SlideShare una empresa de Scribd logo
1 de 257
Descargar para leer sin conexión
ELECTROMAGNETISM
1. Define the following terms & phrases (charge, static electricity, charging by friction/contact/induction,
conductor, insulator, uniform/non-uniform charge distribution, earthing and electrical discharge)
2. Describe the behaviour of like and unlike charges.
3. Name and give symbols for the following: DC power supply, cell, battery, switch, lamp,
resistor, variable resistor, wires joined, wires crossing, ammeter, voltmeter & fuse
4. State the symbol and metric unit for: charge, current, voltage, resistance & power
5. Define the following terms and phrases: Ohm’s law, DC electricity, series, parallel, current
rules and voltage rules.
6. Describe the differences and similarities in the way ammeters and voltmeters are used.
7. Draw and interpret DC circuit diagrams
8. Solve problems using V = IR, P = VI, P = E and Rtotal = R1 + R2
t
9. Describe the magnetic field patterns around permanent magnets, the earth, currents and
coils.
10. State the symbol and unit for magnetic field.
11. Use the right hand grip rule to determine relative field (B) and current (I) directions.
12. Describe how the magnetic field due to a current in a straight wire varies with the size of
current and the distance from the wire.
13. Solve problems using B = µ0I
2πd
Thursday, 4 November 2010
Thursday, 4 November 2010
LANGUAGE
Thursday, 4 November 2010
THE LANGUAGE OF ELECTRICITY
Term Definition Word list
Charge an electrical quantity based on an excess or deficiency of electrons
static
electricity
a form of electricity where charge does not flow continuously
Thursday, 4 November 2010
NOTES
Thursday, 4 November 2010
ELECTRO
STATICS
Thursday, 4 November 2010
The process
1. Charge transfer - When two objects are in contact with each other, one object can
transfer electrons to the other object. Protons are not transferred because they are
“locked” into the nucleus.
2. Charge imbalance - When the two objects are moved away from each other the
process of charge transfer is unable to be reversed.
• Positively charged objects have had electrons removed
• Negatively charged objects have gained electrons
Oppositely charged objects attract each other. Those with like charges repel.
Proton (+ve charge)
Neutron
Electron (-ve charge)
Empty space
Based on atomic structure
CHARGING OBJECTS
Thursday, 4 November 2010
+
+
-
-
+
+
+
+
-
-
-
-
Oppositely charged objects
attract each other
Objects with the same
charge repel each other
Demo: The Van der Graaf Generator
CHARGE INTERACTION
Thursday, 4 November 2010
Static electricity
around us
Read p52 and 53 (Y10 Pathfinder) and then offer some examples to the class
discussion:
The History of Electricity Generation
EXAMPLES
Thursday, 4 November 2010
LIGHTNING Warm air currents ascend. Ice
crystals descend removing electrons
from cloud particles in this zone.
A zone of positively charged cloud
particles results
At ground level the air becomes
ionized (by losing electrons) and
these positively charged particles
are attracted to the negatively
charged base of the cloud to give
rise to a lightning bolt (an upstrike)
Thursday, 4 November 2010
CLOUD TO GROUND
Thursday, 4 November 2010
CLOUD TO CLOUD
Thursday, 4 November 2010
BLUE JETS AND SPRITES
Thursday, 4 November 2010
CHARGING OBJECTS
Methods of charging
Induction - the object being charged is not in contact with the object doing the
charging (usually a rod or a ruler). It involves charge transfer to or from the earth to
generate the charge imbalance in the object being charged. A charge imbalance is a
non-uniform charge distribution
Eg.
++++
- - - -
+
+
+
+
This symbol
represents
a
connection
to the earth
- -
Contact - the object being charged is contacted by the other object and charge is
transferred directly from one object to another.
Friction - the object is rubbed by a material that has a greater or lesser affinity for
electrons and a transfer takes place. It is more the contact than the friction that is
necessary for the charging to take place.
The problem with moisture in the air:
Moisture prevents objects from holding a
charge because it transfers charge to or
from the object resulting in a neutral
object.
Thursday, 4 November 2010
The importance of the material
Conductors - are materials that allow charges to flow through them. They do not
hold a static charge because any charge imbalance is easily conducted away.
Insulators - are materials that doe not allow charges to flow through them. They will
hold a static charge because the charge imbalance is not easily conducted away.
Example -
ESA: Ex 15A Q.1 ESA: Ex 15B Q.1, 2 & 3
Thursday, 4 November 2010
SHOCKS AND SPARKS
Flow of charge through the body causes the shock
Ionisation or flow of electrical energy from the charged object causes the spark
Examples
Climbing out of a car seat at the gas station. The seat becomes negatively charged
because the electrons are moving from the person’s clothing to the seat. When the
person is out of the car and in contact with the ground the electrons from the car
seat are able to be transferred to the air particles causing these particles to become
ionised. It is these negative ions that can move across a gap between the seat and
the person. This results in the production of a spark.
The shock is caused by the ions losing electrons to the person’s body and these
electrons flowing through the body and into the earth (which is charge flowing into
the person’s body. These charges
Explanation of discharging in terms
of electron transfer to/from an
object to result in neutrality.
Thursday, 4 November 2010
CURRENT
VOLTAGE
Thursday, 4 November 2010
INTRODUCTION
Thursday, 4 November 2010
WHAT IS ELECTRICITY?
Thursday, 4 November 2010
THE ELECTRICAL CIRCUIT -
introducing the idea of the
electron pump
Thursday, 4 November 2010
+ -
A conducting path
Power Supply
1. What is an electric current?
2. What are the two requirements necessary for an electric
current to exist?
Thursday, 4 November 2010
http://regentsprep.org/Regents/physics/phys03/bsimplcir/default.htm
1.Which part of the model represents the power supply?
2. Which part of the model represents the component?
3. What type of current is being modelled?
A
B
THE GRAVITY MODEL
Thursday, 4 November 2010
1.Which part of the model represents the power supply?
2. Which part of the model represents the conducting path?
3. Which part of the model represents charge?
THE WATER MODEL
Thursday, 4 November 2010
1.Which part of the model represents the power supply?
2. Which part of the model represents the conducting path?
3. Which part of the model represents charge?
A
B
C
THE BIKE MODEL
Thursday, 4 November 2010
THE BIKE MODEL
one link
THINK OF A LINK AS REPRESENTING A COULOMB OF
CHARGE
1. In terms of this model, what do you think is meant by the
term “current” ??
Thursday, 4 November 2010
http://regentsprep.org/Regents/
physics/phys03/bsimplcir/default.htm
A conducting path
Power Supply
+ -
Requirements:
a power supply
conducting path around which charge
(electrons or ions) can flow.
components (and sometimes meters)
A component
Current
is a flow of electrons through a circuit
Two types:
AC - Alternating current (electrons vibrate back and forth in wires)
DC - Direct current (electrons flow in wires in one direction only)
Conventional current - the direction in which positive charges would flow in wires
if they could.
Conventional current is from positive to negative in a circuit (see diagram above)
ELECTRIC CIRCUITS
Thursday, 4 November 2010
Current - is the rate of flow of electrical charge
- it is the number of coulombs of electrical charge that passes a point in
one second. A coulomb is 6.25 x 1018
charges
- I = electric current (measured in amps, A) by an ammeter:
Connecting an ammeter
I
+ -
A
V
I
Red
Red Black
Black
For charge to flow around an electrical circuit there is a need for a voltage source and
a conducting path that is continuous and connects the positive to the negative
terminal of the power supply.
+ -
Example
charge flows through the
circuit as indicated by the
arrows
ELECTRIC CURRENT
Thursday, 4 November 2010
VOLTAGE
Voltage
• Voltage (V) is a measure of the energy lost or gained between two points in a
circuit.
• It is measured in the units volts , (V)
Unit of Voltage: Joule per Coulomb or Volt
(JC-1
) or (V)
V = ∆Ep
q
where V = potential difference or voltage (Volts, V)
∆Ep = change in potential energy that a charge
experiences when it moves from one side to the
other side of a component (Joule, J)
q = the unit of charge (Coulomb, C)
If V = 6V then a coulomb of charge has 6J more electrical potential energy at
point A than it does at point B
1A
V
A B
+
-Consider the voltage across a lamp:
Example
Thursday, 4 November 2010
+ - V
A •
Two wires joined Two wires crossing
Cell Lamp
Battery (two cells in
series)
Switch
Battery (several
cells)
Diode
Voltmeter Ammeter
Resistor Power supply
fuse
variable resistor
(rheostat)
demo of circuit components ->
Notes CIRCUIT SYMBOLS
Thursday, 4 November 2010
RESISTANCE
&
OHM
’S
LAW
Thursday, 4 November 2010
INTRODUCTION
Thursday, 4 November 2010
RESISTANCE & ELECTROCUTION - 1
Thursday, 4 November 2010
RESISTANCE & ELECTROCUTION - 2
Thursday, 4 November 2010
FACTORS AFFECTING RESISTANCE
Thursday, 4 November 2010
FACTORS THAT AFFECT RESISTANCE
Also, some materials conduct electricity better than others Eg. Copper is better than iron
Thursday, 4 November 2010
In an insulator,
electrons are fixed
In a conductor, electrons
are free to flow
Label the materials that the
arrows are pointing to
_______________
_______________
CONDUCTORS & INSULATORS
Thursday, 4 November 2010
THE VOLTAGE-CURRENT RATIO
1. Consider a lamp in an electrical circuit:
12V
2A
12V represents the energy difference across the lamp. This drives electrons
through the lamp at the rate (or “speed”) of 2A. The voltage:current ratio is
_____
2. Consider a different lamp in an electrical circuit:
12V
1A
This lamp has higher resistance because 12V across this lamp can only drive
electrons through the lamp at a rate of 1A. The voltage:current ratio is _____
This example shows that the greater the voltage:current ratio then the greater the
resistance is. Resistance is the voltage:current ratio
Thursday, 4 November 2010
In an insulator,
electrons are fixed
In a conductor, electrons
are free to flow
Label the materials that the
arrows are pointing to
_______________
_______________
STOP OR GO?
Thursday, 4 November 2010
Definitions
1. Resistance, R is a measure of the “electrical friction” in a conductor. (the
opposition to the flow of current)
2. It is the ratio of the voltage across a conductor to the current through it.
Resistance = Voltage
Current R = V
I
Unit of resistance
is the ohm, Ω
Resistance is given by the slope or
gradient of a voltage - current graph
Example
In an experiment, the voltage across a lamp is measured and recorded as the current
is increased 1 A at a time. Calculate the resistance of the lamp.
V (V)
I (A)
0 1 2 3 4 5 6
24
20
16
12
8
4
RESISTANCE
V
RI
Thursday, 4 November 2010
1
2
3
A conductor that retains a constant
temperature as the current is increased:
A conductor that is allowed to heat
up as the current is increased
A conductor that is cooled progressively
as the current is increased
V (V)
I (A)0 1 2 3 4 5 6
24
20
16
12
8
4
V (V)
I (A)
0 1 2 3 4 5 6
24
20
16
12
8
4
0 1 2 3 4 5 6
V (V)
I (A)
24
20
16
12
8
4
WHATS HAPPENING TO THE RESISTANCE AS THE CURRENT INCREASES?
Thursday, 4 November 2010
SHAKING
MODELLING TEMPERATURE
INCREASE IN A WIRE
Thursday, 4 November 2010
Thursday, 4 November 2010
For most conductors, as the temperature increases the increased vibration of particles
impedes the flow of electrons. Resistance in the conductor will therefore increase. The
graph slopes upwards.
V (V)
I (A)
0 1 2 3 4 5 6
24
20
16
12
8
4
0 1 2 3 4 5 6
V (V)
I (A)
24
20
16
12
8
4
When a temperature of a lamp increases its
resistance increases
The resistance of a thermistor decreases as its
temperature decreases
LIMITATIONS OF OHM’S LAW
Thursday, 4 November 2010
BASIC RESISTANCE PROBLEMS
6. What voltage is needed it a current of 5A is to flow through a resistance of 3Ω?
1. What is the resistance of a bulb it a 240 V supply causes a current of 2 A to flow
through it?
2. What current flows through a heating element of 40Ω resistance when the element
is plugged into a 240 V supply?
5. A current of 2 A flows through a 6Ω resistor. What is the voltage across it?
3. If a current of 3 A is flowing in a resistor across which there is a voltage of 6 V,
what is the resistance?
4. What current must be flowing through a lamp of 0.5Ω resistance if there is a voltage
of 6V across it?
Thursday, 4 November 2010
Resistors which are connected end to end are in series with one
another
The total resistance of the series combination, Rs is the sum of the
resistances R1 and R2.
For two or more resistors in series: Rs = R1 + R2 + ...........
Resistors which are connected side by side are in parallel with each other.
The total resistance of the parallel combination, Rp is less than any individual
resistor in the combination.
For two or more resistors in parallel
the total resistance,Rp is given by:
1 1 1 + ....
RP = R1 + R2
RESISTANCE CALCULATIONS
R1 R2
R1
R2
Thursday, 4 November 2010
Thursday, 4 November 2010
EXERCISES
1. Read p52 to p53 QUIETLY
2. Answer questions 1 to 8 on p54 and 55 in your exercise books. There is no need
to use full sentences
Thursday, 4 November 2010
Study the pictures of the appliances shown below and in the
table record the materials in each appliance that are
conductors and insulators.
Material Conductor or Insulator?
Material Conductor or Insulator?
INSULATORS
Thursday, 4 November 2010
SERIES &
PARALLEL
Thursday, 4 November 2010
Draw the following circuit diagrams in the spaces
provided AND when you have finished, assemble them:
1.
2.
3.
Voltmeters are connected _________ components,
ammeters are connected _____ a circuit
CIRCUITS: diagrams & assembly
A
+ -
V
+ -
+ -
Thursday, 4 November 2010
CHARACTERISTICS OF SERIES & PARALLEL CIRCUITS
+ -
Series
+ -
Parallel
+ -
+ -
1._
2._
3._
1._
2._
3._
components connected
one other the other.
Single pathway
No junctions
each component has its own
connection with the power
supply
more than one pathway
One or more junctions
Thursday, 4 November 2010
http://phet.colorado.edu/simulations/
sims.php?
sim=Circuit_Construction_Kit_DC_Only
CIRCUIT CONSTRUCTION
+ -
1
A
+ -
3
A
+ -
2
A
+ -
1
A
+ -
2
A
+ -
3
A
1. Enter the URL (above) into the address bar of your internet browser.
2. Use the simulation tools to construct each of the following 3 circuits (ensure that you use
identical lamps and an the same power supply for each circuit).
3. Record the current in each circuit and explain your observation.
4. Repeat this exercise for the second set of 3 circuits.
Thursday, 4 November 2010
DRAW THE CIRCUITS AND SET THEM UP
Thursday, 4 November 2010
CIRCUIT
RULES
Thursday, 4 November 2010
Current in series is constant I1 = I2 = I3
Voltage in series is shared VT = V1 + V2
Note
Voltage is shared in proportion to the size of the resistance
+ -
VT
A1 A3
V1 V2
A2
I1 I3
I2
VOLTAGE & CURRENT IN SERIES CIRCUITS
Thursday, 4 November 2010
Current in parallel is shared
IT = I1 + I2
Voltage in parallel is constant
VT = V1 = V2
Note
Current is shared in an inverse proportion to the size of the resistance.
For example:
If R1 = 5 and R2 = 10
and IT = 3
then I1 = 2 and I2 = 1
in other words “charge splits
up as it enters a junction in
a circuit”
+ -
VT
V1
V2
I1
IT
I2
IT
R1
R2
“Double the resistance then halve the current”
PARALLEL CIRCUITS
Thursday, 4 November 2010
Example 1
A3 = ________
V1 = ________
V2 = ________
8V+ -
A1
A2
A3
R1
R2
2A
3A V1
V2
8V+ -
R1
V2V1
Example 2
3V
V1 = ________
Rule used ___________________________________________________________
Rules used
____________________________________________________________________
____________________________________________________________________
SIMPLE CIRCUIT CALCULATIONS
