SlideShare una empresa de Scribd logo
1 de 21
Descargar para leer sin conexión
2017/05/23
¤
¤
¤
¤
¤
¤
→
¤
¤ [Guillaumin+ 10] [Cheng+ 16]
¤ end-to-end
¤ VAE [Kingma+ 14][Maaløe+ 16] GAN
[Salimans+ 16]
¤ JMVAE[Suzuki+
16]
¤ Guillaumin [Guillaumin+ 10]
¤
¤ 2
¤ MKL
¤
¤ Cheng [Cheng+ 16]
¤ RGB-D
¤ Co-training
¤
¤ ->
¤ Semi-Supervised Learning with Deep Generative Models
[Kingma+ 14]
¤
¤
!
"
#
ℒ = ℒ " + ℒ ", # + ( ) *[−log01 # " ]
34 " #, !
01 ! ", #
01 # "
¤ Joint multimodal variational autoencoders (JMVAE)[Suzuki+ 16]
¤ joint 3(", 6)
¤ " 6 ! joint representation
¤
それらの生成過程を次のように考える.
z ∼ pθ(z) (1)
x, w ∼ pθ(x, w|z) (2)
,それぞれのドメインのデータについて条件付き独立と仮定する.
pθ(x, w|z) = pθx (x|z)pθw (w|z) (3)
x
z
w
図 1 両方のドメインが観測されたときの TrVB
モデルの変分下界 L は,次のようになる.
2
01 ! ", #
34 ", 6 !
34 ", 6 ! = 34("|!)34(6|!)
¤
¤
¤
¤
¤
Sea
[blue, sky, sand,…]
SS-MVAE
¤ Semi-Supervised Multimodal Variational AutoEncoder (SS-MVAE)
¤ JMVAE
¤
L = {(x1, w1, y1, ), ...,
xi wi
∈ {0, 1}C
N , wN )}
q(y|x, w)
(a) SS-MVAE (b) SS-HMVAE
1:
2
34 ", 6 #, !01 # ", 6
34 ", 6 #, ! = 34 " #, ! 34 6 #, !
01 ! ", 6, #
SS-MVAE
¤ SS-MVAE
¤
¤
= µ + σ2
⊙ ϵ
12
Maddison 16]
1
y)dz
Ll(x, w, y) = L(x, w, y) − α · log qφ(y|x, w) (4)
α
α = 0.5 · M+N
M
J =
(xi,wi,yi)∈DL
Ll(xi, wi, yi) +
(xj ,wj )∈DU
U(xj, wj) (5)
JMVAE φ θ
qφ(y|x)
Semi-Supervised Multimodal
Variational AutoEncoder SS-MVAE
3.4 SS-HMVAE
SS-MVAE
a p(x, w, y) =
pθ(x|a)pθ(w|a)pθ(a|z, y)p(z)p(y)dadz 1
(a) (b) SS-MVAE y z x w
y z a x w
|z)pθ(z)dz
θ
z)pθ(z)
w)
]
(1)
µ + σ2
⊙ ϵ
12
ddison 16]
log p(x, w) = log pθ(x, w, z, y)dzdy
≥ Eqφ(z,y|x,w)[log
pθ(x|z, y)pθ(w|z, y)pθ(z)
qφ(z, y|x, w)
]
≡ −U(x, w) (3)
qφ(z, y|x, w) = qφ(z|x, w, y)qφ(y|x, w)
qφ(y|x)
2
Ll(x, w, y) = L(x, w, y) − α · log qφ(y|x, w) (4)
α
α = 0.5 · M+N
M
J =
(xi,wi,yi)∈DL
Ll(xi, wi, yi) +
(xj ,wj )∈DU
U(xj, wj) (5)
JMVAE φ θ
qφ(y|x)
Gumbel softmax[Jang 16, Maddison 16]
φ θ 1
3.3 SS-MVAE
JMVAE
y
p(x, w, y) = pθ(x|z, y)pθ(w|z, y)p(z)p(y)dz
1(a)
log p(x, w, y) = log pθ(x, w, z, y)dz
≥ Eqφ(z|x,w,y)[log
pθ(x|z, y)pθ(w|z, y)pθ(z)
qφ(z|x, w, y)
]
≡ −L(x, w, y) (2)
∗1 C
JMVAE
qφ(
Se
Variational AutoEncoder SS-M
3.4
SS-MVAE
a
pθ(x|a)pθ(w|a)pθ(a|z, y)p(z)
(a) (b) SS-MVAE
q(a, z|x, w, y) =
q(z|x, w, y) =
p(z|x, w, y)
Gulrajani 16]
2
12
Gumbel softmax[Jang 16, Maddison 16]
φ θ 1
3.3 SS-MVAE
JMVAE
y
p(x, w, y) = pθ(x|z, y)pθ(w|z, y)p(z)p(y)dz
1(a)
log p(x, w, y) = log pθ(x, w, z, y)dz
≥ Eqφ(z|x,w,y)[log
pθ(x|z, y)pθ(w|z, y)pθ(z)
qφ(z|x, w, y)
]
≡ −L(x, w, y) (2)
∗1 C
(xi,wi,yi)∈
Variational Au
3.4
S
a
pθ(x|a)pθ(w
(a) (b)
p(z|x, w
Gulrajani 16]
2
Gumbel softmax[Jang 16, Maddison 16]
φ θ 1
3.3 SS-MVAE
JMVAE
y
p(x, w, y) = pθ(x|z, y)pθ(w|z, y)p(z)p(y)dz
1(a)
log p(x, w, y) = log pθ(x, w, z, y)dz
≥ Eqφ(z|x,w,y)[log
pθ(x|z, y)pθ(w|z, y)pθ(z)
qφ(z|x, w, y)
]
≡ −L(x, w, y) (2)
∗1 C
Va
3.
a
(a
G
(a) SS-MVAE (b) SS-HMVAE
1:
qφ(y|x, w)
log p(x, w) = log pθ(x, w, z, y)dzdy
≥ Eqφ(z,y|x,w)[log
pθ(x|z, y)pθ(w|z, y)pθ(z)
qφ(z, y|x, w)
]
≡ −U(x, w) (3)
qφ(z, y|x, w) = qφ(z|x, w, y)qφ(y|x, w)
qφ(y|x)
2
x1, w1, y1, ), ...,
xi wi
q(y|x, w)
oder JMVAE
x w
pθ(w|z)pθ(z)dz
