf xx , για κϊθε 0x Α. 33. Ποιεσ ςυναρτήςεισ είναι ςυνεχείσ; Κάθε πολυωνυμική ςυνάρτηςη Ρ είναι ςυνεχήσ, αφού για κϊθε 0x ιςχύει: )()(lim 0 0 xPxP xx . Κάθε ρητή ςυνάρτηςη Q P είναι ςυνεχήσ, αφού ιςχύει: )( )( )( )( lim 0 0 0 xQ xP xQ xP xx για κϊθε 0x του πεδύου οριςμού τησ. Οι ςυναρτήςεισ xxf ημ)( και xxg σσν)( είναι ςυνεχείσ, αφού για κϊθε x ιςχύει: 0 0 ημημlim xx xx και 0 0 συνσυνlim xx xx . Οι ςυναρτήςεισ x αxf )( και xxg αlog)( , 10 α είναι ςυνεχείσ. 34. Σι γνωρίζετε για τισ πράξεισ μεταξύ ςυνεχών ςυναρτήςεων; Αν οι ςυναρτόςεισ f , g εύναι ςυνεχεύσ ςτο 0x , τότε και οι ςυναρτόςεισ: gf , fc (c R ) , gf , g f , || f και ν f ,εύναι ςυνεχεύσ ςτο 0x , με την προώπόθεςη ότι ορύζονται ςε ϋνα διϊςτημα που περιϋχει το 0x . Επιπλϋον, αν η ςυνάρτηςη f είναι ςυνεχήσ ςτο 0x και η ςυνάρτηςη g είναι ςυνεχήσ ςτο )( 0xf , τότε η ςύνθεςή τουσ gof είναι ςυνεχήσ ςτο 0x . 35. Πότε η f λέγεται ςυνεχήσ ςε ένα ανοικτό διάςτημα (α,β); Μια ςυνϊρτηςη f θα λϋμε ότι εύναι ςυνεχήσ ςε ένα ανοικτό διάςτημα ),( βα , όταν εύναι ςυνεχόσ ςε κϊθε ςημεύο του ),( βα . 36. Πότε η f λέγεται ςυνεχήσ ςε ένα κλειςτό διάςτημα [α,β- ; Μια ςυνϊρτηςη f θα λϋμε ότι εύναι ςυνεχήσ ςε ένα κλειςτό διάςτημα ],[ βα , όταν εύναι ςυνεχόσ ςε κϊθε ςημεύο του ),( βα και επιπλϋον : x lim f(x) f( ) και x lim f(x) f( ) . 37. Να διατυπώςετε το Θεώρημα Bolzano. Έςτω μια ςυνϊρτηςη f , οριςμϋνη ςε ϋνα κλειςτό διϊςτημα ],[ βα . Αν η f εύναι ςυνεχόσ ςτο ],[ βα και, επιπλϋον, ιςχύει 0)()( βfαf , τότε υπϊρχει ϋνα, τουλϊχιςτον, ),(0 βαx τϋτοιο, ώςτε 0)( 0xf ( δηλ. η εξύςωςη f(x)=0 ϋχει μύα τουλϊχιςτον ρύζα ςτο (α,β) ). 38. Να ερμηνεύςετε γεωμετρικά το Θεώρημα Bolzano. Θεωρούμε τη γραφικό παρϊςταςη μιασ ςυνεχούσ ςυνϊρτηςησ f ςτο ],[ βα . Επειδό τα ςημεύα ))(,( αfαA και ))(,( βfβB βρύςκονται εκατϋρωθεν του ϊξονα xx , η γραφικό παρϊςταςη τησ f τϋμνει τον ϊξονα ςε ϋνα τουλϊχιςτον ςημεύο. x0x0 x0 y B(β,f(β)) Α(α,f(α))f(a) f(β) O β a x 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 10 of 107
  • 11. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 11  ΢ΦΟΛΙΟ Από το θεώρημα του Bolzano προκύπτει ότι: Αν μια ςυνϊρτηςη f εύναι ςυνεχήσ ςε ένα διάςτημα Δ και δε μηδενίζεται ς’ αυτό, τότε αυτό ό εύναι θετικό για κϊθε Γx ό εύναι αρνητικό για κϊθε Γx , δηλαδό διατηρεί πρόςημο ςτο διάςτημα Δ. Μια ςυνεχόσ ςυνϊρτηςη f διατηρεύ πρόςημο ςε καθϋνα από το διαςτόματα ςτα οπούα οι διαδοχικϋσ ρύζεσ τησ χωρύζουν το πεδύο οριςμού τησ. 39. Πωσ μπορούμε να προςδιορίςουμε το πρόςημο μιασ ςυνεχούσ ςυνάρτηςησ f ; Ο προςδιοριςμόσ του προςόμου ςυνεχούσ ςυνϊρτηςησ γύνεται ωσ εξόσ: α) Βρύςκουμε τισ ρύζεσ τησ f. β) ΢ε καθϋνα από τα υποδιαςτόματα που ορύζουν οι διαδοχικϋσ ρύζεσ, επιλϋγουμε τυχαύα ϋνα ςημεύο 0x και βρύςκουμε το πρόςημο τησ τιμόσ f( 0x ). Σο πρόςημο αυτό εύναι και το πρόςημο τησ f ςτο αντύςτοιχο διϊςτημα. 40. Να διατυπώςετε το Θεώρημα Ενδιάμεςων Σιμών ςυνεχούσ ςυνάρτηςησ ςτο [α,β]. Έςτω μια ςυνϊρτηςη f, η οπούα εύναι οριςμϋνη ςε ϋνα κλειςτό διϊςτημα [α,β-. Αν η f εύναι ςυνεχόσ ςτο [α,β- και f(α) f(β)≠ , τότε για κϊθε αριθμό η μεταξύ των f(α) και f(β) υπϊρχει ϋνασ, τουλϊχιςτον 0 x (α,β) , ώςτε 0 f(x ) = η. (Θεώρημα ενδιϊμεςων τιμών)  ΢ΦΟΛΙΑ Αν μια ςυνϊρτηςη f δεν εύναι ςυνεχόσ ςτο διϊςτημα ],[ βα , τότε, όπωσ φαύνεται και ςτο διπλανό ςχόμα, δεν παύρνει υποχρεωτικϊ όλεσ τισ ενδιϊμεςεσ τιμϋσ. Με τη βοόθεια του θεωρόματοσ ενδιαμϋςων τιμών αποδεικνύεται ότι: Η εικόνα )(Γf ενόσ διαςτήματοσ Δ μέςω μιασ ςυνεχούσ και μη ςταθερήσ ςυνάρτηςησ f είναι διάςτημα. 41. Να διατυπώςετε το Θεώρημα Μέγιςτησ - ελάχιςτησ τιμήσ. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο ],[ βα , τότε η f παύρνει ςτο ],[ βα μια μϋγιςτη τιμό Μ και μια ελϊχιςτη τιμό m. Δηλαδό, υπϊρχουν ],[, 21 βαxx τϋτοια, ώςτε, αν )( 1xfm και )( 2xfM , να ιςχύει : Mxfm )( , για κάθε ],[ βαx .  ΢ΦΟΛΙΟ Από το θεώρημα Μϋγιςτησ-Ελϊχιςτησ Σιμόσ και το θεώρημα Ενδιϊμεςων Σιμών προκύπτει ότι το ςύνολο τιμών μιασ ςυνεχούσ και μη ςταθερόσ ςυνϊρτηςησ f , με πεδύο οριςμού το ],[ βα εύναι το κλειςτό διϊςτημα ],[ Mm , όπου m η ελϊχιςτη και Μ η μϋγιςτη τιμό τησ. Δηλ.: f ([α,β] )= ],[ Mm 42. Ποιο είναι το ςύνολο τιμών μιασ ςυνεχούσ και γνηςίωσ μονότονησ ςυνάρτηςησ, οριςμένησ ςε διάςτημα ; Aν μια ςυνϊρτηςη f εύναι γνηςίωσ αύξουςα και ςυνεχήσ ςε ϋνα ανοικτό διϊςτημα ),( βα , τότε το ςύνολο τιμών τησ ςτο διϊςτημα αυτό εύναι το διϊςτημα ),( ΒΑ , όπου: )(lim xfΑ αx και )(lim xfB βx . Αν, όμωσ, η f εύναι γνηςίωσ φθίνουςα και ςυνεχήσ ςτο ),( βα , τότε το ςύνολο τιμών τησ ςτο διϊςτημα αυτό εύναι το αντύςτοιχο διϊςτημα ),( AB Ανϊλογα ςυμπερϊςματα ϋχουμε και όταν μια ςυνϊρτηςη f εύναι ςυνεχόσ και γνηςύωσ μονότονη ςε διαςτόματα τησ μορφόσ ],[ βα , ),[ βα και ],( βα ό ακόμη και ςτην περύπτωςη που τα ϊκρα δεν εύναι πεπεραςμϋνα. y f(a) f(β) O y=η η xβa 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 11 of 107