Thursday, 4 November 2010
Example 3
8V+ -
A1
A2
A3
R1
R2
3A
4A V1
V2
A3 = ________
A4 = ________
V2 = ________
V3 = ________
3V
V3
A4
Example 4
8V+ -
A1
A2
A3
3A
A1 = ________
A4 = ________
A4
4A
Rule used
____________________
____________________
____________________
Rules used
______________________
______________________
______________________
______________________
______________________
Thursday, 4 November 2010
For the circuit represented by the circuit diagram above, what is the reading on:
(a) V1
(b) A2
(c) V2
(d) V3
1
+ 9V -
A1
A2
A3
V2 V3
V1
5Ω 10Ω
Examples
ADVANCED CIRCUIT CALCULATIONS
Thursday, 4 November 2010
2
For the circuit represented by the circuit diagram above, what is the reading on:
(a) V3 if V2 = 10 V
(b) A1
(c) A2
(d) A3
(e) What is the value of resistor R?
+ 15V -
A1
A2
A3
V2
V3
V1
5Ω
10ΩR
Thursday, 4 November 2010
3
For the circuit represented by the circuit diagram above, what is the reading on:
(a) V1
(b) V2
(c) V3
(d) A2
+ 12V -
A1
A2
V2
V1
2Ω
3Ω
V34.8Ω1 A
Thursday, 4 November 2010
Examples
1
••
100 Ω 100 Ω 100 Ω
Total resistance =
2
Total resistance =
25 Ω 30 Ω 50 Ω
+ -
R1
R2
RT = R1 + R2
RESISTORS IN SERIES
As we add resistors in series the resistance increases and therefore the current
drawn decreases
As we add resistors in parallel the resistance decreases and therefore the current
drawn increases
Thursday, 4 November 2010
OTHER
STUFF
Thursday, 4 November 2010
ESA: 13B Q.5 to 8
Thursday, 4 November 2010
ESA: 13B Q.5 to 8
Thursday, 4 November 2010
Thursday, 4 November 2010
INTRODUCING “EMF” & “ELECTRICAL POTENTIAL
Thursday, 4 November 2010
METERS
Thursday, 4 November 2010
+ -
A
V
IT
9 V
One of these meters has
a very high resistance
The other meter has a
low resistance.
Which is which?
Explain your answer
Thursday, 4 November 2010
+ -
A
V
IT
9 V
METERS
Ammeter
1. connected in series with
other components
2. has low resistance so
that it doesn’t slow the
current that it is supposed
to be measuring
Voltmeter
1. connected in parallel with other
components
2. has high resistance so that it
doesn’t allow much current to flow
through it. This would reduce the
current and voltage through the
component. It is supposed to be
measuring the voltage
Thursday, 4 November 2010
POWER
&
ENERGY
Thursday, 4 November 2010
• Power is the rate at which electrical energy is transferred into other forms of
energy.
• It is the amount of work done per second
P = E
t
• It can be shown that the electrical power supplied to a device is given by:
P = VI
P
V I
E
P t
P = Power (Watts, W)
E = the amount of energy converted or work done (J)
t = the time taken (s)
P = power (watts, W) (1W = 1 Js-1
)
V = Voltage (volts, V)
I = Current (amps, A)
POWER
Thursday, 4 November 2010
POWER & ENERGY
Total energy used by a component/appliance
can be calculated from the equation:
E = P.t
When the power value of the component/appliance is known and this value does not
change over time.
If power changes over time then this change can be graphed.
P (W)
t (s)0 2 4 6 8 10
2
4
6
8
10
12
14 E = Area under the graph
E = 0.5 (9 + 13) = 4.4 J
10
Thursday, 4 November 2010
TOTAL POWER USAGE in a parallel circuit
PT = P1 + P2 + P3 + P4
= 12 + 12 + 6 + 6
= 36 W
(ii)
Example
The power usage of the 4 lamps in parallel shown in the circuit below can be
calculated in two ways:
(i) Use the total voltage (supply voltage) and the total current (current drawn from
the supply) to calculate power.
(ii) Add the power usage of each of the components in parallel.
(i)
Lamps 3 & 4: I = P
V
= 12/12
= 1 A
lamps 1 & 2: I = P
V
= 6/12
= 0.5 A
12 V
12 V
12 W
12 V
12 W
12 V
6 W
12 V
6 W
P1
P2
P3
P4
IT = I1 + I2 + I3 + I4 = 0.5 + 0.5 + 1 + 1 = 3 A
P = VTIT = 12 x 3 = 36 A
Thursday, 4 November 2010
LAMP BRIGHTNESS IN CIRCUITS
Three main points
(i) The brightness of a lamp depends on its power output since for a lamp, power is
the rate at which electrical energy is converted into light (and heat)
(ii) In a circuit which has values of voltage and current, it is both the voltage and
current that determine brightness.
(iii)The lamp’s resistance will determine that voltage:current ratio that it possesses
Example:
The series circuit (below), shows 2 identical lamps. A third identical lamp is
added to the circuit. Explain how the brightness of the lamps in the circuit
changes
+ -
12 V
Thursday, 4 November 2010
EXERCISES
Thursday, 4 November 2010
TV Stereo Jug Heater Stove torch downlight
Voltage (V) 240 240 240 6
Current (A) 0.3 0.02 8 0.05
Resistance (Ω) 250 450
Power (W) 1000 1200 1800 0.3 140
Running time
(s)
20 min 20 min 10 min 3 h
Energy (J) 1000 125000 300000
POWERING THROUGH THE QUESTIONS
Thursday, 4 November 2010
9V+ -
40Ω
X
0.1 A
0.5 A
10Ω
A 9 V battery is connected in the
circuit shown.
A current of 0.5 A is found to
pass through the 10Ω resistor.
(e) Determine the heat energy generated per second in the whole circuit.
(a) Calculate the voltage across the 10Ω resistor.
(b) Show that the voltage across the parallel combination of resistors is 4.0 V.
(c) If 0.1 A passes through the 40Ω resistor, determine the current through resistor X.
(d) Show that the resistance of resistor X is 10Ω.
“PARALLEL WITHIN SERIES”
Thursday, 4 November 2010
PARALLEL CIRCUIT IN ACTION
A car has two tail lights and two brake lights connected as shown in the diagram:
(a) Calculate the resistance of:
(i) a tail light
(ii) a brake light
(b) Calculate the current supplied by the battery when both S1 and S2 are closed.
(c) When the driver takes her foot off the brake S2 is opened state what
happens to the size of the current from the battery and give a reason
for your answer.
Thursday, 4 November 2010
Y11 Sci - W & W
Thursday, 4 November 2010
Y11 Sci - W & W
Thursday, 4 November 2010
(a) 5V
(b) V in series is shared. The combination of the 40Ω resistor and X are in series
with the 10Ω. Therefore V of the combination is 9 - 5 = 4
(c) Current through X = 0.5 - 0.1 = 0.4A because current in parallel is shared. The
total current flowing from the power supply is shared out between the 40Ω
resistor and X.
(d) I through X = 0.4A and V across X = 4V (since voltage in parallel is constant).
R = V/I = 4/0.4 = 10Ω
(e) “Heat energy per second” is the definition of power. For the whole
circuit, I = 0.5A and V = 9V. P = VI = 9 x 0.5 = 4.5W
“PARALLEL WITHIN SERIES”answers
PARALLEL CIRCUIT IN ACTION
(a) The current through a tail light needs to be calculated first:
P = VI => I = P/V = 6/12 = 0.5A For a tail light, R = V/I = 12/0.5 = 24 Ω
For a brake light, P = VI => I = P/V = 12/12 = 1A R = V/I = 12/1 = 12 Ω
(b) I total = 2 x 0.5 + 2 x 1 = 3 A
(c) Less current flows through the battery because there is now more resistance in
the circuit because of the reduction in the number of pathways available for
charge to flow.
Thursday, 4 November 2010
MAGNETIC
FIELDS
Thursday, 4 November 2010
THE MAGNETIC FIELD AROUND A BAR MAGNET AND
THE EARTH’S MAGNETIC FIELD
Thursday, 4 November 2010
WHAT IS MAGNETISM?
• Magnetism is caused by moving electrons. (The smallest magnetic field is
produced by the motion of 1 electron)
• When electrons move in a common direction, a magnetic field is produced
(sometimes called a magnetic force field)
• A force will be exerted on an iron object placed in a magnetic field.
• A magnetic field is a region in space where a magnetic force can be detected.
The magnetic field around a bar magnet
S
N
The compass needle is
itself a tiny magnet (the
North pole of this magnet
points towards the South
end of the magnet)
Charm compass
Magnetic field lines
Strong magnetic field (high density of lines)
---> Demo c bar magnet & major magnet
Thursday, 4 November 2010
• θ changes with time
• Angle of Dip - is the angle that the field lines make with the ground. At the
equator, the angle of dip is zero. Near the poles the angle of dip is close to 90
degrees.
THE EARTH’S MAGNETIC FIELD
compass
S
N
θ (angle of declination) = 11o
Geographic
North
Earth’s axis
Magnetic
South
Thursday, 4 November 2010
Home to millions of species including humans, Earth is currently the only place in the
universe where life is known to exist. The planet formed 4.54 billion years ago, and life
appeared on its surface within a billion years. Since then, Earth's biosphere has
significantly altered the atmosphere and other abiotic conditions on the planet,
enabling the proliferation of aerobic organisms as well as the formation of the ozone
layer which, together with Earth's magnetic field, blocks harmful solar
radiation, permitting life on land.
THE EARTH’S MAGNETIC FIELD IS ESSENTIAL FOR
LIFE ON THE PLANET.
The physical properties of the Earth, as
well as its geological history and orbit,
have allowed life to persist during this
period. The planet is expected to continue
supporting life for at least another 500
million years.
Thursday, 4 November 2010
MAGNETIC
DOMAINS
Thursday, 4 November 2010
MAGNETIC MAGIC -->
MAGNETIC DOMAINS
Thursday, 4 November 2010
MAGNETIC THEORY
Ferromagnetic materials (Iron, Cobalt and Nickel) can be permanently magnetised.
Electrons spinning in atoms have magnetic fields around them. They set up tiny North
and South poles. Such an arrangement for an electron is called a dipole moment.
[Illustrate a mag. dipole and mention Exchange Coupling]
For most elements:
magnetic fields cancel.
N
S
e
N
S
Iron, Cobalt and Nickel:
Electron structure is such that there is a resultant magnetic field produced by each
atom. These atoms are sometimes called atomic magnets.)
Thursday, 4 November 2010
Regions in a metal where the orientation of the magnetic dipoles is the same are
called domains.
Fully magnetised
=> the orientation of
the domains is the
same
Unmagnetised Iron
=> Domains are
scrambled
A domain
Here, a large number
of iron atoms
(magnetic dipoles)
are aligned.
Partially
magnetised
DOMAINS
N
NS
S
Thursday, 4 November 2010
BREAKING A MAGNET
Thursday, 4 November 2010
“Lining up” the domains - Magnetising
• Stroke the object end to end with a permanent magnet , in the same
direction, using the same pole of the magnet.
• Hold the object inside an D.C or A.C solenoid (Domains line up in the
direction of the magnetic field)
“Scrambling” the domains - Demagnetising
Heat or hammer the magnet (This disturbs the alignment of the domains)
[CAN ALSO BE DEMONSTRATED WITH THE SOLENOID]
MAGNETISING AND DEMAGNETISING [Solenoid Demo]
“Domains are induced into alignment”
- Picking up iron objects
Thursday, 4 November 2010
EXERCISES
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
WIRES
Thursday, 4 November 2010
A circular magnetic field is formed around a straight current - carrying conductor:
View from above
•
3D View
The direction of the magnetic
field lines is given by the
Right-hand Thumb Rule
The right hand thumb rule:
Thumb = direction of the electric current
Curled fingers = direction of the circular magnetic field
( “•” represents current directed out of the page)
I
WIRES
Thursday, 4 November 2010
I
Magnetic field
lines
•
“View” from above”
Thursday, 4 November 2010
PARALLEL WIRES
Piece of card
field lines bunch and this
leads to the wires
repelling each other
Current in opposite directions
I I
Thursday, 4 November 2010
B = Magnetic field strength (in Tesla,T)
I = Electric current in the wire (in Amps,A)
µo= the permittivity of free space (the ability of a
material to support a magnetic field (TmA-1
)
d = Distance from the wire (in metres, m)
B = µ0I
2πd
1. Reversing the direction of the current reverses the
direction of the magnetic field.
2. Magnetic field strength (symbol, B) is measured in
NA-1m-1 or Tesla,T.
3. As the current in the wire, I increases the strength of the magnetic field
increases
B α I i.e. B is proportional to I
4. As the distance,d from the wire increases the strength of the magnetic field
decreases.
B α 1/d i.e. B is inversely proportional to d
Note
Thursday, 4 November 2010
Example
A special meter able to measure the magnetic field strength at any given point in the
vicinity of a wire is shown below (taking a reading). It measures the magnetic field
strength as 8 x 10-4
T at a distance of 0.01m from the centre of the wire. The current
through the wire is 5 A.
Calculate the value of the constant µo.
Exercises
B I d µo
5 x 10-5
T 2 A 20 mm 3.14 x 10-6
6 x 10-5
T 3A 0.159 m 2 x 10-5
TmA-1
7.2 x 10-5
T 3.11 A 2.2 cm 3.2 x 10-6
TmA-1
1.05 x 10-3
3A 20 mm 4.4 x 10-5
TmA-1
Thursday, 4 November 2010
CURRENT CARRYING CONDUCTOR AND
MAGNETIC FIELD -----> COIL
Thursday, 4 November 2010
COILS
Thursday, 4 November 2010
The magnetic field of a solenoid is
similar in shape to that of a bar
magnet:
If the current is known, the poles of the solenoid can be determined using the right
hand thumb rule applied earlier to the straight wire:
Draw the field lines
Complete this:
Field lines are parallel in the core of the solenoid which --> the magnetic field in the
core is uniform.
The density of magnetic field lines is greatest in the core --> the magnetic field
strength is greatest in the core.
THE SOLENOID
Thursday, 4 November 2010
Predicting North and South poles:
Thumb points to North
pole of the solenoid
from inside the coil
Curled fingers indicate
the direction of the
current
Factors affecting the strength of the magnetic field:
1. Increasing the current increases the magnetic field strength.
2. Increasing the number of turns of wire per given length of the
electromagnet increases the magnetic field strength
STRENGTH RULZ
Thursday, 4 November 2010
Uses of electromagnets
1. Electromagnets in relays are able to open and close electrical circuits (eg. starter
motor circuit in a car).
2. Used in scrap yards to lift car bodies.
3. Create the ringing sound in electric bells.
4. Electromagnets in the recording heads of tape recorders are used to magnetise
the audio tape during recording.
A solenoid which contains an iron core is called an electromagnet.
Adding an iron core increases the strength of the magnetic field because
the iron core itself becomes magnetised and adds to the magnetic field of
the solenoid.
ELECTROMAGNETS
Thursday, 4 November 2010
Induced magnetism
An unmagnetised object will have have its
domains aligned and therefore develop a north
and south pole. The object can be picked up
by the magnet because opposite poles attract.
x x x x x x x x
- - - - - - - -
North end of coil South end
S NN
Attraction to South of coil
Attraction to
North of coil
The dipoles in the object change along the rod as the rod is drawn into the coil and it
is this dipole change which pulls the rod into the coil
Cross-section of coil
THE COIL GUN
Thursday, 4 November 2010
ELECTROMAGNETS IN RELAYS
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
PRACTICAL
Thursday, 4 November 2010
STATIC
Thursday, 4 November 2010
plastic rod (charged by rubbing with a cloth)
small pieces
of torn paper
Observation:
Explanation:
1
2 Balloon rubbed against hair
Removed from head and then brought back to hair
PLAYING AROUND WITH STATIC ELECTRICITY
Observation:
Explanation:
Thursday, 4 November 2010
3
Balloon rubbed against jersey
Release
Observation:
Explanation:
4
cotton
(a) Each balloon charged separately by rubbing against
the sleeve of a jersey
(b) Holding the balloons by the cotton, release them,
allowing them to come close to each other.
Observation:
Explanation:
Thursday, 4 November 2010
Charged plastic rod is held near a thin stream of water
http://phet.colorado.edu/new/simulations/sims.php?
sim=Balloons_and_Static_Electricity
Observation:
Explanation:
6
5
(a) Straw, charged at both
ends (using a woollen
cloth)
(b) Straw, also charged using a
woollen cloth held horizontally
and brought close
(c) Repeat (b) using a silk cloth.
Observation:
Explanation:
Thursday, 4 November 2010
Cap
Insulating material
Body of electroscope
Leaf
Base
Aim
to charge an electroscope by both induction and by contact and to draw charge distribution
diagrams
Method
1. Follow the instructions below
2. Write observations as you perform each step
3. Complete the diagrams only after recording the observations (you may need some help with