θ
(w|z)pθ(z)
(a) SS-MVAE (b) SS-HMVAE
1:
qφ(y|x, w)
log p(x, w) = log pθ(x, w, z, y)dzdy
≥ Eqφ(z,y|x,w)[log
pθ(x|z, y)pθ(w|z, y)pθ(z)
qφ(z, y|x, w)
]
≡ −U(x, w) (3)
qφ(z, y|x, w) = qφ(z|x, w, y)qφ(y|x, w)
qφ(y|x)
[Kingma 14a, Rezende 14]
12
Gumbel softmax[Jang 16, Maddison 16]
φ θ 1
3.3 SS-MVAE
JMVAE
y
p(x, w, y) = pθ(x|z, y)pθ(w|z, y)p(z)p(y)dz
1(a)
log p(x, w, y) = log pθ(x, w, z, y)dz
≥ Eqφ(z|x,w,y)[log
pθ(x|z, y)pθ(w|z, y)pθ(z)
qφ(z|x, w, y)
]
J =
(xi,wi,yi)∈
Variational Au
3.4
S
a
pθ(x|a)pθ(
(a) (b)
= {(x1, w1, y1, ), ...,
xi wi
{0, 1}C
wN )}
q(y|x, w)
utoencoder JMVAE
x w
pθ(x|z)pθ(w|z)pθ(z)dz
θ
)dz
(x|z)pθ(w|z)pθ(z)
qφ(z|x, w)
]
(a) SS-MVAE (b) SS-HMVAE
1:
qφ(y|x, w)
log p(x, w) = log pθ(x, w, z, y)dzdy
≥ Eqφ(z,y|x,w)[log
pθ(x|z, y)pθ(w|z, y)pθ(z)
qφ(z, y|x, w)
]
≡ −U(x, w) (3)
qφ(z, y|x, w) = qφ(z|x, w, y)qφ(y|x, w)
qφ(y|x)
2
0
(a) SS-MVAE (b) SS-HMVAE
1:
SS-HMVAE
¤ Semi-Supervised Hierarchical Multimodal Variational AutoEn-
coder (SS-HMVAE)
¤
¤
2
34 9 #, !
34 ", 6 9
01(9|", 6)
01(!|9, #)
01(#|", 6)
2
¤ SS-HMVAE 9
¤ auxiliary variables
¤
¤
[Maaløe+ 16]
DL = {(x1, w1, y1, ), ...,
xi wi
y ∈ {0, 1}C
, (xN , wN )}
N
q(y|x, w)
ional autoencoder JMVAE
x w
w) = pθ(x|z)pθ(w|z)pθ(z)dz
θ
E(x, w)
(a) SS-MVAE (b) SS-HMVAE
1:
qφ(y|x, w)
log p(x, w) = log pθ(x, w, z, y)dzdy
≥ Eqφ(z,y|x,w)[log
pθ(x|z, y)pθ(w|z, y)pθ(z)
qφ(z, y|x, w)
]
L = {(x1, w1, y1, ), ...,
xi wi
∈ {0, 1}C
N , wN )}
q(y|x, w)
l autoencoder JMVAE
x w
= pθ(x|z)pθ(w|z)pθ(z)dz
θ
w)
(a) SS-MVAE (b) SS-HMVAE
1:
qφ(y|x, w)
log p(x, w) = log pθ(x, w, z, y)dzdy
≥ Eqφ(z,y|x,w)[log
pθ(x|z, y)pθ(w|z, y)pθ(z)
qφ(z, y|x, w)
]
≡ −U(x, w) (3)
SS-MVAE SS-HMVAE
q(z|x, w, y) =
Z
q(a, z|x, w, y)da
¤
¤
¤
¤ Gumbel softmax[Jang+ 2016]
¤
15,000 10,000
975,000
M = 15, 000 N = 975, 000
4.2
x w
R3857
{0, 1}2000
pθ(x|z, y) = N(x|µθ(z, y), diag(σ2
θ (z, y))) (8)
pθ(w|z, y) = Ber(w|πθ(z, y)) (9)
pθ(x|a) = N(x|µθ(a), diag(σ2
θ (a))) (10)
pθ(w|a) = Ber(w|πθ(a)) (11)
y {0, 1}38
qφ(y|x, w) = Ber(y|πθ(x, w)) (12)
SS-MVAE SS-HMVAE
∗2 http://www.flickr.com
∗3 http://www.cs.toronto.edu/˜nitish/multimodal/index.html
SS-HMVAE
MC=10
SS-MVAE
MAP
MAP
HMVAE
5.
2
∗4 https://github.com/Thean
∗5 https://github.com/Lasag
∗6 https://github.com/masa-
∗7 [ 16] LRAP
MAP
3
4.2
x w
R3857
{0, 1}2000
pθ(x|z, y) = N(x|µθ(z, y), diag(σ2
θ (z, y))) (8)
pθ(w|z, y) = Ber(w|πθ(z, y)) (9)
pθ(x|a) = N(x|µθ(a), diag(σ2
θ (a))) (10)
pθ(w|a) = Ber(w|πθ(a)) (11)
y {0, 1}38
qφ(y|x, w) = Ber(y|πθ(x, w)) (12)
SS-MVAE SS-HMVAE
∗2 http://www.flickr.com
∗3 http://www.cs.toronto.edu/˜nitish/multimodal/index.html
MAP
MAP
HMVAE
5.
2
∗4 https://github.com/Thea
∗5 https://github.com/Lasag
∗6 https://github.com/masa
∗7 [ 16] LRAP
MAP
3
Semi-
ultimodal Variational AutoEn-
|a)pθ(w|a)pθ(a|z, y)p(z)p(y)
qφ(a, z|x, w, y)
]
(6)
p(z) = N(z|0, I) (13)
p(y) = Ber(y|π) (14)
pθ(a|z, y) = N(a|µθ(z, y), diag(σ2
θ (z, y))) (15)
qφ(a|x, w) = N(z|µθ(x, w), diag(σ2
θ (x, w))) (16)
qφ(z|a, y) = N(z|µθ(a, y), diag(σ2
θ (a, y))) (17)
rectified linear unit
Adam [Kingma 14b]
¤ Tars
¤ Tars
¤
¤