  • 12. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 12 ΔΙΑΥΟΡΙΚΟ΢ ΛΟΓΙ΢ΜΟ΢ 43. Πότε μια ςυνάρτηςη λέγεται παραγωγίςιμη ςτο x0 και τι ονομάζουμε παράγωγο τησ f ςτο x0 ; Μια ςυνϊρτηςη f λϋμε ότι εύναι παραγωγίςιμη ς’ ένα ςημείο 0x του πεδύου οριςμού τησ, αν υπϊρχει το 0 0 )()( lim 0 xx xfxf xx και εύναι πραγματικόσ αριθμόσ. Σο όριο αυτό ονομϊζεται παράγωγοσ τησ f ςτο 0x και ςυμβολύζεται με )( 0xf . Δηλαδό: 0 0 0 )()( lim)( 0 xx xfxf xf xx . 44. Πωσ ορίζεται η εφαπτομένη ςτο ςημείο A(x0,f(x0)) τησ Cf; Έςτω f μια ςυνϊρτηςη και ))(,( 00 xfxA ϋνα ςημεύο τησ fC . Αν υπϊρχει το 0 0 0 )()( lim xx xfxf xx και εύναι ο πραγματικόσ αριθμόσ f΄(x0) , τότε ορύζουμε ωσ εφαπτομϋνη τησ fC ςτο ςημεύο τησ Α, την ευθεύα ε που διϋρχεται από το Α και ϋχει ςυντελεςτό διεύθυνςησ λ= f΄(x0). Επομϋνωσ, η εξύςωςη τησ εφαπτομϋνησ ςτο ςημεύο ))(,( 00 xfxA εύναι : 0 '( )y f x f x x x0 0 ( ) ( ) . 45. Ποιοσ είναι ο ςυμβολιςμόσ του Leibniz και ποιοσ του Lagrange για την παράγωγο τησ f ςτο x0. Ο Leibniz ςυμβολύςε την παρϊγωγο ςτο 0x με dx xdf )( 0 ό 0 )( xx dx xdf . Ο ςυμβολιςμόσ )( 0xf εύναι μεταγενϋςτεροσ και οφεύλεται ςτον Lagrange. Αν ςτην ιςότητα 0 0 0 0 )()( lim)( xx xfxf xf xx θϋςουμε hxx 0 , τότε: h xfhxf xf h )()( lim)( 00 0 0 . Πολλϋσ φορϋσ το 0xxh ςυμβολύζεται με xΓ , ενώ το )()( 00 xfhxf )()( 00 xfxΓxf ςυμβολύζεται )( 0xfΓ , οπότε ο παραπϊνω τύποσ γρϊφεται: Δx xΔf xf Δx )( lim)( 0 0 0 . 46. Ποια είναι η γεωμετρική ερμηνεία του παράγωγου αριθμού f΄(x0) ςε ένα ςημείο Α(xο,f(xο)) τησ γραφικήσ παράςταςησ Cf μιασ ςυνάρτηςησ; Ο ςυντελεςτόσ διεύθυνςησ τησ εφαπτομϋνησ ε τησ γραφικόσ παρϊςταςησ fC μιασ παραγωγύςιμησ ςυνϊρτηςησ f, ςτο ςημεύο ))(,( 00 xfxA εύναι η παρϊγωγοσ τησ f ςτο 0x . 47. Σι ονομάζεται κλίςη τησ γραφικήσ παράςταςησ μιασ παραγωγίςιμησ ςυνάρτηςησ ςε ένα ςημείο τησ Α(xο,f(xο)); Σην κλύςη )( 0xf τησ εφαπτομϋνησ ε ςτο ))(,( 00 xfxA θα τη λϋμε και κλίςη τησ γραφικήσ παράςταςησ fC ςτο Α ό κλίςη τησ f ςτο 0x . 48. Πότε μια ςυνάρτηςη f λέγεται παραγωγίςιμη ςτο πεδίο οριςμού τησ ; Έςτω f μια ςυνϊρτηςη με πεδύο οριςμού ϋνα ςύνολο Α. Θα λϋμε ότι: H f εύναι παραγωγύςιμη ςτο Α ό, απλϊ, παραγωγίςιμη, όταν εύναι παραγωγύςιμη ςε κϊθε ςημεύο Ax0 . 49. Πότε μια ςυνάρτηςη f λέγεται παραγωγίςιμη ςε ένα ανοικτό διάςτημα (α,β) του πεδίου οριςμού τησ; Η f εύναι παραγωγίςιμη ςε ένα ανοικτό διάςτημα ),( βα του πεδύου οριςμού τησ, όταν εύναι παραγωγύςιμη ςε κϊθε ςημεύο ),(0 βαx . 50. Πότε μια ςυνάρτηςη f λέγεται παραγωγίςιμη ςε ένα κλειςτό διάςτημα [α,β- του πεδίου οριςμού τησ; Η f εύναι παραγωγίςιμη ςε ένα κλειςτό διάςτημα ],[ βα του πεδύου οριςμού τησ, όταν εύναι παραγωγύςιμη ςτο ),( βα και επιπλϋον ιςχύει: + x α f(x) - f(α) lim R x - α και - x β f(x) - f(β) lim R x - β . 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 12 of 107
  • 13. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 13 51. Σι ονομάζεται πρώτη παράγωγοσ ςυνάρτηςησ ; Έςτω f μια ςυνϊρτηςη με πεδύο οριςμού Α και 1 A τo ςύνολο των ςημεύων του Α ςτα οπούα αυτό εύναι παραγωγύςιμη. Αντιςτοιχύζοντασ κϊθε 1 x A ςτο y= f (x) , ορύζουμε τη ςυνϊρτηςη 1 : , ώστε : ( )f A R x f x , που ονομϊζεται πρώτη παράγωγοσ τησ f ό απλϊ παράγωγοσ τησ f. Ο τύποσ τησ ςυνϊρτηςησ f΄ εύναι: f(x + h) - f(x) f (x) = lim hh 0 , 1Ax . 52. ΠΑΡΑΓΨΓΟΙ ΢ΣΟΙΦΕΙΨΔΨΝ ΢ΤΝΑΡΣΗ΢ΕΨΝ ΢υνάρτηςη f Παράγωγοσ f΄ Διάςτημα που παραγωγίζεται η f c (c) =0 x (x) =1 xν , ν ν ν-1 (x ) = νx xκ , κ - κ κ-1 (x ) = κx xα , α - α α-1 (x ) =αx [0, ) με α>1, (0, ) με α<1 lnx 1 (lnx) = x (0, ) logax α 1 (log x) = xlnα (0, ) ln|x| 1 (ln| x|) = x x 1 ( x) = 2 x (0, ) ex x x (e ) =e αx , α>0 x x (α ) =α lnα ημx (ημx) =ςυνx ςυνx (ςυνx) =-ημx εφx 2 2 1 (εφx) = =1+εφ x ςυν x Α={x /x κπ+ π 2 ,κ } ςφx 2 2 1 (ςφx) =- =-(1+ςφ x) ημ x Α={x /x κπ , κ } 53. Σι ονομάζεται δεύτερη παράγωγοσ και τι ν-οςτή παράγωγοσ ςυνάρτηςησ ; Έςτω f μια ςυνϊρτηςη με πεδύο οριςμού Α και 1A τo ςύνολο των ςημεύων του Α ςτα οπούα αυτό εύναι παραγωγύςιμη και f ΄ η πρώτη παρϊγωγοσ τησ f. Αν υποθϋςουμε ότι το 1Α εύναι διϊςτημα ό ϋνωςη διαςτημϊτων, τότε η παρϊγωγοσ τησ f , αν υπϊρχει, λϋγεται δεύτερη παρϊγωγοσ τησ f και ςυμβολύζεται f . Επαγωγικϊ ορύζεται η νιοςτή παράγωγοσ τησ f, με 3ν , και ςυμβολύζεται με )(ν f . Δηλαδό: ][ 1)()( νν ff , 3ν . 54. Πωσ παραγωγίζεται μια ςύνθετη ςυνάρτηςη ; Αν η ςυνϊρτηςη g εύναι παραγωγύςιμη ςτο 0x και η f εύναι παραγωγύςιμη ςτο )( 0xg , τότε η ςυνϊρτηςη gf  εύναι παραγωγύςιμη ςτο 0x και ιςχύει 0 0 0 (f o g) (x )= f (g(x ))g (x ) . 55. Σι είναι ο κανόνασ τησ αλυςίδασ; Αν μια ςυνϊρτηςη g εύναι παραγωγύςιμη ςε ϋνα διϊςτημα Δ και η f εύναι παραγωγύςιμη ςτο )(Γg , τότε η 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 13 of 107
  • 14. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 14 ςυνϊρτηςη gf  εύναι παραγωγύςιμη ςτο Δ και ιςχύει: )())(()))((( xgxgfxgf . Δηλαδό, αν )(xgu , τότε: uufuf )())(( . Με το ςυμβολιςμό του Leibniz, αν )(ufy και )(xgu , ϋχουμε τον τύπο dx du du dy dx dy που εύναι γνωςτόσ ωσ κανόνασ τησ αλυςίδασ. 56. Σι ονομάζεται ρυθμόσ μεταβολήσ του y ωσ προσ το x ςτο ςημείο x0 όταν y=f(x) και f είναι μια ςυνάρτηςη παραγωγίςιμη ςτο x0; Αν δύο μεταβλητϊ μεγϋθη yx, ςυνδϋονται με τη ςχϋςη )(xfy , όταν f εύναι μια ςυνϊρτηςη παραγωγύςιμη ςτο 0x , τότε ονομϊζουμε ρυθμό μεταβολήσ του y ωσ προσ το x ςτο ςημείο 0x την παρϊγωγο )( 0xf . 57. Να διατυπώςετε το Θεώρημα Rolle Αν μια ςυνϊρτηςη f εύναι: ςυνεχόσ ςτο κλειςτό διϊςτημα ],[ βα παραγωγύςιμη ςτο ανοικτό ),( βα , και ιςχύει )()( βfαf τότε υπϊρχει ϋνα, τουλϊχιςτον, ),( βαξ τϋτοιο, ώςτε: 0)(ξf 58. Να ερμηνεύςετε γεωμετρικά το Θεώρημα Rolle Σο Θεώρημα Rolle γεωμετρικϊ, ςημαύνει ότι υπϊρχει ϋνα, τουλϊχιςτον, ),( βαξ τϋτοιο, ώςτε η εφαπτομϋνη τησ fC ςτο ))(,( ξfξM να εύναι παρϊλληλη ςτον ϊξονα των x. 59. Να διατυπώςετε το Θεώρημα Μέςησ Σιμήσ Διαφορικού Λογιςμού (Θ.Μ.Σ.). Αν μια ςυνϊρτηςη f εύναι: i. ςυνεχόσ ςτο κλειςτό διϊςτημα ],[ βα και ii. παραγωγύςιμη ςτο ανοικτό διϊςτημα ),( βα τότε υπϊρχει ϋνα, τουλϊχιςτον, ),( βαξ τϋτοιο, ώςτε: αβ αfβf ξf )()( )( . 60. Να ερμηνεύςετε γεωμετρικά το Θεώρημα Μέςησ Σιμήσ του Διαφορικού Λογιςμού. Γεωμετρικϊ, το Θεώρημα Μϋςησ Σιμόσ ςημαύνει ότι υπϊρχει ϋνα, τουλϊχιςτον, ),( βαξ τϋτοιο, ώςτε η εφαπτομϋνη τησ γραφικόσ παρϊςταςησ τησ f ςτο ςημεύο ))(,( ξfξM να εύναι παρϊλληλη τησ ευθεύασ ΑΒ, όπου Α(α,f(α)) και Β(β,f(β)).  ΠΑΡΑΣΗΡΗ΢ΕΙ΢ Ψσ άμεςεσ ςυνέπειεσ του Θ.Μ.