SlideShare una empresa de Scribd logo
1 de 29
Descargar para leer sin conexión
1
1
Under Graduate Course on
Computer Aided Design & Manufacturing
Geometric
Modeling
Shibendu Shekhar Roy
Robotics & A.I Lab. (RAIL)
Department of Mechanical Engineering
( ME 502 )
2
Geometric
Modeling
Concept
Design & Analysis
Theories/ Tools
Computer
Graphics
AlgorithmCAD
…To Automate the Design Process
2
3
Geometric Modeling
Geometric modeling plays a crucial role in the overall application of CAD-CAM-CAE
system
Information entered through geometric modeling is utilized in number of downstream
applications like:
Design Analysis
Drafting
Evaluation of centroid, area (cross-sectional & surface) & volume
Estimate the mass & inertia properties
Interference checking in assemblies
Analysis of tolerance build-up in assemblies
Kinematic/ Dynamic analysis & simulation
Finite element analysis for stress, vibration, thermal & optimization
Automatic 2D view generation
Automatic planar cross-sectioning
Automatic dimensioning
Requirements of Geometric Modeling
4
Geometric Modeling
Production &
Industrial
Engineering
Manufacturing Part classification & Process planning
NC tool path generation & verification
Manufacturing process simulation
Robot program generation
Preparation of Bill of Material (BOM)
Material requirement planning
Manufacturing resource requirement
Scheduling
Marketing
Computer-Aided Inspection & Quality control etc…..
3
5
Geometric Modeling
Hence, It is important that the geometric model generated should be as clear &
comprehensive as possible so that the other modules of CAD-CAM-CAE system are
able to use this information in the most optimal way.
Geometric model
Three Dimensional
(3-D)
Two Dimensional
(2-D)
Solid Modeling
Surface Modeling
Wireframe Modeling
6
Geometric Model
Three Dimensional (3-D)
Two Dimensional (2-D)
Utility of 2-D model lies in many of the low end drafting packages which is required
for preparing manufacturing drawings
Their utility is limited because of their inherent difficulty in representing complex
objects.
The 3-D geometric modeling has the ability to provide all the information required for
CAD-CAM-CAE applications
A 3-D geometric model should be an unambiguous representation of an object.
A 3-D model should be complete to all engineering function from documentation
(drafting & shading) to engineering analysis to manufacturing.
Basic Requirement
4
7
In this method the complete object is represented by number of lines, points, arcs &
curves and their connectivity relationships
Wireframe Modeling
Disadvantages
The construction of a wireframe model is simple
It does not require much computer time & memory.
It can be used for simple NC tool path generation
Advantages
It can not be used for calculation of mass, inertia properties
The interpretation of wireframe models having many edges is very difficult
8
The surface model is constructed essentially from surfaces such a s planes, rotated
curved surfaces & even very complex synthetic surfaces.
Surface creation on existing CAD system usually requires wireframe entities as a
start
Surface & wireframe form the core of all existing CAD system
Surface Modeling
Disadvantages
Surface model of an object is a relatively more complete & less ambiguous representation
than its wireframe model
This method is very much useful for specific non-analytical surfaces ( free-form surface/
sculptured surfaces) such as those used for modeling automobile & airplane bodies &
turbine blades etc.
From an application point of view, surface models can be utilized in Finite Element
Modeling, NC tool path generation, sectioning & interference detections.
Advantages
The calculation of mass & inertia properties would be difficult
5
9
Solid model of an object is a more complete representation than surface
model, as all the information required for engineering analysis &
manufacturing can be obtained with this technique.
Solid modeling produces accurate design,
provides complete 3D definition
Improves the quality of design
Improves visualization
has potential for functional simulation of the system
Advantages
Solid Modeling
10
Wireframe Modeling
Wireframe entities
Synthetic Curves
Analytic Entities /
Curves
Point
Lines
Arcs
Ellipse
Circles
Conics Parabolas
Hyperbolas
NURBS (Non-Uniform Rational B-spline)
Bezier curves
Cubic spline
B-spline
- are described by a set of data points (i.e.
control points)
- are described by analytic equations
Synthetic CurveAnalytic Curve
<Geometric Primitives>
6
11
Synthetic Curve
Analytic Curve
are defined as those that can be described by analytic equations such as lines, circle,
conics etc.
provide very compact forms to represent shapes & simplify the computation of
related properties such as areas & volume.
Analytic curves are usually not sufficient to meet today’s geometric design
requirements of complex mechanical parts like automobile bodies, aeroplane wings,
propeller blades, bottles etc.
That require synthetic curves & surfaces (free-form surfaces)
are defined as those that can be described by a set of data points (i.e. control points)
such as Splines, Bezier curve etc.
Synthetic curves provide designers with greater flexibility & control of a curve shape
by changing the positions of the one or more data points or control points.
12
Synthetic Curve
The need for synthetic curves in design arises on two occasions:
i) when a curve is represented by a collection of measured data points (in case of
Reverse Engineering) [graphical visualization of experimental data]
ii) when an existing curve must change to meet new design requirements.
Synthetic Curve Construction Techniques :
Interpolation technique Curve passes through the data points
Curve do not passes through the data pointsApproximation technique
Mathematically, synthetic curves represent a Curve-fitting problem to construct a smooth curve
7
13
- Produce curves that do not pass through the
given data points. Instead, these points are
used to control the shape of the resulting
curves
- Curve resulting from this technique pass
through the given data points; curve itself is
called Interpolant
-Ex. : Bezier Curve- Ex. : Cubic Spline
Approximation TechniqueInterpolation Technique
Most often, approximation techniques are preferred over interpolation techniques in free-
form curve design due to the added flexibility & the additional intuitive feel provided by
approximate technique.
P0
P1 P2
P3
P0
P1
P2
P3
P0
P12
P5
P4
P3
P2
P1 P8
P7
P6
P11
P10
P9
14
Mathematical Representation of Curves
Curve can be described mathematically by
Parametric equation
Non-parametric equation
Explicit form
Implicit form
Non-parametric equation : Explicit form
If the co-ordinates ‘y’ & ‘z’ of a point on the curve are expressed as two separate functions of the third co-
ordinate ‘x’ <independent variable>. This curve representation is known as Non-parametric Explicit form.
Non-parametric Explicit form of a general 3-D curve
P (x,y,z)
P
Position vector of a point ‘P’ on the curve = P = [x y z]T= [x f(x) g(x) ]T
X
Y
Z
8
15
Non-parametric equation : Implicit form
If the co-ordinates ‘x’, ‘y’ & ‘z’ are related together by two functions, a non-parametric implicit form results
Non-parametric Implicit form of a general 3-D curve
f1 (x,y,z) = 0
f2 (x,y,z) = 0
Parametric representation of curves
P (x,y,z)
P(u)
X
Y
Z
In parametric form, each point on a curve is expressed as a function
of a parameter “u”. This parameter acts as a local co-ordinate for
points on the curve.
P’(u)
umax
umin
Parametric form of a general 3-D curve
Position vector of a point ‘P’ on the curve = P(u) = [x(u) y(u) z(u) ]T
The parametric curve is bounded by two parametric variable values umin and umax.
Where, umin ≤ u ≤ umax
16
Advantages :
Parametric Representation of Curves
In case of commonly used curves (such as circle, conics), these
equations are polynomials rather than equations involving roots.
Hence, the parametric form is not only more general but it is also
well suited to computation in geometric modeling.
Parametric geometry can be easily expressed in terms of vectors &
matrices which enables the use of simple computation techniques
to solve complex analytic geometry problem.
To check whether a given point lies on the curve or not, reduces to
finding the corresponding ‘u’ values & checking whether that value
lies in the stated ‘u’ range.
9
17
Blending is used to construct composite curve. Blending of two
curves implies the joining of two curves subjected to the
satisfaction of continuity condition.
Various Continuity requirements can be specified at data points
to impose various degrees of smoothness of the resulting curve.
The order of continuity becomes important when a complex
curve is modeled by several curve segments pieced together
end-to-end.
Order of Continuity
18
Order of Continuity
Zero-order
Continuity
First-order
Continuity
Second-order
Continuity
(C0 - continuity) (C1 - continuity) (C2 - continuity)
Position Continuous
curve
Slope Continuous
curve
Curvature Continuous
curve
