SlideShare una empresa de Scribd logo
1 de 161
MOST
Maynard Operation Sequence
Technique
Work Measurement System

By Yogesh Nakhate
Methods - Time Measurement
H. B. Maynard was one of three
persons instrumental in the creation
of MTM.
Kjell Zandin, while working in
the Swedish Division of H. B.
Maynard in the late 1960’s,
detected striking similarities in
the sequence of MTM defined
motions whenever an object was
handled.
Under MOST, the primary work
units are no longer basic motions
as in MTM, but collections of
these basic motions dealing with
moving object.
MOST makes the assumption that
to move an object, a standard
sequence of events occurs.
Under MOST, objects can be
moved in only one of two ways:
• They are picked up and moved freely
through space -- the GENERAL MOVE.
• They are moved and maintain contact with
another surface -- the CONTROLLED
MOVE.
The MOST Family
•
•
•
•

Basic MOST -- General Operations
Mini MOST -- Repetitive Operations
Maxi MOST -- Non-repetitive Operations
Clerical MOST -- Clerical Operations
Maxi MOST is used to analyze
operations that are likely to be
performed less than 150 times per
week.
Basic MOST is used for
operations that are likely to be
performed more than 150 times
but less than 1500 times per
week.
Mini MOST is used to analyze
operations likely to be repeated
more than 1500 times per week.
The Decision Diagram provides a
simple procedure for selecting the
most appropriate MOST Work
Measurement System to use.
The MOST Decision Diagram is
based on +/- 5% accuracy and a
95% confidence level.
System Selection Charts may be
used in lieu of the Decision
Diagram for choosing the best
MOST Work Measurement
System to use.
The MOST Standard Form
provides the analyst with a
simple, consistent format for
analyzing work using the method.
It should be possible to complete
a MOST analysis by observing
two complete cycles of work in
slow motion.
If the method is well established
and the analyst knows the
operation and conditions, the
Basic MOST calculations can be
made from the office and used to
predict the times for a new
procedure.
General Rules for Using MOST
• Each sequence model is fixed.
• No letter may be added or omitted for the
General or Controlled Move Sequence.
• In general, no letter may be added or
omitted for the Tool Use Sequence, with a
few exceptions.
TMU
TMU = Time Measurement Unit
1 TMU = 0.0006 minutes
1 TMU = 0.036 seconds
How it works
• The purpose of the MOST system is to
calculate the cycle time for an operation
based on Pre-determined time study data.
Doing the math
• A typical MOST work sequence code would look like this:
• A10 B6 G3 A6 P3 A0
• Step 1 add up all the subscript numbers
10+6+3+6+3+0= 28
(the subscript is the MOST index value)
• Step 2 Multiple the sum of the index by 10
– This answer gives the TMU equivalent
28 x 10 = 280 TMU
• Step 3 Convert to time

280 TMU * .036 seconds = 10.08 seconds
1 TMU
General
Move
Sequence
Four subactivities constitute the
General Move Sequence
• “A”

Action Distance (mainly horizontal)

• “B”

Body Motion (mainly vertical)

• “G”

Gain Control

• “P”

Placement
Roughly 50% of all manual work
occurs as a General Move.
The percentage runs higher for
assembly and material handling
and lower for machine shop
operations.
The General Move follows a
fixed sequence of steps:
• Reach, either directly or in conjunction with
body motions or steps.
• Gain control of the object.
• Move the object, as in “reach”.
• Place the object in temporary or final
position.
• Return to the workplace.
The General Move Sequence
Model