Σ. προκύπτουν: 1. Έςτω μια ςυνάρτηςη f οριςμένη ςε ένα διάςτημα Δ. Αν η f είναι ςυνεχήσ ςτο Δ και f΄(x)=0 για κάθε εςωτερικό ςημείο x του Δ, τότε η f είναι ςταθερή ςε όλο το διάςτημα Δ. 2. Έςτω δυο ςυναρτήςεισ f,g οριςμένεσ ςε ένα διάςτημα Δ. Αν οι f,g είναι ςυνεχείσ ςτο Δ και f΄(x)=g΄(x) για κάθε εςωτερικό ςημείο x του Δ, τότε υπάρχει ςταθερά c τέτοια, ώςτε για κάθε xєΔ, να ιςχύει: f(x)=g(x)+c. 3. Αν η ςυνάρτηςη f είναι παραγωγίςιμη ςτο διάςτημα Δ, τότε ιςχύει η ιςοδυναμία: f΄(x)= f(x) f(x)= c·ex, c R. 4. Έςτω μια ςυνάρτηςη f, η οποία είναι ςυνεχήσ ςε ένα διάςτημα Δ. Αν f΄(x)>0 ςε κάθε εςωτερικό ςημείο x του Δ, τότε η f είναι γν. αύξουςα ςε όλο το Δ. Αν f΄(x)<0 ςε κάθε εςωτερικό ςημείο x του Δ, τότε η f είναι γν. φθίνουςα ςε όλο το Δ. 61. Σι ονομάζεται τοπικό μέγιςτο και τι τοπικό ελάχιςτο τησ f ; Μια ςυνϊρτηςη f, με πεδύο οριςμού Α, θα λϋμε ότι παρουςιϊζει ςτο Ax0 τοπικό μέγιςτο, όταν υπϊρχει 0δ , τϋτοιο ώςτε : )()( 0xfxf για κϊθε ),( 00 δxδxAx . Σο 0x λϋγεται θϋςη ό ςημεύο τοπικού μεγύςτου, ενώ το )( 0xf τοπικό μϋγιςτο τησ f. Β(β,f(β)) βξ΄ξa x y Ο M(ξ,f(ξ)) A(α,f(α)) y O xβξ΄ξα Μ(ξ,f(ξ)) Β(β,f(β)) Α(α,f(α)) 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 14 of 107
  • 15. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 15 Μύα ςυνϊρτηςη f, με πεδύο οριςμού Α, θα λϋμε ότι παρουςιϊζει ςτο Ax0 τοπικό ελάχιςτο, όταν υπϊρχει 0δ , τϋτοιο ώςτε : )()( 0xfxf , για κϊθε ),( 00 δxδxAx . Σο 0x λϋγεται θϋςη ό ςημεύο τοπικού ελαχύςτου, ενώ το )( 0xf τοπικό ελϊχιςτο τησ f.  ΢ΦΟΛΙΑ Ένα τοπικό μϋγιςτο μπορεύ να εύναι μικρότερο από ϋνα τοπικό ελϊχιςτο (΢χ.α). y x4x3x2x1 (a) O x (β) y O min max a β x x4x3x2x1 Αν μια ςυνϊρτηςη f παρουςιϊζει μϋγιςτο, τότε αυτό θα εύναι το μεγαλύτερο από τα τοπικϊ μϋγιςτα, ενώ αν παρουςιϊζει, ελϊχιςτο, τότε αυτό θα εύναι το μικρότερο από τα τοπικϊ ελϊχιςτα. (ςχ.β). Σο μεγαλύτερο όμωσ από τα τοπικϊ μϋγιςτα μύασ ςυνϊρτηςησ δεν εύναι πϊντοτε μϋγιςτο αυτόσ. Επύςησ το μικρότερο από τα τοπικϊ ελϊχιςτα μύασ ςυνϊρτηςησ δεν εύναι πϊντοτε ελϊχιςτο τησ ςυνϊρτηςησ (ςχ.α). 62. Να διατυπώςετε το Θεώρημα Fermat. Έςτω μια ςυνϊρτηςη f οριςμϋνη ς’ ϋνα διϊςτημα Δ και 0x ϋνα εςωτερικό ςημεύο του Δ. Αν η f παρουςιϊζει τοπικό ακρότατο ςτο 0x και εύναι παραγωγίςιμη ςτο ςημεύο αυτό, τότε: 0)( 0xf . 63. Ποιεσ είναι οι πιθανέσ θέςεισ των τοπικών ακροτάτων μιασ ςυνάρτηςησ f ; Σα εςωτερικϊ ςημεύα του Δ ςτα οπούα η παρϊγωγοσ τησ f μηδενύζεται. Σα εςωτερικϊ ςημεύα του Δ ςτα οπούα η f δεν παραγωγύζεται. Σα ϊκρα του Δ (αν ανόκουν ςτο πεδύο οριςμού τησ). 64. Ποια ονομάζουμε κρίςιμα ςημεία μιασ ςυνάρτηςησ f οριςμένησ ςε ένα διάςτημα Δ; Σα εςωτερικϊ ςημεύα του Δ ςτα οπούα η f δεν παραγωγύζεται ό η παρϊγωγόσ τησ εύναι ύςη με το μηδϋν, λϋγονται κρύςιμα ςημεύα τησ f ςτο διϊςτημα Δ. 65. Πωσ ςχετίζεται η f΄ με τα τοπικά ακρότατα; (κριτήριο 1ησ παραγώγου) Έςτω μια ςυνϊρτηςη f παραγωγύςιμη ς’ ϋνα διϊςτημα ),( βα , με εξαύρεςη ύςωσ ϋνα ςημεύο του 0x , ςτο οπούο όμωσ η f εύναι ςυνεχήσ. i. Αν 0)(xf ςτο ),( 0xα και 0)(xf ςτο ),( 0 βx , τότε το )( 0xf εύναι τοπ. μϋγιςτο τησ f. ii. Αν 0)(xf ςτο ),( 0xα και 0)(xf ςτο ),( 0 βx , τότε το )( 0xf εύναι τοπ. ελϊχιςτο τησ f. iii. Aν η )(xf διατηρεύ πρόςημο ςτο ),(),( 00 βxxα , τότε το )( 0xf δεν εύναι τοπικό ακρότατο και η f εύναι γνηςύωσ μονότονη ςτο ),( βα . 66. Πότε μια ςυνάρτηςη ονομάζεται κυρτή ή κοίλη ς’ ένα διάςτημα Δ; Έςτω μύα ςυνϊρτηςη f ςυνεχόσ ς’ ϋνα διϊςτημα Δ και παραγωγύςιμη ςτο εςωτερικό του Δ. Θα λϋμε ότι: Η ςυνϊρτηςη f ςτρϋφει τα κοίλα προσ τα άνω ό εύναι κυρτή ςτο Δ, αν η f εύναι γνηςύωσ αύξουςα ςτο εςωτερικό του Δ. Η ςυνϊρτηςη f ςτρϋφει τα κοίλα προσ τα κάτω ό εύναι κοίλη ςτο Δ, αν η f εύναι γνηςύωσ φθύνουςα ςτο εςωτερικό του Δ.  ΠΑΡΑΣΗΡΗ΢Η Αν μια ςυνάρτηςη f είναι κυρτή (κοίλη) ςε ένα διάςτημα Δ, τότε η γραφική τησ παράςταςη βρίςκεται πάνω (κάτω) από την εφαπτομένη ςε κάθε ςημείο xєΔ, με εξαίρεςη το ςημείο επαφήσ. Ωσ άμεςη ςυνέπεια προκύπτουν οι βαςικέσ ανιςώςεισ: lnx ≤ x-1, x>0 και ex ≥ x+1, xєR . 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 15 of 107
  • 16. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 16 67. Πωσ εξηγείτε γεωμετρικά η έννοια τησ κυρτότητασ ςυνάρτηςησ ςε διάςτημα Δ. Εποπτικϊ, μύα ςυνϊρτηςη f εύναι κυρτό (αντιςτούχωσ κούλη) ςε ϋνα διϊςτημα Δ, όταν ϋνα κινητό, που κινεύται πϊνω ςτη fC , για να διαγρϊψει το τόξο που αντιςτοιχεύ ςτο διϊςτημα Δ πρϋπει να ςτραφεύ κατϊ τη θετικό (αντιςτούχωσ αρνητικό) φορϊ. 68. Πωσ ςχετίζεται η δεύτερη παράγωγοσ με την κυρτότητα ; ΄Εςτω μια ςυνϊρτηςη f ςυνεχόσ ς’ ϋνα διϊςτημα Δ και δυο φορϋσ παραγωγύςιμη ςτο εςωτερικό του Δ. Αν 0)(xf για κϊθε εςωτερικό ςημεύο x του Δ, τότε η f εύναι κυρτό ςτο Δ. Αν 0)(xf για κϊθε εςωτερικό ςημεύο x του Δ, τότε η f εύναι κούλη ςτο Δ. 69. Σι ονομάζεται ςημείο καμπήσ τησ γραφικήσ παράςταςησ μιασ ςυνάρτηςησ ; Έςτω μια ςυνϊρτηςη f παραγωγύςιμη ς’ ϋνα διϊςτημα ),( βα , με εξαύρεςη ύςωσ ϋνα ςημεύο του 0x . Αν η f εύναι κυρτό ςτο ),( 0xα και κούλη ςτο ),( 0 βx , ό αντιςτρόφωσ, και η fC ϋχει εφαπτομϋνη ςτο ςημεύο ))(,( 00 xfxA , τότε το ςημεύο ))(,( 00 xfxA ονομϊζεται ςημείο καμπήσ τησ γραφικόσ παρϊςταςησ τησ f. 70. Πωσ ςχετίζεται η f΄΄ με το ςημείο καμπήσ ; Αν το ))(,( 00 xfxA εύναι ςημεύο καμπόσ τησ γραφικόσ παρϊςταςησ τησ f και η f εύναι δυο φορϋσ παραγωγύςιμη, τότε 0)( 0xf . Έςτω μια ςυνϊρτηςη f οριςμϋνη ς’ ϋνα διϊςτημα ),( βα και ),(0 βαx . Αν η f αλλϊζει πρόςημο εκατϋρωθεν του 0x και ορύζεται εφαπτομϋνη τησ fC ςτο ))(,( 00 xfxA , τότε το ))(,( 00 xfxA εύναι ςημεύο καμπόσ. 71. Σι ονομάζεται κατακόρυφη αςύμπτωτη τησ γραφικήσ παράςταςησ τησ f ; Αν ϋνα τουλϊχιςτον από τα όρια )(lim 0 xf xx , )(lim 0 xf xx εύναι ό , τότε η ευθεύα 0xx λϋγεται κατακόρυφη αςύμπτωτη τησ γραφικόσ παρϊςταςησ τησ f. 72. Σι ονομάζεται οριζόντια αςύμπτωτη τησ γραφικήσ παράςταςησ τησ f ; Αν )(lim xf x (αντιςτούχωσ ))(lim xf x , τότε η ευθεύα y λϋγεται οριζόντια αςύμπτωτη τησ γραφικόσ παρϊςταςησ τησ f ςτο (αντιςτούχωσ ςτο ). 