SlideShare una empresa de Scribd logo
1 de 9
Descargar para leer sin conexión
m+
    L                  L - ligand

                       M - central species
L   M   L        Xn+
                       X - counter ion
    L
Another factor is the coordination number of the   Possess only one accessible donor group.
  central species - bonds formed.
                                                   H2O is a good example since all metal ions exist
  Common numbers                                     as aqua complexes in water.
    2 - linear
    4 - tetrahedral / square planer                                     Although two e- pair are
    6 - octahedral                                                      available, only one is
                                                                        accessible.
Both the coordination and dentate numbers
  must be known to know the number of                                   The other will always point
  ligands/central species.                                              the wrong way




                                                   In aqueous systems, complexes form by the
                                                     stepwise displacement of water.
                                                                        K1
                                                   M(H2O)nm+ + L                M(H2O)n-1(L)m+ + H2O
                                                                        K2
                                                   M(H2O)n-1m+ + L              M(H2O)n-2(L)2m+ + H2O
                                                   .
                                                   .
                                                   .                     Kn-1
                                                   M(H2O)(L)n-1m+ + L           M(L)m+ + H2O




                                                       Form two binds / central species.
                                                       A good example is ethylene diamine.
                                                       NH2CH2CH2NH2          - (en)
                                                       The amino groups are far enough apart to
                                                       permit both to interact.

                                                                                C     N        N   C
                                                          Zn2+ + 2 en                     Zn
                                                                                C     N        N   C
H
                                                 O        O
                                      H 3C                            CH3

                     N                       C   N        N       C
            N
                                 Zn                  Ni
Zn2+ + 2                                     C   N        N       C
                O-       O            H 3C
                                                                      CH3
                                                 O        O
                             2
                                                     H




                                                              N
Ni (dmg)2
                                                                      Fe(II)


                                                              N



                                                                      3
EDTA is typically used as the disodium salt to   The molecule contains 6 donor groups.
 increase solubility.
                                                                    HOOC                                  COO - Na+

       HOOC                         COO - Na+                                 N          C   C        N

                                                              Na   + -
                                                                     OOC                                   COOH
              N     C       C   N
                                                 Regardless of the coordination number of the
      + -                            COOH         central species, the molecule will adapt to the
 Na     OOC
                                                  number needed.
                        H2Y2-                             Mg2+ + H2Y2-                               MgY2- + 2H+
                                                          Fe3+ + H2Y2-                               FeY- + 2H+




                                                         K’              K          K1          K2           K3          K4
                                                 H6Y2+        H5Y+           H 4Y        H3Y-        H2Y2-        HY3-        Y4-

                                                    The process is further complicated by the
                                                    facts that:
                                                              The amine groups can be protonated
                                                              The equilibria are not well behaved
                                                              (more than two species may exist at
                                                                significant levels at any given pH)
H5Y+        H 3 Y-
                                                                          Under normal conditions, the H6Y2+ and H5Y+
      1
                 H4Y                                               Y4-     forms are not present at significant levels.
H6Y2+
                                H2Y2-            HY3-
                                                                            The effect of the hydrogen ion can then be
                                                                            calculated using !Y.
 ! .5

                                                                                                       [Y4-]
                                                                            !Y = [H Y] + [H Y-] + [H Y2-] + [HY3-] + [Y4-]
                                                                                   4       3        2


      0                                                                         =     [ Y ] / [ Y’ ]
       0         2         4            6        8      10   12      14




                                                                          We can proceed through a series of
                                                                           substitutions leading to an equation in terms
                                                                           of [H+].

                                                                            1         [H+]4   [H+]3   [H+]2   [H+]
               [H+] [ H3Y-]                                                     =           +       +       +      +1
                  [H4Y]                      Similar expressions           !Y       K1K2K3K4 K2K3K4 K3K4       K4
                                               can be written
               [H+] [ H2Y2-]
                                              for the other two
                  [H3Y-]                                                   We can then calculate !Y and plotted as
                                                   equilibria
                                                                           a function of pH.




          0                                                               While the actual formation constant for a metal-
                                                                           EDTA complex is:

                                                                                   [MY4-]
                                                                            KMY = [M] [Y4-]
 log !Y




                                                        pH ~11.5
          -9                                            All in Y4+ form
                                                                          A conditional constant can be calculated at any
                                                                            known, constant pH as:
      -18                                                                                               [MY4-]
         0                                  7                 14                    KMY !Y = KMY’=
                                            pH                                                         [M] [Y’]
In order to get sharp endpoints, solutions are         As with our other types of titrations, we have
  typically buffered at basic conditions.                four regions to deal with.