ABG

ABP

A
Action Distance (A)
This parameter is used to analyze all
spatial movement or actions of the
fingers, hands, and/or feet.
A0 < 2 Inches
This is any displacement of the
fingers, hands, and/or feet a distance
of 2 inches or less.
A1 Within Reach
Actions that are confined to an area
described by the arc of the
outstretched arm pivoted about the
shoulder.
A3 One to Two Steps
The trunk of the body is shifted or
displaced by walking, stepping to the
side, or turning the body around
using 1 or 2 steps.
More Than 2 Steps
Used with Action Distance data table
to cover longer movements.
Body Motion (B)
This parameter is used to analyze
either vertical motions of the body or
the actions necessary to overcome an
obstruction or impairment to body
movement.
B3 -- Bend & Arise, 50%
Occurrence
Bend & Arise is required only 50% of
the time during a repetitive activity.
B3 -- Sit or Stand without
Moving Chair
When the body is simply lowered
into a chair from an erect position,
without hand/foot motions required to
manipulate the chair.
B6 -- Bend & Arise
From an erect standing position, the
trunk of the body is lowered by
bending from the waist and/or knees
to allow the hands to reach below the
knees.
B10 -- Sit or Stand
A series of several hand, foot, and
body motions to move a stool / chair
into position followed by the body
sitting or standing.
B16 -- Stand and Bend
This is a case where a sitting person
must stand up and walk to a location
to gain control of an object placed
below knee level, where a Bend &
Arise is required.
B16 -- Bend & Sit
This applies when gaining control of
an object requires a Bend & Arise
followed by a Sit prior to placing the
object.
B16 -- Climb On or Off
This parameter variant covers
climbing on or off a work platform on
any raised surface (~3 ft) using a
series of hand and body motions to
lift or lower the body.
B16 -- Passing Through Door
Passing through a door consists of
reaching for and turning the handle,
opening the door, walking through
the door, and subsequently closing
the door.
Gain Control (G)
This parameter is used to analyze all
manual motions employed to obtain
complete manual control of an
object(s) and to subsequently
relinquish that control.
G1 -- Light Object
Gain control of an object by grasping
it as long as no difficulty is
encountered.
G1 -- Light Objects Simo
One hand gains control of a light
object while the other hand obtains
another light object.
G3 -- Light Object(s) Non-Simo
While one hand is grasping an object,
the other hand must wait before it can
grasp the other object.
G3 -- Heavy or Bulky
In grasping a heavy or bulky object
there is a delay between when the
object is grasped and when it begins
to move due to weight, bulk, etc.
G3 -- Blind or Obstructed
Access to the object is restricted
because an obstacle prevents the
operator from seeing the object or
creates an obstruction to the
hand/fingers in attempting to gain
control.
G3 -- Disengage
An application of muscular force to
free an object from its surroundings
typified by a need to overcome
resistance followed by sudden
movement and recoil of the object.
G3 -- Interlocked
Interlocked means the object is
intermingled or tangled with other
objects and must be separated or
worked free before reaching control.
G3 -- Collect
Gain control of several objects
jumbled together in a pile or spread
out on a surface.
Placement (P)
This parameter is used to analyze
actions at the final stage of an
object’s displacement to align, orient,
and/or engage the object with other
object(s) before control of the object
is relinquished.
P0 -- Pickup Objects
This is “placement” in which no
placement occurs. The object is
picked up and held.
P0 -- Toss Object(s)
Another “placement” where
placement does not occur. The object
is released during the “action
distance” (A) parameter without
placing motions or pause to point the
object toward the target.
P1 -- Lay Aside
The object is placed in an appropriate
locations with no apparent aligning or
adjusting motions.
P1 -- Loose Fit
The object is placed in a more
specific location than described by
the Lay Aside parameter, but with
tolerances so loose that only a modest
amount of control is needed for
placement.
P3 -- Adjustments
Adjustments are defined as the
corrective actions occurring at the
point of placement, and recognized
by obvious efforts, hesitations, or
correcting motions to align, orient,
and/or engage the object.
P3 -- Light Pressure
Because of close tolerances or the
nature of the placement, the
application of muscular force is
needed to seat the object.
P3 -- Double
With “double”, two distinct phases
occur during the total placing
activity.
P3 -- Loose Fit Blind
In this case the operator must feel
around for the placement location
before a loose placement can occur.
P6 -- Care or Precision
Extreme care is needed to place an
object within a closely defined
relationship with another object, and
characterized by the obvious slow
motion of the placement due to the
high degree of concentration
required.
P6 -- Heavy Pressure
As a result of very tight tolerances, a
high degree of muscular force is
needed to engage the object.
P6 -- Blind or Obstructed
Accessibility to the point of
placement is restricted because an
obstacle prevents the operator from
seeing the point of placement, or
creates an obstruction to the
hand/fingers when attempting to
place the object.
P6 -- Intermediate Moves
Several intermediate moves of the
object are required prior to placing.
General Move Example
From a stack located 10 feet away, a
heavy object must be picked up and
moved 5 feet and placed on top of a
workbench with some adjustments.
General Move Example
An assembly worker gets a handful of
washers (6) from a bin located within
reach and puts one on each of six
bolts located within reach, which are
four inches apart.
General Move Example
A worker gains control of two fittings
that are within reach and located
more than two inches apart, one at a
time, and places them on separate
trays that are within reach and located
less than 2 inches apart.
Controlled
Move
Sequence
Three new subactivities are found
in the Controlled Move Sequence
“M” Move Controlled
“X” Process Times
“I”

