SlideShare una empresa de Scribd logo
1 de 27
1

The 28th International Symposium on Space Technology and Science




                      Chemical Propulsion 2011-a-35s


     Multi-Stage Hybrid Rocket Design for
 Micro Satellites
 Micro-Satellites Launch using Genetic Algorithm



                             Yosuke Kitagawa
                                  Tokyo Metropolitan University
2


Contents
    1.   Background
    2.   Objectives
    3.   Design methods
             g
    4.   Design problem
    5.
    5    Results
    6.   Conclusions
3


Background
 Advantage of hybrid rocket engine (HRE)
   ・ Safety     ・ Cost        ・ Environment



L
 Launch Vehicle (LV) development with HRE
      h V hi l       d l           ih
  • HRE is employed in plan of private space travel using SpaceShipTwo
    by Virgin Galactic in America.
                          America
  • Copenhagen Suborbitals develops small manned spacecraft using
    HRE, TychoBrahe




      SpaceShipTwo
      S    Shi T                                      Tycho Brahe
                                                      Tycho Brahe
     www.scaled.com                           www.copenhagensuborbitals.com
4


Background
 Disadvantage of HRE
   • Regression rate of solid fuel is slow.
   • LOX tank is required in the engine construction.
                                          construction
   • There is severe trade-off between flight altitude and gross weight.

 Thrust and weight are affected by

     Pressurized tank
       ・Pressure
                                                                     Nozzle
                     LOX tank                Chamber
                                                                     ・Expansion ratio
                                                                      Expansion
                    ・Mass flow of oxidizer   ・Pressure
                    ・Pressure                                    Solid fuel
                                                                 ・Length
                                                                 ・Port radius

     It is helpful for design of LV with HRE to apply multi disciplinary
                                                      multi-disciplinary
          optimization (MDO) and knowledge discovery techniques.
5


Objectives


MDO of three-stage LV with HRE for delivering
micro-satellites
micro satellites using genetic algorithm (GA)

    • Evaluation method of multi-stage LV with HRE
                            multi stage
    • Exploration of global solutions by genetic algorithm
    • Design knowledge discovery by data mining
6


Flowchart of Evaluation
                      Grain sizing                      INPUT
                  Grain length                 Oxidizer mass flow
                  Port radius                  Initial O/F
Fuel mass flow                                 Coefficient of regression rate
                            O/F                Initial oxidizer mass flux
                        O/F                    Combustion time
                                               Initial pressure of chamber
     Pressure and     NASA CEA
                      NASA-CEA                 Initial pressure of pressurized tank
                                                       p           p
     velocity at                           Isp Expansion ratio of nozzle
     nozzle exit                           C*
            Thrust
            Th t                      Mass
                                      M
         Thrust                             Gross mass
                        Trajectory
                                            Kosugi, K., et al. "Multidisciplinary and Multi-objective Design
                                                 g, ,                     p     y             j           g
                        OUTPUT              Exploration Methodology for Conceptual Design of a Hybrid Rocket,"
                                            Infotech@aerospace, AIAA 2011-1634, 2011.

        Flight path, Rocket length and diameter etc.
7


Grain Configuration
 Initial radius of grain port                                 L fuel

                 moxii
                 
    rport 0 
                Go 0                                                          r (t )
                                                                                 
                                                               m fuel
                                                               
                                           moxi
                                           
                                                                                   rport (t )
                                                                                         (
                           Design
                           D i variables
                                  i bl
 Grain length                                               Grain

                                moxi
                                 
               m fuel 0  
               
                               O F 0            moxi : Oxidizer mass flow
                                                  
                                                  m fuel : Fuel mass flow
                                                  f
                       m fuel 0
                                                 rport : Radius of grain port
    L fuel   
               2rp 0  r 0   fuel
                  port
                                   f             r : Regression rate
                                                  
                                                  Go : Oxidizer mass flux
                  r 0  a  Gon 0
                                                 L fuel : Grain length
                     Design variables              fuel : Grain density
8


O/F and Chamber Pressure Calculation
                                                                                  L fuel
 Definition of O/F
     O          moxi
                
       (t )                                                                                       r (t )
                                                                                                   
     F        m fuel (t )
                                                                                  m fuel
                                                                                   
                                                          moxi
                                                          
                     moxii
                                                                                                    rport (t )
                                                                                                           (
       
        
         2rport (t ) L fuel  fuel r (t )
                                                                               Grain

                                                      n
                                     moxi 
                                        
          r t   a  G t   a 
                       n                        
                                     rport t  
                        o              2         
                                        p


                                                                 Pch Chamber pressure
                                                                   :
                                                                 m prop Propellant mass flow
                                                                 p : p
 Ch b pressure
  Chamber                                                           
                                                                 C:Characteristic velocity
                    m prop (t )  C  (t )  C 
                                                                 C:  Efficiency of characteristic velocity
       Pch (t ) 
                                                                     
            t)
                                  Ath                            Ath Area of nozzle throat
                                                                   :
9


Mass Estimation
 Structural mass                Design variables

      ・Chamber              M ch  PchVch 17 .3  10 4                          same as motor case as solid
      ・Pressurized tank M      pre    Ppre V pre 17 .3  10 4                  rocket, M V
                                                                                rocket M-V (CFRP)

      ・Oxidizer tank        M res  PresV res 4 .4  10 4                        CFRP with aluminum liner
                                                          2        1
                                            M prop     
                                                          3        4
      ・Nozzle*              M noz     125 
                                                       
                                                                                 Empirical expression
                                            5400      4
       Structure*           M st  1 . 3 M ch  M res  M             pre     M noz   M He

 Propellant mass                       Design variables

                                                      tburn
      M prop  M oxi  M fuel    moxi  tburn  
                                                             m fuel (t )dt
                                                              
                                                      0

 Gross mass
       M tot  M     prop    M st  M       pay                         M pay : Payload mass