¤ Github https://github.com/masa-su/Tars
P(A,B,C,D)=P(A)P(B∣A)P(C∣A)P(D∣A,B)
Tars
¤ VAE
x = InputLayer((None,n_x))
q_0 = DenseLayer(x,num_units=512,nonlinearity=activation)
q_1 = DenseLayer(q_0,num_units=512,nonlinearity=activation)
q_mean = DenseLayer(q_1,num_units=n_z,nonlinearity=linear)
q_var = DenseLayer(q_1,num_units=n_z,nonlinearity=softplus)
q = Gauss(q_mean,q_var,given=[x])
0(!|")
z = InputLayer((None,n_z))
p_0 = DenseLayer(z,num_units=512,nonlinearity=activation)
p_1 = DenseLayer(p_0,num_units=512,nonlinearity=activation)
p_mean = DenseLayer(p_1,num_units=n_x,nonlinearity=sigmoid)
p = Bernoulli(p_mean,given=[z])
3("|!)
model = VAE(q, p, n_batch=n_batch, optimizer=adam)
lower_bound_train = model.train([train_x])
Tars
¤
¤
z = q.sample_given_x(x) #
z = q.sample_mean_given_x(x) #
log_likelihood = q.log_likelihood_given_x(x, z)
•
•
!~0(!|")
log 0 (!|")
¤ Flickr25k
¤
¤ 38 one-hot
¤ 3,857 2,000
¤
¤ 100 2 5000
-> 97 5000
desert, nature, landscape, sky rose, pink
clouds, plant life, sky, tree flower, plant life
¤
¤ SS-MVAE
¤ SS-HMVAE
¤
¤ SVM DBN Autoencoder DBM JMVAE
¤ mean average precision (mAP)
¤
3.
3.1
DL = {(x1, w1, y1, ), ...,
(xM , wM , yM )} xi wi
y ∈ {0, 1}C
∗1
DU = {(x1, w1, y1, ), ..., (xN , wN )}
M << N
q(y|x, w)
3.2 JMVAE
joint multimodal variational autoencoder JMVAE
[Suzuki 16][ 16]
z x w
p(x, w) = pθ(x|z)pθ(w|z)pθ(z)dz
VAE JMVAE θ
θ −UJMV AE(x, w)
log p(x, w) = log pθ(x, w, z)dz
≥ Eqφ(z|x,w)[log
pθ(x|z)pθ(w|z)pθ(z)
qφ(z|x, w)
]
≡ −UJMV AE(x, w) (1)
qφ(z|x, w) φ
(a) SS-MVAE (b) SS-HMVAE
1:
qφ(y|x, w)
log p(x, w) = log pθ(x, w, z, y)dzdy
≥ Eqφ(z,y|x,w)[log
pθ(x|z, y)pθ(w|z, y)pθ(z)
qφ(z, y|x, w)
]
≡ −U(x, w) (3)
qφ(z, y|x, w) = qφ(z|x, w, y)qφ(y|x, w)
qφ(y|x)
2
3.
3.1
DL = {(x1, w1, y1, ), ...,
(xM , wM , yM )} xi wi
y ∈ {0, 1}C
∗1
DU = {(x1, w1, y1, ), ..., (xN , wN )}
M << N
q(y|x, w)
3.2 JMVAE
joint multimodal variational autoencoder JMVAE
[Suzuki 16][ 16]
z x w
p(x, w) = pθ(x|z)pθ(w|z)pθ(z)dz
VAE JMVAE θ
θ −UJMV AE(x, w)
log p(x, w) = log pθ(x, w, z)dz
≥ Eqφ(z|x,w)[log
pθ(x|z)pθ(w|z)pθ(z)
qφ(z|x, w)
]
≡ −UJMV AE(x, w) (1)
qφ(z|x, w) φ
(a) SS-MVAE (b) SS-HMVAE
1:
qφ(y|x, w)
log p(x, w) = log pθ(x, w, z, y)dzdy
≥ Eqφ(z,y|x,w)[log
pθ(x|z, y)pθ(w|z, y)pθ(z)
qφ(z, y|x, w)
]
≡ −U(x, w) (3)
qφ(z, y|x, w) = qφ(z|x, w, y)qφ(y|x, w)
qφ(y|x)
2
SS-MVAE SS-HMVAE
mAP
SVM [Huiskes+] 0.475
DBN [Srivastava+]* 0.609
Autoencoder [Ngiam+]* 0.612
DBM [Srivastava+]* 0.622
JMVAE [Suzuki+] 0.618
SS-MVAE (MC=1) 0.612
SS-MVAE (MC=10) 0.626
SS-HMVAE (MC=1) 0.632
SS-HMVAE (MC=10) 0.628
•
• SS-HMVAE
•
•
•
• *
• MC
¤ mAP validation curve
MAP
0.618
SS-MVAE (MC=1) 0.612
SS-HMVAE (MC=1) 0.632
SS-MVAE (MC=10) 0.626
SS-HMVAE (MC=10) 0.628
2: MAP
Flickr retrie
internation
trieval, pp.
[Ioffe 15] Ioffe
Acceleratin
covariate sh
[Jang 16] Jan
cal Repara
preprint ar
[Kingma 13]
Auto-encod
arXiv:1312
[Kingma 14a]
and Wellin
generative
Processing
[Kingma 14b]
stochastic o
(2014)
[Maaløe 16] M
• SS-HMVAE
• SS-MVAE JMVAE
¤ MIR Flickr25k
¤
¤
¤
¤
¤
¤ RGB-D
¤
¤ JMVAE SS-HMVAE SS-MVAE
¤ Tars
¤
¤ SS-HMVAE
¤
¤
¤
¤ GAN VAT