73. Σι ονομάζεται πλάγια αςύμπτωτη τησ γραφικήσ παράςταςησ τησ f ; Η ευθεύα βxλy λϋγεται αςύμπτωτη τησ γραφικόσ παρϊςταςησ τησ f ςτο , αν 0)]()([lim βxλxf x και ςτο αν 0)]()([lim βxλxf x . 74. Πωσ υπολογίζουμε τα λ και β ώςτε η ευθεία y = λx +β να είναι αςύμπτωτη τησ γραφικήσ παράςταςησ τησ f ςτο , αντιςτοίχωσ ςτο . Η ευθεύα βxλy εύναι αςύμπτωτη τησ γραφικόσ παρϊςταςησ τησ f ςτο , αν και μόνο αν: x + f(x) lim = λ x και x + lim[f(x)- λx-= β , ό αντιςτούχωσ ςτο , αν και μόνο αν: x f(x) lim = λ x και x lim[f(x)- λx-=β .  ΢ΦΟΛΙΑ Αποδεικνύεται ότι: i) Οι πολυωνυμικϋσ ςυναρτόςεισ βαθμού μεγαλύτερου ό ύςου του 2 δεν ϋχουν αςύμπτωτεσ. ii) Οι ρητϋσ ςυναρτόςεισ )( )( xQ xP , με βαθμό του αριθμητό )(xP μεγαλύτερο τουλϊχιςτον κατϊ δύο του βαθμού του παρονομαςτό, δεν ϋχουν πλϊγιεσ αςύμπτωτεσ. ΢ύμφωνα με τουσ παραπάνω οριςμούσ, αςύμπτωτεσ τησ Cf μιασ ςυνάρτηςησ f αναζητούμε: i) ΢τα ϊκρα των διαςτημϊτων του πεδύου οριςμού τησ ςτα οπούα η f δεν ορύζεται. ii) ΢τα ςημεύα του πεδύου οριςμού τησ, ςτα οπούα η f δεν εύναι ςυνεχόσ. iii) ΢τα , , εφόςον η ςυνϊρτηςη εύναι οριςμϋνη ςε διϊςτημα τησ μορφόσ ),(α ό αντιςτούχωσ ),( α . + y O x Cf + 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 16 of 107
  • 17. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 17 75. Ποιοι είναι οι κανόνεσ De l΄ Hospital ; ΘΕΨΡΗΜΑ 1ο (μορφή 0 0 ) Αν 0)(lim 0 xf xx , 0)(lim 0 xg xx , 0 R { , }x και υπϊρχει το )( )( lim 0 xg xf xx (πεπεραςμϋνο ό ϊπειρο), τότε: )( )( lim )( )( lim 00 xg xf xg xf xxxx . ΘΕΨΡΗΜΑ 2ο (μορφή ) Αν 0x x lim f(x) ό και )(lim 0 xg xx ό , 0 R { , }x και υπϊρχει το )( )( lim 0 xg xf xx (πεπεραςμϋνο ό ϊπειρο), τότε: )( )( lim )( )( lim 00 xg xf xg xf xxxx .  ΢ΦΟΛΙΟ Σα παραπϊνω θεωρόματα ιςχύουν και για πλευρικϊ όρια και μπορούμε, αν χρειϊζεται, να τα εφαρμόςουμε περιςςότερεσ φορϋσ, αρκεύ να πληρούνται οι προώποθϋςεισ τουσ. ΟΛΟΚΛΗΡΨΣΙΚΟ΢ ΛΟΓΙ΢ΜΟ΢ 76. Σι ονομάζεται Αρχική ςυνάρτηςη ή παράγουςα τησ f ςτο Δ ; Έςτω f μια ςυνϊρτηςη οριςμϋνη ςε ϋνα διϊςτημα Δ. Αρχική ςυνάρτηςη ό παράγουςα τησ f ςτο Δ ονομϊζεται κϊθε ςυνϊρτηςη F που εύναι παραγωγύςιμη ςτο Δ και ιςχύει: )()( xfxF , για κϊθε Γx . 77. ΠΙΝΑΚΑ΢ ΚΤΡΙΟΣΕΡΨΝ ΠΑΡΑΓΟΤ΢ΨΝ (βαςικών & ςύνθετων ςυν/ςεων) ςυνάρτηςη f παράγουςα F ςύνθετη ςυνάρτηςη παράγουςα 0 c f΄(x) f(x)+c 1 x+c f(x) f΄(x) 1 2 f2(x)+c xα α+1 x α +1 +c fα(x) f΄(x) 1 α +1 fα+1(x)+c 1 x 2 x +c f (x) f(x) 2 f(x) +c ημx -ςυνx+c ημf(x) f΄(x) -ςυνf(x)+c ςυνx ημx+c ςυνf(x) f΄(x) ημf(x)+c 2 1 ςυν x εφx+c 2 1 f (x) ςυν f(x) εφf(x)+c 2 1 ημ x -ςφx+c 2 1 f (x) ημ f(x) -ςφf(x)+c ex ex +c ef(x) f΄(x) ef(x) +c 1 x ln|x|+c f (x) f(x) ln|f(x)|+c αx x α lnα +c αf(x) f΄(x) f(x) α lnα +c 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 17 of 107
  • 18. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 18 78. Σι ονομάζεται εμβαδόν του επίπεδου χωρίου Ψ. Έςτω f μια ςυνεχόσ ςυνϊρτηςη ςε διϊςτημα ],[ βα , με 0)(xf για κϊθε ],[ βαx και Ω το χωρύο που ορύζεται από τη γραφικό παρϊςταςη τησ f, τον ϊξονα των x και τισ ευθεύεσ x , x . Για να ορύςουμε το εμβαδόν του χωρύου Ω εργαζόμαςτε ωσ εξόσ: Φωρύζουμε το διϊςτημα ],[ βα ςε ν ιςομόκη υποδιαςτόματα, μόκουσ ν αβ xΓ , με τα ςημεύα βxxxxα ν...210 . ΢ε κϊθε υποδιϊςτημα ],[ 1 κκ xx επιλϋγουμε αυθαύρετα ϋνα ςημεύο κξ και ςχηματύζουμε τα ορθογώνια που ϋχουν βϊςη xΓ και ύψη τα )( κξf . Σο ϊθροιςμα των εμβαδών των ορθογωνύων αυτών εύναι: xΓξfξfxΓξfxΓξfxΓξfS ννν )]()([)()()( 121  . Yπολογύζουμε το ν ν Slim . Αποδεικνύεται ότι το ν ν Slim υπϊρχει ςτο ℝ και εύναι ανεξϊρτητο από την επιλογό των ςημεύων κξ . Σο όριο αυτό ονομϊζεται εμβαδόν του επιπϋδου χωρύου Ω και ςυμβολύζεται με )(ΩΕ . Εύναι φανερό ότι 0)(ΩΔ . 79. Σι ονομάζεται οριςμένο ολοκλήρωμα τησ ςυνεχούσ ςυνάρτηςησ f από το α ςτο β. Έςτω μια ςυνϊρτηςη f ς υ ν ε χ ή σ ςτο ],[ βα . Με τα ςημεύα βxxxxα ν...210 χωρύζουμε το διϊςτημα ],[ βα ςε ν ιςομόκη υποδιαςτόματα μόκουσ x . ΢τη ςυνϋχεια επιλϋγουμε αυθαύρετα ϋνα ],[ 1 κκκ xxξ , για κϊθε }...,,2,1{ νκ , και ςχηματύζουμε το ϊθροιςμα: xΓξfxΓξfxΓξfxΓξfS νκν )()()()( 21  , που ςυμβολύζεται: ν κ κν xΓξfS 1 )( . (ϊθροιςμα RIEMANN). Aποδεικνύεται ότι: “Σο όριο του αθροίςματοσ νS , δηλαδή το ν κ κ ν Δxξf 1 )(lim υπάρχει ςτο ℝ και είναι ανεξάρτητο από την επιλογή των ενδιάμεςων ςημείων κξ ”. Σο παραπάνω όριο ονομάζεται οριςμένο ολοκλήρωμα τησ ςυνεχούσ ςυνάρτηςησ f από το α ςτο β, ςυμβολίζεται με β α dxxf )( και διαβάζεται “ολοκλήρωμα τησ f από το α ςτο β”. Δηλαδή, 1 f(x)dx lim f( ) x . Οι αριθμού α και β ονομϊζονται όρια τησ ολοκλόρωςησ. Εύναι, επύςησ, χρόςιμο να επεκτεύνουμε τον παραπϊνω οριςμό και για τισ περιπτώςεισ που εύναι βα ό βα , ωσ εξόσ: β α α β dxxfdxxf )()( και α α dxxf 0)( .  ΢ΦΟΛΙΟ Ιςχύει β α cdx = c(β-α) Αν 0c , τότε το β α cdx εκφρϊζει το εμβαδόν ενόσ ορθογωνύου με βϊςη αβ και ύψοσ c. Δx β a v xν-1x2 ...x1 xν=βα=x0 ξνξk Ω ξ2ξ1O x y=f(x) y f(ξ1) f(ξ2) f(ξk) f(ξν) xk ...xk-1 xv-1 ξv y=f(x) ξk ξ2ξ1 x x2x1 xv=βa=x0O y 10 βαO x y=c y 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 18 of 107