C1 – Continuous is “Smoother” than C0 – Continuous at the joining point
C2 – Continuous is “Smoother” than C1 – Continuous at the joining point
Ex.: Cubic Spline Ex.: B-Spline
10
19
Cubic Splines
Synthetic Curves
Splines are used to interpolate to given data i.e. based on
Interpolation technique.
A spline is a piecewise parametric representation of the geometry
of a curve with a specified order of continuity.
Cubic splines use a parametric equations of 3rd degree with the
first order continuity maintained at the intersection point of the
curve.
Name from the traditional drafting tool called “Splines” or “French
Curves”
P0
P0.8
P1
P.0.4
20
Cubic Splines
Vector form
3
i
i
i 0
P(u) u
=
= ∑C
2 3
0 1 2 3P(u) u u u= + + +C C C C
T
P(u) = U C
2
3
1
u
u
u
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
U
Matrix form 0
1
2
3
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
C
C
C
C
C
The parametric equation of a cubic spline segment is given by
Cubic splines use cubic polynomial.
0 u 1≤ ≤
Where, C= Coefficients
Vector
u= parameter
Ci= Polynomial Coefficients
Cubic polynomial has four coefficients & thus requires four conditions to evaluate .
- Uses two data points at its ends & two tangent
vectors at these points
- Uses four data points
Hermite Cubic SplineCubic Spline
P0
P0.8
P1
P.0.4
11
21
Bezier Curves
Based on approximation techniques.
Developed by P. Bezier, Designer of French car firm Regie Renault (1962).
Used in his Software system (UNISURF) to define the outer panels of several
Renault cars .
Bezier curve uses the vertices of Bezier Characteristic polygon (or
control polygon) as control points for approximating the generated
curve. The curve will pass through the first & last point with all other
points acting as control points. The curve is also always tangent to
the first & last polygon segment.
Control Polygon
Control Points
22
Bezier Curves
The degree of Bezier curve is related to the number of data points;
(n+1) points define an nth degree Bezier curve.
If no. of data points is 4 [n+1=4], Then n=3 i.e degree of curve =3 (cubic)
Control Polygon
Control Points
This is widely used for the design of aesthetic surfaces. The flexibility of the
curve becomes more with more control points.
Cubic Bezier Curve
12
23
Bezier Curves
Control Polygon
Control Points
Mathematically, for (n+1) control points, the Bezier curve is defined by polynomial
of degree n:
P(u) is a point on the curve, Pi is a control point
Bi,n(u) are the Berntein polynomials
24
C(n,i) is the binomial coefficient
Bezier Curves
13
25
Bezier Curves
26
Major difference between the Bezier Curve & Cubic Spline Curve
i. The degree of Bezier curve is variable & is related to the number of data points;
(n+1) points define an nth degree curve which permits higher-order continuity.
This is not the case for cubic splines where the degree is always 3 <cubic> for a
spline segment.
ii. The shape of Bezier curve is controlled by its data points only. First derivatives
are not used in the curve development as in the case of Hermite cubic spline.
iii. The Bezier curve is smoother than the cubic spline because it has higher order
derivative.
Bezier curve is considered as a single curve controlled by all the control points. As a
result, with an increase in the number of control points, the degree of the polynomial
representing the curve increases & this provides for global modification effect rather
than local.
To reduce this complexity, the curve is broken down into more segments with better
control excised with individual segments, while maintaining a simple continuity
between the segments.
14
27
B-Spline Curves
Single piecewise parametric polynomial curve through any number of control
points with the degree of polynomial selected by Designer.
It provides the ability to add control points without increasing the degree of the
curve.
B-spline exhibit a local control of the curve shape i.e. whenever a single vertex is
moved, only those vertices around that will be affected while rest remains the
same.
B-Spline Curves
Approximate a given set of data points
Interpolate a given set of data points
Useful in displaying design & engineering
analysis results such as Stress/displacement
distribution
Useful for modeling free-form surfaces
In contrast to Bezier curve, the theory of B-spline curve separates the degree of
the resulting curve from the no. of the given control points.
Four control points can always produce a cubic Bezier curve but four control
points can produce linear, quadratic or cubic B-spline curve.
28
Mathematically, B-spline curve defined by (n+1) control points Piis given by
B-Spline Curves
Where ‘k’ controls the degree (k-1) of the resulting polynomial & also continuity of
the curve.
15
29
B-Spline Curves
Local control of B-spline curve
It provides the ability to add control points without increasing the degree of the
curve.
B-spline exhibit a local control of the curve shape i.e. whenever a single vertex is
moved, only those vertices around that will be affected while rest remains the
same.
30
are generalization of the curve & surface theories.
are almost exclusively used by modern CAD-CAM-CAE systems
to provide a unified approach to formulate & represent curves &
surfaces.
provide a convenient design tool to create smooth curves &
surfaces interactively.
Rational Curve: is defined by algebraic ratio of two polynomials while a
non-rational curve is defined by one polynomial.
NURBS Non-Uniform Rational B- Spline
n
i i i,n
i 0
n
i i,n
i 0
P w B (u)
P(u) ;
w B (u)
=
=
=
∑
∑
Rational form of Bezier Curves
where wi is the weighting factor for each of the vertex.
0 ≤ u ≤ 1
16
31
Disadvantages
NURBS are considered a unified representation that can be define both synthetic
(like Bezier, B-spline etc.) & analytic (i.e. circle, conics etc.) curves & surfaces.
Any curve or surface can be formulated using NURBS.
It can represent all curves, surfaces, & solid entities, allowing unification &
conversion from one CAD system to another via exchange standards (like IGES,,
STEP etc.). Their related algorithm are stable & accurate.
This unified representation also have the advantage of reducing the database
complexity & the number of procedures required in CAD system for display &
manipulation of geometric entities.
Advantages
Simple curves (like arcs, circles, conics) require more data to define as NURBS
than traditional way.
NURBS
32
Curve
Manipulations
Blending
Segmentation
Displaying
Trimming
Evaluating points on curves
Intersection
Transformation
The effective use of analytic & synthetic curves in a design environment depends
mainly on their manipulation.
Translation
Rotation
Scaling
Mirror/ Reflection
17
33
Curve Manipulations
Blending
Segmentation
Displaying
Trimming
Evaluating points on curves
Intersection
Transformation
Translation
Rotation
Scaling
Mirror/ Reflection
provides the Designer with a means of visualizing geometric models.
is used to construct composite curves from various types of curve
segments. Two curve segment should be continuous at the joint.
replacing one existing curve by one or more curve segments of the
same curve type such that the shape of the composite curve is
identical to that of the original curve.
is a very useful function which can truncate or extend a curve
the intersection point of two curve in space requires the solution of
the parametric equations of curves.
Curve parametric eqn. is used to evaluate points on it.
34
Surface Modeling
Surface entities
Synthetic Surface
Entities
Analytic Surface
Entities
Plane surface
Ruled surface/ Lofted surface
Surface of revolution
Tabulated cylindrical surface
Coons patch
B-Spline surface
Bi-cubic Hermite spline surface
Bezier surface or patch
Curve segment : is the fundamental building block for curve entities
Surface patch : is the fundamental building block for surfaces
18
35
Plane Surface
Ruled Surface
is the simplest surface which requires three non-coincident
points to define a plane.
The plane surface can be used to generate cross-sectional
view by intersecting a surface model with it.
is a surface constructed by transitioning between two or more curves by using
linear blending between each section of the surface
It interpolates linearly between two boundary curves that define the surface.
Lofted Surface
is a surface constructed by transitioning between two or more
curves by a smooth i.e. higher order blending between each
section of the surface.
Used for modeling engine manifolds, turbine blades etc.
36
Surface of Revolution
is an axi-symmetric surface that can model axi-
symmetric objects.
is generated by a rotating a planar wireframe entity
in space about the axis of symmetry a certain
angle.
Tabulated Cylindrical Surface
is a surface generated by translating a planar curve
a certain distance along a specified direction (axis of
cylinder).
Plane of the curve is perpendicular to the axis of the
cylinder.
is used to generate surfaces that have identical
curved cross-sections.
19
37
B-spline Surface
Bi-cubic Hermite Spline Surface
Bezier Surface