these)
Part 1 - Charging by induction
Equipment
dry cloth/jersey
perspex rod
ebonite rod
electroscope
1. Charge the rod by rubbing it with a dry cloth/jersey and hold the rod
near the cap of the electroscope
Observation:
If the rod was positively charged the charge distribution diagram would look like this:
++++
- - - -
+
+
+
+
CHARGING OBJECTS
Thursday, 4 November 2010
Complete the diagram to show how charges would distribute on the electroscope should the rod
be negatively charged.
- - - -
2. With the rod in this position, earth the cap with your finger.
Observation: ++++
- - - -
+
+
+
+
This symbol
represents
a
connection
to the earth
Complete the diagram to show how charge moves
when the cap of the electroscope is earthed
Thursday, 4 November 2010
3. Unearth the cap of the electroscope without removing the
charged rod
Observation:
Draw the charge distribution diagram (by adding to
the existing diagram on the right) showing the
situation once this charge movement has finished.
++++
- - - -
+
+
+
+
Draw the resultant charge distribution and the new
position of the leaf on the diagram (right).
4. Remove the charged rod
Observation:
Finally, complete the diagram (right).
Thursday, 4 November 2010
Part 2 - Charging by contact
Method
1. Follow the instructions below
2. Write observations as you perform each step
3. Complete the diagrams only after recording the observations (you may need some help with
these)
1. A positively charged rod is held near the cap of the electroscope.
2. The rod makes contact with the cap.
3. The rod is removed.
++++
Thursday, 4 November 2010
Cap
Insulating material
Body of electroscope
Leaf
Base
Aim
to charge an electroscope by both induction and by contact and to draw charge distribution
diagrams
Method
1. Follow the instructions below
2. Write observations as you perform each step
3. Complete the diagrams only after recording the observations (you may need some help with
these)
Part 1 - Charging by induction
Equipment
dry cloth/jersey
perspex rod
ebonite rod
electroscope
ALL CHARGED UPLab 12
1. Charge the rod by rubbing it with a dry cloth/jersey and hold the rod
near the cap of the electroscope
Observation:
If the rod was positively charged the charge distribution diagram would look like this:
++++
- - - -
+
+
+
+
The leaf of the electroscope springs up.
Thursday, 4 November 2010
Complete the diagram to show how charges would distribute on the electroscope should the rod
be negatively charged.
- - - -
2. With the rod in this position, earth the cap with your finger.
Observation: ++++
- - - -
+
+
+
+
This symbol
represents
a
connection
to the earth
Complete the diagram to show how charge moves
when the cap of the electroscope is earthed
-
-
-
-
++++
- -
Electrons at the cap are
repelled by the negatively
charged rod.
Leaf of the electroscope drops
Electrons at the cap are held in
position by the positively
charged rod. The earth supplies
electrons to the positively
charged leaf and lower stem.
Thursday, 4 November 2010
-
-
-
-
3. Unearth the cap of the electroscope without removing the
charged rod
Observation:
Draw the charge distribution diagram (by adding to
the existing diagram on the right) showing the
situation once this charge movement has finished.
++++
- - - -
+
+
+
+
Draw the resultant charge distribution and the new
position of the leaf on the diagram (right).
4. Remove the charged rod
Observation:
Finally, complete the diagram (right).
The cap and leaf now have
no overall charge.
Electrons on the cap are
still held in position.
Leaf of the electroscope remains in the “dropped”
position. The charge distribution has not changed
- - - -
-
- -
-+
+
+
++
+
- -
-
- -
-
-
-
Negative charge redistributes itself
around the metal parts of the
electroscope leaving the stem and
leaf with an overall negative charge
The leaf of the electroscope springs up.
++++
+
+
Thursday, 4 November 2010
Part 2 - Charging by contact
Method
1. Follow the instructions below
2. Write observations as you perform each step
3. Complete the diagrams only after recording the observations (you may need some help with
these)
1. A positively charged rod is held near the cap of the electroscope.
2. The rod makes contact with the cap.
3. The rod is removed.
++++
- - - -
+
+
+
+
+
+
+
+
-
Electrons migrate up
into the rod
+ + +
+
+
+
+
The electroscope is now left with
an overall positive charge.
Charge separation occurs. Positive
repels positive at the stem/leaf
Thursday, 4 November 2010
12 Physics > resources > electricity > DC
electricity > videos
SPARKS
Thursday, 4 November 2010
• When the generator is turned on, the electric motor begins turning the belt.
• The belt is made of rubber and the lower roller is covered in silicon tape. Silicon has
a greater affinity for electrons than rubber and so it captures electrons from the
belt. The belt in turn must capture electrons from the dome, leaving the dome
positively charged.
Label the picture of the Van der Graaf
(left) using the labels in the box below:
Lower roller
Belt - A piece of surgical tubing
Output terminal - an aluminium or steel sphere
Upper roller - A piece of nylon
Motor
Upper brush - A piece of fine metal wire
Lower Brush
______________
______________
______________
______________
______________
______________
______________
Reference: http://science.howstuffworks.com/vdg3.htm
THE VAN DER GRAAF - HOW IT WORKS
Thursday, 4 November 2010
THE VAN DER GRAAF - OBSERVATIONS & EXPLANATIONS
1. Small dome held close to generator dome
2. Hair stands on end when contact is made with the generator
dome
3. Aluminium foil plates flying of the top of the generator dome
Drawn observation
Drawn observation
Drawn observation
Explanation
Explanation
Explanation
Thursday, 4 November 2010
4. Sparking - a result of ionisation --> thorough step by step
explanation
5. The shock that is felt ------> Charge travelling from/into the
earth, through the body
Thursday, 4 November 2010
DC
Thursday, 4 November 2010
CIRCUIT
RULES
Thursday, 4 November 2010
ADDING BULBS IN PARALLEL
1. Set up each of the following circuits, one after the other (making a mental note of
the brightness of the lamps in the circuit.
2. For each circuit read the ammeter and record the current in the space provided.
+ -
1
A
+ -
2
A
+ -
3
A
Current = ______ A
Current = ______ A
Current = ______ A
Observation
Explanation
8 V 8 V 8 V
Thursday, 4 November 2010
ADDING BULBS IN SERIES
1. Set up each of the following circuits, one after the other (making a mental note of
the brightness of the lamps in the circuit.
2. For each circuit read the ammeter and record the current in the space provided.
+ -
1
A
Current = ______ A
+ -
3
A
Current = ______ A
Observation
+ -
2
A
Current = ______ A
Explanation
Thursday, 4 November 2010
CURRENT IN THE SERIES CIRCUIT IS CONSTANT
Aim
to look for a pattern in the current through bulbs and resistors in a series circuit.
1. Use ONE ammeter in the three different places shown in the circuit diagram.
2. Without changing the setting on the power pack or the variable resistor write the
current readings in the spaces provided (below):
Equation
8V+ -
A2
A1
A3
A1 = ______ A
A2 = ______ A
A3 = ______ A
Thursday, 4 November 2010
CURRENT IN THE PARALLEL CIRCUIT IS SHARED
Aim
to look for a pattern in the current through bulbs and resistors in a parallel circuit.
1. Use ONE ammeter in the each of the four places shown in the circuit diagram.
2. Without changing the setting on the power pack record your results below:
Conclusion
Current in a parallel circuit is ____________ .
Equation relating the currents
Results
A1 = ____ A
A2 = ____ A
A3 = ____ A
A4 = ____ A
8V+ -
A1
A2
A3
A4
Thursday, 4 November 2010
VOLTAGE IN THE SERIES CIRCUIT IS SHARED
Aim
to look for a pattern in the voltages across bulbs and resistors in a series circuit.
Conclusion
The power supply voltage is _____________ between the components in the circuit
8V+ -
V1
V2 V4
V3
A
Equation relating the voltages
1. Set up the circuit (below)
2. Use ONE voltmeter in the three different places shown in the circuit diagram.
3. Without changing the setting on the power pack record your results below:
Results
V1 (power supply) = __ V
V2 (variable resistor) = __ V
V3 (bulb) = __ V
V3 (ammeter) = __ V
Thursday, 4 November 2010
VOLTAGE IN THE PARALLEL CIRCUIT IS CONSTANT
Aim
to look for a pattern in the voltages across bulbs and resistors in a series circuit.
Conclusion
The voltage across components connected in parallel is __________
Equation relating the voltages
Results
V1 = ___ V
V2 = ___ V
V3 = ___ V
8V+ -
V1
V2
V3
1. Set up the circuit (below)
2. Use ONE voltmeter in the three different places shown in the circuit diagram.
3. Without changing the setting on the power pack record your results below:
Thursday, 4 November 2010
VOLTAGES AND CURRENTS IN SERIES AND PARALLEL
Aim
to investigate voltage and current in a series circuit that has a parallel portion in it.
1. Set up the circuit (below)
2. Use ONE voltmeter in the four different places shown in the circuit diagram
and ONE ammeter in the four different places shown.
3. Without changing the setting on the power pack record your results below:
Results
A1 = __A
A2 = __A
A3 = __A
A4 = __A
V1 = __V
V2 = __V
V3 = __V
V4 = __V
8V+ -
V1
V3
V4
V2
A1
A2
A3
A4 V4
Thursday, 4 November 2010
OHMIC
CONDUCTORS
Thursday, 4 November 2010
OHM’S LAW
Results
Voltage setting of Power pack
(V)
2 4 6 8 10 12
Voltage, V (V)
Current, I (A)
+ -
A V
ice
beaker
water
immersion coil
Method
1. Set up the following circuit using
iced water to cool the immersion
coil.
2. Increase the voltage in regular
increments through an
appropriate range (widest
possible range)
Lab 14
Thursday, 4 November 2010
Notes
•The iced water was used to keep the temperature of the coil constant .
•If the iced water was forgotten and the coil was allowed to heat up then the graph would curve up.
Draw a graph
of Voltage
against Current
on the grid
provided
Repeat the experiment but this time replace the coil with a lamp (that will
increase in temperature as the current through it increases)
Conclusion
Thursday, 4 November 2010
RESISTANCE
Thursday, 4 November 2010
Resistance
specified
MeasurementsMeasurements Resistance
calculated
from
measurements
Calculated
Power output
Resistance
specified Voltage Current
Resistance
calculated
from
measurements
Calculated
Power output
R1
R2
R3
Resistance calculated
(formula provided for parallel resistors)
Resistance calculated
(formula provided for parallel resistors)
across
combination
of resistors
drawn from
the power
supply
For any circuit, set power
supply voltage to 8V
For any circuit, set power
supply voltage to 8V
R1 & R2 in series
R1 & R2 & R3 in series
R1 & R2 in parallel
R1 & R2 & R3 in parallel
RESISTANCE AND POWER in series and parallel
Thursday, 4 November 2010
POWER
Thursday, 4 November 2010
CALCULATING POWER OUTPUT OF APPLIANCES WITH AN
ELECTRONIC MONITOR
Appliance
UNDER
CONSTRUCTION
Thursday, 4 November 2010
ELECTROMAG
Thursday, 4 November 2010
HANGING MAGNETS I
NS
1. Cut out the net
and fold it at the
dotted lines to
create a cradle
+
NS
2. Suspend the
magnet in the
cradle
3. Use a short
length of cotton
to suspend the
magnet from a
retort stand
4. Repeat using a
second magnet.
Thursday, 4 November 2010
HANGING MAGNETS II
1. Position your two magnets in the
orientations shown
2. For each orientation, record your
observations
NS
N
S
NS N S
NS NS NS
N
S
A B
C D
ObservationObservation
ObservationObservation
Thursday, 4 November 2010
STROKING MAGNETS
NS
A. Try magnetising
an iron nail using
a magnet
B. Once you have
finished, check for a
magnetic field using a
charm compass.
Thursday, 4 November 2010
PLOTTING MAGNETIC FIELDS
A. Place one or more
compasses around a bar
magnet
Charm compasses (moved around in a
variety of positions around the magnet
B. Use a pencil to mark the
North pole of each
magnet using a dot
C. Connect the dots using a
smooth curve
D. Plot several field lines
and mark the North and
South poles of the magnet.
E. Wrap your magnet in glad
wrap and spring iron filings
over it.
Follow the instructions (below) and draw your observations
Thursday, 4 November 2010
EXAMS
Thursday, 4 November 2010
2005
NCEA
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
2006
NCEA
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
2007
NCEA
ASSNT FOR 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
A
M
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
2008
NCEA
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
2009
NCEA
Topic TEST FOR 2010
Laid out in a form that is ready for PCopying
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Earth
3000V 1.6 x 10-6
A
Electrostatic
Eliminator
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
6
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Main points:
1(b) & 1(c) - need further elaboration. See revised notes.
3(a) & (b)....... confusion re. magnetic and geographic poles being opposite
3(c) .......... Need to appreciate that coil becomes magnetised which causes
dipole and domain alignment in the piston
3 (d) ...... problems creeping in with the algebra
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
1 2 CombinedCombined Grade
3 3 88 A
3 3 1010 M
1 1 3E 12 E
Thursday, 4 November 2010
2010
PRACTICE EXAM
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Thursday, 4 November 2010
Worthwhile going into some detail over this.
Thursday, 4 November 2010
Thursday, 4 November 2010
Marks thrown
EASY
Thursday, 4 November 2010
Need to learn how to do the algebra - BIG
PROBLEMS HERE - can be v easily addressed
Marks thrown
EASY
Thursday, 4 November 2010
EXERCISES
Thursday, 4 November 2010
Y11 Sci - W & W
Thursday, 4 November 2010
1. Resistance is ______________ __________ .
2. It is responsible for slowing down the ___________ ___ __________ .
3. When there is resistance present in a conductor or an appliance ____________ energy is
transformed into ________ energy.
4. Three everyday household appliances that have high resistance are:
5. __________________ , ___________________ , _____________________
6. Complete the circuit diagram which shows what happens when a third identical lamp is
added in parallel to a circuit:
+ -
+ -
7. If we continued to add lamps in this fashion explain why the power supply would blow a
fuse.
__________________________________________________________________
__________________________________________________________________
QUESTIONS ON RESISTANCE
Thursday, 4 November 2010
APPLYING THE WATER MODEL TO Q.6
1. Pool of water fed by a rut
a rut
channel
2. Dig a channel and water can flow out of the pool
3. Dig another channel. What effect does this have on the flow through the rut?
3. Dig a third channel ........ What effect does this have on the flow through the rut?
Thursday, 4 November 2010
“ANSWERS TO EXTRA FOR EXPERT QUESTIONS”
Thursday, 4 November 2010
+ -
Draw using arrows the direction of charge flow in each circuit
For each circuit, highlight the lamps that will glow.
1 2
+ -
3
+ -
4
+ -
NEED FOR A VOLTAGE SUPPLY AND A CONDUCTING PATH
Thursday, 4 November 2010
CONDUCTORS & METERS
1. Which of the following substances are conductors of
electricity:
wood, tap water, copper, iron, glass, sodium chloride solution, rubber
2. Draw a circuit diagram that you could use to test
for conductivity using a lamp, dry cell and wires.
3. Explain how a fuse protects a circuit.
4. Voltage is ..........
5. Current is ..........
6.
Starter
Thursday, 4 November 2010
In an an Ohm’s law experiment a water-cooled resistor was connected in series with a
power supply and an ammeter. A voltmeter was connected to measure the voltage
drop across the resistor.
The readings on the two meters were recorded. Voltage (V) Current (I)
2 0.15
4 0.31
6 0.45
8 0.59
10 0.75
12 0.92
Draw a graph of V vs I.
What is the meaning of its
slope and what is its unit?
OHM’S LAW
Explain the shape of the graph that would be produced should the resistor be allowed
to heat up.
Thursday, 4 November 2010