Más contenido relacionado

La actualidad más candente

グラフニューラルネットワーク入門
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門ryosuke-kojima
 
深層生成モデルと世界モデル
深層生成モデルと世界モデル深層生成モデルと世界モデル
深層生成モデルと世界モデルMasahiro Suzuki
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)Masahiro Suzuki
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)Shota Imai
 
確率モデルを用いた3D点群レジストレーション
確率モデルを用いた3D点群レジストレーション確率モデルを用いた3D点群レジストレーション
確率モデルを用いた3D点群レジストレーションKenta Tanaka
 
統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333Issei Kurahashi
 
機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)Kota Matsui
 
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)Deep Learning JP
 
強化学習アルゴリズムPPOの解説と実験
強化学習アルゴリズムPPOの解説と実験強化学習アルゴリズムPPOの解説と実験
強化学習アルゴリズムPPOの解説と実験克海 納谷
 
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...Deep Learning JP
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法Hirokatsu Kataoka
 
Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)Yamato OKAMOTO
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習cvpaper. challenge
 
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 Ken'ichi Matsui
 
3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)Toru Tamaki
 
Generative Models(メタサーベイ )
Generative Models(メタサーベイ )Generative Models(メタサーベイ )
Generative Models(メタサーベイ )cvpaper. challenge
 
敵対的学習に対するラデマッハ複雑度
敵対的学習に対するラデマッハ複雑度敵対的学習に対するラデマッハ複雑度
敵対的学習に対するラデマッハ複雑度Masa Kato
 
コンピュータビジョン分野メジャー国際会議 Award までの道のり
コンピュータビジョン分野メジャー国際会議 Award までの道のりコンピュータビジョン分野メジャー国際会議 Award までの道のり
コンピュータビジョン分野メジャー国際会議 Award までの道のりcvpaper. challenge
 

La actualidad más candente (20)

グラフニューラルネットワーク入門
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門
 
深層生成モデルと世界モデル
深層生成モデルと世界モデル深層生成モデルと世界モデル
深層生成モデルと世界モデル
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
 
確率モデルを用いた3D点群レジストレーション
確率モデルを用いた3D点群レジストレーション確率モデルを用いた3D点群レジストレーション
確率モデルを用いた3D点群レジストレーション
 
統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333
 
機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)
 
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
 
ELBO型VAEのダメなところ
ELBO型VAEのダメなところELBO型VAEのダメなところ
ELBO型VAEのダメなところ
 
強化学習アルゴリズムPPOの解説と実験
強化学習アルゴリズムPPOの解説と実験強化学習アルゴリズムPPOの解説と実験
強化学習アルゴリズムPPOの解説と実験
 
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法
 
Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
 
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
 
3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)
 
Generative Models(メタサーベイ )
Generative Models(メタサーベイ )Generative Models(メタサーベイ )
Generative Models(メタサーベイ )
 
敵対的学習に対するラデマッハ複雑度
敵対的学習に対するラデマッハ複雑度敵対的学習に対するラデマッハ複雑度
敵対的学習に対するラデマッハ複雑度
 
コンピュータビジョン分野メジャー国際会議 Award までの道のり
コンピュータビジョン分野メジャー国際会議 Award までの道のりコンピュータビジョン分野メジャー国際会議 Award までの道のり
コンピュータビジョン分野メジャー国際会議 Award までの道のり
 

Similar a 深層生成モデルを用いたマルチモーダルデータの半教師あり学習

情報幾何の基礎とEMアルゴリズムの解釈
情報幾何の基礎とEMアルゴリズムの解釈情報幾何の基礎とEMアルゴリズムの解釈
情報幾何の基礎とEMアルゴリズムの解釈Fukumu Tsutsumi
 
A Note on the Derivation of the Variational Inference Updates for DILN
A Note on the Derivation of the Variational Inference Updates for DILNA Note on the Derivation of the Variational Inference Updates for DILN
A Note on the Derivation of the Variational Inference Updates for DILNTomonari Masada
 
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihoodDeep Learning JP
 
統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半Ken'ichi Matsui
 
関西NIPS+読み会発表スライド
関西NIPS+読み会発表スライド関西NIPS+読み会発表スライド
関西NIPS+読み会発表スライドYuchi Matsuoka
 
数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解くYoshihiro Mizoguchi
 
20191123 bayes dl-jp
20191123 bayes dl-jp20191123 bayes dl-jp
20191123 bayes dl-jpTaku Yoshioka
 
A Course in Fuzzy Systems and Control Matlab Chapter Three
A Course in Fuzzy Systems and Control Matlab Chapter ThreeA Course in Fuzzy Systems and Control Matlab Chapter Three
A Course in Fuzzy Systems and Control Matlab Chapter ThreeChung Hua Universit
 
NTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANsNTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANsMark Chang
 
Hiroaki Shiokawa
Hiroaki ShiokawaHiroaki Shiokawa
Hiroaki ShiokawaSuurist
 
Preserving Personalized Pagerank in Subgraphs(ICML 2011)
Preserving Personalized Pagerank in Subgraphs(ICML 2011) Preserving Personalized Pagerank in Subgraphs(ICML 2011)
Preserving Personalized Pagerank in Subgraphs(ICML 2011) ybenjo
 
A neural attention model for sentence summarization
A neural attention model for sentence summarizationA neural attention model for sentence summarization
A neural attention model for sentence summarizationAkihiko Watanabe
 
ゲーム理論BASIC 演習6 -仁を求める-
ゲーム理論BASIC 演習6 -仁を求める-ゲーム理論BASIC 演習6 -仁を求める-
ゲーム理論BASIC 演習6 -仁を求める-ssusere0a682
 
Tugasmatematikakelompok 150715235527-lva1-app6892
Tugasmatematikakelompok 150715235527-lva1-app6892Tugasmatematikakelompok 150715235527-lva1-app6892
Tugasmatematikakelompok 150715235527-lva1-app6892drayertaurus
 
Bellman ford
Bellman fordBellman ford
Bellman fordKiran K
 
Christian Gill ''Functional programming for the people''
Christian Gill ''Functional programming for the people''Christian Gill ''Functional programming for the people''
Christian Gill ''Functional programming for the people''OdessaJS Conf
 

Similar a 深層生成モデルを用いたマルチモーダルデータの半教師あり学習 (20)

Semi vae memo (2)
Semi vae memo (2)Semi vae memo (2)
Semi vae memo (2)
 
情報幾何の基礎とEMアルゴリズムの解釈
情報幾何の基礎とEMアルゴリズムの解釈情報幾何の基礎とEMアルゴリズムの解釈
情報幾何の基礎とEMアルゴリズムの解釈
 
Semi vae memo (1)
Semi vae memo (1)Semi vae memo (1)
Semi vae memo (1)
 
A Note on the Derivation of the Variational Inference Updates for DILN
A Note on the Derivation of the Variational Inference Updates for DILNA Note on the Derivation of the Variational Inference Updates for DILN
A Note on the Derivation of the Variational Inference Updates for DILN
 
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
 
統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半
 
関西NIPS+読み会発表スライド
関西NIPS+読み会発表スライド関西NIPS+読み会発表スライド
関西NIPS+読み会発表スライド
 
数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く
 
20191123 bayes dl-jp
20191123 bayes dl-jp20191123 bayes dl-jp
20191123 bayes dl-jp
 