     * Ronald Humble, “Space Propulsion Analysis and Design”
10


Trajectory Evaluation
 Thrust
      T t    CF  C* [ m prop u e  ( Pe  Pa )  Ae ]
                           
         •  C * :thrust loss by incomplete combustion
         •  CF :thrust loss by friction at nozzle wall
 Drag                                                                             1.0
                                                                                                 During combustion
     Estimation using flight data of solid rocket, S-520 0.8
                                                                                                 After combustion




                                                                        CD,S-520
     • Friction drag coefficient                                              0.6
                                0.455                        1                0.4
         C D f , Design                      
                                         2.58
                                             
                          log10 Re  1  0.144M 2 0.655                     0.2
                                                                              02
                                                                              0.0
     • Pressure drag coefficient
                                                          S wet , S 520          0.0     2.0  4.0    6.0   8.0 10.0
         C D p , S 520  C D , S 520  C D f , S 520                                      Mach number
                                                          S ref , S 520
     • Drag of designed rocket
                                                                                    S wet Rocket wet area
                                                                                        :
                  1
                         
         D  V 2 S ref , DesignC D p , S 520  S wet , DesignC D f , Design
                  2
                                                                                   S ref Rocket reference area
                                                                                        :

       The effect of the longitude and diameter can be separately evaluated.
11


Optimization Methods
Multi-objective Genetic Algorithm (MOGA)
 Searching global non-dominated solutions
       hi     l b l    d i      d l i
  based on global explorations




 E l i and selection (P
  Evaluation d l i (Pareto ranking method)
                              ki      h d)
     •   When a solution #xi is dominated by #ni solutions,
         rank(xi)=1+ ni.
     •   Penalty method
          When a solution xi don’t meet constraints,
          rank(xi)= rank(xi)+p (p>0).                         Optimum direction
12


Optimization Method
 Crossover(BLX-α)
     • Children are generated based on interpolation
       or extrapolation based on selected two parents.
     • In BLX-α, children are generated between the
       range which is extended equally on both sides
       determined by a parameter, α.




Children2           Children1


 Mutation                                                       x1   x2   x3   x4   x5
     • Mutation generate children that cannot be
                                                     Parent
       generated from the present population.
     • Children are generated by a uniform
                                                         Child
       random number.
13


Data Mining Method
 Parallel Coordinate Plot (PCP)
 • One of statistical visualization techniques from high dimensional
                                                    high-dimensional
   data into two dimensional graph.
 • Normalized design variables and objective functions are set
   parallel in the normalized axis.
 • Global trends of design variables can be visualized using PCP.
                         g                                 g
                1.0 
                0.8 
                0.6 
                0.4 
                0.2 
                0.0 
                       dv1
                       d 1   dv2
                             d 2   dv3
                                   d 3   dv4
                                         d 4   dv5
                                               d 5   H   W   L/D
14


Design Problem
  Design target: Design of three-stage rocket which can deliver micro-satellites
   to the Sun-synchronous orbit (SSO) (perigee is 250km, apogee is 800km)
  Obj ti f
   Objective functions
                  ti
    • maximize Payload mass/Gross mass (Mpay/Mtot)
    • minimize Gross mass (Mttott)
  Constraints
    • After combustion of third stage,
          Height > 250km
          Angular momentum > 52413.5km2/s
          -0.5deg. < Fli ht path angle < 0.5deg.
            0 5d      Flight th      l    0 5d
    • Rocket aspect ratio < 20
    • Radius of nozzle exit < Radius of rocket
    • Area of grain port > 2・(Area of nozzle throat)
  Combustion type
    • Swirling oxidizer type engine
    • Oxidizer:LOX, Fuel:WAX (FT-0070)
15


Design Problem (design space)
                                                 1st stage                       2nd stage                          3rd stage
       Design variables
                                           Min           Max              Min              Max               Min              Max
   Oxidizer
   O idi mass flow [k / ]
                 fl [kg/s]                                              moxi,1st          moxi,1st          moxi,2nd         moxi,2nd
                                            50            150
            (moxi)                                                      ×1/10             ×1/3              ×1/10            ×1/3
           Initial O/F [-]                   2               3              2                3                 2                 3
 Coefficient of regression rate
                                          6.224          15.61           6.224             15.61            6.224             15.61
     equation, a* [×10-3]
      Initial oxidizer mass flux
                                           200            800             200                800              100               800
               [kg/m2s]
  Combustion time [s] (tburn)               40             80          tburn,1st+0      tburn,1st+50      tburn,2nd+0      tburn,2nd+50
         Initial pressure of
                                            0.5           5.0              0.5               5.0              0.5               5.0
          chamber [MPa]
         Initial pressure of
                                            10             47              10                47               10                47
      pressurized tank [MPa]
 Expansion ratio of nozzle [-]               2             15              15                60               50                100
          Coasting time [s]                                                                                    0                300

The range of the a for each stage is empirically decided*. ( r t   a  Gon t  )
                                                             
* Hikone,S., et al, “Regression Rate Characteristics and Combustion Mechanism of Some Hybrid Rocket Fuels ,”Asian Joint Conference on
Propulsion and Power 2010.
16




     Results
17


MOGA Results
                 Optimum direction
                 O ti    di ti
                                                        Epsilon
                                                        rocket
Mpay/Mto [%]




                                                                  Mpay [kg]
       ot




                                                                       [
                                 Mtot [ton]                                         Mtot [ton]
               • There is trade-off between Mtot and Mpay/Mtot.
               • Maximum Mpay/Mtot is 1.30% (Mpay is 232kg, Mtot is 17.8ton).
               • Maximum Mpay/Mtot of solid rocket, Epsilon* is about 1.3%.
               ⇒ LV with HRE considered here have enough capability compared
                 with the solid rocket.
                  ih h       lid   k
               • Mpay is approximately proportional to Mtot (Mtot=0.0619Mpay+3.427).
               ⇒When Mpay increases by 1kg, Mtot must increase by 61.9kg.
          *Epsilon rocket: Next generation solid rocket developed by JAXA and IA.
18