It connects four corner data points & utilizes a bi-cubic equation.
is a synthetic surface that approximates given input data i.e. it doesnot pass
through all given data points.
Allows only global control of the surface.
is a synthetic surface that can either approximate or interpolate given input data.
Permits local control of the surface.
Coons patches / surface
Coons patch or surface is obtained by blending four boundary curves.
is used to create surfaces using curves that form closed boundaries.
the single patch can be extended in both the directions by adding further
patches.
38
Surface
Manipulations
Blending
Segmentation
Displaying
Trimming
Evaluating points & curves on surfaces
Intersection
Transformation
Projection
20
39
Solid Modeling
Solid model are known to be informationally more complete, valid &
unambiguous representation of objects than its wireframe or
surface model.
The completeness & unambiguity of a solid model are attributed to
the fact that CAD database stores both its geometry & topology.
Solid models are complete & unambiguous but they are not unique
because same object may be constructed in various ways.
Solid modeling has been acknowledged as the technological
solution to automating & integrating design & manufacturing
functions like…
Design / Engineering Analysis Drafting MRPCAPP, CNC tool path generation
Computer-Aided Inspection & Quality control
40
Geometry
A solid model of an object consists of both the geometrical & topological
data of the object.
- Geometry of an object defines the actual dimensions of its entities.
Topology
- Topology of an object defines the connectivity & associativity of the entities.
- it determines the relational information between entities.
From user point of view,
Geometry is visible.
Topology is considered to be non-graphical relational
information that is stored in solid model databases &
are not visible to users.
21
41
Geometry
Topology
The geometry that defines the object is the
- the length of lines L1, L2, L3
- the angle between the lines
- radius ‘R’ & the centre ‘P’ of semi-circle
The topology of the object can be stated as
- L1 shares a vertex (point) with L2 & C1
- L2 shares a vertex with L1 & L3
- L3 shares a vertex with L2 & C1
- L1 & L3 donot overlap
- ‘P’ lies outside the object
L1
C1L2
L3
R
P
L1
C1
L2
L3
R
P
L1
C1
L2
L3
R
P
L1
C1
L2
L3
R
P
Same Geometry but Different Topology Same Topology but Different Geometry
42
Solid Modeling
Modern CAD systems offer two approaches to creating solid models :
Feature Approach
Primitive Approach
- allows designers to use pre-defined shapes (primitives) as
building blocks to model solid object.
- Boolean operation are used to combine the primitives to
create complex objects.
- is limited by the restricted shapes of primitives
- Features are more flexible as they allow the construction
of more complex solid than what the primitive offer.
Feature is defined as a geometric shape (i.e. feature profile or 2-D sketch) and feature
operation to build parts.
Feature Feature Profile (Sketch) Feature Operation+
The entities required for Feature profile (Sketch) are wireframe & surface entities
Feature Operation is an activity that converts the Sketch (2-D) into 3-D shape
22
43
Constraints
Geometric Constraints Dimension Constraints
Coincidence
Concentricity
Fix
Parallelism
Tangency
Geometric constraints is defined as a geometric condition that relates two or
more sketch entities.
Equidistant point
Mid point
Horizontal
Perpendicular
Vertical
44
Constraint-based Feature Modeling
Select a Sketch Plane
Sketching the feature profile (2D profile)
Create Base Feature
Apply Geometric & Dimensional Constraints
Apply feature operations
Combine feature to build part
- is considered the best tool to create solids because of its ability to edit & change the
shape of the solid in the future by using its relations & constraints. It has flexibility to
create complex shape.
23
45
Feature
Operations
Revolve
Sweep
Extrude
Loft
Hole
Pocket
Common Feature Operations & Features
Slot
Shell
Protruded Feature
Rib
46
Feature
Operations
Fillet
Chamfer
Pattern
Common Feature Operations & Features
Thread
Rectangular Pattern
Circular Pattern
Transformation
Translation
Rotation
Scaling
Mirror
24
47
Extruded or Protruded feature
Common Features
Extrude command is used to create a solid object by
extruding a given closed profile.
It requires a closed profile (sketch of cross-section of
solid object) & an extrusion vector (length & direction).
The extrusion direction is always perpendicular to the
sketch plane of the profile.
Revolved feature
Revolve command is used to create an axi-symmetric
objects by revolving the selected geometry about an axis.
It requires a profile (sketch of cross-section of solid
object) & a revolution vector (axis & angle of revolution).
The axis of revolution is always in the sketch plane of the
profile.
48
Common Features
is a generalization of extrusion.
Creates a feature by moving a sketch (closed or open)
along a linear or non-linear path, which is not
necessarily perpendicular to the sketch plane.
Use to blend multiple cross-section (two or more) along
the linear or non-linear guide curve to create a solid.
Sweep feature
Loft feature
Hole feature
is equivalent to subtracting a cylinder from a solid.
Simple and Taper hole
Counter-bored hole
Counter-sunk hole
Threaded hole
Type of Hole feature
25
49
Common Features
Removes material from solid.
Shell operation is used to create hollow or thin-walled
solids by removing material out.
The input to a shell operation is the faces to be removed
& a wall thickness.
Rectangular slot
T- slot
Dovetail slot
Type of Slot feature
Slot feature
Shell feature
50
Common Features
Rib feature
is a special type of extruded feature.
Creates an extension of geometric element by creating a
feature connecting the two faces of the part.
The input to create a rib is a contour & a thickness
Pattern feature
Rectangular Pattern
Circular Pattern
Used to create multiple copy of given
feature in rectangular (linear) array.
Used to create multiple copy of given
feature in circular array.
26
51
Common Features
are used to smoothen (round) the sharp edges of solid.
input to create a constant radius fillet feature is to select
the edges to be filleted & fillet radius.
Fillet
Chamfer
use to remove sharp edges (or corners) from parts
input to create a chamfer is angle-distance, distance-
distance.
52
Solid Representation Schemes
Constructive Solid Geometry (CSG)
Boundary representation (B-rep)
Sweeping
Half spaces
Analytic Solid Modeling (ASM)
Cell decomposition
Spatial enumeration
Octree encoding
Primitive Instancing
27
53
Boundary representation (B-rep)
B-rep is based on the topological notion that an object is bounded
by a set of faces.
A face is a closed, orientable & bounded (by edges) surface. Each face is
bounded by edges & each edge (bounded curve) is bounded by vertices.
B-rep model of an object consists of faces, edges, vertices.
Vertices (v)
Edge (E)
Face (F)
- The database of a boundary
model contains both its
topology & its geometry.
Topology & Geometry are
interrelated & cannot be
separated entirely from each
other
54
Disadvantages
B-rep is very appropriate to construct solid models of unusual or
complex shapes ( like turbine blades, auto body etc.) that are
difficult to build using primitives.
It is relatively simple to convert a B-rep model into a wireframe
model because the model’s boundary definition is similar to the
wireframe definition.
Advantages
It requires large amounts of storage because it stores the explicit
definition of model boundaries i.e. faces, edges & vertices which
tend to grow fairly fast for complex model.
B - rep
28
55
Constructive Solid Geometry (CSG)
CSG model is based on the topological notion that a physical object
can be divided into set of primitives (basic elements & shapes) that
can be combined in a certain order following a set of rules (Boolean
operation) to form the object.
Primitives are considered as building block
Primitives are simple, basic shapes which can be combined by a mathematical
set of Boolean operations to create the complex solid object.
Cylinder ConeBlock WedgeSphere
Primitives
56
Intersection
(∩)
Union
(U)
Difference
(-)
Boolean Operations
Used to combine or
add two primitives/
objects
Intersecting two
primitives give a
shape equal to their
common value
Used to subtract one
primitive from other &
results in shape equal
to the difference in
their volume
29
57
Disadvantages
It is easy to construct out of primitives & Boolean operation.
It is concise & requires minimum storage.
Advantages
Major disadvantage of CSG is in its inability to represent sculptured
surfaces i.e. non-analytical (synthetic surface) cannot be modeled
using CSG scheme.
CSG
- Modern CAD systems provide both approaches to increase their modeling domain
58
Solid Model-based Down-stream Application
Solid Model-based Drafting
Solid Model-based Mechanism Design
Solid Model-based Assembly Design
Finite Element Modeling from Solid Models
CNC machining based on Solid Modeling …