Más contenido relacionado

La actualidad más candente

ELECTRICITY AND MAGNETISM
ELECTRICITY AND MAGNETISMELECTRICITY AND MAGNETISM
ELECTRICITY AND MAGNETISMguest25cc9d
 
Ch19 electric field and electric potential final
Ch19 electric field and electric potential finalCh19 electric field and electric potential final
Ch19 electric field and electric potential finalMpho PHAAHLA
 
Ajal electrostatics slides
Ajal electrostatics slidesAjal electrostatics slides
Ajal electrostatics slidesAJAL A J
 
Chapter1: Electricity
Chapter1: ElectricityChapter1: Electricity
Chapter1: Electricitymarjerin
 
Electrical Energy and Currents
Electrical Energy and CurrentsElectrical Energy and Currents
Electrical Energy and CurrentsZBTHS
 
Electric charge and electric field
Electric charge and electric fieldElectric charge and electric field
Electric charge and electric fieldChris Auld
 
Chapter16 : Electric Force and Field
Chapter16 : Electric Force and FieldChapter16 : Electric Force and Field
Chapter16 : Electric Force and FieldSaid Azar
 
Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3Self-employed
 
Inroduction to basic electrical engineering
Inroduction to basic electrical engineeringInroduction to basic electrical engineering
Inroduction to basic electrical engineeringYogananda Patnaik
 
Electric Current
Electric CurrentElectric Current
Electric Currentjeric lora
 
Magnetism
MagnetismMagnetism
MagnetismSamDesc
 

La actualidad más candente (19)

Electrostatics 2
Electrostatics 2Electrostatics 2
Electrostatics 2
 
ELECTRICITY AND MAGNETISM
ELECTRICITY AND MAGNETISMELECTRICITY AND MAGNETISM
ELECTRICITY AND MAGNETISM
 
Ch19 electric field and electric potential final
Ch19 electric field and electric potential finalCh19 electric field and electric potential final
Ch19 electric field and electric potential final
 
Ajal electrostatics slides
Ajal electrostatics slidesAjal electrostatics slides
Ajal electrostatics slides
 
Chapter1: Electricity
Chapter1: ElectricityChapter1: Electricity
Chapter1: Electricity
 
Electrical Energy and Currents
Electrical Energy and CurrentsElectrical Energy and Currents
Electrical Energy and Currents
 
Electric charge and electric field
Electric charge and electric fieldElectric charge and electric field
Electric charge and electric field
 
Chapter16 : Electric Force and Field
Chapter16 : Electric Force and FieldChapter16 : Electric Force and Field
Chapter16 : Electric Force and Field
 
Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3
 
Inroduction to basic electrical engineering
Inroduction to basic electrical engineeringInroduction to basic electrical engineering
Inroduction to basic electrical engineering
 
Electric Current
Electric CurrentElectric Current
Electric Current
 
ELECTRODYNAMIC FIELDS
ELECTRODYNAMIC FIELDSELECTRODYNAMIC FIELDS
ELECTRODYNAMIC FIELDS
 
Electrostatics 4
Electrostatics 4Electrostatics 4
Electrostatics 4
 
Electric field
Electric fieldElectric field
Electric field
 
Electrostatics
ElectrostaticsElectrostatics
Electrostatics
 
Electrodynamics
ElectrodynamicsElectrodynamics
Electrodynamics
 
2021 高三選修物理 CH7 電流
2021 高三選修物理 CH7 電流2021 高三選修物理 CH7 電流
2021 高三選修物理 CH7 電流
 
Magnetism
MagnetismMagnetism
Magnetism
 
Electric charge
Electric chargeElectric charge
Electric charge
 

Similar a Electromagnetism

8-1 Electric Charge
8-1 Electric Charge8-1 Electric Charge
8-1 Electric Chargerkelch
 
8-1 Electric Charge
8-1 Electric Charge8-1 Electric Charge
8-1 Electric Chargeguested7952
 
Static electricity and electrical currants
Static electricity and electrical currantsStatic electricity and electrical currants
Static electricity and electrical currantssbarkanic
 