Align
The Controlled Move Sequence
describes the manual
displacement of an object over a
“controlled” path.
The Controlled Move follows a
fixed sequence of steps:
Reach, either directly or in conjunction with
body motions or steps.
Gain control of the object.
Move the object over a controlled path.
Allow time for the process to occur.
Align the object after the move/process.
Return to the workplace.
A Controlled Move is performed
under the following conditions:
• The object or device is restrained by its attachment
to another object
• It’s controlled during the move by the contact it
makes with the surface of another object.
• It must be moved on a controlled path to
accomplish the activity.
Move Controlled (M)
This parameter is used to analyze all
manually guided movements or
actions of an object over a controlled
path.
M1 -- One Stage < 12”
Object displacement is achieved by a
movement of the fingers/hands/feet
not exceeding 12 inches.
M1 -- Button/Switch/Knob
The device is actuated by a short
pressing, moving, or rotating action
of the fingers/hands/wrist/feet.
M3 -- One Stage > 12”
Object displacement is achieved by a
movement of the hands, arms, or feet,
plus body motion, exceeding 12
inches.
M3 -- Resistance, Seat/Unseat
Conditions surrounding the object or
device require that resistance be
overcome prior to, during, or after the
Controlled Move.
M3 -- High Control
This parameter reflects the need to
align an object using a high degree of
visual concentration.
M3 -- Two Stages < 12”
An object is displaced in two
directions or increments a distance
not exceeding 12 inches per stage
without relinquishing control.
M6 -- Two Stages > 12” -- OR-With One - Two Steps
An object is displaced in two
directions or increments a distance
exceeding 12 inches per stage
without relinquishing control.
M10 -- Three to Four Stages
--- OR --3 - 5 Steps
An object is displaced three or four
directions or increments without
relinquishing control or
pushed/pulled on a conveyor belt.
M16 -- Move Controlled with 6 9 Steps
Push or pull an object(s) using 6 - 9
steps.
“Cranking” action is performed
by moving the fingers, hand,
wrist, and/or forearm in a circular
path more than half a revolution.
Less than this is considered a
Push/Pull/Pivot.
Push - Pull Cranking
If cranking results in a back - and forth movement of the elbow instead
of pivoting at the wrist and / or
elbow, it is considered push - pull
cranking.
Pivotal cranking is more efficient
than push - pull cranking, and
should be used whenever
possible.
Process Time
Process time is that portion of work
controlled by electronic or
mechanical devices / machines, not
by manual actions.
As a rule of thumb, the process
time expressed as an index
number should not exceed 20%
of the cycle time.
Alignment refers to manual
actions following the Move
Controlled or at the conclusion of
process time to achieve an
alignment or specific orientation
of objects.
Within the area of normal vision
(a 4” diameter circle), the
alignment of an object to two
points can be performed without
any additional “eye times”.
I1 -- To One Point
Following a controlled move, an
object is aligned to one point.
I3 -- To Two Points < 4” Apart
The object is aligned to points not
more than 4 inches apart following a
Controlled Move.
I6 -- To Two Points > 4” Apart
The object is aligned to points more
than 4 inches apart following a
Controlled Move.
I16 -- Precision
The object is aligned to several points
with extreme care or precision
following a Controlled Move.
I3 -- To Workpiece
A Machining Operations parameter
where the machine tool is aligned to
the workpiece prior to making a cut.
I6 -- To Scale Mark
Another Machining Operations
parameter, the machine tool is
aligned to a scale mark prior to
making a cut.
I10 -- To Indicator Dial
The third Machining Operations
parameter, the machine tool is
aligned to the correct indicator dial
setting prior to making a cut.
Alignment of Nontypical Objects
Nontypical objects are those that are
especially large, flimsy, sharp, or
require special handling.
Alignment of a nontypical object
normally takes place as a series
of short correcting motions (< 2”)
following the Controlled Move,
usually with the assistance of
stops, guides, or marks.
Controlled Move Example
From a position in front of a lathe, the
operator takes two steps to the side,
turns the handwheel two rotations,
and sets the cutting tool by aligning
the handwheel dial to a scale mark.
Controlled Move Example
A milling machine operator walks
four steps to the quick-feeding cross
lever and engages the feed. The
machine time following the 4” lever
action is 2.5 seconds.
Controlled Move Example
A material handler takes hold of a
heavy carton with both hands and
pushes it 18” across conveyor rollers.
Controlled Move Example
Using the foot pedal to activate the
machine, a sewing machine operator
makes a stitch requiring 3.5 seconds
process time. The operator must
reach the pedal with the foot.
The Tool Use Sequence is a
combination of the General Move
and Controlled Move activities.
Tools not listed in the tables that
are similar to a tool in the table
can use their time values for
analysis.
Tool Use Phases
•
•
•
•
•