This also insures that:                                  0% titration
  Y4- form is available.                                 >0% and < 100% titration
  EDTA will be in a soluble form.                        The equivalence point
                                                         Over-titration region
In addition, only one !Y must be used in
  calculating equivalence and over titration             We’ll outline the basic steps for each region
  conditions.                                            using an example.




       Initial [Ni2+] x VNi2+ - [EDTA] x VEDTA added
                     VNi2+ + VEDTA added
       0.0100M x 100.0 ml - 0.0100M x 50.0ml
                                                                                     [NiY2-]
                  100 ml + 50 ml                                 KMY’ = KMY !Y =
                                                                                    [Ni2+] [Y’]

                                                                      KMY = 3.98 x 1018
We’ll need to calculate !Y at pH 10.2.              If you’re willing to trust me, then
                                                                         !Y = 0.47
  1          [H+]4   [H+]3   [H+]2   [H+]
      =            +       +       +      +1                        [NiY2-]
 !Y        K1K2K3K4 K2K3K4 K3K4       K4              KMY !Y =                    = 3.98x1018 x 0.47
                                                                   [Ni2+] [Y’]
                                                                                  = 1.87x1018
  K1        = 1.02x10-2 K2      = 2.14x10-3
  K3        = 6.92x10-7 K4      = 5.50x10-11        At the equivalence point, we also know that
  [H+] = 6.31x10-11                                 virtually all of our nickel exists as NiY2-.




So, [NiY2-] = 0.0050 M due to dilution.

  In addition [Ni2+] = [Y’] so:

                    0.0050 M
  1.87x1018 =
                      [Ni2+]2

  [Ni2+]         = (0.0050 M / 1.87x1018 )1/2                        [NiY2-]
                                                       KMY’ =                     = 1.87x1018
                                                                    [Ni2+] [Y’]
                 = 5.17 x10-11 M
  pNi = 10.3                                               [Ni2+] = 5.35x10-19       pNi = 18.27




       12                                           The 200% titration mark is useful for estimating
                                                      the shape of a titration curve because:
                                                                       pM = log KMY’
pNi




       8
                                                    Since you also know the 0% value (-log
                                                      [species]) and the general shape of a titration
                                                      curve, a reasonable estimate is possible.

       2
            0             100                 200
12                                 Ni2+

                                                                                                 Ca2+




                                                       p[ ]
                                                              8




                                                              2




To be a viable indicator, we need a species             In the presence of an indicator, our reaction
  that:                                                   proceeds in two steps.
      Competes for our metal ion.                                   M + Y’               MY
      Is a weaker complexer than EDTA.                             M-Ind + Y’         MY + Ind

      Exhibits a measurable change                      Since it is easier to EDTA to react with the
           between the complexed and                      uncomplexed metal, that reaction occurs first.
      uncomplexed form.                                 M-Ind is harder for EDTA to react with so we
          M-Ind + Y’           MY + Ind                  must insure that only a small amount of
          (color 1)            (color 2)                 indicator is used.




Effects of pH and indicator

                                   The red plot
                                   shows
                       Effect of   a titration curve
                          !Y       if our metal is                      OH       HO
  Effect of                        not complexed by
                                   an indicator and                         -N=N-
     !M
                                   EDTA is not
                                   complexed by H+.
                                                                        SO3-
pH 8.1                  pH 12.4


     (red)               (blue)              (orange)                     OH       OH
                                                          -O
                                                            3S            -N=N-
Since the metal complexes are red, the indicator
is only useful in the range of pH 8.1 - 12.4.
Presence of Cu(II), Ni(II), Fe(III) or Al(III) can             O2N             Complexes are red
block the indicator.                                                           Uncomplexed form is blue




               AsO3H2             OH   OH
                                                                                          OH
                                                                                                 N
                   -N=N-                                                          -N=N-

                        -O
                          3S                SO3-                -O
                                                                     3S
                                                                                          SO3-




                                                        As with other titrations, ion selective electrodes
                                                          can be used to monitor a titration.
                                                        Once combined with EDTA, a metal ion’s
                                                         presence is masked from the electrode.
                                                        One simply needs to monitor E and plot verses
                                                         the ml titrant.
                                                        Many electrodes exist for this purpose, including
                                                         ones to detect hardness.