  • 19. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 19 80. Ποιεσ είναι οι ιδιότητεσ του οριςμένου ολοκληρώματοσ ; Έςτω gf , ςυνεχεύσ ςυναρτόςεισ ςτο ],[ βα και μλ, R. Σότε ιςχύουν: 1. β α β α dxxfλdxxfλ )()( 2. β α β α β α dxxgdxxfdxxgxf )()()]()([ και γενικϊ ιςχύει: β α β α β α dxxgμdxxfλdxxgμxfλ )()()]()([ . 3. Αν η f εύναι ςυνεχόσ ςε διϊςτημα Δ και , , , τότε ιςχύει : β γ γ α β α dxxfdxxfdxxf )()()(  ΢ΗΜΕΙΨ΢Η Αν 0)(xf και βγα , η παραπϊνω ιδιότητα δηλώνει ότι: )()()( 21 ΩΔΩΔΩΔ αφού γ α dxxfΩΔ )()( 1 , β γ dxxfΩΔ )()( 2 και β α dxxfΩΔ )()( . 4. Έςτω f μια ςυνεχήσ ςυνάρτηςη ςε ένα διάςτημα ],[ βα . Αν 0)(xf για κάθε ],[ βαx και η ςυνάρτηςη f δεν είναι παντού μηδέν ςτο ],[ βα , τότε β α dxxf 0)( .  ΢ΗΜΕΙΨ΢Η Αν η ςυνάρτηςη f είναι ςυνεχήσ και ιςχύει 0)(xf για κάθε ],[ βαx , τότε f(x)dx 0 . ΢υνεπώσ ιςχύουν: α. Αν οι ςυναρτόςεισ f, g εύναι ςυνεχεύσ, ώςτε f (x) g(x) για κϊθε ],[ βαx , τότε f(x)dx g(x)dx . β. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ, ώςτε 0)(xf για κϊθε ],[ βαx και f(x)dx 0, τότε f(x) 0 για κϊθε ],[ βαx . 81. Να διατυπώςετε το θεώρημα, το οποίο μασ εξαςφαλίζει την ύπαρξη παράγουςασ μιασ ςυνεχούσ ςυνάρτηςησ f ςε ένα διάςτημα Δ. Αν f εύναι μια ςυνεχόσ ςυνϊρτηςη ςε ϋνα διϊςτημα Δ και α εύναι ϋνα ςημεύο του Δ, τότε η ςυνϊρτηςη x α dttfxF )()( , Γx , εύναι μια παρϊγουςα τησ f ςτο Δ. Δηλαδό ιςχύει: )()( xfdttf x a , για κϊθε Γx .  ΢ΦΟΛΙΟ Εποπτικϊ, το ςυμπϋραςμα του παραπϊνω θεωρόματοσ προκύπτει ωσ εξόσ: hx x dttfxFhxF )()()( =Ε(Ω) hxf )( . Άρα, για μικρϊ 0h εύναι )( )()( xf h xFhxF , οπότε )( )()( lim)( 0 xf h xFhxF xF h βγα Ω2Ω1 O x y=f (x) y βxαO x F(x) f(x) y=f(x) y x+h f(x+h) Ω 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 19 of 107
  • 20. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 20 82. Ποιοσ είναι ο τύποσ τησ ολοκλήρωςησ κατά παράγοντεσ ςτα οριςμένα ολοκληρώματα; β α β α β α dxxgxfxgxfdxxgxf )()()]()([)()( όπου gf , εύναι ςυνεχεύσ ςυναρτόςεισ ςτο ],[ βα . 83. Ποιοσ είναι ο τύποσ τησ ολοκλήρωςησ με αντικατάςταςη ςτα οριςμένα ολοκληρώματα; Ιςχύει : β α u u duufdxxgxgf 2 1 )()())(( , όπου gf , εύναι ςυνεχεύσ ςυναρτόςεισ, )(xgu , dxxgdu )( και )(1 αgu , )(2 βgu . 84. Πωσ ορίζεται το εμβαδόν Ε(Ψ) ενόσ χωρίου που περικλείεται από τη γραφική παραςτάςη τησ f , τον άξονα xx΄ και τισ ευθείεσ x=α και x= β ; Ιςχύει : β α E(Ω)= | f(x)| dx . ΢ύνεπώσ το β α dxxf )( εύναι ύςο με το ϊθροιςμα των εμβαδών των χωρύων που βρύςκονται πϊνω από τον ϊξονα xx μεύον το ϊθροιςμα των εμβαδών των χωρύων που βρύςκονται κϊτω από τον ϊξονα xx . 85. Πωσ ορίζεται το εμβαδόν Ε(Ψ) ενόσ χωρίου που περικλείεται από τισ ευθείεσ x=α, x= β και τισ γραφικέσ παραςτάςεισ των f και g ; Ιςχύει : β α dxxgxfΩE |)()(|)( . x ++ β a y Ο 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 20 of 107
  • 21. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 21  ΘΕΨΡΗΜΑΣΑ με ΑΠΟΔΕΙΞΕΙ΢ ΟΡΙΟ-΢ΤΝΕΦΕΙΑ ΢ΤΝΑΡΣΗ΢Η΢ 1. Για το πολυώνυμο P(x) να δείξετε ότι : x x 0 0 limP(x) = P(x ) Απόδειξη Έςτω το πολυώνυμο 01 1 1)( αxαxαxαxP ν ν ν ν  και 0x R . ΢ύμφωνα με τισ ιδιότητεσ των ορύων ϋχουμε: )(lim)(lim 0 1 1 00 αxαxαxP ν ν ν ν xxxx  0 0 1 1 00 lim)(lim)(lim αxαxα xx ν ν xx ν ν xx  = 0 0 1 0 1 0 limlimlim αxαxα xx ν xx ν ν xx ν  )( 00 1 010 xPαxαxα ν ν ν ν  . 2. Δείξετε ότι : 0 x x 0 0 P(x )P(x) lim = Q(x) Q(x ) , εφόςον 0 Q(x ) 0 Απόδειξη Έςτω η ρητό ςυνϊρτηςη P(x) f(x) = Q(x) , όπου )(xP , )(xQ πολυώνυμα του x και 0x R με 0)( 0xQ . Σότε, )( )( )(lim )(lim )( )( lim)(lim 0 0 0 0 00 xQ xP xQ xP xQ xP xf xx xx xxxx . 3. Έςτω μια ςυνάρτηςη f, η οποία είναι οριςμένη ςε ένα κλειςτό διάςτημα [α,β- . Αν η f είναι ςυνεχήσ ςτο [α,β- και f(α) f(β)≠ , να δείξετε ότι, για κάθε αριθμό η μεταξύ των f(α) και f(β) υπάρχει ένασ, τουλάχιςτον 0 x (α,β) , ώςτε 0 f(x ) = η. (Θεώρημα ενδιάμεςων τιμών) Απόδειξη Ασ υποθϋςουμε ότι )()( βfαf . Σότε θα ιςχύει )()( βfηαf . Αν θεωρόςουμε τη ςυνϊρτηςη ηxfxg )()( , ],[ βαx , παρατηρούμε ότι: η g εύναι ςυνεχόσ ςτο ],[ βα και 0)()( βgαg , αφού 0)()( ηαfαg και 0)()( ηβfβg . Επομϋνωσ, ςύμφωνα με το θεώρημα του Bolzano, υπϊρχει ),(0 βαx τϋτοιο, ώςτε 0)()( 00 ηxfxg , οπότε ηxf )( 0 . x0x0 x0 y B(β,f(β)) f(a) f(β) O β y=η η a x Α(α,f(α)) 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 21 of 107
  • 22. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 22 ΔΙΑΥΟΡΙΚΟ΢ ΛΟΓΙ΢ΜΟ΢ 4. Αν η ςυνάρτηςη f είναι παραγωγίςιμη ςε ςημείο 0 x , τότε είναι και ςυνεχήσ ς΄αυτό. Απόδειξη Για 0xx ϋχουμε: )( )()( )()( 0 0 0 0 xx xx xfxf xfxf . Οπότε )( )()( lim)]()([lim 0 0 0 0 0 0 xx xx xfxf xfxf xxxx )(lim )()( lim 0 00 0 0 xx xx xfxf xxxx 00)( 0xf , αφού η f εύναι παραγωγύςιμη ςτο 0x . Αρα , )()(lim 0 0 xfxf xx , δηλαδό η f εύναι ςυνεχόσ ςτο 0x .  ΢ΦΟΛΙΟ Αν μια ςυνάρτηςη f δεν είναι ςυνεχήσ ς’ ένα ςημείο 0x , τότε, ςύμφωνα με το προηγούμενο θεώρημα, δεν μπορεί να είναι παραγωγίςιμη ςτο 0x .  ΢ΦΟΛΙΟ Σα όρια 1 ημ lim 0 x x x και 0 1συν lim 0 x x x , εύναι οι παρϊγωγοι ςτο 00x των ςυναρτόςεων xxf ημ)( και xxg συν)( αντιςτούχωσ, αφού: )0( 0 0ημημ lim ημ lim 00 f x x x x xx =1 και )0( 0 0συνσυν lim 1συν lim 00 g x x x x xx =0. 5. ΄Εςτω η ςταθερή ςυνάρτηςη f(x) = c , c . Δείξετε ότι η ςυνάρτηςη f είναι παραγωγίςιμη ςτο R και ιςχύει f (x) = 0 , δηλαδή (c)΄= 0 . Απόδειξη Αν 0x εύναι ϋνα ςημεύο του R, τότε για 0xx ιςχύει: 0 )()( 00 0 xx cc xx xfxf . Επομϋνωσ, 0 )()( lim 0 0 0 xx xfxf xx , δηλαδό 0)(c . 6. Έςτω η ςυνάρτηςη f(x) = x . Δείξετε ότι η ςυνάρτηςη f είναι παραγωγίςιμη ςτο R και ιςχύει f (x) = 1 , δηλαδή (x)΄=1 . Απόδειξη Αν 0x εύναι ϋνα ςημεύο του R, τότε για 0xx ιςχύει: 1 )()( 0 0 0 0 xx xx xx xfxf . Επομϋνωσ, 11lim )()( lim 00 0 0 xxxx xx xfxf , δηλαδό 1)(x . 7. Έςτω η ςυνάρτηςη ν f(x) = x , ν - *0, 1+ . Δείξετε ότι η ςυνάρτηςη f είναι παραγωγίςιμη ςτο R και ιςχύει ν-1 f (x)= νx , δηλαδή ν ν-1 (x ) = νx . Απόδειξη Αν 0x εύναι ϋνα ςημεύο του R, τότε για 0xx ιςχύει: 1 00 21 0 1 00 21 0 0 0 0 0 ))(()()( ννν ννννν xxxx xx xxxxxx xx xx xx xfxf   , οπότε: 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 22 of 107