Static electricity and electrical currants
Static electricity and electrical currantsStatic electricity and electrical currants
Static electricity and electrical currantssbarkanic
 
Static electricity and electrical currants
Static electricity and electrical currantsStatic electricity and electrical currants
Static electricity and electrical currantssbarkanic
 
Static electricity and electrical currants
Static electricity and electrical currantsStatic electricity and electrical currants
Static electricity and electrical currantssbarkanic
 
Sa 1... science .. class 10
Sa 1... science .. class 10Sa 1... science .. class 10
Sa 1... science .. class 10Anupam Narang
 
PHYSICS 2 ELECTRICITY MAGNETISM OPTICS AND MODERN PHYSICS.pdf
PHYSICS 2 ELECTRICITY MAGNETISM OPTICS AND MODERN PHYSICS.pdfPHYSICS 2 ELECTRICITY MAGNETISM OPTICS AND MODERN PHYSICS.pdf
PHYSICS 2 ELECTRICITY MAGNETISM OPTICS AND MODERN PHYSICS.pdfNguyen Thanh Tu Collection
 
5.1 electric fields
5.1 electric fields5.1 electric fields
5.1 electric fieldsPaula Mills
 
Static electricity and electrical currants
Static electricity and electrical currantsStatic electricity and electrical currants
Static electricity and electrical currantssbarkanic
 
Lecture 5 Section 7
Lecture 5 Section 7Lecture 5 Section 7
Lecture 5 Section 7dwright2
 

Similar a Electromagnetism (20)

Electric Fields
Electric FieldsElectric Fields
Electric Fields
 
8-1 Electric Charge
8-1 Electric Charge8-1 Electric Charge
8-1 Electric Charge
 
8-1 Electric Charge
8-1 Electric Charge8-1 Electric Charge
8-1 Electric Charge
 
Static electricity and electrical currants
Static electricity and electrical currantsStatic electricity and electrical currants
Static electricity and electrical currants
 
coulombs-law.ppt
coulombs-law.pptcoulombs-law.ppt
coulombs-law.ppt
 
Static electricity and electrical currants
Static electricity and electrical currantsStatic electricity and electrical currants
Static electricity and electrical currants
 
18 electrostatics
18 electrostatics18 electrostatics
18 electrostatics
 
Static electricity and electrical currants
Static electricity and electrical currantsStatic electricity and electrical currants
Static electricity and electrical currants
 
Static electricity and electrical currants
Static electricity and electrical currantsStatic electricity and electrical currants
Static electricity and electrical currants
 
Electricity and electrical circuits final 20 maart
Electricity and electrical circuits   final 20 maartElectricity and electrical circuits   final 20 maart
Electricity and electrical circuits final 20 maart
 
Sa 1... science .. class 10
Sa 1... science .. class 10Sa 1... science .. class 10
Sa 1... science .. class 10
 
Electricity
ElectricityElectricity
Electricity
 
Electricity
ElectricityElectricity
Electricity
 
Lecture 2 bee
Lecture 2 bee Lecture 2 bee
Lecture 2 bee
 
PHYSICS 2 ELECTRICITY MAGNETISM OPTICS AND MODERN PHYSICS.pdf
PHYSICS 2 ELECTRICITY MAGNETISM OPTICS AND MODERN PHYSICS.pdfPHYSICS 2 ELECTRICITY MAGNETISM OPTICS AND MODERN PHYSICS.pdf
PHYSICS 2 ELECTRICITY MAGNETISM OPTICS AND MODERN PHYSICS.pdf
 
5.1 electric fields
5.1 electric fields5.1 electric fields
5.1 electric fields
 
Electricity & Magnetism.pptx
Electricity & Magnetism.pptxElectricity & Magnetism.pptx
Electricity & Magnetism.pptx
 
Static electricity and electrical currants
Static electricity and electrical currantsStatic electricity and electrical currants
Static electricity and electrical currants
 
Lecture 5 Section 7
Lecture 5 Section 7Lecture 5 Section 7
Lecture 5 Section 7
 
Lecture One
Lecture OneLecture One
Lecture One
 

Más de matcol

How to look at art 2
How to look at art  2How to look at art  2
How to look at art 2matcol
 
Modernism vs post modernism
Modernism vs post modernismModernism vs post modernism
Modernism vs post modernismmatcol
 
Carbon chemistry
Carbon chemistryCarbon chemistry
Carbon chemistrymatcol
 
Our World
Our WorldOur World
Our Worldmatcol
 
Chemical Reactions
Chemical ReactionsChemical Reactions
Chemical Reactionsmatcol
 
Electromagnetism
ElectromagnetismElectromagnetism
Electromagnetismmatcol
 
Bond angles question answer
Bond angles question answerBond angles question answer
Bond angles question answermatcol
 
Chemical Reactions
Chemical ReactionsChemical Reactions
Chemical Reactionsmatcol
 
Momentum & Energy
Momentum & EnergyMomentum & Energy
Momentum & Energymatcol
 
Forces & Eqm
Forces & EqmForces & Eqm
Forces & Eqmmatcol
 
Non Linear Motion
Non Linear MotionNon Linear Motion
Non Linear Motionmatcol
 
Linear Motion
Linear MotionLinear Motion
Linear Motionmatcol
 
Apes Vs Humans & Skeletal Differences
Apes Vs Humans & Skeletal DifferencesApes Vs Humans & Skeletal Differences
Apes Vs Humans & Skeletal Differencesmatcol
 
Geology
GeologyGeology
Geologymatcol
 
11 - DC Electricity
11 - DC Electricity11 - DC Electricity
11 - DC Electricitymatcol
 
Shaky ground
Shaky groundShaky ground
Shaky groundmatcol
 
1 - Revision of Y11 Mechanics
1 - Revision of Y11 Mechanics1 - Revision of Y11 Mechanics
1 - Revision of Y11 Mechanicsmatcol
 

Más de matcol (17)

How to look at art 2
How to look at art  2How to look at art  2
How to look at art 2
 
Modernism vs post modernism
Modernism vs post modernismModernism vs post modernism
Modernism vs post modernism
 
Carbon chemistry
Carbon chemistryCarbon chemistry
Carbon chemistry
 
Our World
Our WorldOur World
Our World
 
Chemical Reactions
Chemical ReactionsChemical Reactions
Chemical Reactions
 
Electromagnetism
ElectromagnetismElectromagnetism
Electromagnetism
 
Bond angles question answer
Bond angles question answerBond angles question answer
Bond angles question answer
 
Chemical Reactions
Chemical ReactionsChemical Reactions
Chemical Reactions
 
Momentum & Energy
Momentum & EnergyMomentum & Energy
Momentum & Energy
 
Forces & Eqm
Forces & EqmForces & Eqm
Forces & Eqm
 
Non Linear Motion
Non Linear MotionNon Linear Motion
Non Linear Motion
 
Linear Motion
Linear MotionLinear Motion
Linear Motion
 
Apes Vs Humans & Skeletal Differences
Apes Vs Humans & Skeletal DifferencesApes Vs Humans & Skeletal Differences
Apes Vs Humans & Skeletal Differences
 
Geology
GeologyGeology
Geology
 
11 - DC Electricity
11 - DC Electricity11 - DC Electricity
11 - DC Electricity
 
Shaky ground
Shaky groundShaky ground
Shaky ground
 
1 - Revision of Y11 Mechanics
1 - Revision of Y11 Mechanics1 - Revision of Y11 Mechanics
1 - Revision of Y11 Mechanics
 

Último

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 

Último (20)