Más contenido relacionado

La actualidad más candente

Section+3+bioenergetics (1)
Section+3+bioenergetics (1)Section+3+bioenergetics (1)
Section+3+bioenergetics (1)Poonam Prasad
 
New chm 152_unit_10_coordinaton_chemistry_power_points_sp13
New chm 152_unit_10_coordinaton_chemistry_power_points_sp13New chm 152_unit_10_coordinaton_chemistry_power_points_sp13
New chm 152_unit_10_coordinaton_chemistry_power_points_sp13caneman1
 
Soalan pra trial- chem-2012 with answers
Soalan pra trial- chem-2012 with answersSoalan pra trial- chem-2012 with answers
Soalan pra trial- chem-2012 with answersMRSMPC
 
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...CORE-Materials
 
Moffett RAB Site 26 and 28 Update
Moffett RAB Site 26 and 28 UpdateMoffett RAB Site 26 and 28 Update
Moffett RAB Site 26 and 28 UpdateSteve Williams
 
New progress in palladium catalyzed coupling reactions
New progress in palladium catalyzed coupling reactionsNew progress in palladium catalyzed coupling reactions
New progress in palladium catalyzed coupling reactionsYiming Chen
 
15.paper drtaghreed+dr khalid
15.paper drtaghreed+dr khalid15.paper drtaghreed+dr khalid
15.paper drtaghreed+dr khalidAlexander Decker
 
Naming and writing compounds and molecules
Naming and writing compounds and moleculesNaming and writing compounds and molecules
Naming and writing compounds and moleculessbarkanic
 
Naming and writing compounds and molecules
Naming and writing compounds and moleculesNaming and writing compounds and molecules
Naming and writing compounds and moleculessbarkanic
 
New chm 151 unit 8 power points su13
New chm 151 unit 8 power points su13New chm 151 unit 8 power points su13
New chm 151 unit 8 power points su13caneman1
 
真理の度合理論は適切か? 〜ファジイ論理と真理理論〜
真理の度合理論は適切か? 〜ファジイ論理と真理理論〜真理の度合理論は適切か? 〜ファジイ論理と真理理論〜
真理の度合理論は適切か? 〜ファジイ論理と真理理論〜Shunsuke Yatabe
 
Chapter 12 Redox Reaction
Chapter 12 Redox ReactionChapter 12 Redox Reaction
Chapter 12 Redox ReactionRossita Radzak
 

La actualidad más candente (17)

Section+3+bioenergetics (1)
Section+3+bioenergetics (1)Section+3+bioenergetics (1)
Section+3+bioenergetics (1)
 
New chm 152_unit_10_coordinaton_chemistry_power_points_sp13
New chm 152_unit_10_coordinaton_chemistry_power_points_sp13New chm 152_unit_10_coordinaton_chemistry_power_points_sp13
New chm 152_unit_10_coordinaton_chemistry_power_points_sp13
 
Soalan pra trial- chem-2012 with answers
Soalan pra trial- chem-2012 with answersSoalan pra trial- chem-2012 with answers
Soalan pra trial- chem-2012 with answers
 
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
 
Moffett RAB Site 26 and 28 Update
Moffett RAB Site 26 and 28 UpdateMoffett RAB Site 26 and 28 Update
Moffett RAB Site 26 and 28 Update
 
New progress in palladium catalyzed coupling reactions
New progress in palladium catalyzed coupling reactionsNew progress in palladium catalyzed coupling reactions
New progress in palladium catalyzed coupling reactions
 
Amino acids
Amino acidsAmino acids
Amino acids
 
Andr Dtu 260805
Andr Dtu 260805Andr Dtu 260805
Andr Dtu 260805
 
Graduate Research @ USC
Graduate Research @ USCGraduate Research @ USC
Graduate Research @ USC
 
Dna and rna
Dna and rnaDna and rna
Dna and rna
 
15.paper drtaghreed+dr khalid
15.paper drtaghreed+dr khalid15.paper drtaghreed+dr khalid
15.paper drtaghreed+dr khalid
 
Naming and writing compounds and molecules
Naming and writing compounds and moleculesNaming and writing compounds and molecules
Naming and writing compounds and molecules
 