  • 23. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 23 1 0 1 0 1 0 1 0 1 00 21 00 0 0 )(lim )()( lim ννννννν xxxx xνxxxxxxx xx xfxf  , δηλαδό 1 )( νν xνx . 8. Έςτω f(x) = x . Δείξετε ότι για κάθε x (0,+ ) ιςχύει 1 f (x) = 2 x . Απόδειξη Αν 0x εύναι ϋνα ςημεύο του ),0( , τότε για 0xx ιςχύει: 000 0 00 00 0 0 0 0 1 )()( )()( xxxxxx xx xxxx xxxx xx xx xx xfxf , Οπότε: 00 00 0 0 2 11 lim )()( lim xxxxx xfxf xxxx , δηλαδό x x 2 1 . 9. Αν οι ςυναρτήςεισ f, g είναι παραγωγίςιμεσ ςτο 0 x , τότε η ςυνάρτηςη f + g είναι παραγωγίςιμη ςτο 0 x και ιςχύει: 0 0 0 (f + g) (x ) = f (x )+ g (x ) . Απόδειξη Για 0xx ,ιςχύει: 0 0 0 0 0 00 0 0 )()()()()()()()())(())(( xx xgxg xx xfxf xx xgxfxgxf xx xgfxgf . Επειδό οι ςυναρτόςεισ gf , εύναι παραγωγύςιμεσ ςτο 0x , ϋχουμε: ),()( )()( lim )()( lim ))(())(( lim 00 0 0 00 0 00 0 0 xgxf xx xgxg xx xfxf xx xgfxgf xxxxxx Δηλαδό : )()()()( 000 xgxfxgf . 10. Έςτω η ςυνάρτηςη -ν f(x) = x , * ν . Η ςυνάρτηςη f είναι παραγωγίςιμη ςτο R* και ιςχύει -ν-1 f (x) = -νx , δηλαδή -ν -ν-1 (x ) = -νx . Απόδειξη Για κϊθε * x R ϋχουμε: 1 2 1 2 )( )(1)1(1 )( ν ν ν ν νν ν ν xν x xν x xx x x . Γνωρύζουμε, όμωσ, ότι : 1 )( νν xνx , για κϊθε φυςικό 1ν . Επομϋνωσ, αν {0, 1}Z , τότε : 1 )( κκ κxx . 11. Έςτω η ςυνάρτηςη f(x) = εφx . Η ςυνάρτηςη f είναι παραγωγίςιμη ςτο D = -{x | ςυνx = 0+f και ιςχύει 2 1 f (x)= ςυν x , δηλαδή: 2 1 (εφx) = ςυν x . Απόδειξη x xxxx x xxxx x x x 22 συν ημημσυνσυν συν )συν(ημσυν)ημ( συν ημ )ευ( xx xx 22 22 συν 1 συν ημσυν . 12. Η ςυνάρτηςη α f(x)= x , α είναι παραγωγίςιμη ςτο (0,+ ) και ιςχύει α-1 f (x)=αx , δηλαδή: α α-1 (x ) =αx . Απόδειξη Αν xαα exy ln και θϋςουμε xαu ln , τότε ϋχουμε u ey . Επομϋνωσ, 1ln 1 )( ααxαuu xα x α x x αeueey . 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 23 of 107
  • 24. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 24 13. Η ςυνάρτηςη x f(x)=α , α > 0 είναι παραγωγίςιμη ςτο R και ιςχύει x f (x)=α lnα , δηλαδή : x x (α ) =α lnα Απόδειξη Αν αxx eαy ln και θϋςουμε αxu ln , τότε ϋχουμε u ey . Επομϋνωσ, αααeueey xαxuu lnln)( ln . 14. Η ςυνάρτηςη f(x)= ln| x | , * x είναι παρ/μη ςτο * και ιςχύει 1 (ln| x |) = x Απόδειξη Αν 0x , τότε x xx 1 )(ln)||(ln , ενώ αν 0x , τότε : )ln(||ln xx , οπότε, αν θϋςουμε )ln( xy και xu , ϋχουμε uy ln . Επομϋνωσ, xx u u uy 1 )1( 11 )(ln και ϊρα x x 1 )||(ln . 15. Έςτω μια ςυνάρτηςη f οριςμένη ςε ένα διάςτημα Δ. Αν η f είναι ςυνεχήσ ςτο Δ και f (x)= 0 για κάθε εςωτερικό ςημείο x του Δ, τότε η f είναι ςταθερή ςε όλο το διάςτημα Δ. Απόδειξη Αρκεύ να αποδεύξουμε ότι για οποιαδόποτε Γxx 21 , ιςχύει )()( 21 xfxf . Πρϊγματι Αν 21 xx , τότε προφανώσ )()( 21 xfxf . Αν 21 xx , τότε ςτο διϊςτημα ],[ 21 xx η f ικανοποιεύ τισ υποθϋςεισ του θεωρόματοσ μϋςησ τιμόσ. Επομϋνωσ, υπϊρχει ),( 21 xxξ τϋτοιο, ώςτε 12 12 )()( )( xx xfxf ξf (1) Επειδό το ξ εύναι εςωτερικό ςημεύο του Δ, ιςχύει 0)(ξf , οπότε , λόγω τησ (1), εύναι )()( 21 xfxf . Αν 12 xx , τότε ομούωσ αποδεικνύεται ότι )()( 21 xfxf . ΢ε όλεσ, λοιπόν, τισ περιπτώςεισ εύναι )()( 21 xfxf . 16. Έςτω δυο ςυναρτήςεισ f,g οριςμένεσ ςε ένα διάςτημα Δ. Αν οι f,g είναι ςυνεχείσ ςτο Δ και f (x)= g (x) για κάθε εςωτερικό ςημείο x του Δ, τότε υπάρχει ςταθερά c τέτοια, ώςτε για κάθε x Δ να ιςχύει: f(x)= g(x)+c Απόδειξη Η ςυνϊρτηςη gf εύναι ςυνεχόσ ςτο Δ και για κϊθε εςωτερικό ςημεύο Γx ιςχύει : 0)()()()( xgxfxgf . Επομϋνωσ, ςύμφωνα με το προηγούμενο θεώρημα, η ςυνϊρτηςη gf εύναι ςταθερό ςτο Δ. Άρα, υπϊρχει ςταθερϊ c τϋτοια, ώςτε για κϊθε Γx να ιςχύει cxgxf )()( , οπότε cxgxf )()( .  ΢ΦΟΛΙΟ Σο παραπϊνω θεώρημα (15), καθώσ και το πόριςμϊ του (16) ιςχύουν μόνο ςε διϊςτημα και όχι ςε ϋνωςη διαςτημϊτων. Για παρϊδειγμα, ϋςτω η ςυνϊρτηςη: 0,1 0,1 )( x x xf . Παρατηρούμε ότι, αν και 0)(xf για κϊθε ),0()0,(x , εντούτοισ η f δεν εύναι ςταθερό ςτο ),0()0,( . y O x y=g(x)+c y=g(x) 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 24 of 107
  • 25. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 25 17. Έςτω μια ςυνάρτηςη f, η οποία είναι ςυνεχήσ ςε ένα διάςτημα Δ. Αν f (x)> 0 ςε κάθε εςωτερικό ςημείο x του Δ, τότε η f είναι γν. αύξουςα ςε όλο το Δ. Αν f (x)< 0 ςε κάθε εςωτερικό ςημείο x του Δ, τότε η f είναι γν. φθίνουςα ςε όλο το Δ. Απόδειξη Αποδεικνύουμε το θεώρημα ςτην περύπτωςη που εύναι 0)(xf . Έςτω Γxx 21 , με 21 xx . Θα δεύξουμε ότι )()( 21 xfxf . Πρϊγματι, ςτο διϊςτημα ],[ 21 xx η f ικανοποιεύ τισ προώποθϋςεισ του Θ.Μ.Σ. Επομϋνωσ, υπϊρχει ),( 21 xxξ τϋτοιο, ώςτε 12 12 )()( )( xx xfxf ξf , οπότε ϋχουμε ))(()()( 1212 xxξfxfxf . Επειδό 0)(ξf και 012 xx , ϋχουμε 0)()( 12 xfxf , οπότε )()( 21 xfxf . ΢την περύπτωςη που εύναι 0)(xf εργαζόμαςτε αναλόγωσ.  ΢ΦΟΛΙΟ Σο αντύςτροφο του παραπϊνω θεωρόματοσ δεν ιςχύει. Δηλαδό, αν η f εύναι γνηςύωσ αύξουςα (αντιςτούχωσ γνηςύωσ φθύνουςα) ςτο Δ, η παρϊγωγόσ τησ δεν είναι υποχρεωτικά θετικό (αντιςτούχωσ αρνητικό) ςτο εςωτερικό του Δ. Παρϊδειγμα: η ςυνϊρτηςη 3 )( xxf , αν και εύναι γνηςύωσ αύξουςα ςτο R, ϋχει παρϊγωγο 2 3)( xxf η οπούα δεν εύναι θετικό ςε όλο το R, αφού 0)0(f . Ιςχύει όμωσ 0)(xf για κϊθε x ℝ. 18. (Θεώρημα Fermat) Έςτω μια ςυνάρτηςη f οριςμένη ς’ ένα διάςτημα Δ και 0x εςωτερικό ςημείο του Δ. Αν η f παρουςιάζει τοπικό ακρότατο ςτο 0x και είναι παραγωγίςιμη ς΄αυτό, τότε: 0f (x )= 0 Απόδειξη Ασ υποθϋςουμε ότι η f παρουςιϊζει ςτο 0x τοπικό μϋγιςτο. Επειδό το 0x εύναι εςωτερικό ςημεύο του Δ και η f παρουςιϊζει ς’ αυτό τοπικό μϋγιςτο, υπϊρχει 0δ τϋτοιο, ώςτε Γδxδx ),( 00 και )()( 0xfxf , για κϊθε ),( 00 δxδxx . (1) Επειδό, επιπλϋον, η f εύναι παραγωγύςιμη ςτο 0x , ιςχύει: 0 0 00 0 0 0 )()( lim )()( lim)( xx xfxf xx xfxf xf xxxx . Επομϋνωσ: αν ),( 00 xδxx , τότε, λόγω τησ (1), θα εύναι 0 )()( 0 0 xx xfxf , οπότε: 0 )()( lim)( 0 0 0 0 xx xfxf xf xx . (2) αν ),( 00 δxxx , τότε, λόγω τησ (1), θα εύναι 0 )()( 0 0 xx xfxf , οπότε: 0 )()( lim)( 0 0 0 0 xx xfxf xf xx . (3) Έτςι , από τισ (2) και (3) ϋχουμε 0)( 0xf . Η απόδειξη για τοπικό ελϊχιςτο εύναι ανϊλογη. 19. Έςτω μια ςυνάρτηςη f παραγωγίςιμη ς’ ένα διάςτημα (α, β) , με εξαίρεςη ίςωσ ένα ςημείο του 0 x , ςτο οποίο όμωσ η f είναι ςυνεχήσ. i) Αν f (x)> 0 ςτο 0(α,x ) και f (x)< 0 ςτο 0(x ,β) , τότε το 0f(x ) είναι τοπικό μέγιςτο τησ f. (΢χ.α) ii) Αν f (x)< 0 ςτο 0(α,x ) και f (x)> 0 ςτο 0(x ,β) , τότε το 0f(x ) είναι τοπικό ελάχιςτο τησ f. iii) Aν η f (x) διατηρεί πρόςημο ςτο 0 0(α,x )U(x ,β) , τότε το 0f(x ) δεν είναι τοπικό ακρότατο και η f είναι γνηςίωσ μονότονη ςτο (α, β) . (΢χ.β). Απόδειξη y O f(x0) x0 δ x0+δx0 x x y=x3 y Ο 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 25 of 107