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 

Electromagnetism

  • 1. ELECTROMAGNETISM 1. Define the following terms & phrases (charge, static electricity, charging by friction/contact/induction, conductor, insulator, uniform/non-uniform charge distribution, earthing and electrical discharge) 2. Describe the behaviour of like and unlike charges. 3. Name and give symbols for the following: DC power supply, cell, battery, switch, lamp, resistor, variable resistor, wires joined, wires crossing, ammeter, voltmeter & fuse 4. State the symbol and metric unit for: charge, current, voltage, resistance & power 5. Define the following terms and phrases: Ohm’s law, DC electricity, series, parallel, current rules and voltage rules. 6. Describe the differences and similarities in the way ammeters and voltmeters are used. 7. Draw and interpret DC circuit diagrams 8. Solve problems using V = IR, P = VI, P = E and Rtotal = R1 + R2 t 9. Describe the magnetic field patterns around permanent magnets, the earth, currents and coils. 10. State the symbol and unit for magnetic field. 11. Use the right hand grip rule to determine relative field (B) and current (I) directions. 12. Describe how the magnetic field due to a current in a straight wire varies with the size of current and the distance from the wire. 13. Solve problems using B = µ0I 2πd Thursday, 4 November 2010
  • 4. THE LANGUAGE OF ELECTRICITY Term Definition Word list Charge an electrical quantity based on an excess or deficiency of electrons static electricity a form of electricity where charge does not flow continuously Thursday, 4 November 2010
  • 7. The process 1. Charge transfer - When two objects are in contact with each other, one object can transfer electrons to the other object. Protons are not transferred because they are “locked” into the nucleus. 2. Charge imbalance - When the two objects are moved away from each other the process of charge transfer is unable to be reversed. • Positively charged objects have had electrons removed • Negatively charged objects have gained electrons Oppositely charged objects attract each other. Those with like charges repel. Proton (+ve charge) Neutron Electron (-ve charge) Empty space Based on atomic structure CHARGING OBJECTS Thursday, 4 November 2010
  • 8. + + - - + + + + - - - - Oppositely charged objects attract each other Objects with the same charge repel each other Demo: The Van der Graaf Generator CHARGE INTERACTION Thursday, 4 November 2010
  • 9. Static electricity around us Read p52 and 53 (Y10 Pathfinder) and then offer some examples to the class discussion: The History of Electricity Generation EXAMPLES Thursday, 4 November 2010
  • 10. LIGHTNING Warm air currents ascend. Ice crystals descend removing electrons from cloud particles in this zone. A zone of positively charged cloud particles results At ground level the air becomes ionized (by losing electrons) and these positively charged particles are attracted to the negatively charged base of the cloud to give rise to a lightning bolt (an upstrike) Thursday, 4 November 2010
  • 11. CLOUD TO GROUND Thursday, 4 November 2010
  • 12. CLOUD TO CLOUD Thursday, 4 November 2010
  • 13. BLUE JETS AND SPRITES Thursday, 4 November 2010
  • 14. CHARGING OBJECTS Methods of charging Induction - the object being charged is not in contact with the object doing the charging (usually a rod or a ruler). It involves charge transfer to or from the earth to generate the charge imbalance in the object being charged. A charge imbalance is a non-uniform charge distribution Eg. ++++ - - - - + + + + This symbol represents a connection to the earth - - Contact - the object being charged is contacted by the other object and charge is transferred directly from one object to another. Friction - the object is rubbed by a material that has a greater or lesser affinity for electrons and a transfer takes place. It is more the contact than the friction that is necessary for the charging to take place. The problem with moisture in the air: Moisture prevents objects from holding a charge because it transfers charge to or from the object resulting in a neutral object. Thursday, 4 November 2010
  • 15. The importance of the material Conductors - are materials that allow charges to flow through them. They do not hold a static charge because any charge imbalance is easily conducted away. Insulators - are materials that doe not allow charges to flow through them. They will hold a static charge because the charge imbalance is not easily conducted away. Example - ESA: Ex 15A Q.1 ESA: Ex 15B Q.1, 2 & 3 Thursday, 4 November 2010
  • 16. SHOCKS AND SPARKS Flow of charge through the body causes the shock Ionisation or flow of electrical energy from the charged object causes the spark Examples Climbing out of a car seat at the gas station. The seat becomes negatively charged because the electrons are moving from the person’s clothing to the seat. When the person is out of the car and in contact with the ground the electrons from the car seat are able to be transferred to the air particles causing these particles to become ionised. It is these negative ions that can move across a gap between the seat and the person. This results in the production of a spark. The shock is caused by the ions losing electrons to the person’s body and these electrons flowing through the body and into the earth (which is charge flowing into the person’s body. These charges Explanation of discharging in terms of electron transfer to/from an object to result in neutrality. Thursday, 4 November 2010
  • 20. THE ELECTRICAL CIRCUIT - introducing the idea of the electron pump Thursday, 4 November 2010
  • 21. + - A conducting path Power Supply 1. What is an electric current? 2. What are the two requirements necessary for an electric current to exist? Thursday, 4 November 2010
  • 22. http://regentsprep.org/Regents/physics/phys03/bsimplcir/default.htm 1.Which part of the model represents the power supply? 2. Which part of the model represents the component? 3. What type of current is being modelled? A B THE GRAVITY MODEL Thursday, 4 November 2010
  • 23. 1.Which part of the model represents the power supply? 2. Which part of the model represents the conducting path? 3. Which part of the model represents charge? THE WATER MODEL Thursday, 4 November 2010
  • 24. 1.Which part of the model represents the power supply? 2. Which part of the model represents the conducting path? 3. Which part of the model represents charge? A B C THE BIKE MODEL Thursday, 4 November 2010
  • 25. THE BIKE MODEL one link THINK OF A LINK AS REPRESENTING A COULOMB OF CHARGE 1. In terms of this model, what do you think is meant by the term “current” ?? Thursday, 4 November 2010
  • 26. http://regentsprep.org/Regents/ physics/phys03/bsimplcir/default.htm A conducting path Power Supply + - Requirements: a power supply conducting path around which charge (electrons or ions) can flow. components (and sometimes meters) A component Current is a flow of electrons through a circuit Two types: AC - Alternating current (electrons vibrate back and forth in wires) DC - Direct current (electrons flow in wires in one direction only) Conventional current - the direction in which positive charges would flow in wires if they could. Conventional current is from positive to negative in a circuit (see diagram above) ELECTRIC CIRCUITS Thursday, 4 November 2010
  • 27. Current - is the rate of flow of electrical charge - it is the number of coulombs of electrical charge that passes a point in one second. A coulomb is 6.25 x 1018 charges - I = electric current (measured in amps, A) by an ammeter: Connecting an ammeter I + - A V I Red Red Black Black For charge to flow around an electrical circuit there is a need for a voltage source and a conducting path that is continuous and connects the positive to the negative terminal of the power supply. + - Example charge flows through the circuit as indicated by the arrows ELECTRIC CURRENT Thursday, 4 November 2010
  • 28. VOLTAGE Voltage • Voltage (V) is a measure of the energy lost or gained between two points in a circuit. • It is measured in the units volts , (V) Unit of Voltage: Joule per Coulomb or Volt (JC-1 ) or (V) V = ∆Ep q where V = potential difference or voltage (Volts, V) ∆Ep = change in potential energy that a charge experiences when it moves from one side to the other side of a component (Joule, J) q = the unit of charge (Coulomb, C) If V = 6V then a coulomb of charge has 6J more electrical potential energy at point A than it does at point B 1A V A B + -Consider the voltage across a lamp: Example Thursday, 4 November 2010
  • 29. + - V A • Two wires joined Two wires crossing Cell Lamp Battery (two cells in series) Switch Battery (several cells) Diode Voltmeter Ammeter Resistor Power supply fuse variable resistor (rheostat) demo of circuit components -> Notes CIRCUIT SYMBOLS Thursday, 4 November 2010
  • 32. RESISTANCE & ELECTROCUTION - 1 Thursday, 4 November 2010
  • 33. RESISTANCE & ELECTROCUTION - 2 Thursday, 4 November 2010
  • 35. FACTORS THAT AFFECT RESISTANCE Also, some materials conduct electricity better than others Eg. Copper is better than iron Thursday, 4 November 2010
  • 36. In an insulator, electrons are fixed In a conductor, electrons are free to flow Label the materials that the arrows are pointing to _______________ _______________ CONDUCTORS & INSULATORS Thursday, 4 November 2010
  • 37. THE VOLTAGE-CURRENT RATIO 1. Consider a lamp in an electrical circuit: 12V 2A 12V represents the energy difference across the lamp. This drives electrons through the lamp at the rate (or “speed”) of 2A. The voltage:current ratio is _____ 2. Consider a different lamp in an electrical circuit: 12V 1A This lamp has higher resistance because 12V across this lamp can only drive electrons through the lamp at a rate of 1A. The voltage:current ratio is _____ This example shows that the greater the voltage:current ratio then the greater the resistance is. Resistance is the voltage:current ratio Thursday, 4 November 2010
  • 38. In an insulator, electrons are fixed In a conductor, electrons are free to flow Label the materials that the arrows are pointing to _______________ _______________ STOP OR GO? Thursday, 4 November 2010
  • 39. Definitions 1. Resistance, R is a measure of the “electrical friction” in a conductor. (the opposition to the flow of current) 2. It is the ratio of the voltage across a conductor to the current through it. Resistance = Voltage Current R = V I Unit of resistance is the ohm, Ω Resistance is given by the slope or gradient of a voltage - current graph Example In an experiment, the voltage across a lamp is measured and recorded as the current is increased 1 A at a time. Calculate the resistance of the lamp. V (V) I (A) 0 1 2 3 4 5 6 24 20 16 12 8 4 RESISTANCE V RI Thursday, 4 November 2010
  • 40. 1 2 3 A conductor that retains a constant temperature as the current is increased: A conductor that is allowed to heat up as the current is increased A conductor that is cooled progressively as the current is increased V (V) I (A)0 1 2 3 4 5 6 24 20 16 12 8 4 V (V) I (A) 0 1 2 3 4 5 6 24 20 16 12 8 4 0 1 2 3 4 5 6 V (V) I (A) 24 20 16 12 8 4 WHATS HAPPENING TO THE RESISTANCE AS THE CURRENT INCREASES? Thursday, 4 November 2010
  • 41. SHAKING MODELLING TEMPERATURE INCREASE IN A WIRE Thursday, 4 November 2010
  • 43. For most conductors, as the temperature increases the increased vibration of particles impedes the flow of electrons. Resistance in the conductor will therefore increase. The graph slopes upwards. V (V) I (A) 0 1 2 3 4 5 6 24 20 16 12 8 4 0 1 2 3 4 5 6 V (V) I (A) 24 20 16 12 8 4 When a temperature of a lamp increases its resistance increases The resistance of a thermistor decreases as its temperature decreases LIMITATIONS OF OHM’S LAW Thursday, 4 November 2010
  • 44. BASIC RESISTANCE PROBLEMS 6. What voltage is needed it a current of 5A is to flow through a resistance of 3Ω? 1. What is the resistance of a bulb it a 240 V supply causes a current of 2 A to flow through it? 2. What current flows through a heating element of 40Ω resistance when the element is plugged into a 240 V supply? 5. A current of 2 A flows through a 6Ω resistor. What is the voltage across it? 3. If a current of 3 A is flowing in a resistor across which there is a voltage of 6 V, what is the resistance? 4. What current must be flowing through a lamp of 0.5Ω resistance if there is a voltage of 6V across it? Thursday, 4 November 2010
  • 45. Resistors which are connected end to end are in series with one another The total resistance of the series combination, Rs is the sum of the resistances R1 and R2. For two or more resistors in series: Rs = R1 + R2 + ........... Resistors which are connected side by side are in parallel with each other. The total resistance of the parallel combination, Rp is less than any individual resistor in the combination. For two or more resistors in parallel the total resistance,Rp is given by: 1 1 1 + .... RP = R1 + R2 RESISTANCE CALCULATIONS R1 R2 R1 R2 Thursday, 4 November 2010
  • 47. EXERCISES 1. Read p52 to p53 QUIETLY 2. Answer questions 1 to 8 on p54 and 55 in your exercise books. There is no need to use full sentences Thursday, 4 November 2010
  • 48. Study the pictures of the appliances shown below and in the table record the materials in each appliance that are conductors and insulators. Material Conductor or Insulator? Material Conductor or Insulator? INSULATORS Thursday, 4 November 2010
  • 50. Draw the following circuit diagrams in the spaces provided AND when you have finished, assemble them: 1. 2. 3. Voltmeters are connected _________ components, ammeters are connected _____ a circuit CIRCUITS: diagrams & assembly A + - V + - + - Thursday, 4 November 2010
  • 51. CHARACTERISTICS OF SERIES & PARALLEL CIRCUITS + - Series + - Parallel + - + - 1._ 2._ 3._ 1._ 2._ 3._ components connected one other the other. Single pathway No junctions each component has its own connection with the power supply more than one pathway One or more junctions Thursday, 4 November 2010
  • 52. http://phet.colorado.edu/simulations/ sims.php? sim=Circuit_Construction_Kit_DC_Only CIRCUIT CONSTRUCTION + - 1 A + - 3 A + - 2 A + - 1 A + - 2 A + - 3 A 1. Enter the URL (above) into the address bar of your internet browser. 2. Use the simulation tools to construct each of the following 3 circuits (ensure that you use identical lamps and an the same power supply for each circuit). 3. Record the current in each circuit and explain your observation. 4. Repeat this exercise for the second set of 3 circuits. Thursday, 4 November 2010
  • 53. DRAW THE CIRCUITS AND SET THEM UP Thursday, 4 November 2010
  • 55. Current in series is constant I1 = I2 = I3 Voltage in series is shared VT = V1 + V2 Note Voltage is shared in proportion to the size of the resistance + - VT A1 A3 V1 V2 A2 I1 I3 I2 VOLTAGE & CURRENT IN SERIES CIRCUITS Thursday, 4 November 2010
  • 56. Current in parallel is shared IT = I1 + I2 Voltage in parallel is constant VT = V1 = V2 Note Current is shared in an inverse proportion to the size of the resistance. For example: If R1 = 5 and R2 = 10 and IT = 3 then I1 = 2 and I2 = 1 in other words “charge splits up as it enters a junction in a circuit” + - VT V1 V2 I1 IT I2 IT R1 R2 “Double the resistance then halve the current” PARALLEL CIRCUITS Thursday, 4 November 2010
  • 57. Example 1 A3 = ________ V1 = ________ V2 = ________ 8V+ - A1 A2 A3 R1 R2 2A 3A V1 V2 8V+ - R1 V2V1 Example 2 3V V1 = ________ Rule used ___________________________________________________________ Rules used ____________________________________________________________________ ____________________________________________________________________ SIMPLE CIRCUIT CALCULATIONS Thursday, 4 November 2010