Naming and writing compounds and molecules
Naming and writing compounds and moleculesNaming and writing compounds and molecules
Naming and writing compounds and molecules
 
New chm 151 unit 8 power points su13
New chm 151 unit 8 power points su13New chm 151 unit 8 power points su13
New chm 151 unit 8 power points su13
 
真理の度合理論は適切か? 〜ファジイ論理と真理理論〜
真理の度合理論は適切か? 〜ファジイ論理と真理理論〜真理の度合理論は適切か? 〜ファジイ論理と真理理論〜
真理の度合理論は適切か? 〜ファジイ論理と真理理論〜
 
Chapter 12 Redox Reaction
Chapter 12 Redox ReactionChapter 12 Redox Reaction
Chapter 12 Redox Reaction
 
Chem guess paper1
Chem guess paper1Chem guess paper1
Chem guess paper1
 

Similar a 11 complex formation-titrations

Lec Balancingredoxmrxn
Lec BalancingredoxmrxnLec Balancingredoxmrxn
Lec Balancingredoxmrxnteacher.mimi
 
Writing More Complex Redox Equations
Writing More Complex Redox EquationsWriting More Complex Redox Equations
Writing More Complex Redox Equationsscuffruff
 
Acids and bases dr.surendran prambadath
Acids and bases dr.surendran prambadathAcids and bases dr.surendran prambadath
Acids and bases dr.surendran prambadathSurendran Parambadath
 
Balancing redox reactions
Balancing redox reactions Balancing redox reactions
Balancing redox reactions Sualeha Iqbal
 
Analyzing Redox Equations.ppt that clarifies both reduction and oxidation rea...
Analyzing Redox Equations.ppt that clarifies both reduction and oxidation rea...Analyzing Redox Equations.ppt that clarifies both reduction and oxidation rea...
Analyzing Redox Equations.ppt that clarifies both reduction and oxidation rea...Kedir Mohammed
 
Synthesis of schiff base complexes and their biological studies presentation
Synthesis of schiff base complexes and their biological studies  presentationSynthesis of schiff base complexes and their biological studies  presentation
Synthesis of schiff base complexes and their biological studies presentationShafqat Ali
 
NWTC General Chemistry Ch 08
NWTC General Chemistry Ch 08NWTC General Chemistry Ch 08
NWTC General Chemistry Ch 08Steve Sinclair
 
Are we there yet
Are we there yetAre we there yet
Are we there yetmasesane
 
ประเภทของสารประกอบอินทรีย์
ประเภทของสารประกอบอินทรีย์ประเภทของสารประกอบอินทรีย์
ประเภทของสารประกอบอินทรีย์Maruko Supertinger
 
File 02 Iit Jee 09 Paper 02 Pcm
File 02 Iit Jee 09 Paper 02 PcmFile 02 Iit Jee 09 Paper 02 Pcm
File 02 Iit Jee 09 Paper 02 Pcmsracy.com
 
Tutorial 2- Balancing Chemical Equations.ppt
Tutorial 2-  Balancing Chemical Equations.pptTutorial 2-  Balancing Chemical Equations.ppt
Tutorial 2- Balancing Chemical Equations.pptjameiljrmagomnang1
 
เรื่อง แอลกอฮอล์
เรื่อง แอลกอฮอล์เรื่อง แอลกอฮอล์
เรื่อง แอลกอฮอล์Sutisa Tantikulwijit
 
5-2 Balancing Reactions
5-2 Balancing Reactions5-2 Balancing Reactions
5-2 Balancing Reactionsrkelch
 

Similar a 11 complex formation-titrations (20)

Lec Balancingredoxmrxn
Lec BalancingredoxmrxnLec Balancingredoxmrxn
Lec Balancingredoxmrxn
 
Writing More Complex Redox Equations
Writing More Complex Redox EquationsWriting More Complex Redox Equations
Writing More Complex Redox Equations
 
Electrolysis
Electrolysis Electrolysis
Electrolysis
 
Acids and bases dr.surendran prambadath
Acids and bases dr.surendran prambadathAcids and bases dr.surendran prambadath
Acids and bases dr.surendran prambadath
 
Balancing redox reactions
Balancing redox reactions Balancing redox reactions
Balancing redox reactions
 
Wolf rearrangement
Wolf rearrangementWolf rearrangement
Wolf rearrangement
 
Analyzing Redox Equations.ppt that clarifies both reduction and oxidation rea...
Analyzing Redox Equations.ppt that clarifies both reduction and oxidation rea...Analyzing Redox Equations.ppt that clarifies both reduction and oxidation rea...
Analyzing Redox Equations.ppt that clarifies both reduction and oxidation rea...
 