Más contenido relacionado

La actualidad más candente

Cad ala brep, csg and sweep representation gtu
Cad   ala  brep, csg and sweep representation gtuCad   ala  brep, csg and sweep representation gtu
Cad ala brep, csg and sweep representation gtuShrey Patel
 
CIVIL Engineering Drawing by haseeb muhammad
CIVIL Engineering Drawing by haseeb muhammadCIVIL Engineering Drawing by haseeb muhammad
CIVIL Engineering Drawing by haseeb muhammadhaseeb mohd
 
Diploma i em u iv centre of gravity & moment of inertia
Diploma i em u   iv centre of gravity & moment of inertiaDiploma i em u   iv centre of gravity & moment of inertia
Diploma i em u iv centre of gravity & moment of inertiaRai University
 
Computer Aided Engineering Drawing 20ME12P Unit – 02 Part 03 - PROJECTIONS OF...
Computer Aided Engineering Drawing 20ME12P Unit – 02 Part 03 - PROJECTIONS OF...Computer Aided Engineering Drawing 20ME12P Unit – 02 Part 03 - PROJECTIONS OF...
Computer Aided Engineering Drawing 20ME12P Unit – 02 Part 03 - PROJECTIONS OF...THANMAY JS
 
Lec 2 stress strain diagram (lec 2)
Lec 2 stress strain diagram (lec 2)Lec 2 stress strain diagram (lec 2)
Lec 2 stress strain diagram (lec 2)Abdul Rehman Memon
 
experimental stress analysis-Chapter 3
experimental stress analysis-Chapter 3experimental stress analysis-Chapter 3
experimental stress analysis-Chapter 3MAHESH HUDALI
 
RAPID PROTOTYPING DATA FORMATS.pptx
RAPID PROTOTYPING DATA FORMATS.pptxRAPID PROTOTYPING DATA FORMATS.pptx
RAPID PROTOTYPING DATA FORMATS.pptxjntuhcej
 
Torsional Stress
Torsional StressTorsional Stress
Torsional Stresslimon1705
 
Introduction to Mechanical Measurements and Metrology
Introduction to Mechanical Measurements and Metrology Introduction to Mechanical Measurements and Metrology
Introduction to Mechanical Measurements and Metrology taruian
 
Isometric sketching lect 07 OF CIVIL ENGINEERING DRAWING
Isometric sketching lect 07 OF CIVIL ENGINEERING DRAWINGIsometric sketching lect 07 OF CIVIL ENGINEERING DRAWING
Isometric sketching lect 07 OF CIVIL ENGINEERING DRAWINGSafiullah Khan
 
methods to draw inflection circle
 methods to draw inflection circle methods to draw inflection circle
methods to draw inflection circlesabiha khathun
 
3. Elastic Constants.pptx
3. Elastic Constants.pptx3. Elastic Constants.pptx
3. Elastic Constants.pptxMbaloch5
 

La actualidad más candente (20)

Cad ala brep, csg and sweep representation gtu
Cad   ala  brep, csg and sweep representation gtuCad   ala  brep, csg and sweep representation gtu
Cad ala brep, csg and sweep representation gtu
 
CIVIL Engineering Drawing by haseeb muhammad
CIVIL Engineering Drawing by haseeb muhammadCIVIL Engineering Drawing by haseeb muhammad
CIVIL Engineering Drawing by haseeb muhammad
 
Diploma i em u iv centre of gravity & moment of inertia
Diploma i em u   iv centre of gravity & moment of inertiaDiploma i em u   iv centre of gravity & moment of inertia
Diploma i em u iv centre of gravity & moment of inertia
 
Computer Aided Engineering Drawing 20ME12P Unit – 02 Part 03 - PROJECTIONS OF...
Computer Aided Engineering Drawing 20ME12P Unit – 02 Part 03 - PROJECTIONS OF...Computer Aided Engineering Drawing 20ME12P Unit – 02 Part 03 - PROJECTIONS OF...
Computer Aided Engineering Drawing 20ME12P Unit – 02 Part 03 - PROJECTIONS OF...
 
Engineering drawing unit 1-snist
Engineering drawing unit 1-snistEngineering drawing unit 1-snist
Engineering drawing unit 1-snist
 
Lec 2 stress strain diagram (lec 2)
Lec 2 stress strain diagram (lec 2)Lec 2 stress strain diagram (lec 2)
Lec 2 stress strain diagram (lec 2)
 
experimental stress analysis-Chapter 3
experimental stress analysis-Chapter 3experimental stress analysis-Chapter 3
experimental stress analysis-Chapter 3
 
RAPID PROTOTYPING DATA FORMATS.pptx
RAPID PROTOTYPING DATA FORMATS.pptxRAPID PROTOTYPING DATA FORMATS.pptx
RAPID PROTOTYPING DATA FORMATS.pptx
 
Isometric Projection
Isometric ProjectionIsometric Projection
Isometric Projection
 
Torsional Stress
Torsional StressTorsional Stress
Torsional Stress
 
NC Programming
NC ProgrammingNC Programming
NC Programming
 
Introduction to Mechanical Measurements and Metrology
Introduction to Mechanical Measurements and Metrology Introduction to Mechanical Measurements and Metrology
Introduction to Mechanical Measurements and Metrology
 
Transverse shear stress
Transverse shear stressTransverse shear stress
Transverse shear stress
 
Isometric sketching lect 07 OF CIVIL ENGINEERING DRAWING
Isometric sketching lect 07 OF CIVIL ENGINEERING DRAWINGIsometric sketching lect 07 OF CIVIL ENGINEERING DRAWING
Isometric sketching lect 07 OF CIVIL ENGINEERING DRAWING
 
Types of projections
Types of projectionsTypes of projections
Types of projections
 
methods to draw inflection circle
 methods to draw inflection circle methods to draw inflection circle
methods to draw inflection circle
 
Limits fits
Limits fitsLimits fits
Limits fits
 
Adaptive Control System
Adaptive Control SystemAdaptive Control System
Adaptive Control System
 
3. Elastic Constants.pptx
3. Elastic Constants.pptx3. Elastic Constants.pptx
3. Elastic Constants.pptx
 
Enginnering Drawing
Enginnering DrawingEnginnering Drawing
Enginnering Drawing
 

Destacado

Geometric Modeling
Geometric Modeling Geometric Modeling
Geometric Modeling illpa
 
Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)manojg1990
 
5 geometric-modeling-ppt-university-of-victoria
5 geometric-modeling-ppt-university-of-victoria5 geometric-modeling-ppt-university-of-victoria
5 geometric-modeling-ppt-university-of-victoriaRaghu Gadde
 
CADmaster №2(84) 2016
CADmaster №2(84) 2016CADmaster №2(84) 2016
CADmaster №2(84) 2016CADMaster
 
57892883 geometric-modeling
57892883 geometric-modeling57892883 geometric-modeling
57892883 geometric-modelingmanojg1990
 
Geometric theory task 3 3 d the basics
Geometric theory task 3 3 d the basicsGeometric theory task 3 3 d the basics
Geometric theory task 3 3 d the basicsThomas_Giblin_16
 
Cad lecture-4
Cad lecture-4Cad lecture-4
Cad lecture-427273737
 
Wireframe models
Wireframe modelsWireframe models
Wireframe modelsMohd Arif
 
Solid modelling cg
Solid modelling cgSolid modelling cg
Solid modelling cgNareek
 
Random scan displays and raster scan displays
Random scan displays and raster scan displaysRandom scan displays and raster scan displays
Random scan displays and raster scan displaysSomya Bagai
 
Solid modeling
Solid modelingSolid modeling
Solid modelingKRvEsL
 
computer graphics
computer graphicscomputer graphics
computer graphicsashpri156
 
Notes 2D-Transformation Unit 2 Computer graphics
Notes 2D-Transformation Unit 2 Computer graphicsNotes 2D-Transformation Unit 2 Computer graphics
Notes 2D-Transformation Unit 2 Computer graphicsNANDINI SHARMA
 
Projection In Computer Graphics
Projection In Computer GraphicsProjection In Computer Graphics
Projection In Computer GraphicsSanu Philip
 

Destacado (20)

Geometric Modeling
Geometric Modeling Geometric Modeling
Geometric Modeling
 
Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)
 
5 geometric-modeling-ppt-university-of-victoria
5 geometric-modeling-ppt-university-of-victoria5 geometric-modeling-ppt-university-of-victoria
5 geometric-modeling-ppt-university-of-victoria
 
Geometric model & curve
Geometric model & curveGeometric model & curve
Geometric model & curve
 
CADmaster №2(84) 2016
CADmaster №2(84) 2016CADmaster №2(84) 2016
CADmaster №2(84) 2016
 
57892883 geometric-modeling
57892883 geometric-modeling57892883 geometric-modeling
57892883 geometric-modeling
 