A Course in Fuzzy Systems and Control Matlab Chapter Three
A Course in Fuzzy Systems and Control Matlab Chapter ThreeA Course in Fuzzy Systems and Control Matlab Chapter Three
A Course in Fuzzy Systems and Control Matlab Chapter Three
 
NTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANsNTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANs
 
Hiroaki Shiokawa
Hiroaki ShiokawaHiroaki Shiokawa
Hiroaki Shiokawa
 
Preserving Personalized Pagerank in Subgraphs(ICML 2011)
Preserving Personalized Pagerank in Subgraphs(ICML 2011) Preserving Personalized Pagerank in Subgraphs(ICML 2011)
Preserving Personalized Pagerank in Subgraphs(ICML 2011)
 
A neural attention model for sentence summarization
A neural attention model for sentence summarizationA neural attention model for sentence summarization
A neural attention model for sentence summarization
 
ゲーム理論BASIC 演習6 -仁を求める-
ゲーム理論BASIC 演習6 -仁を求める-ゲーム理論BASIC 演習6 -仁を求める-
ゲーム理論BASIC 演習6 -仁を求める-
 
Tugasmatematikakelompok 150715235527-lva1-app6892
Tugasmatematikakelompok 150715235527-lva1-app6892Tugasmatematikakelompok 150715235527-lva1-app6892
Tugasmatematikakelompok 150715235527-lva1-app6892
 
Lambda calculus
Lambda calculusLambda calculus
Lambda calculus
 
Bellman ford
Bellman fordBellman ford
Bellman ford
 
Christian Gill ''Functional programming for the people''
Christian Gill ''Functional programming for the people''Christian Gill ''Functional programming for the people''
Christian Gill ''Functional programming for the people''
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 

Más de Masahiro Suzuki

深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)Masahiro Suzuki
 
確率的推論と行動選択
確率的推論と行動選択確率的推論と行動選択
確率的推論と行動選択Masahiro Suzuki
 
深層生成モデルと世界モデル, 深層生成モデルライブラリPixyzについて
深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて
深層生成モデルと世界モデル, 深層生成モデルライブラリPixyzについてMasahiro Suzuki
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究についてMasahiro Suzuki
 
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural NetworksMasahiro Suzuki
 
(DL輪読)Matching Networks for One Shot Learning
(DL輪読)Matching Networks for One Shot Learning(DL輪読)Matching Networks for One Shot Learning
(DL輪読)Matching Networks for One Shot LearningMasahiro Suzuki
 
(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural NetworkMasahiro Suzuki
 
深層生成モデルを用いたマルチモーダル学習
深層生成モデルを用いたマルチモーダル学習深層生成モデルを用いたマルチモーダル学習
深層生成モデルを用いたマルチモーダル学習Masahiro Suzuki
 
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...Masahiro Suzuki
 
(DL hacks輪読) Variational Inference with Rényi Divergence
(DL hacks輪読) Variational Inference with Rényi Divergence(DL hacks輪読) Variational Inference with Rényi Divergence
(DL hacks輪読) Variational Inference with Rényi DivergenceMasahiro Suzuki
 
(DL hacks輪読) Deep Kalman Filters
(DL hacks輪読) Deep Kalman Filters(DL hacks輪読) Deep Kalman Filters
(DL hacks輪読) Deep Kalman FiltersMasahiro Suzuki
 
(研究会輪読) Weight Uncertainty in Neural Networks
(研究会輪読) Weight Uncertainty in Neural Networks(研究会輪読) Weight Uncertainty in Neural Networks
(研究会輪読) Weight Uncertainty in Neural NetworksMasahiro Suzuki
 
(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel Learning(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel LearningMasahiro Suzuki
 
(DL hacks輪読) Seven neurons memorizing sequences of alphabetical images via sp...
(DL hacks輪読) Seven neurons memorizing sequences of alphabetical images via sp...(DL hacks輪読) Seven neurons memorizing sequences of alphabetical images via sp...
(DL hacks輪読) Seven neurons memorizing sequences of alphabetical images via sp...Masahiro Suzuki
 
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task LearningMasahiro Suzuki
 
(DL hacks輪読) Difference Target Propagation
(DL hacks輪読) Difference Target Propagation(DL hacks輪読) Difference Target Propagation
(DL hacks輪読) Difference Target PropagationMasahiro Suzuki
 
(DL hacks輪読) Variational Dropout and the Local Reparameterization Trick
(DL hacks輪読) Variational Dropout and the Local Reparameterization Trick(DL hacks輪読) Variational Dropout and the Local Reparameterization Trick
(DL hacks輪読) Variational Dropout and the Local Reparameterization TrickMasahiro Suzuki
 
(DL Hacks輪読) How transferable are features in deep neural networks?
(DL Hacks輪読) How transferable are features in deep neural networks?(DL Hacks輪読) How transferable are features in deep neural networks?
(DL Hacks輪読) How transferable are features in deep neural networks?Masahiro Suzuki
 

Más de Masahiro Suzuki (18)

深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)
 
確率的推論と行動選択
確率的推論と行動選択確率的推論と行動選択
確率的推論と行動選択
 
深層生成モデルと世界モデル, 深層生成モデルライブラリPixyzについて
深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて
深層生成モデルと世界モデル, 深層生成モデルライブラリPixyzについて
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究について
 
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
 
(DL輪読)Matching Networks for One Shot Learning
(DL輪読)Matching Networks for One Shot Learning(DL輪読)Matching Networks for One Shot Learning
(DL輪読)Matching Networks for One Shot Learning
 
(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network
 
深層生成モデルを用いたマルチモーダル学習
深層生成モデルを用いたマルチモーダル学習深層生成モデルを用いたマルチモーダル学習
深層生成モデルを用いたマルチモーダル学習
 
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
 
(DL hacks輪読) Variational Inference with Rényi Divergence
(DL hacks輪読) Variational Inference with Rényi Divergence(DL hacks輪読) Variational Inference with Rényi Divergence
(DL hacks輪読) Variational Inference with Rényi Divergence
 
(DL hacks輪読) Deep Kalman Filters
(DL hacks輪読) Deep Kalman Filters(DL hacks輪読) Deep Kalman Filters
(DL hacks輪読) Deep Kalman Filters
 
(研究会輪読) Weight Uncertainty in Neural Networks
(研究会輪読) Weight Uncertainty in Neural Networks(研究会輪読) Weight Uncertainty in Neural Networks
(研究会輪読) Weight Uncertainty in Neural Networks
 
(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel Learning(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel Learning
 
(DL hacks輪読) Seven neurons memorizing sequences of alphabetical images via sp...
(DL hacks輪読) Seven neurons memorizing sequences of alphabetical images via sp...(DL hacks輪読) Seven neurons memorizing sequences of alphabetical images via sp...
(DL hacks輪読) Seven neurons memorizing sequences of alphabetical images via sp...
 