Synthesis of schiff base complexes and their biological studies presentation
Synthesis of schiff base complexes and their biological studies  presentationSynthesis of schiff base complexes and their biological studies  presentation
Synthesis of schiff base complexes and their biological studies presentation
 
E1 reaction
E1 reactionE1 reaction
E1 reaction
 
NWTC General Chemistry Ch 08
NWTC General Chemistry Ch 08NWTC General Chemistry Ch 08
NWTC General Chemistry Ch 08
 
Are we there yet
Are we there yetAre we there yet
Are we there yet
 
Transition metalbonding
Transition metalbondingTransition metalbonding
Transition metalbonding
 
ACID_BASE.pptx
ACID_BASE.pptxACID_BASE.pptx
ACID_BASE.pptx
 
Wolf rearrangement
Wolf rearrangementWolf rearrangement
Wolf rearrangement
 
Redox Reaction.ppt
Redox Reaction.pptRedox Reaction.ppt
Redox Reaction.ppt
 
ประเภทของสารประกอบอินทรีย์
ประเภทของสารประกอบอินทรีย์ประเภทของสารประกอบอินทรีย์
ประเภทของสารประกอบอินทรีย์
 
File 02 Iit Jee 09 Paper 02 Pcm
File 02 Iit Jee 09 Paper 02 PcmFile 02 Iit Jee 09 Paper 02 Pcm
File 02 Iit Jee 09 Paper 02 Pcm
 
Tutorial 2- Balancing Chemical Equations.ppt
Tutorial 2-  Balancing Chemical Equations.pptTutorial 2-  Balancing Chemical Equations.ppt
Tutorial 2- Balancing Chemical Equations.ppt
 
เรื่อง แอลกอฮอล์
เรื่อง แอลกอฮอล์เรื่อง แอลกอฮอล์
เรื่อง แอลกอฮอล์
 
5-2 Balancing Reactions
5-2 Balancing Reactions5-2 Balancing Reactions
5-2 Balancing Reactions
 

Más de mohamed_elkayal

Electrochemistry fr worksheet
Electrochemistry fr worksheetElectrochemistry fr worksheet
Electrochemistry fr worksheetmohamed_elkayal
 
04 types of chemical reactions & solution stoich
04 types of chemical reactions & solution stoich04 types of chemical reactions & solution stoich
04 types of chemical reactions & solution stoichmohamed_elkayal
 
10 non aqueous-titrations
10 non aqueous-titrations10 non aqueous-titrations
10 non aqueous-titrationsmohamed_elkayal
 
09 complex acid-base_titrations
09 complex acid-base_titrations09 complex acid-base_titrations
09 complex acid-base_titrationsmohamed_elkayal
 
04 types of chemical reactions & solution stoich
04 types of chemical reactions & solution stoich04 types of chemical reactions & solution stoich
04 types of chemical reactions & solution stoichmohamed_elkayal
 
أفكار صغيرة لحياة كبيرة كريم الشاذلي
أفكار صغيرة لحياة كبيرة   كريم الشاذليأفكار صغيرة لحياة كبيرة   كريم الشاذلي
أفكار صغيرة لحياة كبيرة كريم الشاذليmohamed_elkayal
 
رضوى عاشور ثلاثية غرناطة
رضوى عاشور ثلاثية غرناطةرضوى عاشور ثلاثية غرناطة
رضوى عاشور ثلاثية غرناطةmohamed_elkayal
 
لماذا من حولك أغبياء؟ لـ د. شريف عرفة
لماذا من حولك أغبياء؟ لـ د. شريف عرفةلماذا من حولك أغبياء؟ لـ د. شريف عرفة
لماذا من حولك أغبياء؟ لـ د. شريف عرفةmohamed_elkayal
 

Más de mohamed_elkayal (18)

Electrochemistry fr worksheet
Electrochemistry fr worksheetElectrochemistry fr worksheet
Electrochemistry fr worksheet
 