Perspective 5 vanishing points: examples
Perspective 5 vanishing points: examplesPerspective 5 vanishing points: examples
Perspective 5 vanishing points: examples
 
Geometric theory task 3 3 d the basics
Geometric theory task 3 3 d the basicsGeometric theory task 3 3 d the basics
Geometric theory task 3 3 d the basics
 
Cad lecture-4
Cad lecture-4Cad lecture-4
Cad lecture-4
 
Curves
CurvesCurves
Curves
 
Wireframe models
Wireframe modelsWireframe models
Wireframe models
 
Introduction to solid modeling
Introduction to solid modelingIntroduction to solid modeling
Introduction to solid modeling
 
Solid modelling cg
Solid modelling cgSolid modelling cg
Solid modelling cg
 
Random scan displays and raster scan displays
Random scan displays and raster scan displaysRandom scan displays and raster scan displays
Random scan displays and raster scan displays
 
Bresenham circle
Bresenham circleBresenham circle
Bresenham circle
 
Solid modeling
Solid modelingSolid modeling
Solid modeling
 
computer graphics
computer graphicscomputer graphics
computer graphics
 
Notes 2D-Transformation Unit 2 Computer graphics
Notes 2D-Transformation Unit 2 Computer graphicsNotes 2D-Transformation Unit 2 Computer graphics
Notes 2D-Transformation Unit 2 Computer graphics
 
Value analysis
Value analysisValue analysis
Value analysis
 
Projection In Computer Graphics
Projection In Computer GraphicsProjection In Computer Graphics
Projection In Computer Graphics
 

Similar a 57892883 geometric-modeling

Synthetic Curves.pdf
Synthetic Curves.pdfSynthetic Curves.pdf
Synthetic Curves.pdfMehulMunshi3
 
Unit 2-ME8691 & COMPUTER AIDED DESIGN AND MANUFACTURING
Unit 2-ME8691 & COMPUTER AIDED DESIGN AND    MANUFACTURINGUnit 2-ME8691 & COMPUTER AIDED DESIGN AND    MANUFACTURING
Unit 2-ME8691 & COMPUTER AIDED DESIGN AND MANUFACTURINGMohanumar S
 
Part 4-Types and mathematical representations of Curves .pptx
Part 4-Types and mathematical representations of Curves .pptxPart 4-Types and mathematical representations of Curves .pptx
Part 4-Types and mathematical representations of Curves .pptxKhalil Alhatab
 
Synthetic curve
Synthetic curveSynthetic curve
Synthetic curveDhruv Shah
 
11.design and modeling of tool trajectory in c0000www.iiste.org call for pape...
11.design and modeling of tool trajectory in c0000www.iiste.org call for pape...11.design and modeling of tool trajectory in c0000www.iiste.org call for pape...
11.design and modeling of tool trajectory in c0000www.iiste.org call for pape...Alexander Decker
 
111431635-geometric-modeling-glad1-150630140219-lva1-app6892 (1).pdf
111431635-geometric-modeling-glad1-150630140219-lva1-app6892 (1).pdf111431635-geometric-modeling-glad1-150630140219-lva1-app6892 (1).pdf
111431635-geometric-modeling-glad1-150630140219-lva1-app6892 (1).pdfVIGNESHG144026
 
Based on the cross section contour surface model reconstruction
Based on the cross section contour surface model reconstructionBased on the cross section contour surface model reconstruction
Based on the cross section contour surface model reconstructionIJRES Journal
 
Towards smart and competitive sustainable machining
Towards smart and competitive sustainable machiningTowards smart and competitive sustainable machining
Towards smart and competitive sustainable machiningLiu PeiLing
 
Vskills Certified CAD Sample Material
Vskills Certified CAD Sample MaterialVskills Certified CAD Sample Material
Vskills Certified CAD Sample MaterialVskills
 
TOWARDS A UNIFIED IN-PROCESS GEOMETRIC MODEL FOR MULTIPLE MACHINING AND Layer...
TOWARDS A UNIFIED IN-PROCESS GEOMETRIC MODEL FOR MULTIPLE MACHINING AND Layer...TOWARDS A UNIFIED IN-PROCESS GEOMETRIC MODEL FOR MULTIPLE MACHINING AND Layer...
TOWARDS A UNIFIED IN-PROCESS GEOMETRIC MODEL FOR MULTIPLE MACHINING AND Layer...Liu PeiLing
 
Cad notes - ENGINEERING DRAWING - RGPV,BHOPAL
Cad notes - ENGINEERING DRAWING - RGPV,BHOPALCad notes - ENGINEERING DRAWING - RGPV,BHOPAL
Cad notes - ENGINEERING DRAWING - RGPV,BHOPALAbhishek Kandare
 
Defining the model
Defining the modelDefining the model
Defining the modelNafis Ahmad
 

Similar a 57892883 geometric-modeling (20)

Synthetic Curves.pdf
Synthetic Curves.pdfSynthetic Curves.pdf
Synthetic Curves.pdf
 
Surfaces
SurfacesSurfaces
Surfaces
 
Unit 2-ME8691 & COMPUTER AIDED DESIGN AND MANUFACTURING
Unit 2-ME8691 & COMPUTER AIDED DESIGN AND    MANUFACTURINGUnit 2-ME8691 & COMPUTER AIDED DESIGN AND    MANUFACTURING
Unit 2-ME8691 & COMPUTER AIDED DESIGN AND MANUFACTURING
 
Part 4-Types and mathematical representations of Curves .pptx
Part 4-Types and mathematical representations of Curves .pptxPart 4-Types and mathematical representations of Curves .pptx
Part 4-Types and mathematical representations of Curves .pptx
 
Cad notes
Cad notesCad notes
Cad notes
 
Synthetic curve
Synthetic curveSynthetic curve
Synthetic curve
 
11.design and modeling of tool trajectory in c0000www.iiste.org call for pape...
11.design and modeling of tool trajectory in c0000www.iiste.org call for pape...11.design and modeling of tool trajectory in c0000www.iiste.org call for pape...
11.design and modeling of tool trajectory in c0000www.iiste.org call for pape...
 
Ax03303120316
Ax03303120316Ax03303120316
Ax03303120316
 
CAD
CADCAD
CAD
 
111431635-geometric-modeling-glad1-150630140219-lva1-app6892 (1).pdf
111431635-geometric-modeling-glad1-150630140219-lva1-app6892 (1).pdf111431635-geometric-modeling-glad1-150630140219-lva1-app6892 (1).pdf
111431635-geometric-modeling-glad1-150630140219-lva1-app6892 (1).pdf
 
Based on the cross section contour surface model reconstruction
Based on the cross section contour surface model reconstructionBased on the cross section contour surface model reconstruction
Based on the cross section contour surface model reconstruction
 
Cad notes
Cad notesCad notes
Cad notes
 
Towards smart and competitive sustainable machining
Towards smart and competitive sustainable machiningTowards smart and competitive sustainable machining
Towards smart and competitive sustainable machining
 
CAD
CADCAD
CAD
 
Vskills Certified CAD Sample Material
Vskills Certified CAD Sample MaterialVskills Certified CAD Sample Material
Vskills Certified CAD Sample Material
 
TOWARDS A UNIFIED IN-PROCESS GEOMETRIC MODEL FOR MULTIPLE MACHINING AND Layer...
TOWARDS A UNIFIED IN-PROCESS GEOMETRIC MODEL FOR MULTIPLE MACHINING AND Layer...TOWARDS A UNIFIED IN-PROCESS GEOMETRIC MODEL FOR MULTIPLE MACHINING AND Layer...
TOWARDS A UNIFIED IN-PROCESS GEOMETRIC MODEL FOR MULTIPLE MACHINING AND Layer...
 