PCP Visualization
      Non-dominated solutions




                                 Picking up solutions (150kg payload)
19


PCP Visualization (to deliver 150kg payload)
 Effect of combustion process                                         a:Coefficient of regression
                                                                           rate equation
                                                                       Go:Oxidizer mass flux
                                                                       1:1st stage
                                                                       2:2nd stage
                                                                       3:3rd stage




                       Max    Min    Average         Required regression rate
       a1 [×10-3]
          [  0         1.44
                        .     1.34
                               .3     1.37
                                       .37
                                                                  14.6mm/s
                                                                  14 6  /
      Go1   [kg/m2s]
                                               r t   a  Gon t 
                       488    357     428
                                               
       a2 [×10-3]      1.16   1.13    1.09
                                                                  9.1mm/s
                                                                  9 1mm/s
      Go2   [kg/m2s]   211    208     209
       a3 [×10-3]      1.34   1.29    1.31
                                                                  8.8mm/s
      Go3
      G 3   [k / 2s]
            [kg/m ]    141    126     130
20


PCP Visualization (to deliver 150kg payload)
 Effect of internal pressure of chamber/ pressurized tanks                   Pc:Chamber pressure
                                                                              Pp:Pressure of pressurized
                                                                                 tank




                        Max       Min       Average           Structural mass/Gross mass
      Pc1 [MPa]
          [   ]         2.90
                         .90      2.27
                                   . 7         2.63
                                                .63
                                                                      20.7%
                                                                      20 7%
      Pp1 [MPa]         43.5      37.9         41.0
                                                                              Pressure:Large
      Pc2 [MPa]         1.00      0.98         0.99                           ⇒Thickness: Increase
                                                                      11.9%
                                                                      11 9%   ⇒ Structural mass:Increase
      Pp2 [MPa]         21.8      19.6         21.3
      Pc3 [MPa]         0.80      0.72         0.75
                                                                      14.5%
      Pp3 [MPa]
      P 3 [MP ]         12.8
                        12 8      10.9
                                  10 9         11.9
                                               11 9
21


Selected Design from Non-dominated Solutions
                     Non-
                 Design variables                      1st    2nd    3rd
            Oxidizer mass flow [kg/s]                 100.3   28.3   4.3
                     O/F [-]                           2.47   2.88   2.87
      Coefficient of regression rate [×10-3]          1.34    1.16   1.32
        I iti l oxidizer mass flux [k / 2s]
        Initial idi           fl [kg/m ]              445     209    128
               Combustion time [s]                    43.0    90.2   96.0
        Initial pressure of chamber [MPa]             2.90
                                                      2 90    0.98
                                                              0 98   0.73
                                                                     0 73
     Initial pressure of pressurized tank [MPa]       43.5    21.7   12.8
            Nozzle expansion ratio [-]
                     p             []                  6.3    22.1   72.4
                     Mpay/Mtot [%]




                                         Mtot [ton]
22


Selected Design from Non-dominated Solutions
                     Non-
 Engine parameter of selected rocket

                                           1st t
                                           1 t stage      2nd t
                                                          2 d stage      3rd t
                                                                         3 d stage
     Thrust
     (after ignition ⇒           [kN]      342 ⇒ 415      95 2 ⇒ 123
                                                          95.2           17 8 ⇒ 20 1
                                                                         17.8 20.1
      after combustion)
     Isp                          [s]      248 ⇒ 284      256 ⇒ 316      334 ⇒ 344
     Regression rate             [mm/s]    14.5 ⇒ 7.08    9.33 ⇒ 3.70    8.75 ⇒ 2.64
     Length of grain             [m]       2.18           1.06            0.35
     Inside diameter of grain    [m]       0.54           0.42            0.21
     Outside diameter of grain   [m]       1.34           1.35            0.96


                   To realize space transportation using HRE with existent fuel,
                            engine of thrust 400kN must be developed.
                                                           developed
23


Selected Design from Non-dominated Solutions
                     Non-
      Selected rocket size
             Length of rocket                  [m]                             20.8
             Diameter of rocket                [m]                             1.46
                                                                               1 46
             Aspect ratio of rocket            [-]                             14.3
             Gross mass                        [ton]                           13.0
             Payload mass                      [kg]                            152
             Payload mass/Gross mass           [%]                             1.17
                                                      1st stage          2nd stage             3rd stage
             Length                   [m]               8.22               6.57                     6.06
             Diameter                 [m]               1.45               1.46                     1.07
             Gross mass               [ton]             8.07               4.09                     0.70
             Structural mass          [ton]             1.78               0.49                     0.10
             Structural mass ratio [%]                  22.1               11.9                     14.5
                                                           20.8
                        8.22                               6.57                              6.06
                1.35                                     1.36                         0.97
                                                                                                           1.46


      1.21   2.18         3.21          1.61   2.29     1.06      2.11   1.11 2.06 0.35 0.99 0.64 2.02
24


Flight History
                                        Start of combustion
                                        in 2nd stage
                                        Start of coasting

                                           Start f
                                           St t of combustion
                                                        b ti
                                           in 3rd stage




                 • Maximum acceleration is 9G less than 10G.
                 • Load to satellites is lower than that of solid
                 rocket.
                  (M-V : About 12G in 3rd stage)
25


Conclusions
     MDO of LV using HRE for space transportation
      • Development of performance evaluation method
      • The design of three-stage rocket for delivering micro-satellites
        to SSO
          maximize
               i i        Payload
                          P l d mass/Gross mass
                                     /G
          minimize       Gross mass
      • Exploration of global non-dominated solutions using MOGA
                              non dominated
          There is trade-off between Mtot and Mpay/Mtot.
          Maximum Mpay/Mtot is 1.30%.
      • Design knowledge discovery using PCP
          Maximum regression rate should be about 15mm/s in first stage.
          In first stage, pressure of chamber, LOX tank and pressurized tank
           should be large.
          In second stage and third stage press re of chamber LOX tank and
                                       stage, pressure chamber,
           pressurized tank should be low.
26


Acknowledgement


 This presentation was supported by hybrid rocket research
 working group (HRrWG), ISAS/JAXA.
        gg p(            ),
 I thank members of HRrWG in ISAS/JAXA for giving their
 experimental data and their valuable advices.
    p
27




     Thank you for your attention.