26 lc
26 lc26 lc
26 lc
 
25 gc
25 gc25 gc
25 gc
 
24 chromatography
24 chromatography24 chromatography
24 chromatography
 
04 types of chemical reactions & solution stoich
04 types of chemical reactions & solution stoich04 types of chemical reactions & solution stoich
04 types of chemical reactions & solution stoich
 
Heterocycles 3
Heterocycles 3Heterocycles 3
Heterocycles 3
 
Heterocycles 2
Heterocycles 2Heterocycles 2
Heterocycles 2
 
Chemistry
ChemistryChemistry
Chemistry
 
10 non aqueous-titrations
10 non aqueous-titrations10 non aqueous-titrations
10 non aqueous-titrations
 
09 complex acid-base_titrations
09 complex acid-base_titrations09 complex acid-base_titrations
09 complex acid-base_titrations
 
08 acid base-titrations
08 acid base-titrations08 acid base-titrations
08 acid base-titrations
 
06 thermochemistry
06 thermochemistry06 thermochemistry
06 thermochemistry
 
05 aqueous solutions
05 aqueous solutions05 aqueous solutions
05 aqueous solutions
 
04 types of chemical reactions & solution stoich
04 types of chemical reactions & solution stoich04 types of chemical reactions & solution stoich
04 types of chemical reactions & solution stoich
 
11 solutions
11 solutions11 solutions
11 solutions
 
أفكار صغيرة لحياة كبيرة كريم الشاذلي
أفكار صغيرة لحياة كبيرة   كريم الشاذليأفكار صغيرة لحياة كبيرة   كريم الشاذلي
أفكار صغيرة لحياة كبيرة كريم الشاذلي
 
رضوى عاشور ثلاثية غرناطة
رضوى عاشور ثلاثية غرناطةرضوى عاشور ثلاثية غرناطة
رضوى عاشور ثلاثية غرناطة
 
لماذا من حولك أغبياء؟ لـ د. شريف عرفة
لماذا من حولك أغبياء؟ لـ د. شريف عرفةلماذا من حولك أغبياء؟ لـ د. شريف عرفة
لماذا من حولك أغبياء؟ لـ د. شريف عرفة
 