  • 26. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 26 i) Eπειδό 0)(xf για κϊθε ),( 0xαx και η f εύναι ςυνεχόσ ςτο 0x , η f εύναι γνηςύωσ αύξουςα ςτο ],( 0xα . Έτςι ϋχουμε: )()( 0xfxf , για κϊθε ],( 0xαx . (1) Επειδό 0)(xf για κϊθε ),( 0 βxx και η f εύναι ςυνεχόσ ςτο 0x , η f εύναι γνηςύωσ φθύνουςα ςτο ),[ 0 βx . Έτςι ϋχουμε: )()( 0xfxf , για κϊθε ),[ 0 βxx . (2) y O f(x0) f΄<0 f΄>0 βa x0 x y O f΄<0f΄>0 βa x0 x α f(x0) Επομϋνωσ, λόγω των (1) και (2), ιςχύει: )()( 0xfxf , για κϊθε ),( βαx , που ςημαύνει ότι το )( 0xf εύναι μϋγιςτο τησ f ςτο ),( βα και ϊρα τοπικό μϋγιςτο αυτόσ. ii) Εργαζόμαςτε αναλόγωσ. iii) Έςτω ότι: 0)(xf , για κϊθε ),(),( 00 βxxαx . Επειδό η f εύναι ςυνεχόσ ςτο 0x θα εύναι γνηςύωσ αύξουςα ςε κϊθε ϋνα από τα διαςτόματα ],( 0xα και ),[ 0 βx . Επομϋνωσ, για 201 xxx ιςχύει )()()( 201 xfxfxf . Άρα το )( 0xf δεν εύναι τοπικό ακρότατο τησ f. y O f΄>0 f΄>0 βa x0 x y O f΄>0 f΄>0 βa x0 x β Θα δεύξουμε, τώρα, ότι η f εύναι γνηςύωσ αύξουςα ςτο ),( βα . Πρϊγματι, ϋςτω ),(, 21 βαxx με 21 xx . — Αν ],(, 021 xαxx , επειδό η f εύναι γνηςύωσ αύξουςα ςτο ],( 0xα , θα ιςχύει )()( 21 xfxf . — Αν ),[, 021 βxxx , επειδό η f εύναι γνηςύωσ αύξουςα ςτο ),[ 0 βx , θα ιςχύει )()( 21 xfxf . — Σϋλοσ, αν 201 xxx , τότε όπωσ εύδαμε )()()( 201 xfxfxf . Επομϋνωσ, ςε κϊθε περύπτωςη ιςχύει )()( 21 xfxf , οπότε η f εύναι γνηςύωσ αύξουςα ςτο ),( βα . Ομούωσ, αν 0)(xf για κϊθε ),(),( 00 βxxαx . ΟΛΟΚΛΗΡΨΣΙΚΟ΢ ΛΟΓΙ΢ΜΟ΢ 20. Έςτω f μια ςυνάρτηςη οριςμένη ςε ένα διάςτημα Δ. Αν F είναι μια παράγουςα τησ f ςτο Δ, τότε: α) όλεσ οι ςυναρτήςεισ τησ μορφήσ G(x)= F(x)+c , c R, είναι παράγουςεσ τησ f ςτο Δ β) κάθε άλλη παράγουςα G τησ f ςτο Δ παίρνει τη μορφή G(x)= F(x)+c , c R . Απόδειξη α) Κϊθε ςυνϊρτηςη τησ μορφόσ cxFxG )()( , όπου c R, εύναι μια παρϊγουςα τησ f ςτο Δ, αφού )()())(()( xfxFcxFxG , για κϊθε Γx . β) Έςτω G εύναι μια ϊλλη παρϊγουςα τησ f ςτο Δ. Σότε για κϊθε Γx ιςχύουν )()( xfxF και )()( xfxG , οπότε )()( xFxG , για κϊθε Γx . Άρα, ςύμφωνα με γνωςτό πόριςμα, υπϊρχει c R, ώςτε : cxFxG )()( , για κϊθε Γx . 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 26 of 107
  • 27. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 27 21. (Θεμελιώδεσ θεώρημα του ολοκληρωτικού λογιςμού) Έςτω f μια ςυνεχήσ ςυνάρτηςη ς’ ένα διάςτημα [α,β- . Αν G είναι μια παράγουςα τησ f ςτο [α,β- , τότε β α f(t)dt = G(β)-G(α) Απόδειξη ΢ύμφωνα με προηγούμενο θεώρημα, η ςυνϊρτηςη x α dttfxF )()( εύναι μια παρϊγουςα τησ f ςτο ],[ βα . Επειδό και η G εύναι μια παρϊγουςα τησ f ςτο ],[ βα , θα υπϊρχει c R, ώςτε να ιςχύει : cxFxG )()( (1) Από την (1), για αx , ϋχουμε α α ccdttfcαFαG )()()( , οπότε )(αGc . Επομϋνωσ, )()()( αGxFxG , και για βx , προκύπτει : β α αGdttfαGβFβG )()()()()( ΄Αρα : β α αGβGdttf )()()( .  ΠΑΡΑΣΗΡΗ΢Η Πολλϋσ φορϋσ, για να απλοποιόςουμε τισ εκφρϊςεισ μασ, ςυμβολύζουμε τη διαφορϊ )()( αGβG με β αxG )]([ , οπότε το παραπϊνω θεώρημα γρϊφεται: f(x)dx [G(x)] G(β)-G(α) . 22. Έςτω δυο ςυναρτήςεισ f και g, ςυνεχείσ ςτο διάςτημα [α,β- με f(x) g(x) για κάθε x [α,β- και Ψ το επίπεδο χωρίο που περικλείεται από τισ γραφικέσ παραςτάςεισ των f,g και τισ ευθείεσ x = α και x = β. Σότε το εμβαδόν του χωρίου Ψ είναι β α E(Ω) = (f(x)- g(x))dx . Απόδειξη Αν 0)()( xgxf για κϊθε x [α,β] παρατηρούμε ςτα ςχόματα (α),(β),(γ), ότι: β α β α β α dxxgxfdxxgdxxfΩΔΩΔΩΔ ))()(()()()()()( 21 . Ω (α) O x y=g(x) y=f(x) y Ω1 (β) O x y=f(x) y Ω2 (γ) O x y=g(x) y Επομϋνωσ, β α dxxgxfΩE ))()(()( (1) Αν f(x) g(x) για κϊθε x [α,β] και επειδό οι ςυναρτόςεισ gf , εύναι ςυνεχεύσ ςτο ],[ βα , θα υπϊρχει αριθμόσ c ℝ τϋτοιοσ ώςτε 0)()( cxgcxf , για κϊθε ],[ βαx . Εύναι φανερό ότι το χωρύο Ω ςτα παρακϊτω ςχόματα ϋχει το ύδιο εμβαδόν με το χωρύο Ω βα (α) Ω O x y y=g(x) y=f(x) βα (β) O x y y=f(x)+c y=g(x)+c Επομϋνωσ, ςύμφωνα με τον τύπο (1), ϋχουμε: β α β α dxxgxfdxcxgcxfΩΔΩΔ ))()(()])(())([()()( . Άρα: β α dxxgxfΩE ))()(()( 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 27 of 107
  • 28. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 28  ΦΡΗ΢ΙΜΕ΢ ΠΡΟΣΑ΢ΕΙ΢ και ΠΑΡΑΣΗΡΗ΢ΕΙ΢ 1. Αν η ςυνϊρτηςη f με πεδύο οριςμού Α, εύναι γνηςύωσ μονότονη ςτο Α, τότε αντιςτρϋφεται και η f-1 εύναι επύςησ γνηςύωσ μονότονη ςτο f(Α), με το ύδιο εύδοσ μονοτονύασ. 2. Αν η ςυνϊρτηςη f εύναι γνηςύωσ αύξουςα ςτο Α τότε η εξύςωςη f(x) = f-1(x) εύναι ιςοδύναμη με την εξύςωςη f(x) = x. 3. Αν η ςυνϊρτηςη f εύναι (1-1) και ςυνεχόσ ςτο διϊςτημα Δ, τότε εύναι γνηςύωσ μονότονη ςτο Δ. 4. Αν για τισ ςυναρτόςεισ f,g ιςχύει f(x) ≥ g(x) , κοντϊ ςτο x0 , τότε εύναι: Α. αν 0x x lim g(x) , τότε 0x x lim f (x) Β. αν 0x x lim f (x) , τότε 0x x lim g(x) 5. Αν η ςυνϊρτηςη f δεν εύναι ςυνεχόσ ςε ςημεύο x0 τότε δεν εύναι ούτε παραγωγύςιμη ςτο ςημεύο αυτό. 6. Αν η ςυνϊρτηςη f εύναι παραγωγύςιμη ςτο διϊςτημα Δ και η εξύςωςη f(x)=0 ϋχει ν ρύζεσ ςτο Δ, τότε η εξύςωςη f΄(x)=0 ϋχει τουλϊχιςτον (ν-1) ρύζεσ ςτο Δ. 7. Αν η ςυνϊρτηςη f εύναι παραγωγύςιμη ςτο διϊςτημα Δ τότε μεταξύ δύο διαδοχικών ριζών τησ f΄, υπϊρχει το πολύ μύα ρύζα τησ f. 8. Αν η ςυνϊρτηςη f εύναι παραγωγύςιμη ςτο διϊςτημα Δ και ιςχύει f΄(x) ≠ 0 για κϊθε εςωτερικό ςημεύο του Δ, τότε η f εύναι ςυνϊρτηςη (1-1). 