Más contenido relacionado

La actualidad más candente

Spectrum-Compliant Accelerograms through Harmonic Wavelet Transform
Spectrum-Compliant Accelerograms through Harmonic Wavelet TransformSpectrum-Compliant Accelerograms through Harmonic Wavelet Transform
Spectrum-Compliant Accelerograms through Harmonic Wavelet TransformAlessandro Palmeri
 
TH2.L09.4 - CHARACTERISTIC ANALYSIS OF VEHICLE TARGET IN QUAD-POL RADARSAT-2...
TH2.L09.4	 - CHARACTERISTIC ANALYSIS OF VEHICLE TARGET IN QUAD-POL RADARSAT-2...TH2.L09.4	 - CHARACTERISTIC ANALYSIS OF VEHICLE TARGET IN QUAD-POL RADARSAT-2...
TH2.L09.4 - CHARACTERISTIC ANALYSIS OF VEHICLE TARGET IN QUAD-POL RADARSAT-2...grssieee
 
A New In-Camera Imaging Model For Color Computer Vision And Its Application
A New In-Camera Imaging Model For Color Computer Vision And Its ApplicationA New In-Camera Imaging Model For Color Computer Vision And Its Application
A New In-Camera Imaging Model For Color Computer Vision And Its ApplicationIPALab
 
18 09-2008 José Miranda Formigli Filho na Rio oil and Gas Expo Conference no ...
18 09-2008 José Miranda Formigli Filho na Rio oil and Gas Expo Conference no ...18 09-2008 José Miranda Formigli Filho na Rio oil and Gas Expo Conference no ...
18 09-2008 José Miranda Formigli Filho na Rio oil and Gas Expo Conference no ...Petrobras
 
Geomage Presentation
Geomage PresentationGeomage Presentation
Geomage Presentationgeomage
 
Development of Reliability Analysis and Multidisciplinary Design Optimization...
Development of Reliability Analysis and Multidisciplinary Design Optimization...Development of Reliability Analysis and Multidisciplinary Design Optimization...
Development of Reliability Analysis and Multidisciplinary Design Optimization...Altair
 
CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...
CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...
CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...Pawan Kumar
 
A2 Structure Of Source Models Measurement Methods R Buetikofer
A2 Structure Of Source Models Measurement Methods  R BuetikoferA2 Structure Of Source Models Measurement Methods  R Buetikofer
A2 Structure Of Source Models Measurement Methods R Buetikoferahmad bassiouny
 

La actualidad más candente (10)

Spectrum-Compliant Accelerograms through Harmonic Wavelet Transform
Spectrum-Compliant Accelerograms through Harmonic Wavelet TransformSpectrum-Compliant Accelerograms through Harmonic Wavelet Transform
Spectrum-Compliant Accelerograms through Harmonic Wavelet Transform
 
TH2.L09.4 - CHARACTERISTIC ANALYSIS OF VEHICLE TARGET IN QUAD-POL RADARSAT-2...
TH2.L09.4	 - CHARACTERISTIC ANALYSIS OF VEHICLE TARGET IN QUAD-POL RADARSAT-2...TH2.L09.4	 - CHARACTERISTIC ANALYSIS OF VEHICLE TARGET IN QUAD-POL RADARSAT-2...
TH2.L09.4 - CHARACTERISTIC ANALYSIS OF VEHICLE TARGET IN QUAD-POL RADARSAT-2...
 
A New In-Camera Imaging Model For Color Computer Vision And Its Application
A New In-Camera Imaging Model For Color Computer Vision And Its ApplicationA New In-Camera Imaging Model For Color Computer Vision And Its Application
A New In-Camera Imaging Model For Color Computer Vision And Its Application
 
18 09-2008 José Miranda Formigli Filho na Rio oil and Gas Expo Conference no ...
18 09-2008 José Miranda Formigli Filho na Rio oil and Gas Expo Conference no ...18 09-2008 José Miranda Formigli Filho na Rio oil and Gas Expo Conference no ...
18 09-2008 José Miranda Formigli Filho na Rio oil and Gas Expo Conference no ...
 
Geomage Presentation
Geomage PresentationGeomage Presentation
Geomage Presentation
 
Development of Reliability Analysis and Multidisciplinary Design Optimization...
Development of Reliability Analysis and Multidisciplinary Design Optimization...Development of Reliability Analysis and Multidisciplinary Design Optimization...
Development of Reliability Analysis and Multidisciplinary Design Optimization...
 
CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...
CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...
CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...
 
goGPS (March 2010)
goGPS (March 2010)goGPS (March 2010)
goGPS (March 2010)
 
A2 Structure Of Source Models Measurement Methods R Buetikofer
A2 Structure Of Source Models Measurement Methods  R BuetikoferA2 Structure Of Source Models Measurement Methods  R Buetikofer
A2 Structure Of Source Models Measurement Methods R Buetikofer
 
Stochastic dominance
Stochastic dominanceStochastic dominance
Stochastic dominance
 

Destacado

Hybrid Rocket Motor Final Report
Hybrid Rocket Motor Final ReportHybrid Rocket Motor Final Report
Hybrid Rocket Motor Final ReportKevin Westhoff
 
Hybrid Rocket propulsion
Hybrid Rocket propulsionHybrid Rocket propulsion
Hybrid Rocket propulsionDaniel Digre
 
Introduction to Hybrid Rockets
Introduction to Hybrid RocketsIntroduction to Hybrid Rockets
Introduction to Hybrid RocketsRohan M Ganapathy
 