11 complex formation-titrations

  • 1. m+ L L - ligand M - central species L M L Xn+ X - counter ion L
  • 2. Another factor is the coordination number of the Possess only one accessible donor group. central species - bonds formed. H2O is a good example since all metal ions exist Common numbers as aqua complexes in water. 2 - linear 4 - tetrahedral / square planer Although two e- pair are 6 - octahedral available, only one is accessible. Both the coordination and dentate numbers must be known to know the number of The other will always point ligands/central species. the wrong way In aqueous systems, complexes form by the stepwise displacement of water. K1 M(H2O)nm+ + L M(H2O)n-1(L)m+ + H2O K2 M(H2O)n-1m+ + L M(H2O)n-2(L)2m+ + H2O . . . Kn-1 M(H2O)(L)n-1m+ + L M(L)m+ + H2O Form two binds / central species. A good example is ethylene diamine. NH2CH2CH2NH2 - (en) The amino groups are far enough apart to permit both to interact. C N N C Zn2+ + 2 en Zn C N N C
  • 3. H O O H 3C CH3 N C N N C N Zn Ni Zn2+ + 2 C N N C O- O H 3C CH3 O O 2 H N Ni (dmg)2 Fe(II) N 3
  • 4. EDTA is typically used as the disodium salt to The molecule contains 6 donor groups. increase solubility. HOOC COO - Na+ HOOC COO - Na+ N C C N Na + - OOC COOH N C C N Regardless of the coordination number of the + - COOH central species, the molecule will adapt to the Na OOC number needed. H2Y2- Mg2+ + H2Y2- MgY2- + 2H+ Fe3+ + H2Y2- FeY- + 2H+ K’ K K1 K2 K3 K4 H6Y2+ H5Y+ H 4Y H3Y- H2Y2- HY3- Y4- The process is further complicated by the facts that: The amine groups can be protonated The equilibria are not well behaved (more than two species may exist at significant levels at any given pH)
  • 5. H5Y+ H 3 Y- Under normal conditions, the H6Y2+ and H5Y+ 1 H4Y Y4- forms are not present at significant levels. H6Y2+ H2Y2- HY3- The effect of the hydrogen ion can then be calculated using !Y. ! .5 [Y4-] !Y = [H Y] + [H Y-] + [H Y2-] + [HY3-] + [Y4-] 4 3 2 0 = [ Y ] / [ Y’ ] 0 2 4 6 8 10 12 14 We can proceed through a series of substitutions leading to an equation in terms of [H+]. 1 [H+]4 [H+]3 [H+]2 [H+] [H+] [ H3Y-] = + + + +1 [H4Y] Similar expressions !Y K1K2K3K4 K2K3K4 K3K4 K4 can be written [H+] [ H2Y2-] for the other two [H3Y-] We can then calculate !Y and plotted as equilibria a function of pH. 0 While the actual formation constant for a metal- EDTA complex is: [MY4-] KMY = [M] [Y4-] log !Y pH ~11.5 -9 All in Y4+ form A conditional constant can be calculated at any known, constant pH as: -18 [MY4-] 0 7 14 KMY !Y = KMY’= pH [M] [Y’]
  • 6. In order to get sharp endpoints, solutions are As with our other types of titrations, we have typically buffered at basic conditions. four regions to deal with. This also insures that: 0% titration Y4- form is available. >0% and < 100% titration EDTA will be in a soluble form. The equivalence point Over-titration region In addition, only one !Y must be used in calculating equivalence and over titration We’ll outline the basic steps for each region conditions. using an example. Initial [Ni2+] x VNi2+ - [EDTA] x VEDTA added VNi2+ + VEDTA added 0.0100M x 100.0 ml - 0.0100M x 50.0ml [NiY2-] 100 ml + 50 ml KMY’ = KMY !Y = [Ni2+] [Y’] KMY = 3.98 x 1018
  • 7. We’ll need to calculate !Y at pH 10.2. If you’re willing to trust me, then !Y = 0.47 1 [H+]4 [H+]3 [H+]2 [H+] = + + + +1 [NiY2-] !Y K1K2K3K4 K2K3K4 K3K4 K4 KMY !Y = = 3.98x1018 x 0.47 [Ni2+] [Y’] = 1.87x1018 K1 = 1.02x10-2 K2 = 2.14x10-3 K3 = 6.92x10-7 K4 = 5.50x10-11 At the equivalence point, we also know that [H+] = 6.31x10-11 virtually all of our nickel exists as NiY2-. So, [NiY2-] = 0.0050 M due to dilution. In addition [Ni2+] = [Y’] so: 0.0050 M 1.87x1018 = [Ni2+]2 [Ni2+] = (0.0050 M / 1.87x1018 )1/2 [NiY2-] KMY’ = = 1.87x1018 [Ni2+] [Y’] = 5.17 x10-11 M pNi = 10.3 [Ni2+] = 5.35x10-19 pNi = 18.27 12 The 200% titration mark is useful for estimating the shape of a titration curve because: pM = log KMY’ pNi 8 Since you also know the 0% value (-log [species]) and the general shape of a titration curve, a reasonable estimate is possible. 2 0 100 200
  • 8. 12 Ni2+ Ca2+ p[ ] 8 2 To be a viable indicator, we need a species In the presence of an indicator, our reaction that: proceeds in two steps. Competes for our metal ion. M + Y’ MY Is a weaker complexer than EDTA. M-Ind + Y’ MY + Ind Exhibits a measurable change Since it is easier to EDTA to react with the between the complexed and uncomplexed metal, that reaction occurs first. uncomplexed form. M-Ind is harder for EDTA to react with so we M-Ind + Y’ MY + Ind must insure that only a small amount of (color 1) (color 2) indicator is used. Effects of pH and indicator The red plot shows Effect of a titration curve !Y if our metal is OH HO Effect of not complexed by an indicator and -N=N- !M EDTA is not complexed by H+. SO3-
  • 9. pH 8.1 pH 12.4 (red) (blue) (orange) OH OH -O 3S -N=N- Since the metal complexes are red, the indicator is only useful in the range of pH 8.1 - 12.4. Presence of Cu(II), Ni(II), Fe(III) or Al(III) can O2N Complexes are red block the indicator. Uncomplexed form is blue AsO3H2 OH OH OH N -N=N- -N=N- -O 3S SO3- -O 3S SO3- As with other titrations, ion selective electrodes can be used to monitor a titration. Once combined with EDTA, a metal ion’s presence is masked from the electrode. One simply needs to monitor E and plot verses the ml titrant. Many electrodes exist for this purpose, including ones to detect hardness.