9. Αν η ςυνϊρτηςη f εύναι παραγωγύςιμη ςτο διϊςτημα Δ, με ςυνεχό παρϊγωγο ςτο Δ και ιςχύει f΄(x) ≠ 0 για κϊθε εςωτερικό ςημεύο του Δ, τότε η f εύναι γνηςύωσ μονότονη ςτο διϊςτημα Δ. 10. (Γενίκευςη ΘΜΣ – Θεώρημα CAUCHY) Αν οι ςυναρτόςεισ f, g εύναι ςυνεχεύσ ςτο [α,β] με g(α)≠g(β), και παραγωγύςιμεσ ςτο(α,β) με g΄(x)≠0 για κϊθε x ( , ) , τότε υπϊρχει ϋνα τουλϊχιςτον ξ ( , )ώςτε να ιςχύει: f΄( ) f( ) f( ) g΄( ) g( ) g( ) . 11. (Ανιςότητεσ JENSENS) Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςε διϊςτημα Δ, παραγωγύςιμη και κυρτό ςτο εςωτερικό του Δ, τότε ιςχύει: f( ) f( ) f 2 2 , για κϊθε , , ενώ αν η f εύναι κούλη ςτο εςωτερικό του Δ, τότε ιςχύει: f( ) f( ) f 2 2 , για κϊθε , . 12. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,β] με f(α)=f(β)=0, παραγωγύςιμη και κυρτό ςτο (α,β), τότε ιςχύει f(x)<0 για κϊθε x ( , ). 13. Κϊθε ςυνεχόσ ςυνϊρτηςη f ςε διϊςτημα Δ, ϋχει παρϊγουςα ςτο διϊςτημα Δ. 14. Έςτω ςυνϊρτηςη f ςυνεχόσ ςτο διϊςτημα Δ, με f(x) ≠ 0 για κϊθε x . Αν επιπλϋον ιςχύει f(x)dx 0 , με α,β Δ , τότε α=β. 15. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,β], με f(x)≥0 για κϊθε x [ , ] και ιςχύει f(x)dx 0 , τότε f(x)=0 για κϊθε x [ , ] . 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 28 of 107
  • 29. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 29 16. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο διϊςτημα Δ και ιςχύει f(x) > 0 για κϊθε x και υπϊρχουν , , ώςτε f(x)dx 0, με , τότε α>β. 17. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,β], χωρύσ να εύναι παντού ύςη με το μηδϋν και ιςχύει f(x)dx 0 , τότε η f παύρνει δύο τουλϊχιςτον ετερόςημεσ τιμϋσ ςτο [α,β]. 18. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,β], τότε υπϊρχει ξ [ , ] ώςτε να ιςχύει f(x)dx f( )( ) . 19. Αν οι ςυναρτόςεισ f, g εύναι ςυνεχεύσ και ιςχύει f(x)≥g(x) για κϊθε x [ , ] , τότε ιςχύει f(x)dx g(x)dx . 20. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,β], τότε f (x)dx f (x) dx . 21. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,β], τότε υπϊρχουν m,M , ώςτε να ιςχύει: m( ) f(x)dx M( ) . 22. Αν η ςυνϊρτηςη f:[-α,α] εύναι ςυνεχόσ και ϊρτια, τότε : 0 f (x)dx 2 f (x)dx . 23. Αν η ςυνϊρτηςη f:[-α,α] εύναι ςυνεχόσ και περιττό, τότε : f(x)dx 0. Επιπλέον, για τον υπολογιςμό εμβαδών επιπέδων χωρίων Ω ςε διαςτήματα τησ μορφήσ: [α,β) ή (α,β] ή [α,+∞) ή (-∞,α] (όπωσ αςκ.5 –ςελ.232 και αςκ.9 – ςελ.235, του ςχολικού βιβλίου), ιςχύουν οι παρακάτω προτάςεισ, με την προώπόθεςη ότι υπάρχει το όριο του 2ου μέλουσ τησ ιςότητασ : 24. Α. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,β), τότε ιςχύει : x x f(t)dt lim f(t)dt . Β. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο (α,β], τότε ιςχύει : xx f(t)dt lim f(t)dt . 25. Α. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο [α,+∞), τότε ιςχύει : x x f(t)dt lim f(t)dt . Β. Αν η ςυνϊρτηςη f εύναι ςυνεχόσ ςτο (-∞,α], τότε ιςχύει : xx f(t)dt lim f(t)dt . 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 29 of 107
  • 30. ΜΑΘΗΜΑΣΙΚΑ Ο.Π. ΘΕΣΙΚΨΝ ΕΠΙ΢ΣΗΜΨΝ – ΟΙΚΟΝΟΜΙΑ΢ & ΠΛΗΡ/ΚΗ΢ τησ Γ΄ ΛΤΚΕΙΟΤ ΒΑ΢ΙΛΗ΢ Θ. ΚΑΡΑΓΕΨΡΓΟ΢ | 30 Ι. ΠΡΑΓΜΑΣΙΚΕ΢ ΢ΤΝΑΡΣΗ΢ΕΙ΢ Ερωτήςεισ τύπου «΢ωςτό - Λάθοσ» 1. Αν Α = Ν - {0, 1}, τότε η αντιςτοιχύα f : Α {0, 1} με f (x) = αξηζκόοζύλζεηνοείλαηxηναλ,1 αξηζκόονοείλαη πξώηxηναλ0, εύναι ςυνϊρτηςη. ΢ Λ 2. Για τη ςυνϊρτηςη f (x) = lnx, x > 0, ιςχύει f (x y) = f (x) + f (y) για κϊθε x, y > 0. ΢ Λ 3. Για τη ςυνϊρτηςη f (x) = ex, x R, ιςχύει f (x + y) = f (x) f (y) για κϊθε x, y R. ΢ Λ 4. Η γραφικό παρϊςταςη τησ ςυνϊρτηςησ f βρύςκεται κϊτω από τον ϊξονα x΄x. ΢ Λ 5. Δύνεται η ςυνϊρτηςη y = f (x). Οι τετμημϋνεσ των ςημεύων τομόσ τησ Cf με τον ϊξονα x΄x μπορούν να βρεθούν, αν θϋςουμε όπου y = 0 και λύςουμε την εξύςωςη. ΢ Λ 6. Δύο ςυναρτόςεισ f, g εύναι ύςεσ, αν υπϊρχουν κϊποια x R, ώςτε να ιςχύει f (x) = g (x). ΢ Λ 7. Για να ορύζονται το ϊθροιςμα και το γινόμενο δύο ςυναρτόςεων f και g θα πρϋπει τα πεδύα οριςμού τουσ να ϋχουν κοινϊ ςτοιχεύα. ΢ Λ 8. Αν η ςυνϊρτηςη f εύναι 1 - 1, οι ςυναρτόςεισ g, h ϋχουν πεδύο οριςμού το R και ιςχύει f (g(x)) = f (h(x)) για κϊθε x R, τότε οι ςυναρτόςεισ g και h εύναι ύςεσ. ΢ Λ 9. Η ςυνϊρτηςη f (x) = x x2 , x 0, εύναι ςταθερό. ΢ Λ 10. Αν το ςύνολο τιμών τησ f εύναι το διϊςτημα (α, β), τότε η f δεν ϋχει ελϊχιςτο ούτε μϋγιςτο. ΢ Λ 11. Μια ςυνϊρτηςη f ϋχει πεδύο οριςμού το R, εύναι γνηςύωσ αύξουςα και ϋχει ςύνολο τιμών το (0, + ). Σότε η ςυνϊρτηςη f 1 εύναι γνηςύωσ φθύνουςα ςτο R. ΢ Λ 12. Δύνεται ςυνϊρτηςη f με πεδύο οριςμού ϋνα διϊςτημα Δ. Αν ο λόγοσ 21 21 x-x )(xf-)(xf εύναι θετικόσ για κϊθε x1, x2 Δ, με x1 x2, τότε η ςυνϊρτηςη εύναι γνηςύωσ αύξουςα ςτο Δ. ΢ Λ 13. Αν μια ςυνϊρτηςη f εύναι γνηςύωσ αύξουςα ς’ ϋνα διϊςτημα Δ, τότε η ςυνϊρτηςη (- f) εύναι γνηςύωσ φθύνουςα ςτο Δ. ΢ Λ 14. Η ςυνϊρτηςη f (x) = x 1 εύναι γνηςύωσ φθύνουςα ςτο ςύνολο (- , 0) (0, + ). ΢ Λ 15. Αν μια περιττό ςυνϊρτηςη f παρουςιϊζει μϋγιςτο ςτο ςημεύο x0, τότε θα παρουςιϊζει ελϊχιςτο ςτο ςημεύο - x0. ΢ Λ 16. Αν μια ϊρτια ςυνϊρτηςη f παρουςιϊζει ακρότατο ςτο ςημεύο x0, τότε παρουςιϊζει το ύδιο εύδοσ ακροτϊτου ςτο ςημεύο - x0. ΢ Λ 17. Αν μια ςυνϊρτηςη f εύναι ϊρτια, τότε μπορεύ να εύναι 1 - 1. ΢ Λ 18. Αν μια ςυνϊρτηςη f εύναι 1 - 1, τότε εύναι πϊντοτε περιττό. ΢ Λ 19. Η ςυνϊρτηςη f (x) = xν, ν Ν* εύναι: i) ϊρτια, αν ο ν εύναι ϊρτιοσ ii) περιττό, αν ο ν εύναι περιττόσ. ΢ Λ ΢ Λ 20. Αν η ςυνϊρτηςη f εύναι 1 - 1, τότε ιςχύουν: i) f (f -1 (x)) = x για κϊθε x που ανόκει ςτο ςύνολο τιμών τησ f ii) f -1 (f (x)) = x για κϊθε x Df. ΢ Λ ΢ Λ 21. Έςτω η ςυνϊρτηςη f (x) = x2, x [0, + ). Σότε κϊθε κοινό ςημεύο των γραφικών παραςτϊςεων 22.03.2018 Αποκλειστικά στο lisari.blogspot.gr Page 30 of 107