HYBRID ROCKET COMBUSTION
HYBRID ROCKET COMBUSTIONHYBRID ROCKET COMBUSTION
HYBRID ROCKET COMBUSTIONSandeep Patnala
 
Rocket propulsion
Rocket propulsionRocket propulsion
Rocket propulsionAman Dhanda
 
Vortex Dissipation Due to Airfoil-Vortex Interaction
Vortex Dissipation Due to Airfoil-Vortex InteractionVortex Dissipation Due to Airfoil-Vortex Interaction
Vortex Dissipation Due to Airfoil-Vortex InteractionMasahiro Kanazaki
 
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...Masahiro Kanazaki
 
Rocket science experiment for class iv
Rocket science experiment for class ivRocket science experiment for class iv
Rocket science experiment for class ivvaignan
 
Strategies for 3D Printing Advanced Hybrid Rocket Fuel Grains and Hybrid-Like...
Strategies for 3D Printing Advanced Hybrid Rocket Fuel Grains and Hybrid-Like...Strategies for 3D Printing Advanced Hybrid Rocket Fuel Grains and Hybrid-Like...
Strategies for 3D Printing Advanced Hybrid Rocket Fuel Grains and Hybrid-Like...Jerry Fuller
 
The Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
The Dynamics and Control of Axial Satellite Gyrostats of Variable StructureThe Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
The Dynamics and Control of Axial Satellite Gyrostats of Variable StructureTheoretical mechanics department
 
Future inventions of aerospace engineering presentation
Future inventions of aerospace engineering presentationFuture inventions of aerospace engineering presentation
Future inventions of aerospace engineering presentationAsad Jamil
 
future airplane design
future  airplane designfuture  airplane design
future airplane designAditya Naidu
 
Satellite dynamic and control
Satellite dynamic and controlSatellite dynamic and control
Satellite dynamic and controlZuliana Ismail
 
The advantages of different types of propellants
The advantages of different types of propellantsThe advantages of different types of propellants
The advantages of different types of propellantsArya Ramaru
 

Destacado (20)

Hybrid Rocket Motor Final Report
Hybrid Rocket Motor Final ReportHybrid Rocket Motor Final Report
Hybrid Rocket Motor Final Report
 
Hybrid Rocket propulsion
Hybrid Rocket propulsionHybrid Rocket propulsion
Hybrid Rocket propulsion
 
Introduction to Hybrid Rockets
Introduction to Hybrid RocketsIntroduction to Hybrid Rockets
Introduction to Hybrid Rockets
 
HYBRID ROCKET COMBUSTION
HYBRID ROCKET COMBUSTIONHYBRID ROCKET COMBUSTION
HYBRID ROCKET COMBUSTION
 
Rocket propulsion
Rocket propulsionRocket propulsion
Rocket propulsion
 
Vortex Dissipation Due to Airfoil-Vortex Interaction
Vortex Dissipation Due to Airfoil-Vortex InteractionVortex Dissipation Due to Airfoil-Vortex Interaction
Vortex Dissipation Due to Airfoil-Vortex Interaction
 
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
 
Turbines
TurbinesTurbines
Turbines
 
Rocket science experiment for class iv
Rocket science experiment for class ivRocket science experiment for class iv
Rocket science experiment for class iv
 
Aerospace engineering
Aerospace engineeringAerospace engineering
Aerospace engineering
 
Airplane
AirplaneAirplane
Airplane
 
Strategies for 3D Printing Advanced Hybrid Rocket Fuel Grains and Hybrid-Like...
Strategies for 3D Printing Advanced Hybrid Rocket Fuel Grains and Hybrid-Like...Strategies for 3D Printing Advanced Hybrid Rocket Fuel Grains and Hybrid-Like...
Strategies for 3D Printing Advanced Hybrid Rocket Fuel Grains and Hybrid-Like...
 
Combustion
CombustionCombustion
Combustion
 
The Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
The Dynamics and Control of Axial Satellite Gyrostats of Variable StructureThe Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
The Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
 
Future inventions of aerospace engineering presentation
Future inventions of aerospace engineering presentationFuture inventions of aerospace engineering presentation
Future inventions of aerospace engineering presentation
 
future airplane design
future  airplane designfuture  airplane design
future airplane design
 
Satellite dynamic and control
Satellite dynamic and controlSatellite dynamic and control
Satellite dynamic and control
 
Hydraulic turbines
Hydraulic turbinesHydraulic turbines
Hydraulic turbines
 
Thermal Group
Thermal GroupThermal Group
Thermal Group
 
The advantages of different types of propellants
The advantages of different types of propellantsThe advantages of different types of propellants
The advantages of different types of propellants
 

Más de Masahiro Kanazaki

火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】Masahiro Kanazaki
 
17 0203金崎研究室紹介
17 0203金崎研究室紹介17 0203金崎研究室紹介
17 0203金崎研究室紹介Masahiro Kanazaki
 
15 0302 fastarフォーラム2016
15 0302 fastarフォーラム201615 0302 fastarフォーラム2016
15 0302 fastarフォーラム2016Masahiro Kanazaki
 
Aerodynamic design of Aircraft”
Aerodynamic design of Aircraft”Aerodynamic design of Aircraft”
Aerodynamic design of Aircraft”Masahiro Kanazaki
 
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価Masahiro Kanazaki
 
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014Masahiro Kanazaki
 
Design of Novel Wing Body Considering Intake/Exhaust Effect
Design of Novel Wing Body Considering Intake/Exhaust EffectDesign of Novel Wing Body Considering Intake/Exhaust Effect
Design of Novel Wing Body Considering Intake/Exhaust EffectMasahiro Kanazaki
 
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...Masahiro Kanazaki
 
2014/6/3 特別講義御案内
2014/6/3 特別講義御案内2014/6/3 特別講義御案内
2014/6/3 特別講義御案内Masahiro Kanazaki
 
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...Masahiro Kanazaki
 
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...Masahiro Kanazaki
 
13 1015科学技術週間募集掲示
13 1015科学技術週間募集掲示13 1015科学技術週間募集掲示
13 1015科学技術週間募集掲示Masahiro Kanazaki
 