Cad notes - ENGINEERING DRAWING - RGPV,BHOPAL
Cad notes - ENGINEERING DRAWING - RGPV,BHOPALCad notes - ENGINEERING DRAWING - RGPV,BHOPAL
Cad notes - ENGINEERING DRAWING - RGPV,BHOPAL
 
Defining the model
Defining the modelDefining the model
Defining the model
 
Unit2 cad/ cam
Unit2 cad/ camUnit2 cad/ cam
Unit2 cad/ cam
 
Geometric Modelling approaches
Geometric Modelling approachesGeometric Modelling approaches
Geometric Modelling approaches
 

Más de manojg1990

Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanicsmanojg1990
 
Mech ug curriculum and syllabus
Mech ug curriculum and syllabusMech ug curriculum and syllabus
Mech ug curriculum and syllabusmanojg1990
 
203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)manojg1990
 
257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)manojg1990
 
98021616 fusion
98021616 fusion98021616 fusion
98021616 fusionmanojg1990
 
nuclear reactor98021616 fusion
nuclear reactor98021616 fusionnuclear reactor98021616 fusion
nuclear reactor98021616 fusionmanojg1990
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modelingmanojg1990
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modelingmanojg1990
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modelingmanojg1990
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modelingmanojg1990
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modelingmanojg1990
 
78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts78307635 geometric-modeling-concepts
78307635 geometric-modeling-conceptsmanojg1990
 
29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniques29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniquesmanojg1990
 
78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts78307635 geometric-modeling-concepts
78307635 geometric-modeling-conceptsmanojg1990
 

Más de manojg1990 (20)

Qb103355
Qb103355Qb103355
Qb103355
 
Qb103353
Qb103353Qb103353
Qb103353
 
Qb103352
Qb103352Qb103352
Qb103352
 
Qb103351
Qb103351Qb103351
Qb103351
 
Qb103354
Qb103354Qb103354
Qb103354
 
Aptitude
AptitudeAptitude
Aptitude
 
Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanics
 
Mech ug curriculum and syllabus
Mech ug curriculum and syllabusMech ug curriculum and syllabus
Mech ug curriculum and syllabus
 
203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)
 
257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)
 
98021616 fusion
98021616 fusion98021616 fusion
98021616 fusion
 
nuclear reactor98021616 fusion
nuclear reactor98021616 fusionnuclear reactor98021616 fusion
nuclear reactor98021616 fusion
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modeling
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modeling
 
78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts
 
29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniques29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniques
 