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
 
(DL hacks輪読) Difference Target Propagation
(DL hacks輪読) Difference Target Propagation(DL hacks輪読) Difference Target Propagation
(DL hacks輪読) Difference Target Propagation
 
(DL hacks輪読) Variational Dropout and the Local Reparameterization Trick
(DL hacks輪読) Variational Dropout and the Local Reparameterization Trick(DL hacks輪読) Variational Dropout and the Local Reparameterization Trick
(DL hacks輪読) Variational Dropout and the Local Reparameterization Trick
 
(DL Hacks輪読) How transferable are features in deep neural networks?
(DL Hacks輪読) How transferable are features in deep neural networks?(DL Hacks輪読) How transferable are features in deep neural networks?
(DL Hacks輪読) How transferable are features in deep neural networks?
 

Último

Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...apidays
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMKumar Satyam
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityWSO2
 

Último (20)

Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDM
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 

深層生成モデルを用いたマルチモーダルデータの半教師あり学習

  • 3. ¤ ¤ [Guillaumin+ 10] [Cheng+ 16] ¤ end-to-end ¤ VAE [Kingma+ 14][Maaløe+ 16] GAN [Salimans+ 16] ¤ JMVAE[Suzuki+ 16]
  • 4. ¤ Guillaumin [Guillaumin+ 10] ¤ ¤ 2 ¤ MKL ¤ ¤ Cheng [Cheng+ 16] ¤ RGB-D ¤ Co-training ¤ ¤ ->
  • 5. ¤ Semi-Supervised Learning with Deep Generative Models [Kingma+ 14] ¤ ¤ ! " # ℒ = ℒ " + ℒ ", # + ( ) *[−log01 # " ] 34 " #, ! 01 ! ", # 01 # "
  • 6. ¤ Joint multimodal variational autoencoders (JMVAE)[Suzuki+ 16] ¤ joint 3(", 6) ¤ " 6 ! joint representation ¤ それらの生成過程を次のように考える. z ∼ pθ(z) (1) x, w ∼ pθ(x, w|z) (2) ,それぞれのドメインのデータについて条件付き独立と仮定する. pθ(x, w|z) = pθx (x|z)pθw (w|z) (3) x z w 図 1 両方のドメインが観測されたときの TrVB モデルの変分下界 L は,次のようになる. 2 01 ! ", # 34 ", 6 ! 34 ", 6 ! = 34("|!)34(6|!)
  • 8. SS-MVAE ¤ Semi-Supervised Multimodal Variational AutoEncoder (SS-MVAE) ¤ JMVAE ¤ L = {(x1, w1, y1, ), ..., xi wi ∈ {0, 1}C N , wN )} q(y|x, w) (a) SS-MVAE (b) SS-HMVAE 1: 2 34 ", 6 #, !01 # ", 6 34 ", 6 #, ! = 34 " #, ! 34 6 #, ! 01 ! ", 6, #
  • 9. SS-MVAE ¤ SS-MVAE ¤ ¤ = µ + σ2 ⊙ ϵ 12 Maddison 16] 1 y)dz Ll(x, w, y) = L(x, w, y) − α · log qφ(y|x, w) (4) α α = 0.5 · M+N M J = (xi,wi,yi)∈DL Ll(xi, wi, yi) + (xj ,wj )∈DU U(xj, wj) (5) JMVAE φ θ qφ(y|x) Semi-Supervised Multimodal Variational AutoEncoder SS-MVAE 3.4 SS-HMVAE SS-MVAE a p(x, w, y) = pθ(x|a)pθ(w|a)pθ(a|z, y)p(z)p(y)dadz 1 (a) (b) SS-MVAE y z x w y z a x w |z)pθ(z)dz θ z)pθ(z) w) ] (1) µ + σ2 ⊙ ϵ 12 ddison 16] log p(x, w) = log pθ(x, w, z, y)dzdy ≥ Eqφ(z,y|x,w)[log pθ(x|z, y)pθ(w|z, y)pθ(z) qφ(z, y|x, w) ] ≡ −U(x, w) (3) qφ(z, y|x, w) = qφ(z|x, w, y)qφ(y|x, w) qφ(y|x) 2 Ll(x, w, y) = L(x, w, y) − α · log qφ(y|x, w) (4) α α = 0.5 · M+N M J = (xi,wi,yi)∈DL Ll(xi, wi, yi) + (xj ,wj )∈DU U(xj, wj) (5) JMVAE φ θ qφ(y|x) Gumbel softmax[Jang 16, Maddison 16] φ θ 1 3.3 SS-MVAE JMVAE y p(x, w, y) = pθ(x|z, y)pθ(w|z, y)p(z)p(y)dz 1(a) log p(x, w, y) = log pθ(x, w, z, y)dz ≥ Eqφ(z|x,w,y)[log pθ(x|z, y)pθ(w|z, y)pθ(z) qφ(z|x, w, y) ] ≡ −L(x, w, y) (2) ∗1 C JMVAE qφ( Se Variational AutoEncoder SS-M 3.4 SS-MVAE a pθ(x|a)pθ(w|a)pθ(a|z, y)p(z) (a) (b) SS-MVAE q(a, z|x, w, y) = q(z|x, w, y) = p(z|x, w, y) Gulrajani 16] 2 12 Gumbel softmax[Jang 16, Maddison 16] φ θ 1 3.3 SS-MVAE JMVAE y p(x, w, y) = pθ(x|z, y)pθ(w|z, y)p(z)p(y)dz 1(a) log p(x, w, y) = log