  • 58. Example 3 8V+ - A1 A2 A3 R1 R2 3A 4A V1 V2 A3 = ________ A4 = ________ V2 = ________ V3 = ________ 3V V3 A4 Example 4 8V+ - A1 A2 A3 3A A1 = ________ A4 = ________ A4 4A Rule used ____________________ ____________________ ____________________ Rules used ______________________ ______________________ ______________________ ______________________ ______________________ Thursday, 4 November 2010
  • 59. For the circuit represented by the circuit diagram above, what is the reading on: (a) V1 (b) A2 (c) V2 (d) V3 1 + 9V - A1 A2 A3 V2 V3 V1 5Ω 10Ω Examples ADVANCED CIRCUIT CALCULATIONS Thursday, 4 November 2010
  • 60. 2 For the circuit represented by the circuit diagram above, what is the reading on: (a) V3 if V2 = 10 V (b) A1 (c) A2 (d) A3 (e) What is the value of resistor R? + 15V - A1 A2 A3 V2 V3 V1 5Ω 10ΩR Thursday, 4 November 2010
  • 61. 3 For the circuit represented by the circuit diagram above, what is the reading on: (a) V1 (b) V2 (c) V3 (d) A2 + 12V - A1 A2 V2 V1 2Ω 3Ω V34.8Ω1 A Thursday, 4 November 2010
  • 62. Examples 1 •• 100 Ω 100 Ω 100 Ω Total resistance = 2 Total resistance = 25 Ω 30 Ω 50 Ω + - R1 R2 RT = R1 + R2 RESISTORS IN SERIES As we add resistors in series the resistance increases and therefore the current drawn decreases As we add resistors in parallel the resistance decreases and therefore the current drawn increases Thursday, 4 November 2010
  • 64. ESA: 13B Q.5 to 8 Thursday, 4 November 2010
  • 65. ESA: 13B Q.5 to 8 Thursday, 4 November 2010
  • 67. INTRODUCING “EMF” & “ELECTRICAL POTENTIAL Thursday, 4 November 2010
  • 69. + - A V IT 9 V One of these meters has a very high resistance The other meter has a low resistance. Which is which? Explain your answer Thursday, 4 November 2010
  • 70. + - A V IT 9 V METERS Ammeter 1. connected in series with other components 2. has low resistance so that it doesn’t slow the current that it is supposed to be measuring Voltmeter 1. connected in parallel with other components 2. has high resistance so that it doesn’t allow much current to flow through it. This would reduce the current and voltage through the component. It is supposed to be measuring the voltage Thursday, 4 November 2010
  • 72. • Power is the rate at which electrical energy is transferred into other forms of energy. • It is the amount of work done per second P = E t • It can be shown that the electrical power supplied to a device is given by: P = VI P V I E P t P = Power (Watts, W) E = the amount of energy converted or work done (J) t = the time taken (s) P = power (watts, W) (1W = 1 Js-1 ) V = Voltage (volts, V) I = Current (amps, A) POWER Thursday, 4 November 2010
  • 73. POWER & ENERGY Total energy used by a component/appliance can be calculated from the equation: E = P.t When the power value of the component/appliance is known and this value does not change over time. If power changes over time then this change can be graphed. P (W) t (s)0 2 4 6 8 10 2 4 6 8 10 12 14 E = Area under the graph E = 0.5 (9 + 13) = 4.4 J 10 Thursday, 4 November 2010
  • 74. TOTAL POWER USAGE in a parallel circuit PT = P1 + P2 + P3 + P4 = 12 + 12 + 6 + 6 = 36 W (ii) Example The power usage of the 4 lamps in parallel shown in the circuit below can be calculated in two ways: (i) Use the total voltage (supply voltage) and the total current (current drawn from the supply) to calculate power. (ii) Add the power usage of each of the components in parallel. (i) Lamps 3 & 4: I = P V = 12/12 = 1 A lamps 1 & 2: I = P V = 6/12 = 0.5 A 12 V 12 V 12 W 12 V 12 W 12 V 6 W 12 V 6 W P1 P2 P3 P4 IT = I1 + I2 + I3 + I4 = 0.5 + 0.5 + 1 + 1 = 3 A P = VTIT = 12 x 3 = 36 A Thursday, 4 November 2010
  • 75. LAMP BRIGHTNESS IN CIRCUITS Three main points (i) The brightness of a lamp depends on its power output since for a lamp, power is the rate at which electrical energy is converted into light (and heat) (ii) In a circuit which has values of voltage and current, it is both the voltage and current that determine brightness. (iii)The lamp’s resistance will determine that voltage:current ratio that it possesses Example: The series circuit (below), shows 2 identical lamps. A third identical lamp is added to the circuit. Explain how the brightness of the lamps in the circuit changes + - 12 V Thursday, 4 November 2010
  • 77. TV Stereo Jug Heater Stove torch downlight Voltage (V) 240 240 240 6 Current (A) 0.3 0.02 8 0.05 Resistance (Ω) 250 450 Power (W) 1000 1200 1800 0.3 140 Running time (s) 20 min 20 min 10 min 3 h Energy (J) 1000 125000 300000 POWERING THROUGH THE QUESTIONS Thursday, 4 November 2010
  • 78. 9V+ - 40Ω X 0.1 A 0.5 A 10Ω A 9 V battery is connected in the circuit shown. A current of 0.5 A is found to pass through the 10Ω resistor. (e) Determine the heat energy generated per second in the whole circuit. (a) Calculate the voltage across the 10Ω resistor. (b) Show that the voltage across the parallel combination of resistors is 4.0 V. (c) If 0.1 A passes through the 40Ω resistor, determine the current through resistor X. (d) Show that the resistance of resistor X is 10Ω. “PARALLEL WITHIN SERIES” Thursday, 4 November 2010
  • 79. PARALLEL CIRCUIT IN ACTION A car has two tail lights and two brake lights connected as shown in the diagram: (a) Calculate the resistance of: (i) a tail light (ii) a brake light (b) Calculate the current supplied by the battery when both S1 and S2 are closed. (c) When the driver takes her foot off the brake S2 is opened state what happens to the size of the current from the battery and give a reason for your answer. Thursday, 4 November 2010
  • 80. Y11 Sci - W & W Thursday, 4 November 2010
  • 81. Y11 Sci - W & W Thursday, 4 November 2010
  • 82. (a) 5V (b) V in series is shared. The combination of the 40Ω resistor and X are in series with the 10Ω. Therefore V of the combination is 9 - 5 = 4 (c) Current through X = 0.5 - 0.1 = 0.4A because current in parallel is shared. The total current flowing from the power supply is shared out between the 40Ω resistor and X. (d) I through X = 0.4A and V across X = 4V (since voltage in parallel is constant). R = V/I = 4/0.4 = 10Ω (e) “Heat energy per second” is the definition of power. For the whole circuit, I = 0.5A and V = 9V. P = VI = 9 x 0.5 = 4.5W “PARALLEL WITHIN SERIES”answers PARALLEL CIRCUIT IN ACTION (a) The current through a tail light needs to be calculated first: P = VI => I = P/V = 6/12 = 0.5A For a tail light, R = V/I = 12/0.5 = 24 Ω For a brake light, P = VI => I = P/V = 12/12 = 1A R = V/I = 12/1 = 12 Ω (b) I total = 2 x 0.5 + 2 x 1 = 3 A (c) Less current flows through the battery because there is now more resistance in the circuit because of the reduction in the number of pathways available for charge to flow. Thursday, 4 November 2010
  • 84. THE MAGNETIC FIELD AROUND A BAR MAGNET AND THE EARTH’S MAGNETIC FIELD Thursday, 4 November 2010
  • 85. WHAT IS MAGNETISM? • Magnetism is caused by moving electrons. (The smallest magnetic field is produced by the motion of 1 electron) • When electrons move in a common direction, a magnetic field is produced (sometimes called a magnetic force field) • A force will be exerted on an iron object placed in a magnetic field. • A magnetic field is a region in space where a magnetic force can be detected. The magnetic field around a bar magnet S N The compass needle is itself a tiny magnet (the North pole of this magnet points towards the South end of the magnet) Charm compass Magnetic field lines Strong magnetic field (high density of lines) ---> Demo c bar magnet & major magnet Thursday, 4 November 2010
  • 86. • θ changes with time • Angle of Dip - is the angle that the field lines make with the ground. At the equator, the angle of dip is zero. Near the poles the angle of dip is close to 90 degrees. THE EARTH’S MAGNETIC FIELD compass S N θ (angle of declination) = 11o Geographic North Earth’s axis Magnetic South Thursday, 4 November 2010
  • 87. Home to millions of species including humans, Earth is currently the only place in the universe where life is known to exist. The planet formed 4.54 billion years ago, and life appeared on its surface within a billion years. Since then, Earth's biosphere has significantly altered the atmosphere and other abiotic conditions on the planet, enabling the proliferation of aerobic organisms as well as the formation of the ozone layer which, together with Earth's magnetic field, blocks harmful solar radiation, permitting life on land. THE EARTH’S MAGNETIC FIELD IS ESSENTIAL FOR LIFE ON THE PLANET. The physical properties of the Earth, as well as its geological history and orbit, have allowed life to persist during this period. The planet is expected to continue supporting life for at least another 500 million years. Thursday, 4 November 2010
  • 89. MAGNETIC MAGIC --> MAGNETIC DOMAINS Thursday, 4 November 2010
  • 90. MAGNETIC THEORY Ferromagnetic materials (Iron, Cobalt and Nickel) can be permanently magnetised. Electrons spinning in atoms have magnetic fields around them. They set up tiny North and South poles. Such an arrangement for an electron is called a dipole moment. [Illustrate a mag. dipole and mention Exchange Coupling] For most elements: magnetic fields cancel. N S e N S Iron, Cobalt and Nickel: Electron structure is such that there is a resultant magnetic field produced by each atom. These atoms are sometimes called atomic magnets.) Thursday, 4 November 2010
  • 91. Regions in a metal where the orientation of the magnetic dipoles is the same are called domains. Fully magnetised => the orientation of the domains is the same Unmagnetised Iron => Domains are scrambled A domain Here, a large number of iron atoms (magnetic dipoles) are aligned. Partially magnetised DOMAINS N NS S Thursday, 4 November 2010
  • 92. BREAKING A MAGNET Thursday, 4 November 2010
  • 93. “Lining up” the domains - Magnetising • Stroke the object end to end with a permanent magnet , in the same direction, using the same pole of the magnet. • Hold the object inside an D.C or A.C solenoid (Domains line up in the direction of the magnetic field) “Scrambling” the domains - Demagnetising Heat or hammer the magnet (This disturbs the alignment of the domains) [CAN ALSO BE DEMONSTRATED WITH THE SOLENOID] MAGNETISING AND DEMAGNETISING [Solenoid Demo] “Domains are induced into alignment” - Picking up iron objects Thursday, 4 November 2010
  • 99. A circular magnetic field is formed around a straight current - carrying conductor: View from above • 3D View The direction of the magnetic field lines is given by the Right-hand Thumb Rule The right hand thumb rule: Thumb = direction of the electric current Curled fingers = direction of the circular magnetic field ( “•” represents current directed out of the page) I WIRES Thursday, 4 November 2010
  • 100. I Magnetic field lines • “View” from above” Thursday, 4 November 2010
  • 101. PARALLEL WIRES Piece of card field lines bunch and this leads to the wires repelling each other Current in opposite directions I I Thursday, 4 November 2010
  • 102. B = Magnetic field strength (in Tesla,T) I = Electric current in the wire (in Amps,A) µo= the permittivity of free space (the ability of a material to support a magnetic field (TmA-1 ) d = Distance from the wire (in metres, m) B = µ0I 2πd 1. Reversing the direction of the current reverses the direction of the magnetic field. 2. Magnetic field strength (symbol, B) is measured in NA-1m-1 or Tesla,T. 3. As the current in the wire, I increases the strength of the magnetic field increases B α I i.e. B is proportional to I 4. As the distance,d from the wire increases the strength of the magnetic field decreases. B α 1/d i.e. B is inversely proportional to d Note Thursday, 4 November 2010
  • 103. Example A special meter able to measure the magnetic field strength at any given point in the vicinity of a wire is shown below (taking a reading). It measures the magnetic field strength as 8 x 10-4 T at a distance of 0.01m from the centre of the wire. The current through the wire is 5 A. Calculate the value of the constant µo. Exercises B I d µo 5 x 10-5 T 2 A 20 mm 3.14 x 10-6 6 x 10-5 T 3A 0.159 m 2 x 10-5 TmA-1 7.2 x 10-5 T 3.11 A 2.2 cm 3.2 x 10-6 TmA-1 1.05 x 10-3 3A 20 mm 4.4 x 10-5 TmA-1 Thursday, 4 November 2010
  • 104. CURRENT CARRYING CONDUCTOR AND MAGNETIC FIELD -----> COIL Thursday, 4 November 2010
  • 106. The magnetic field of a solenoid is similar in shape to that of a bar magnet: If the current is known, the poles of the solenoid can be determined using the right hand thumb rule applied earlier to the straight wire: Draw the field lines Complete this: Field lines are parallel in the core of the solenoid which --> the magnetic field in the core is uniform. The density of magnetic field lines is greatest in the core --> the magnetic field strength is greatest in the core. THE SOLENOID Thursday, 4 November 2010
  • 107. Predicting North and South poles: Thumb points to North pole of the solenoid from inside the coil Curled fingers indicate the direction of the current Factors affecting the strength of the magnetic field: 1. Increasing the current increases the magnetic field strength. 2. Increasing the number of turns of wire per given length of the electromagnet increases the magnetic field strength STRENGTH RULZ Thursday, 4 November 2010
  • 108. Uses of electromagnets 1. Electromagnets in relays are able to open and close electrical circuits (eg. starter motor circuit in a car). 2. Used in scrap yards to lift car bodies. 3. Create the ringing sound in electric bells. 4. Electromagnets in the recording heads of tape recorders are used to magnetise the audio tape during recording. A solenoid which contains an iron core is called an electromagnet. Adding an iron core increases the strength of the magnetic field because the iron core itself becomes magnetised and adds to the magnetic field of the solenoid. ELECTROMAGNETS Thursday, 4 November 2010
  • 109. Induced magnetism An unmagnetised object will have have its domains aligned and therefore develop a north and south pole. The object can be picked up by the magnet because opposite poles attract. x x x x x x x x - - - - - - - - North end of coil South end S NN Attraction to South of coil Attraction to North of coil The dipoles in the object change along the rod as the rod is drawn into the coil and it is this dipole change which pulls the rod into the coil Cross-section of coil THE COIL GUN Thursday, 4 November 2010
  • 115. plastic rod (charged by rubbing with a cloth) small pieces of torn paper Observation: Explanation: 1 2 Balloon rubbed against hair Removed from head and then brought back to hair PLAYING AROUND WITH STATIC ELECTRICITY Observation: Explanation: Thursday, 4 November 2010
  • 116. 3 Balloon rubbed against jersey Release Observation: Explanation: 4 cotton (a) Each balloon charged separately by rubbing against the sleeve of a jersey (b) Holding the balloons by the cotton, release them, allowing them to come close to each other. Observation: Explanation: Thursday, 4 November 2010
  • 117. Charged plastic rod is held near a thin stream of water http://phet.colorado.edu/new/simulations/sims.php? sim=Balloons_and_Static_Electricity Observation: Explanation: 6 5 (a) Straw, charged at both ends (using a woollen cloth) (b) Straw, also charged using a woollen cloth held horizontally and brought close (c) Repeat (b) using a silk cloth. Observation: Explanation: Thursday, 4 November 2010