13 1002 sdフォーラムポスター
13 1002 sdフォーラムポスター13 1002 sdフォーラムポスター
13 1002 sdフォーラムポスターMasahiro Kanazaki
 
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)Masahiro Kanazaki
 
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生Masahiro Kanazaki
 
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計Masahiro Kanazaki
 
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
進化計算法を用いたハイブリッドロケットエンジン最適設計の試みMasahiro Kanazaki
 
12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスター12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスターMasahiro Kanazaki
 

Más de Masahiro Kanazaki (20)

火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
火星探査ミッション検討・課題抽出プログラムへのお誘い【2018年度首都大】
 
17 0203金崎研究室紹介
17 0203金崎研究室紹介17 0203金崎研究室紹介
17 0203金崎研究室紹介
 
15 0302 fastarフォーラム2016
15 0302 fastarフォーラム201615 0302 fastarフォーラム2016
15 0302 fastarフォーラム2016
 
Aerodynamic design of Aircraft”
Aerodynamic design of Aircraft”Aerodynamic design of Aircraft”
Aerodynamic design of Aircraft”
 
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価
 
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
 
Design of Novel Wing Body Considering Intake/Exhaust Effect
Design of Novel Wing Body Considering Intake/Exhaust EffectDesign of Novel Wing Body Considering Intake/Exhaust Effect
Design of Novel Wing Body Considering Intake/Exhaust Effect
 
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
Multi-objective Genetic Algorithm Applied to Conceptual Design of Single-stag...
 
2014/6/3 特別講義御案内
2014/6/3 特別講義御案内2014/6/3 特別講義御案内
2014/6/3 特別講義御案内
 
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
 
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
Efficient Design Exploration for Civil Aircraft Using a Kriging-Based Genetic...
 
13 1015科学技術週間募集掲示
13 1015科学技術週間募集掲示13 1015科学技術週間募集掲示
13 1015科学技術週間募集掲示
 
13 1002 sdフォーラムポスター
13 1002 sdフォーラムポスター13 1002 sdフォーラムポスター
13 1002 sdフォーラムポスター
 
finland_japan_joint_seminor
finland_japan_joint_seminorfinland_japan_joint_seminor
finland_japan_joint_seminor
 
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
第21回新生流体科学セミナー@宇宙航空研究開発機構(JAXA)
 
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
東大航空宇宙工学科ゼミ 夜輪講「航空宇宙機設計における発見的最適化法の応用」at東京大学 今村先生
 
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
トリムを考慮した小型翼胴融合型旅客機の翼型空力設計
 
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
進化計算法を用いたハイブリッドロケットエンジン最適設計の試み
 
13 0117 isas
13 0117 isas13 0117 isas
13 0117 isas
 
12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスター12 1215進化計算シンポ ポスター
12 1215進化計算シンポ ポスター
 

Último

#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Google AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGGoogle AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGSujit Pal
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 

Último (20)

#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Google AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGGoogle AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAG
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 

Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Algorithm

  • 1. 1 The 28th International Symposium on Space Technology and Science Chemical Propulsion 2011-a-35s Multi-Stage Hybrid Rocket Design for Micro Satellites Micro-Satellites Launch using Genetic Algorithm Yosuke Kitagawa Tokyo Metropolitan University
  • 2. 2 Contents 1. Background 2. Objectives 3. Design methods g 4. Design problem 5. 5 Results 6. Conclusions
  • 3. 3 Background  Advantage of hybrid rocket engine (HRE) ・ Safety ・ Cost ・ Environment L Launch Vehicle (LV) development with HRE h V hi l d l ih • HRE is employed in plan of private space travel using SpaceShipTwo by Virgin Galactic in America. America • Copenhagen Suborbitals develops small manned spacecraft using HRE, TychoBrahe SpaceShipTwo S Shi T Tycho Brahe Tycho Brahe www.scaled.com www.copenhagensuborbitals.com
  • 4. 4 Background  Disadvantage of HRE • Regression rate of solid fuel is slow. • LOX tank is required in the engine construction. construction • There is severe trade-off between flight altitude and gross weight.  Thrust and weight are affected by Pressurized tank ・Pressure Nozzle LOX tank Chamber ・Expansion ratio Expansion ・Mass flow of oxidizer ・Pressure ・Pressure Solid fuel ・Length ・Port radius It is helpful for design of LV with HRE to apply multi disciplinary multi-disciplinary optimization (MDO) and knowledge discovery techniques.
  • 5. 5 Objectives MDO of three-stage LV with HRE for delivering micro-satellites micro satellites using genetic algorithm (GA) • Evaluation method of multi-stage LV with HRE multi stage • Exploration of global solutions by genetic algorithm • Design knowledge discovery by data mining
  • 6. 6 Flowchart of Evaluation Grain sizing INPUT Grain length Oxidizer mass flow Port radius Initial O/F Fuel mass flow Coefficient of regression rate O/F Initial oxidizer mass flux O/F Combustion time Initial pressure of chamber Pressure and NASA CEA NASA-CEA Initial pressure of pressurized tank p p velocity at Isp Expansion ratio of nozzle nozzle exit C* Thrust Th t Mass M Thrust Gross mass Trajectory Kosugi, K., et al. "Multidisciplinary and Multi-objective Design g, , p y j g OUTPUT Exploration Methodology for Conceptual Design of a Hybrid Rocket," Infotech@aerospace, AIAA 2011-1634, 2011. Flight path, Rocket length and diameter etc.
  • 7. 7 Grain Configuration  Initial radius of grain port L fuel moxii  rport 0  Go 0 r (t )  m fuel  moxi  rport (t ) ( Design D i variables i bl  Grain length Grain moxi  m fuel 0    O F 0  moxi : Oxidizer mass flow  m fuel : Fuel mass flow f m fuel 0  rport : Radius of grain port L fuel  2rp 0  r 0   fuel port  f r : Regression rate  Go : Oxidizer mass flux r 0  a  Gon 0  L fuel : Grain length Design variables  fuel : Grain density
  • 8. 8 O/F and Chamber Pressure Calculation L fuel  Definition of O/F O moxi  (t )  r (t )  F m fuel (t )  m fuel  moxi  moxii  rport (t ) (      2rport (t ) L fuel  fuel r (t )  Grain n  moxi   r t   a  G t   a   n    rport t   o  2  p Pch Chamber pressure : m prop Propellant mass flow p : p  Ch b pressure Chamber  C:Characteristic velocity m prop (t )  C  (t )  C    C: Efficiency of characteristic velocity Pch (t )   t) Ath Ath Area of nozzle throat :
  • 9. 9 Mass Estimation  Structural mass Design variables ・Chamber M ch  PchVch 17 .3  10 4 same as motor case as solid ・Pressurized tank M pre  Ppre V pre 17 .3  10 4 rocket, M V rocket M-V (CFRP) ・Oxidizer tank M res  PresV res 4 .4  10 4 CFRP with aluminum liner 2 1  M prop    3 4 ・Nozzle* M noz  125       Empirical expression  5400  4 Structure* M st  1 . 3 M ch  M res  M pre  M noz   M He  Propellant mass Design variables tburn M prop  M oxi  M fuel  moxi  tburn    m fuel (t )dt  0  Gross mass M tot  M prop  M st  M pay M pay : Payload mass * Ronald Humble, “Space Propulsion Analysis and Design”
  • 10. 10 Trajectory Evaluation  Thrust T t    CF  C* [ m prop u e  ( Pe  Pa )  Ae ]  •  C * :thrust loss by incomplete combustion •  CF :thrust loss by friction at nozzle wall  Drag 1.0 During combustion Estimation using flight data of solid rocket, S-520 0.8 After combustion CD,S-520 • Friction drag coefficient 0.6 0.455 1 0.4 C D f , Design   2.58  log10 Re  1  0.144M 2 0.655  0.2 02 0.0 • Pressure drag coefficient S wet , S 520 0.0 2.0 4.0 6.0 8.0 10.0 C D p , S 520  C D , S 520  C D f , S 520  Mach number S ref , S 520 • Drag of designed rocket S wet Rocket wet area : 1  D  V 2 S ref , DesignC D p , S 520  S wet , DesignC D f , Design 2 S ref Rocket reference area : The effect of the longitude and diameter can be separately evaluated.
  • 11. 11 Optimization Methods Multi-objective Genetic Algorithm (MOGA)  Searching global non-dominated solutions hi l b l d i d l i based on global explorations  E l i and selection (P Evaluation d l i (Pareto ranking method) ki h d) • When a solution #xi is dominated by #ni solutions, rank(xi)=1+ ni. • Penalty method When a solution xi don’t meet constraints, rank(xi)= rank(xi)+p (p>0). Optimum direction
  • 12. 12 Optimization Method  Crossover(BLX-α) • Children are generated based on interpolation or extrapolation based on selected two parents. • In BLX-α, children are generated between the range which is extended equally on both sides determined by a parameter, α. Children2 Children1  Mutation x1 x2 x3 x4 x5 • Mutation generate children that cannot be Parent generated from the present population. • Children are generated by a uniform Child random number.
  • 13. 13 Data Mining Method Parallel Coordinate Plot (PCP) • One of statistical visualization techniques from high dimensional high-dimensional data into two dimensional graph. • Normalized design variables and objective functions are set parallel in the normalized axis. • Global trends of design variables can be visualized using PCP. g g 1.0  0.8  0.6  0.4  0.2  0.0  dv1 d 1 dv2 d 2 dv3 d 3 dv4 d 4 dv5 d 5 H W L/D