pθ(x, w, z, y)dz ≥ Eqφ(z|x,w,y)[log pθ(x|z, y)pθ(w|z, y)pθ(z) qφ(z|x, w, y) ] ≡ −L(x, w, y) (2) ∗1 C (xi,wi,yi)∈ Variational Au 3.4 S a pθ(x|a)pθ(w (a) (b) p(z|x, w Gulrajani 16] 2 Gumbel softmax[Jang 16, Maddison 16] φ θ 1 3.3 SS-MVAE JMVAE y p(x, w, y) = pθ(x|z, y)pθ(w|z, y)p(z)p(y)dz 1(a) log p(x, w, y) = log pθ(x, w, z, y)dz ≥ Eqφ(z|x,w,y)[log pθ(x|z, y)pθ(w|z, y)pθ(z) qφ(z|x, w, y) ] ≡ −L(x, w, y) (2) ∗1 C Va 3. a (a G (a) SS-MVAE (b) SS-HMVAE 1: qφ(y|x, w) log p(x, w) = log pθ(x, w, z, y)dzdy ≥ Eqφ(z,y|x,w)[log pθ(x|z, y)pθ(w|z, y)pθ(z) qφ(z, y|x, w) ] ≡ −U(x, w) (3) qφ(z, y|x, w) = qφ(z|x, w, y)qφ(y|x, w) qφ(y|x) 2 x1, w1, y1, ), ..., xi wi q(y|x, w) oder JMVAE x w pθ(w|z)pθ(z)dz θ (w|z)pθ(z) (a) SS-MVAE (b) SS-HMVAE 1: qφ(y|x, w) log p(x, w) = log pθ(x, w, z, y)dzdy ≥ Eqφ(z,y|x,w)[log pθ(x|z, y)pθ(w|z, y)pθ(z) qφ(z, y|x, w) ] ≡ −U(x, w) (3) qφ(z, y|x, w) = qφ(z|x, w, y)qφ(y|x, w) qφ(y|x) [Kingma 14a, Rezende 14] 12 Gumbel softmax[Jang 16, Maddison 16] φ θ 1 3.3 SS-MVAE JMVAE y p(x, w, y) = pθ(x|z, y)pθ(w|z, y)p(z)p(y)dz 1(a) log p(x, w, y) = log pθ(x, w, z, y)dz ≥ Eqφ(z|x,w,y)[log pθ(x|z, y)pθ(w|z, y)pθ(z) qφ(z|x, w, y) ] J = (xi,wi,yi)∈ Variational Au 3.4 S a pθ(x|a)pθ( (a) (b) = {(x1, w1, y1, ), ..., xi wi {0, 1}C wN )} q(y|x, w) utoencoder JMVAE x w pθ(x|z)pθ(w|z)pθ(z)dz θ )dz (x|z)pθ(w|z)pθ(z) qφ(z|x, w) ] (a) SS-MVAE (b) SS-HMVAE 1: qφ(y|x, w) log p(x, w) = log pθ(x, w, z, y)dzdy ≥ Eqφ(z,y|x,w)[log pθ(x|z, y)pθ(w|z, y)pθ(z) qφ(z, y|x, w) ] ≡ −U(x, w) (3) qφ(z, y|x, w) = qφ(z|x, w, y)qφ(y|x, w) qφ(y|x) 2 0
  • 10. (a) SS-MVAE (b) SS-HMVAE 1: SS-HMVAE ¤ Semi-Supervised Hierarchical Multimodal Variational AutoEn- coder (SS-HMVAE) ¤ ¤ 2 34 9 #, ! 34 ", 6 9 01(9|", 6) 01(!|9, #) 01(#|", 6)
  • 11. 2 ¤ SS-HMVAE 9 ¤ auxiliary variables ¤ ¤ [Maaløe+ 16] DL = {(x1, w1, y1, ), ..., xi wi y ∈ {0, 1}C , (xN , wN )} N q(y|x, w) ional autoencoder JMVAE x w w) = pθ(x|z)pθ(w|z)pθ(z)dz θ E(x, w) (a) SS-MVAE (b) SS-HMVAE 1: qφ(y|x, w) log p(x, w) = log pθ(x, w, z, y)dzdy ≥ Eqφ(z,y|x,w)[log pθ(x|z, y)pθ(w|z, y)pθ(z) qφ(z, y|x, w) ] L = {(x1, w1, y1, ), ..., xi wi ∈ {0, 1}C N , wN )} q(y|x, w) l autoencoder JMVAE x w = pθ(x|z)pθ(w|z)pθ(z)dz θ w) (a) SS-MVAE (b) SS-HMVAE 1: qφ(y|x, w) log p(x, w) = log pθ(x, w, z, y)dzdy ≥ Eqφ(z,y|x,w)[log pθ(x|z, y)pθ(w|z, y)pθ(z) qφ(z, y|x, w) ] ≡ −U(x, w) (3) SS-MVAE SS-HMVAE q(z|x, w, y) = Z q(a, z|x, w, y)da
  • 12. ¤ ¤ ¤ ¤ Gumbel softmax[Jang+ 2016] ¤ 15,000 10,000 975,000 M = 15, 000 N = 975, 000 4.2 x w R3857 {0, 1}2000 pθ(x|z, y) = N(x|µθ(z, y), diag(σ2 θ (z, y))) (8) pθ(w|z, y) = Ber(w|πθ(z, y)) (9) pθ(x|a) = N(x|µθ(a), diag(σ2 θ (a))) (10) pθ(w|a) = Ber(w|πθ(a)) (11) y {0, 1}38 qφ(y|x, w) = Ber(y|πθ(x, w)) (12) SS-MVAE SS-HMVAE ∗2 http://www.flickr.com ∗3 http://www.cs.toronto.edu/˜nitish/multimodal/index.html SS-HMVAE MC=10 SS-MVAE MAP MAP HMVAE 5. 2 ∗4 https://github.com/Thean ∗5 https://github.com/Lasag ∗6 https://github.com/masa- ∗7 [ 16] LRAP MAP 3 4.2 x w R3857 {0, 1}2000 pθ(x|z, y) = N(x|µθ(z, y), diag(σ2 θ (z, y))) (8) pθ(w|z, y) = Ber(w|πθ(z, y)) (9) pθ(x|a) = N(x|µθ(a), diag(σ2 θ (a))) (10) pθ(w|a) = Ber(w|πθ(a)) (11) y {0, 1}38 qφ(y|x, w) = Ber(y|πθ(x, w)) (12) SS-MVAE SS-HMVAE ∗2 http://www.flickr.com ∗3 http://www.cs.toronto.edu/˜nitish/multimodal/index.html MAP MAP HMVAE 5. 2 ∗4 https://github.com/Thea ∗5 https://github.com/Lasag ∗6 https://github.com/masa ∗7 [ 16] LRAP MAP 3 Semi- ultimodal Variational AutoEn- |a)pθ(w|a)pθ(a|z, y)p(z)p(y) qφ(a, z|x, w, y) ] (6) p(z) = N(z|0, I) (13) p(y) = Ber(y|π) (14) pθ(a|z, y) = N(a|µθ(z, y), diag(σ2 θ (z, y))) (15) qφ(a|x, w) = N(z|µθ(x, w), diag(σ2 θ (x, w))) (16) qφ(z|a, y) = N(z|µθ(a, y), diag(σ2 θ (a, y))) (17) rectified linear unit Adam [Kingma 14b]