  • 118. Cap Insulating material Body of electroscope Leaf Base Aim to charge an electroscope by both induction and by contact and to draw charge distribution diagrams Method 1. Follow the instructions below 2. Write observations as you perform each step 3. Complete the diagrams only after recording the observations (you may need some help with these) Part 1 - Charging by induction Equipment dry cloth/jersey perspex rod ebonite rod electroscope 1. Charge the rod by rubbing it with a dry cloth/jersey and hold the rod near the cap of the electroscope Observation: If the rod was positively charged the charge distribution diagram would look like this: ++++ - - - - + + + + CHARGING OBJECTS Thursday, 4 November 2010
  • 119. Complete the diagram to show how charges would distribute on the electroscope should the rod be negatively charged. - - - - 2. With the rod in this position, earth the cap with your finger. Observation: ++++ - - - - + + + + This symbol represents a connection to the earth Complete the diagram to show how charge moves when the cap of the electroscope is earthed Thursday, 4 November 2010
  • 120. 3. Unearth the cap of the electroscope without removing the charged rod Observation: Draw the charge distribution diagram (by adding to the existing diagram on the right) showing the situation once this charge movement has finished. ++++ - - - - + + + + Draw the resultant charge distribution and the new position of the leaf on the diagram (right). 4. Remove the charged rod Observation: Finally, complete the diagram (right). Thursday, 4 November 2010
  • 121. Part 2 - Charging by contact Method 1. Follow the instructions below 2. Write observations as you perform each step 3. Complete the diagrams only after recording the observations (you may need some help with these) 1. A positively charged rod is held near the cap of the electroscope. 2. The rod makes contact with the cap. 3. The rod is removed. ++++ Thursday, 4 November 2010
  • 122. Cap Insulating material Body of electroscope Leaf Base Aim to charge an electroscope by both induction and by contact and to draw charge distribution diagrams Method 1. Follow the instructions below 2. Write observations as you perform each step 3. Complete the diagrams only after recording the observations (you may need some help with these) Part 1 - Charging by induction Equipment dry cloth/jersey perspex rod ebonite rod electroscope ALL CHARGED UPLab 12 1. Charge the rod by rubbing it with a dry cloth/jersey and hold the rod near the cap of the electroscope Observation: If the rod was positively charged the charge distribution diagram would look like this: ++++ - - - - + + + + The leaf of the electroscope springs up. Thursday, 4 November 2010
  • 123. Complete the diagram to show how charges would distribute on the electroscope should the rod be negatively charged. - - - - 2. With the rod in this position, earth the cap with your finger. Observation: ++++ - - - - + + + + This symbol represents a connection to the earth Complete the diagram to show how charge moves when the cap of the electroscope is earthed - - - - ++++ - - Electrons at the cap are repelled by the negatively charged rod. Leaf of the electroscope drops Electrons at the cap are held in position by the positively charged rod. The earth supplies electrons to the positively charged leaf and lower stem. Thursday, 4 November 2010
  • 124. - - - - 3. Unearth the cap of the electroscope without removing the charged rod Observation: Draw the charge distribution diagram (by adding to the existing diagram on the right) showing the situation once this charge movement has finished. ++++ - - - - + + + + Draw the resultant charge distribution and the new position of the leaf on the diagram (right). 4. Remove the charged rod Observation: Finally, complete the diagram (right). The cap and leaf now have no overall charge. Electrons on the cap are still held in position. Leaf of the electroscope remains in the “dropped” position. The charge distribution has not changed - - - - - - - -+ + + ++ + - - - - - - - - Negative charge redistributes itself around the metal parts of the electroscope leaving the stem and leaf with an overall negative charge The leaf of the electroscope springs up. ++++ + + Thursday, 4 November 2010
  • 125. Part 2 - Charging by contact Method 1. Follow the instructions below 2. Write observations as you perform each step 3. Complete the diagrams only after recording the observations (you may need some help with these) 1. A positively charged rod is held near the cap of the electroscope. 2. The rod makes contact with the cap. 3. The rod is removed. ++++ - - - - + + + + + + + + - Electrons migrate up into the rod + + + + + + + The electroscope is now left with an overall positive charge. Charge separation occurs. Positive repels positive at the stem/leaf Thursday, 4 November 2010
  • 126. 12 Physics > resources > electricity > DC electricity > videos SPARKS Thursday, 4 November 2010
  • 127. • When the generator is turned on, the electric motor begins turning the belt. • The belt is made of rubber and the lower roller is covered in silicon tape. Silicon has a greater affinity for electrons than rubber and so it captures electrons from the belt. The belt in turn must capture electrons from the dome, leaving the dome positively charged. Label the picture of the Van der Graaf (left) using the labels in the box below: Lower roller Belt - A piece of surgical tubing Output terminal - an aluminium or steel sphere Upper roller - A piece of nylon Motor Upper brush - A piece of fine metal wire Lower Brush ______________ ______________ ______________ ______________ ______________ ______________ ______________ Reference: http://science.howstuffworks.com/vdg3.htm THE VAN DER GRAAF - HOW IT WORKS Thursday, 4 November 2010
  • 128. THE VAN DER GRAAF - OBSERVATIONS & EXPLANATIONS 1. Small dome held close to generator dome 2. Hair stands on end when contact is made with the generator dome 3. Aluminium foil plates flying of the top of the generator dome Drawn observation Drawn observation Drawn observation Explanation Explanation Explanation Thursday, 4 November 2010
  • 129. 4. Sparking - a result of ionisation --> thorough step by step explanation 5. The shock that is felt ------> Charge travelling from/into the earth, through the body Thursday, 4 November 2010
  • 132. ADDING BULBS IN PARALLEL 1. Set up each of the following circuits, one after the other (making a mental note of the brightness of the lamps in the circuit. 2. For each circuit read the ammeter and record the current in the space provided. + - 1 A + - 2 A + - 3 A Current = ______ A Current = ______ A Current = ______ A Observation Explanation 8 V 8 V 8 V Thursday, 4 November 2010
  • 133. ADDING BULBS IN SERIES 1. Set up each of the following circuits, one after the other (making a mental note of the brightness of the lamps in the circuit. 2. For each circuit read the ammeter and record the current in the space provided. + - 1 A Current = ______ A + - 3 A Current = ______ A Observation + - 2 A Current = ______ A Explanation Thursday, 4 November 2010
  • 134. CURRENT IN THE SERIES CIRCUIT IS CONSTANT Aim to look for a pattern in the current through bulbs and resistors in a series circuit. 1. Use ONE ammeter in the three different places shown in the circuit diagram. 2. Without changing the setting on the power pack or the variable resistor write the current readings in the spaces provided (below): Equation 8V+ - A2 A1 A3 A1 = ______ A A2 = ______ A A3 = ______ A Thursday, 4 November 2010
  • 135. CURRENT IN THE PARALLEL CIRCUIT IS SHARED Aim to look for a pattern in the current through bulbs and resistors in a parallel circuit. 1. Use ONE ammeter in the each of the four places shown in the circuit diagram. 2. Without changing the setting on the power pack record your results below: Conclusion Current in a parallel circuit is ____________ . Equation relating the currents Results A1 = ____ A A2 = ____ A A3 = ____ A A4 = ____ A 8V+ - A1 A2 A3 A4 Thursday, 4 November 2010
  • 136. VOLTAGE IN THE SERIES CIRCUIT IS SHARED Aim to look for a pattern in the voltages across bulbs and resistors in a series circuit. Conclusion The power supply voltage is _____________ between the components in the circuit 8V+ - V1 V2 V4 V3 A Equation relating the voltages 1. Set up the circuit (below) 2. Use ONE voltmeter in the three different places shown in the circuit diagram. 3. Without changing the setting on the power pack record your results below: Results V1 (power supply) = __ V V2 (variable resistor) = __ V V3 (bulb) = __ V V3 (ammeter) = __ V Thursday, 4 November 2010
  • 137. VOLTAGE IN THE PARALLEL CIRCUIT IS CONSTANT Aim to look for a pattern in the voltages across bulbs and resistors in a series circuit. Conclusion The voltage across components connected in parallel is __________ Equation relating the voltages Results V1 = ___ V V2 = ___ V V3 = ___ V 8V+ - V1 V2 V3 1. Set up the circuit (below) 2. Use ONE voltmeter in the three different places shown in the circuit diagram. 3. Without changing the setting on the power pack record your results below: Thursday, 4 November 2010
  • 138. VOLTAGES AND CURRENTS IN SERIES AND PARALLEL Aim to investigate voltage and current in a series circuit that has a parallel portion in it. 1. Set up the circuit (below) 2. Use ONE voltmeter in the four different places shown in the circuit diagram and ONE ammeter in the four different places shown. 3. Without changing the setting on the power pack record your results below: Results A1 = __A A2 = __A A3 = __A A4 = __A V1 = __V V2 = __V V3 = __V V4 = __V 8V+ - V1 V3 V4 V2 A1 A2 A3 A4 V4 Thursday, 4 November 2010
  • 140. OHM’S LAW Results Voltage setting of Power pack (V) 2 4 6 8 10 12 Voltage, V (V) Current, I (A) + - A V ice beaker water immersion coil Method 1. Set up the following circuit using iced water to cool the immersion coil. 2. Increase the voltage in regular increments through an appropriate range (widest possible range) Lab 14 Thursday, 4 November 2010
  • 141. Notes •The iced water was used to keep the temperature of the coil constant . •If the iced water was forgotten and the coil was allowed to heat up then the graph would curve up. Draw a graph of Voltage against Current on the grid provided Repeat the experiment but this time replace the coil with a lamp (that will increase in temperature as the current through it increases) Conclusion Thursday, 4 November 2010
  • 143. Resistance specified MeasurementsMeasurements Resistance calculated from measurements Calculated Power output Resistance specified Voltage Current Resistance calculated from measurements Calculated Power output R1 R2 R3 Resistance calculated (formula provided for parallel resistors) Resistance calculated (formula provided for parallel resistors) across combination of resistors drawn from the power supply For any circuit, set power supply voltage to 8V For any circuit, set power supply voltage to 8V R1 & R2 in series R1 & R2 & R3 in series R1 & R2 in parallel R1 & R2 & R3 in parallel RESISTANCE AND POWER in series and parallel Thursday, 4 November 2010
  • 145. CALCULATING POWER OUTPUT OF APPLIANCES WITH AN ELECTRONIC MONITOR Appliance UNDER CONSTRUCTION Thursday, 4 November 2010
  • 147. HANGING MAGNETS I NS 1. Cut out the net and fold it at the dotted lines to create a cradle + NS 2. Suspend the magnet in the cradle 3. Use a short length of cotton to suspend the magnet from a retort stand 4. Repeat using a second magnet. Thursday, 4 November 2010
  • 148. HANGING MAGNETS II 1. Position your two magnets in the orientations shown 2. For each orientation, record your observations NS N S NS N S NS NS NS N S A B C D ObservationObservation ObservationObservation Thursday, 4 November 2010
  • 149. STROKING MAGNETS NS A. Try magnetising an iron nail using a magnet B. Once you have finished, check for a magnetic field using a charm compass. Thursday, 4 November 2010
  • 150. PLOTTING MAGNETIC FIELDS A. Place one or more compasses around a bar magnet Charm compasses (moved around in a variety of positions around the magnet B. Use a pencil to mark the North pole of each magnet using a dot C. Connect the dots using a smooth curve D. Plot several field lines and mark the North and South poles of the magnet. E. Wrap your magnet in glad wrap and spring iron filings over it. Follow the instructions (below) and draw your observations Thursday, 4 November 2010
  • 215. 2009 NCEA Topic TEST FOR 2010 Laid out in a form that is ready for PCopying Thursday, 4 November 2010
  • 221. Earth 3000V 1.6 x 10-6 A Electrostatic Eliminator Thursday, 4 November 2010
  • 235. Main points: 1(b) & 1(c) - need further elaboration. See revised notes. 3(a) & (b)....... confusion re. magnetic and geographic poles being opposite 3(c) .......... Need to appreciate that coil becomes magnetised which causes dipole and domain alignment in the piston 3 (d) ...... problems creeping in with the algebra Thursday, 4 November 2010
  • 241. 1 2 CombinedCombined Grade 3 3 88 A 3 3 1010 M 1 1 3E 12 E Thursday, 4 November 2010
  • 246. Worthwhile going into some detail over this. Thursday, 4 November 2010
  • 249. Need to learn how to do the algebra - BIG PROBLEMS HERE - can be v easily addressed Marks thrown EASY Thursday, 4 November 2010
  • 251. Y11 Sci - W & W Thursday, 4 November 2010
  • 252. 1. Resistance is ______________ __________ . 2. It is responsible for slowing down the ___________ ___ __________ . 3. When there is resistance present in a conductor or an appliance ____________ energy is transformed into ________ energy. 4. Three everyday household appliances that have high resistance are: 5. __________________ , ___________________ , _____________________ 6. Complete the circuit diagram which shows what happens when a third identical lamp is added in parallel to a circuit: + - + - 7. If we continued to add lamps in this fashion explain why the power supply would blow a fuse. __________________________________________________________________ __________________________________________________________________ QUESTIONS ON RESISTANCE Thursday, 4 November 2010
  • 253. APPLYING THE WATER MODEL TO Q.6 1. Pool of water fed by a rut a rut channel 2. Dig a channel and water can flow out of the pool 3. Dig another channel. What effect does this have on the flow through the rut? 3. Dig a third channel ........ What effect does this have on the flow through the rut? Thursday, 4 November 2010
  • 254. “ANSWERS TO EXTRA FOR EXPERT QUESTIONS” Thursday, 4 November 2010
  • 255. + - Draw using arrows the direction of charge flow in each circuit For each circuit, highlight the lamps that will glow. 1 2 + - 3 + - 4 + - NEED FOR A VOLTAGE SUPPLY AND A CONDUCTING PATH Thursday, 4 November 2010
  • 256. CONDUCTORS & METERS 1. Which of the following substances are conductors of electricity: wood, tap water, copper, iron, glass, sodium chloride solution, rubber 2. Draw a circuit diagram that you could use to test for conductivity using a lamp, dry cell and wires. 3. Explain how a fuse protects a circuit. 4. Voltage is .......... 5. Current is .......... 6. Starter Thursday, 4 November 2010
  • 257. In an an Ohm’s law experiment a water-cooled resistor was connected in series with a power supply and an ammeter. A voltmeter was connected to measure the voltage drop across the resistor. The readings on the two meters were recorded. Voltage (V) Current (I) 2 0.15 4 0.31 6 0.45 8 0.59 10 0.75 12 0.92 Draw a graph of V vs I. What is the meaning of its slope and what is its unit? OHM’S LAW Explain the shape of the graph that would be produced should the resistor be allowed to heat up. Thursday, 4 November 2010