78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts
 

57892883 geometric-modeling

  • 1. 1 1 Under Graduate Course on Computer Aided Design & Manufacturing Geometric Modeling Shibendu Shekhar Roy Robotics & A.I Lab. (RAIL) Department of Mechanical Engineering ( ME 502 ) 2 Geometric Modeling Concept Design & Analysis Theories/ Tools Computer Graphics AlgorithmCAD …To Automate the Design Process
  • 2. 2 3 Geometric Modeling Geometric modeling plays a crucial role in the overall application of CAD-CAM-CAE system Information entered through geometric modeling is utilized in number of downstream applications like: Design Analysis Drafting Evaluation of centroid, area (cross-sectional & surface) & volume Estimate the mass & inertia properties Interference checking in assemblies Analysis of tolerance build-up in assemblies Kinematic/ Dynamic analysis & simulation Finite element analysis for stress, vibration, thermal & optimization Automatic 2D view generation Automatic planar cross-sectioning Automatic dimensioning Requirements of Geometric Modeling 4 Geometric Modeling Production & Industrial Engineering Manufacturing Part classification & Process planning NC tool path generation & verification Manufacturing process simulation Robot program generation Preparation of Bill of Material (BOM) Material requirement planning Manufacturing resource requirement Scheduling Marketing Computer-Aided Inspection & Quality control etc…..
  • 3. 3 5 Geometric Modeling Hence, It is important that the geometric model generated should be as clear & comprehensive as possible so that the other modules of CAD-CAM-CAE system are able to use this information in the most optimal way. Geometric model Three Dimensional (3-D) Two Dimensional (2-D) Solid Modeling Surface Modeling Wireframe Modeling 6 Geometric Model Three Dimensional (3-D) Two Dimensional (2-D) Utility of 2-D model lies in many of the low end drafting packages which is required for preparing manufacturing drawings Their utility is limited because of their inherent difficulty in representing complex objects. The 3-D geometric modeling has the ability to provide all the information required for CAD-CAM-CAE applications A 3-D geometric model should be an unambiguous representation of an object. A 3-D model should be complete to all engineering function from documentation (drafting & shading) to engineering analysis to manufacturing. Basic Requirement
  • 4. 4 7 In this method the complete object is represented by number of lines, points, arcs & curves and their connectivity relationships Wireframe Modeling Disadvantages The construction of a wireframe model is simple It does not require much computer time & memory. It can be used for simple NC tool path generation Advantages It can not be used for calculation of mass, inertia properties The interpretation of wireframe models having many edges is very difficult 8 The surface model is constructed essentially from surfaces such a s planes, rotated curved surfaces & even very complex synthetic surfaces. Surface creation on existing CAD system usually requires wireframe entities as a start Surface & wireframe form the core of all existing CAD system Surface Modeling Disadvantages Surface model of an object is a relatively more complete & less ambiguous representation than its wireframe model This method is very much useful for specific non-analytical surfaces ( free-form surface/ sculptured surfaces) such as those used for modeling automobile & airplane bodies & turbine blades etc. From an application point of view, surface models can be utilized in Finite Element Modeling, NC tool path generation, sectioning & interference detections. Advantages The calculation of mass & inertia properties would be difficult
  • 5. 5 9 Solid model of an object is a more complete representation than surface model, as all the information required for engineering analysis & manufacturing can be obtained with this technique. Solid modeling produces accurate design, provides complete 3D definition Improves the quality of design Improves visualization has potential for functional simulation of the system Advantages Solid Modeling 10 Wireframe Modeling Wireframe entities Synthetic Curves Analytic Entities / Curves Point Lines Arcs Ellipse Circles Conics Parabolas Hyperbolas NURBS (Non-Uniform Rational B-spline) Bezier curves Cubic spline B-spline - are described by a set of data points (i.e. control points) - are described by analytic equations Synthetic CurveAnalytic Curve <Geometric Primitives>
  • 6. 6 11 Synthetic Curve Analytic Curve are defined as those that can be described by analytic equations such as lines, circle, conics etc. provide very compact forms to represent shapes & simplify the computation of related properties such as areas & volume. Analytic curves are usually not sufficient to meet today’s geometric design requirements of complex mechanical parts like automobile bodies, aeroplane wings, propeller blades, bottles etc. That require synthetic curves & surfaces (free-form surfaces) are defined as those that can be described by a set of data points (i.e. control points) such as Splines, Bezier curve etc. Synthetic curves provide designers with greater flexibility & control of a curve shape by changing the positions of the one or more data points or control points. 12 Synthetic Curve The need for synthetic curves in design arises on two occasions: i) when a curve is represented by a collection of measured data points (in case of Reverse Engineering) [graphical visualization of experimental data] ii) when an existing curve must change to meet new design requirements. Synthetic Curve Construction Techniques : Interpolation technique Curve passes through the data points Curve do not passes through the data pointsApproximation technique Mathematically, synthetic curves represent a Curve-fitting problem to construct a smooth curve
  • 7. 7 13 - Produce curves that do not pass through the given data points. Instead, these points are used to control the shape of the resulting curves - Curve resulting from this technique pass through the given data points; curve itself is called Interpolant -Ex. : Bezier Curve- Ex. : Cubic Spline Approximation TechniqueInterpolation Technique Most often, approximation techniques are preferred over interpolation techniques in free- form curve design due to the added flexibility & the additional intuitive feel provided by approximate technique. P0 P1 P2 P3 P0 P1 P2 P3 P0 P12 P5 P4 P3 P2 P1 P8 P7 P6 P11 P10 P9 14 Mathematical Representation of Curves Curve can be described mathematically by Parametric equation Non-parametric equation Explicit form Implicit form Non-parametric equation : Explicit form If the co-ordinates ‘y’ & ‘z’ of a point on the curve are expressed as two separate functions of the third co- ordinate ‘x’ <independent variable>. This curve representation is known as Non-parametric Explicit form. Non-parametric Explicit form of a general 3-D curve P (x,y,z) P Position vector of a point ‘P’ on the curve = P = [x y z]T= [x f(x) g(x) ]T X Y Z
  • 8. 8 15 Non-parametric equation : Implicit form If the co-ordinates ‘x’, ‘y’ & ‘z’ are related together by two functions, a non-parametric implicit form results Non-parametric Implicit form of a general 3-D curve f1 (x,y,z) = 0 f2 (x,y,z) = 0 Parametric representation of curves P (x,y,z) P(u) X Y Z In parametric form, each point on a curve is expressed as a function of a parameter “u”. This parameter acts as a local co-ordinate for points on the curve. P’(u) umax umin Parametric form of a general 3-D curve Position vector of a point ‘P’ on the curve = P(u) = [x(u) y(u) z(u) ]T The parametric curve is bounded by two parametric variable values umin and umax. Where, umin ≤ u ≤ umax 16 Advantages : Parametric Representation of Curves In case of commonly used curves (such as circle, conics), these equations are polynomials rather than equations involving roots. Hence, the parametric form is not only more general but it is also well suited to computation in geometric modeling. Parametric geometry can be easily expressed in terms of vectors & matrices which enables the use of simple computation techniques to solve complex analytic geometry problem. To check whether a given point lies on the curve or not, reduces to finding the corresponding ‘u’ values & checking whether that value lies in the stated ‘u’ range.
  • 9. 9 17 Blending is used to construct composite curve. Blending of two curves implies the joining of two curves subjected to the satisfaction of continuity condition. Various Continuity requirements can be specified at data points to impose various degrees of smoothness of the resulting curve. The order of continuity becomes important when a complex curve is modeled by several curve segments pieced together end-to-end. Order of Continuity 18 Order of Continuity Zero-order Continuity First-order Continuity Second-order Continuity (C0 - continuity) (C1 - continuity) (C2 - continuity) Position Continuous curve Slope Continuous curve Curvature Continuous curve C1 – Continuous is “Smoother” than C0 – Continuous at the joining point C2 – Continuous is “Smoother” than C1 – Continuous at the joining point Ex.: Cubic Spline Ex.: B-Spline
  • 10. 10 19 Cubic Splines Synthetic Curves Splines are used to interpolate to given data i.e. based on Interpolation technique. A spline is a piecewise parametric representation of the geometry of a curve with a specified order of continuity. Cubic splines use a parametric equations of 3rd degree with the first order continuity maintained at the intersection point of the curve. Name from the traditional drafting tool called “Splines” or “French Curves” P0 P0.8 P1 P.0.4 20 Cubic Splines Vector form 3 i i i 0 P(u) u = = ∑C 2 3 0 1 2 3P(u) u u u= + + +C C C C T P(u) = U C 2 3 1 u u u ⎡ ⎤ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ U Matrix form 0 1 2 3 ⎡ ⎤ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ C C C C C The parametric equation of a cubic spline segment is given by Cubic splines use cubic polynomial. 0 u 1≤ ≤ Where, C= Coefficients Vector u= parameter Ci= Polynomial Coefficients Cubic polynomial has four coefficients & thus requires four conditions to evaluate . - Uses two data points at its ends & two tangent vectors at these points - Uses four data points Hermite Cubic SplineCubic Spline P0 P0.8 P1 P.0.4
  • 11. 11 21 Bezier Curves Based on approximation techniques. Developed by P. Bezier, Designer of French car firm Regie Renault (1962). Used in his Software system (UNISURF) to define the outer panels of several Renault cars . Bezier curve uses the vertices of Bezier Characteristic polygon (or control polygon) as control points for approximating the generated curve. The curve will pass through the first & last point with all other points acting as control points. The curve is also always tangent to the first & last polygon segment. Control Polygon Control Points 22 Bezier Curves The degree of Bezier curve is related to the number of data points; (n+1) points define an nth degree Bezier curve. If no. of data points is 4 [n+1=4], Then n=3 i.e degree of curve =3 (cubic) Control Polygon Control Points This is widely used for the design of aesthetic surfaces. The flexibility of the curve becomes more with more control points. Cubic Bezier Curve
  • 12. 12 23 Bezier Curves Control Polygon Control Points Mathematically, for (n+1) control points, the Bezier curve is defined by polynomial of degree n: P(u) is a point on the curve, Pi is a control point Bi,n(u) are the Berntein polynomials 24 C(n,i) is the binomial coefficient Bezier Curves
  • 13. 13 25 Bezier Curves 26 Major difference between the Bezier Curve & Cubic Spline Curve i. The degree of Bezier curve is variable & is related to the number of data points; (n+1) points define an nth degree curve which permits higher-order continuity. This is not the case for cubic splines where the degree is always 3 <cubic> for a spline segment. ii. The shape of Bezier curve is controlled by its data points only. First derivatives are not used in the curve development as in the case of Hermite cubic spline. iii. The Bezier curve is smoother than the cubic spline because it has higher order derivative. Bezier curve is considered as a single curve controlled by all the control points. As a result, with an increase in the number of control points, the degree of the polynomial representing the curve increases & this provides for global modification effect rather than local. To reduce this complexity, the curve is broken down into more segments with better control excised with individual segments, while maintaining a simple continuity between the segments.
  • 14. 14 27 B-Spline Curves Single piecewise parametric polynomial curve through any number of control points with the degree of polynomial selected by Designer. It provides the ability to add control points without increasing the degree of the curve. B-spline exhibit a local control of the curve shape i.e. whenever a single vertex is moved, only those vertices around that will be affected while rest remains the same. B-Spline Curves Approximate a given set of data points Interpolate a given set of data points Useful in displaying design & engineering analysis results such as Stress/displacement distribution Useful for modeling free-form surfaces In contrast to Bezier curve, the theory of B-spline curve separates the degree of the resulting curve from the no. of the given control points. Four control points can always produce a cubic Bezier curve but four control points can produce linear, quadratic or cubic B-spline curve. 28 Mathematically, B-spline curve defined by (n+1) control points Piis given by B-Spline Curves Where ‘k’ controls the degree (k-1) of the resulting polynomial & also continuity of the curve.