  • 13. ¤ Tars ¤ Tars ¤ ¤ ¤ Github https://github.com/masa-su/Tars P(A,B,C,D)=P(A)P(B∣A)P(C∣A)P(D∣A,B)
  • 14. Tars ¤ VAE x = InputLayer((None,n_x)) q_0 = DenseLayer(x,num_units=512,nonlinearity=activation) q_1 = DenseLayer(q_0,num_units=512,nonlinearity=activation) q_mean = DenseLayer(q_1,num_units=n_z,nonlinearity=linear) q_var = DenseLayer(q_1,num_units=n_z,nonlinearity=softplus) q = Gauss(q_mean,q_var,given=[x]) 0(!|") z = InputLayer((None,n_z)) p_0 = DenseLayer(z,num_units=512,nonlinearity=activation) p_1 = DenseLayer(p_0,num_units=512,nonlinearity=activation) p_mean = DenseLayer(p_1,num_units=n_x,nonlinearity=sigmoid) p = Bernoulli(p_mean,given=[z]) 3("|!) model = VAE(q, p, n_batch=n_batch, optimizer=adam) lower_bound_train = model.train([train_x])
  • 15. Tars ¤ ¤ z = q.sample_given_x(x) # z = q.sample_mean_given_x(x) # log_likelihood = q.log_likelihood_given_x(x, z) • • !~0(!|") log 0 (!|")
  • 16. ¤ Flickr25k ¤ ¤ 38 one-hot ¤ 3,857 2,000 ¤ ¤ 100 2 5000 -> 97 5000 desert, nature, landscape, sky rose, pink clouds, plant life, sky, tree flower, plant life
  • 17. ¤ ¤ SS-MVAE ¤ SS-HMVAE ¤ ¤ SVM DBN Autoencoder DBM JMVAE ¤ mean average precision (mAP) ¤ 3. 3.1 DL = {(x1, w1, y1, ), ..., (xM , wM , yM )} xi wi y ∈ {0, 1}C ∗1 DU = {(x1, w1, y1, ), ..., (xN , wN )} M << N q(y|x, w) 3.2 JMVAE joint multimodal variational autoencoder JMVAE [Suzuki 16][ 16] z x w p(x, w) = pθ(x|z)pθ(w|z)pθ(z)dz VAE JMVAE θ θ −UJMV AE(x, w) log p(x, w) = log pθ(x, w, z)dz ≥ Eqφ(z|x,w)[log pθ(x|z)pθ(w|z)pθ(z) qφ(z|x, w) ] ≡ −UJMV AE(x, w) (1) qφ(z|x, w) φ (a) SS-MVAE (b) SS-HMVAE 1: qφ(y|x, w) log p(x, w) = log pθ(x, w, z, y)dzdy ≥ Eqφ(z,y|x,w)[log pθ(x|z, y)pθ(w|z, y)pθ(z) qφ(z, y|x, w) ] ≡ −U(x, w) (3) qφ(z, y|x, w) = qφ(z|x, w, y)qφ(y|x, w) qφ(y|x) 2 3. 3.1 DL = {(x1, w1, y1, ), ..., (xM , wM , yM )} xi wi y ∈ {0, 1}C ∗1 DU = {(x1, w1, y1, ), ..., (xN , wN )} M << N q(y|x, w) 3.2 JMVAE joint multimodal variational autoencoder JMVAE [Suzuki 16][ 16] z x w p(x, w) = pθ(x|z)pθ(w|z)pθ(z)dz VAE JMVAE θ θ −UJMV AE(x, w) log p(x, w) = log pθ(x, w, z)dz ≥ Eqφ(z|x,w)[log pθ(x|z)pθ(w|z)pθ(z) qφ(z|x, w) ] ≡ −UJMV AE(x, w) (1) qφ(z|x, w) φ (a) SS-MVAE (b) SS-HMVAE 1: qφ(y|x, w) log p(x, w) = log pθ(x, w, z, y)dzdy ≥ Eqφ(z,y|x,w)[log pθ(x|z, y)pθ(w|z, y)pθ(z) qφ(z, y|x, w) ] ≡ −U(x, w) (3) qφ(z, y|x, w) = qφ(z|x, w, y)qφ(y|x, w) qφ(y|x) 2 SS-MVAE SS-HMVAE
  • 18. mAP SVM [Huiskes+] 0.475 DBN [Srivastava+]* 0.609 Autoencoder [Ngiam+]* 0.612 DBM [Srivastava+]* 0.622 JMVAE [Suzuki+] 0.618 SS-MVAE (MC=1) 0.612 SS-MVAE (MC=10) 0.626 SS-HMVAE (MC=1) 0.632 SS-HMVAE (MC=10) 0.628 • • SS-HMVAE • • • • * • MC
  • 19. ¤ mAP validation curve MAP 0.618 SS-MVAE (MC=1) 0.612 SS-HMVAE (MC=1) 0.632 SS-MVAE (MC=10) 0.626 SS-HMVAE (MC=10) 0.628 2: MAP Flickr retrie internation trieval, pp. [Ioffe 15] Ioffe Acceleratin covariate sh [Jang 16] Jan cal Repara preprint ar [Kingma 13] Auto-encod arXiv:1312 [Kingma 14a] and Wellin generative Processing [Kingma 14b] stochastic o (2014) [Maaløe 16] M • SS-HMVAE • SS-MVAE JMVAE
  • 21. ¤ ¤ JMVAE SS-HMVAE SS-MVAE ¤ Tars ¤ ¤ SS-HMVAE ¤ ¤ ¤ ¤ GAN VAT