  • 14. 14 Design Problem  Design target: Design of three-stage rocket which can deliver micro-satellites to the Sun-synchronous orbit (SSO) (perigee is 250km, apogee is 800km)  Obj ti f Objective functions ti • maximize Payload mass/Gross mass (Mpay/Mtot) • minimize Gross mass (Mttott)  Constraints • After combustion of third stage,  Height > 250km  Angular momentum > 52413.5km2/s  -0.5deg. < Fli ht path angle < 0.5deg. 0 5d Flight th l 0 5d • Rocket aspect ratio < 20 • Radius of nozzle exit < Radius of rocket • Area of grain port > 2・(Area of nozzle throat)  Combustion type • Swirling oxidizer type engine • Oxidizer:LOX, Fuel:WAX (FT-0070)
  • 15. 15 Design Problem (design space) 1st stage 2nd stage 3rd stage Design variables Min Max Min Max Min Max Oxidizer O idi mass flow [k / ] fl [kg/s] moxi,1st moxi,1st moxi,2nd moxi,2nd 50 150 (moxi) ×1/10 ×1/3 ×1/10 ×1/3 Initial O/F [-] 2 3 2 3 2 3 Coefficient of regression rate 6.224 15.61 6.224 15.61 6.224 15.61 equation, a* [×10-3] Initial oxidizer mass flux 200 800 200 800 100 800 [kg/m2s] Combustion time [s] (tburn) 40 80 tburn,1st+0 tburn,1st+50 tburn,2nd+0 tburn,2nd+50 Initial pressure of 0.5 5.0 0.5 5.0 0.5 5.0 chamber [MPa] Initial pressure of 10 47 10 47 10 47 pressurized tank [MPa] Expansion ratio of nozzle [-] 2 15 15 60 50 100 Coasting time [s] 0 300 The range of the a for each stage is empirically decided*. ( r t   a  Gon t  )  * Hikone,S., et al, “Regression Rate Characteristics and Combustion Mechanism of Some Hybrid Rocket Fuels ,”Asian Joint Conference on Propulsion and Power 2010.
  • 16. 16 Results
  • 17. 17 MOGA Results Optimum direction O ti di ti Epsilon rocket Mpay/Mto [%] Mpay [kg] ot [ Mtot [ton] Mtot [ton] • There is trade-off between Mtot and Mpay/Mtot. • Maximum Mpay/Mtot is 1.30% (Mpay is 232kg, Mtot is 17.8ton). • Maximum Mpay/Mtot of solid rocket, Epsilon* is about 1.3%. ⇒ LV with HRE considered here have enough capability compared with the solid rocket. ih h lid k • Mpay is approximately proportional to Mtot (Mtot=0.0619Mpay+3.427). ⇒When Mpay increases by 1kg, Mtot must increase by 61.9kg. *Epsilon rocket: Next generation solid rocket developed by JAXA and IA.
  • 18. 18 PCP Visualization  Non-dominated solutions Picking up solutions (150kg payload)
  • 19. 19 PCP Visualization (to deliver 150kg payload)  Effect of combustion process a:Coefficient of regression rate equation Go:Oxidizer mass flux 1:1st stage 2:2nd stage 3:3rd stage Max Min Average Required regression rate a1 [×10-3] [ 0 1.44 . 1.34 .3 1.37 .37 14.6mm/s 14 6 / Go1 [kg/m2s] r t   a  Gon t  488 357 428  a2 [×10-3] 1.16 1.13 1.09 9.1mm/s 9 1mm/s Go2 [kg/m2s] 211 208 209 a3 [×10-3] 1.34 1.29 1.31 8.8mm/s Go3 G 3 [k / 2s] [kg/m ] 141 126 130
  • 20. 20 PCP Visualization (to deliver 150kg payload)  Effect of internal pressure of chamber/ pressurized tanks Pc:Chamber pressure Pp:Pressure of pressurized tank Max Min Average Structural mass/Gross mass Pc1 [MPa] [ ] 2.90 .90 2.27 . 7 2.63 .63 20.7% 20 7% Pp1 [MPa] 43.5 37.9 41.0 Pressure:Large Pc2 [MPa] 1.00 0.98 0.99 ⇒Thickness: Increase 11.9% 11 9% ⇒ Structural mass:Increase Pp2 [MPa] 21.8 19.6 21.3 Pc3 [MPa] 0.80 0.72 0.75 14.5% Pp3 [MPa] P 3 [MP ] 12.8 12 8 10.9 10 9 11.9 11 9
  • 21. 21 Selected Design from Non-dominated Solutions Non- Design variables 1st 2nd 3rd Oxidizer mass flow [kg/s] 100.3 28.3 4.3 O/F [-] 2.47 2.88 2.87 Coefficient of regression rate [×10-3] 1.34 1.16 1.32 I iti l oxidizer mass flux [k / 2s] Initial idi fl [kg/m ] 445 209 128 Combustion time [s] 43.0 90.2 96.0 Initial pressure of chamber [MPa] 2.90 2 90 0.98 0 98 0.73 0 73 Initial pressure of pressurized tank [MPa] 43.5 21.7 12.8 Nozzle expansion ratio [-] p [] 6.3 22.1 72.4 Mpay/Mtot [%] Mtot [ton]
  • 22. 22 Selected Design from Non-dominated Solutions Non-  Engine parameter of selected rocket 1st t 1 t stage 2nd t 2 d stage 3rd t 3 d stage Thrust (after ignition ⇒ [kN] 342 ⇒ 415 95 2 ⇒ 123 95.2 17 8 ⇒ 20 1 17.8 20.1 after combustion) Isp [s] 248 ⇒ 284 256 ⇒ 316 334 ⇒ 344 Regression rate [mm/s] 14.5 ⇒ 7.08 9.33 ⇒ 3.70 8.75 ⇒ 2.64 Length of grain [m] 2.18 1.06 0.35 Inside diameter of grain [m] 0.54 0.42 0.21 Outside diameter of grain [m] 1.34 1.35 0.96 To realize space transportation using HRE with existent fuel, engine of thrust 400kN must be developed. developed
  • 23. 23 Selected Design from Non-dominated Solutions Non-  Selected rocket size Length of rocket [m] 20.8 Diameter of rocket [m] 1.46 1 46 Aspect ratio of rocket [-] 14.3 Gross mass [ton] 13.0 Payload mass [kg] 152 Payload mass/Gross mass [%] 1.17 1st stage 2nd stage 3rd stage Length [m] 8.22 6.57 6.06 Diameter [m] 1.45 1.46 1.07 Gross mass [ton] 8.07 4.09 0.70 Structural mass [ton] 1.78 0.49 0.10 Structural mass ratio [%] 22.1 11.9 14.5 20.8 8.22 6.57 6.06 1.35 1.36 0.97 1.46 1.21 2.18 3.21 1.61 2.29 1.06 2.11 1.11 2.06 0.35 0.99 0.64 2.02
  • 24. 24 Flight History Start of combustion in 2nd stage Start of coasting Start f St t of combustion b ti in 3rd stage • Maximum acceleration is 9G less than 10G. • Load to satellites is lower than that of solid rocket. (M-V : About 12G in 3rd stage)
  • 25. 25 Conclusions MDO of LV using HRE for space transportation • Development of performance evaluation method • The design of three-stage rocket for delivering micro-satellites to SSO  maximize i i Payload P l d mass/Gross mass /G  minimize Gross mass • Exploration of global non-dominated solutions using MOGA non dominated  There is trade-off between Mtot and Mpay/Mtot.  Maximum Mpay/Mtot is 1.30%. • Design knowledge discovery using PCP  Maximum regression rate should be about 15mm/s in first stage.  In first stage, pressure of chamber, LOX tank and pressurized tank should be large.  In second stage and third stage press re of chamber LOX tank and stage, pressure chamber, pressurized tank should be low.
  • 26. 26 Acknowledgement This presentation was supported by hybrid rocket research working group (HRrWG), ISAS/JAXA. gg p( ), I thank members of HRrWG in ISAS/JAXA for giving their experimental data and their valuable advices. p
  • 27. 27 Thank you for your attention.