  • 15. 15 29 B-Spline Curves Local control of B-spline curve It provides the ability to add control points without increasing the degree of the curve. B-spline exhibit a local control of the curve shape i.e. whenever a single vertex is moved, only those vertices around that will be affected while rest remains the same. 30 are generalization of the curve & surface theories. are almost exclusively used by modern CAD-CAM-CAE systems to provide a unified approach to formulate & represent curves & surfaces. provide a convenient design tool to create smooth curves & surfaces interactively. Rational Curve: is defined by algebraic ratio of two polynomials while a non-rational curve is defined by one polynomial. NURBS Non-Uniform Rational B- Spline n i i i,n i 0 n i i,n i 0 P w B (u) P(u) ; w B (u) = = = ∑ ∑ Rational form of Bezier Curves where wi is the weighting factor for each of the vertex. 0 ≤ u ≤ 1
  • 16. 16 31 Disadvantages NURBS are considered a unified representation that can be define both synthetic (like Bezier, B-spline etc.) & analytic (i.e. circle, conics etc.) curves & surfaces. Any curve or surface can be formulated using NURBS. It can represent all curves, surfaces, & solid entities, allowing unification & conversion from one CAD system to another via exchange standards (like IGES,, STEP etc.). Their related algorithm are stable & accurate. This unified representation also have the advantage of reducing the database complexity & the number of procedures required in CAD system for display & manipulation of geometric entities. Advantages Simple curves (like arcs, circles, conics) require more data to define as NURBS than traditional way. NURBS 32 Curve Manipulations Blending Segmentation Displaying Trimming Evaluating points on curves Intersection Transformation The effective use of analytic & synthetic curves in a design environment depends mainly on their manipulation. Translation Rotation Scaling Mirror/ Reflection
  • 17. 17 33 Curve Manipulations Blending Segmentation Displaying Trimming Evaluating points on curves Intersection Transformation Translation Rotation Scaling Mirror/ Reflection provides the Designer with a means of visualizing geometric models. is used to construct composite curves from various types of curve segments. Two curve segment should be continuous at the joint. replacing one existing curve by one or more curve segments of the same curve type such that the shape of the composite curve is identical to that of the original curve. is a very useful function which can truncate or extend a curve the intersection point of two curve in space requires the solution of the parametric equations of curves. Curve parametric eqn. is used to evaluate points on it. 34 Surface Modeling Surface entities Synthetic Surface Entities Analytic Surface Entities Plane surface Ruled surface/ Lofted surface Surface of revolution Tabulated cylindrical surface Coons patch B-Spline surface Bi-cubic Hermite spline surface Bezier surface or patch Curve segment : is the fundamental building block for curve entities Surface patch : is the fundamental building block for surfaces
  • 18. 18 35 Plane Surface Ruled Surface is the simplest surface which requires three non-coincident points to define a plane. The plane surface can be used to generate cross-sectional view by intersecting a surface model with it. is a surface constructed by transitioning between two or more curves by using linear blending between each section of the surface It interpolates linearly between two boundary curves that define the surface. Lofted Surface is a surface constructed by transitioning between two or more curves by a smooth i.e. higher order blending between each section of the surface. Used for modeling engine manifolds, turbine blades etc. 36 Surface of Revolution is an axi-symmetric surface that can model axi- symmetric objects. is generated by a rotating a planar wireframe entity in space about the axis of symmetry a certain angle. Tabulated Cylindrical Surface is a surface generated by translating a planar curve a certain distance along a specified direction (axis of cylinder). Plane of the curve is perpendicular to the axis of the cylinder. is used to generate surfaces that have identical curved cross-sections.
  • 19. 19 37 B-spline Surface Bi-cubic Hermite Spline Surface Bezier Surface It connects four corner data points & utilizes a bi-cubic equation. is a synthetic surface that approximates given input data i.e. it doesnot pass through all given data points. Allows only global control of the surface. is a synthetic surface that can either approximate or interpolate given input data. Permits local control of the surface. Coons patches / surface Coons patch or surface is obtained by blending four boundary curves. is used to create surfaces using curves that form closed boundaries. the single patch can be extended in both the directions by adding further patches. 38 Surface Manipulations Blending Segmentation Displaying Trimming Evaluating points & curves on surfaces Intersection Transformation Projection
  • 20. 20 39 Solid Modeling Solid model are known to be informationally more complete, valid & unambiguous representation of objects than its wireframe or surface model. The completeness & unambiguity of a solid model are attributed to the fact that CAD database stores both its geometry & topology. Solid models are complete & unambiguous but they are not unique because same object may be constructed in various ways. Solid modeling has been acknowledged as the technological solution to automating & integrating design & manufacturing functions like… Design / Engineering Analysis Drafting MRPCAPP, CNC tool path generation Computer-Aided Inspection & Quality control 40 Geometry A solid model of an object consists of both the geometrical & topological data of the object. - Geometry of an object defines the actual dimensions of its entities. Topology - Topology of an object defines the connectivity & associativity of the entities. - it determines the relational information between entities. From user point of view, Geometry is visible. Topology is considered to be non-graphical relational information that is stored in solid model databases & are not visible to users.
  • 21. 21 41 Geometry Topology The geometry that defines the object is the - the length of lines L1, L2, L3 - the angle between the lines - radius ‘R’ & the centre ‘P’ of semi-circle The topology of the object can be stated as - L1 shares a vertex (point) with L2 & C1 - L2 shares a vertex with L1 & L3 - L3 shares a vertex with L2 & C1 - L1 & L3 donot overlap - ‘P’ lies outside the object L1 C1L2 L3 R P L1 C1 L2 L3 R P L1 C1 L2 L3 R P L1 C1 L2 L3 R P Same Geometry but Different Topology Same Topology but Different Geometry 42 Solid Modeling Modern CAD systems offer two approaches to creating solid models : Feature Approach Primitive Approach - allows designers to use pre-defined shapes (primitives) as building blocks to model solid object. - Boolean operation are used to combine the primitives to create complex objects. - is limited by the restricted shapes of primitives - Features are more flexible as they allow the construction of more complex solid than what the primitive offer. Feature is defined as a geometric shape (i.e. feature profile or 2-D sketch) and feature operation to build parts. Feature Feature Profile (Sketch) Feature Operation+ The entities required for Feature profile (Sketch) are wireframe & surface entities Feature Operation is an activity that converts the Sketch (2-D) into 3-D shape
  • 22. 22 43 Constraints Geometric Constraints Dimension Constraints Coincidence Concentricity Fix Parallelism Tangency Geometric constraints is defined as a geometric condition that relates two or more sketch entities. Equidistant point Mid point Horizontal Perpendicular Vertical 44 Constraint-based Feature Modeling Select a Sketch Plane Sketching the feature profile (2D profile) Create Base Feature Apply Geometric & Dimensional Constraints Apply feature operations Combine feature to build part - is considered the best tool to create solids because of its ability to edit & change the shape of the solid in the future by using its relations & constraints. It has flexibility to create complex shape.
  • 23. 23 45 Feature Operations Revolve Sweep Extrude Loft Hole Pocket Common Feature Operations & Features Slot Shell Protruded Feature Rib 46 Feature Operations Fillet Chamfer Pattern Common Feature Operations & Features Thread Rectangular Pattern Circular Pattern Transformation Translation Rotation Scaling Mirror
  • 24. 24 47 Extruded or Protruded feature Common Features Extrude command is used to create a solid object by extruding a given closed profile. It requires a closed profile (sketch of cross-section of solid object) & an extrusion vector (length & direction). The extrusion direction is always perpendicular to the sketch plane of the profile. Revolved feature Revolve command is used to create an axi-symmetric objects by revolving the selected geometry about an axis. It requires a profile (sketch of cross-section of solid object) & a revolution vector (axis & angle of revolution). The axis of revolution is always in the sketch plane of the profile. 48 Common Features is a generalization of extrusion. Creates a feature by moving a sketch (closed or open) along a linear or non-linear path, which is not necessarily perpendicular to the sketch plane. Use to blend multiple cross-section (two or more) along the linear or non-linear guide curve to create a solid. Sweep feature Loft feature Hole feature is equivalent to subtracting a cylinder from a solid. Simple and Taper hole Counter-bored hole Counter-sunk hole Threaded hole Type of Hole feature
  • 25. 25 49 Common Features Removes material from solid. Shell operation is used to create hollow or thin-walled solids by removing material out. The input to a shell operation is the faces to be removed & a wall thickness. Rectangular slot T- slot Dovetail slot Type of Slot feature Slot feature Shell feature 50 Common Features Rib feature is a special type of extruded feature. Creates an extension of geometric element by creating a feature connecting the two faces of the part. The input to create a rib is a contour & a thickness Pattern feature Rectangular Pattern Circular Pattern Used to create multiple copy of given feature in rectangular (linear) array. Used to create multiple copy of given feature in circular array.
  • 26. 26 51 Common Features are used to smoothen (round) the sharp edges of solid. input to create a constant radius fillet feature is to select the edges to be filleted & fillet radius. Fillet Chamfer use to remove sharp edges (or corners) from parts input to create a chamfer is angle-distance, distance- distance. 52 Solid Representation Schemes Constructive Solid Geometry (CSG) Boundary representation (B-rep) Sweeping Half spaces Analytic Solid Modeling (ASM) Cell decomposition Spatial enumeration Octree encoding Primitive Instancing
  • 27. 27 53 Boundary representation (B-rep) B-rep is based on the topological notion that an object is bounded by a set of faces. A face is a closed, orientable & bounded (by edges) surface. Each face is bounded by edges & each edge (bounded curve) is bounded by vertices. B-rep model of an object consists of faces, edges, vertices. Vertices (v) Edge (E) Face (F) - The database of a boundary model contains both its topology & its geometry. Topology & Geometry are interrelated & cannot be separated entirely from each other 54 Disadvantages B-rep is very appropriate to construct solid models of unusual or complex shapes ( like turbine blades, auto body etc.) that are difficult to build using primitives. It is relatively simple to convert a B-rep model into a wireframe model because the model’s boundary definition is similar to the wireframe definition. Advantages It requires large amounts of storage because it stores the explicit definition of model boundaries i.e. faces, edges & vertices which tend to grow fairly fast for complex model. B - rep
  • 28. 28 55 Constructive Solid Geometry (CSG) CSG model is based on the topological notion that a physical object can be divided into set of primitives (basic elements & shapes) that can be combined in a certain order following a set of rules (Boolean operation) to form the object. Primitives are considered as building block Primitives are simple, basic shapes which can be combined by a mathematical set of Boolean operations to create the complex solid object. Cylinder ConeBlock WedgeSphere Primitives 56 Intersection (∩) Union (U) Difference (-) Boolean Operations Used to combine or add two primitives/ objects Intersecting two primitives give a shape equal to their common value Used to subtract one primitive from other & results in shape equal to the difference in their volume
  • 29. 29 57 Disadvantages It is easy to construct out of primitives & Boolean operation. It is concise & requires minimum storage. Advantages Major disadvantage of CSG is in its inability to represent sculptured surfaces i.e. non-analytical (synthetic surface) cannot be modeled using CSG scheme. CSG - Modern CAD systems provide both approaches to increase their modeling domain 58 Solid Model-based Down-stream Application Solid Model-based Drafting Solid Model-based Mechanism Design Solid Model-based Assembly Design Finite Element Modeling from Solid Models CNC machining based on Solid Modeling …