Get Tool (Object)
Put Tool (Object) in Place
Use Tool
Put Tool (Object) Aside
Return
The Tool Use Sequence model
makes use of the “A”, “B”, “G”,
and “P” parameters, which are all
familiar to us, plus the new Tool
Use parameters.
The Tool Use Sequence Model
ABG

ABP

*

ABP

A

* consists of the “tool use”
parameters F, L, C, S, M, R, & T.
Tool Use Sequence Parameters
•
•
•
•
•
•
•

F -- Fasten
L -- Loosen
C -- Cut
S -- Surface Treat
M -- Measure
R -- Record
T -- Think
Fasten / Loosen
Manually or mechanically assembling
or disassembling one object to or
from another using the fingers, a
hand, or hand tools.
Index values for “F” and “L” are
determined by the body member
performing the action.
Finger Spins are the movement
of the fingers and thumb to run a
threaded fastener down or out,
and include a light application of
pressure for seating / unseating
the fastener.
Wrist Actions
•
•
•
•

Wrist Turn
Wrist Stroke (with reposition)
Wrist Crank
Tap
Wrist Turn
During a wrist turn, the tool is not
removed from the fastener during use
and not repositioned on the fastener
after an action.
Wrist Stroke (with reposition)
In this tool use, after each stroke with
the tool and before making each
subsequent stroke, the tool must be
removed from the fastener and
repositioned.
Wrist Crank
Wrist crank applies to tools that are
spun or rotated around a fastener
while remaining affixed to it.
Tap
This parameter covers the use of a
hammer (or similar device) to exert
short tapping motions by pivoting the
hand at the wrist.
Arm Actions
•
•
•
•
•

Arm Turn
Arm Stroke (with reposition)
Arm Crank
Strike
T-Wrench (two hands)
Arm Turn(s)
Arm Turn(s), applying to ratchets,
occur when the tool is held near the
end of the handle, resulting in a
pulling action on the tool.
Arm Stroke (with reposition)
Following each stroke or pull with
the tool, it must be removed and
repositioned again on the fastener
before making a subsequent pull.
Arm Crank
The tool is used with a circular
movement of the forearm as it is
pivoted at the elbow or the shoulder
to push or crank the tool around the
fastener.
Strike
Strike is the use of a
hammer with an up and - down motion
performed with the
hand as it is pivoted
from the elbow.
T-Wrench (two hands)
A two - handed arm action, including
the reach for each hand to the
opposite handle before making the
next turn, and involving a 180 degree
turn of the T-wrench with each
action.
Power Tools
The use of electric and pneumatic
power wrenches to run a standard
threaded fastener down or out a
length 1 1/2 times the bolt diameter.
The time values generated by the
data card for power tool use must
be compared to the times
generated by the tools used in the
shop, and adjusted if necessary.
Torque Wrenches
• F6 -- Torque wrench handle length to 10”.
• F10 -- Handle length from 10 - 15”.
• F16 -- Handle length from 15 - 40”.
• In all cases, the value is for one arm action
and includes the time either to align the dial
or to await the click.
Tool Placement
As a general rule, the “P” parameter
for the Fasten / Loosen tools will
carry the index values indicated in the
Tool Placement table.
Tool Use Frequencies Example
An operator picks up a screwdriver
within reach and tightens two screws
with six wrist turns each and then sets
aside the screwdriver.
Multiple Tool Actions Example
A screw is fastened with a
screwdriver. A total of 18 spins and
4 wrist turns are necessary.
Multiple Tool Actions Example
A nut is fastened with a ratchet
wrench. Following 3 wrist cranks, 6
wrist turns are applied.
Tool Use Example -- F / L
Obtain a nut from a parts bin located
within reach, place it on a bolt, and
run it down with 7 finger actions.
Tool Use Example - F / L
Pick up a small screwdriver that lies
within reach and fasten a screw with
6 finger actions, and set aside the
tool.
Tool Use Example -- F / L
Obtain a power wrench that lies
within reach, run down four 3/8”
bolts located 6” apart, and set aside
wrench.
Tool Use Example -- F / L
From a position in front of an engine
lathe, obtain a large T-wrench located
5 steps away and loosen one bolt on a
chuck on the engine lathe with both
hands using five arm actions. Set
aside the T-wrench from the machine,
but within reach.
Cut
• Pliers
• Scissors
• Knife
Pliers
• C3 -- Soft:

Using pliers with one hand
and making one cut.
• C6 -- Medium: Using pliers with one hand
and making two cuts.
• C10 -- Hard: Using the pliers with two
hands and making two cuts.
Pliers
• C1 -- Grip:Using pliers to hold an item and
subsequently release the pressure on the item.
Close pliers jaws on two wires
• C6 -- Twist:
and use two twisting actions to join the wires
together.
Close pliers jaws on wire
• C6 -- Form Loop:
and using two actions, bend loop in end of wire.
Use pliers to bend
• C16 -- Secure Cotter Pin:
both legs on cotter pin to hold it in position.
Index values using scissors are
selected according to the number
of cuts used.
Tool Use Example -- Cut
An operator picks up a knife from a
workbench two steps away, makes
one cut across the top of a cardboard
box, and sets aside the knife on the
workbench.
Tool Use Example -- Cut
During a sewing operation, a tailor
cuts the thread from the machine
before setting aside the finished
garment. The scissors are held in the
palm during the sewing operation.
Tool Use Example -- Cut
Following a soldering operation, an
electronic component assembler must
cut off the excess small - gauge wire
from a terminal connection. The
pliers are located within reach.
Tool Use Example -- Cut
An electrician working on
transmission lines takes a pair of
pliers from the tool belt and cuts off a
piece of line. The line is heavy, such
that 2 hands are needed to cut
through the wire.
Surface Treat
Surface Treat covers the activities
aimed at cleaning material or
particles from or applying a
substance, coating, or finish to the
surface of an object.
Index values for cleaning tools
are based primarily on the
amount of surface area (sq. ft.)
cleaned.
Tool Use Example: Surface Treat
Before marking off a piece of sheet
metal (4 ft sq) for a cutting operation,
the operator takes a rag from his or
her back pocket and wipes an oily
film from the surface.
Tool Use Example: Surface Treat
Following a sanding operation, an
operator standing at a workbench picks
up a brush located within reach and
brushes the dust and chips from the
working are (6 ft sq), and then sets
aside the brush on the workbench.
Tool Use Example: Surface Treat
Before assembling three components to
a casting, the operator obtains an air
hose (within reach) and blows the small
metal filings left from the previous
machining operation out of 3 cavities.
The distance between cavities is > 2”.
M10 -- Profile Gauge
Used to compare the profile of an
object to that of the gauge.
M16 -- Fixed Scale
Covers the use of a linear (yardstick)
or angular (protractor) measuring
device.
M16 -- Calipers < 12”
Covers the use of vernier calipers
with a capacity to 12 inches.
M24 -- Feeler Gauge
Covers the use of a gauge to measure
the gap between two points.
M32 -- Steel Tape < 6 Ft.
This parameter covers the use of a
steel tape to measure, from a fixed
position, between two points.
Micrometers < 4”
• M32 -- Depth measurement
• M42 -- Outside diameter measurement
• M54 -- Inside diameter measurement
Tool Use Example -- Measure
Before welding two steel plates, a
welder obtains a square and checks
the angle between the plates to see
that it is correct. The square (a
profile gauge) is located three steps
away on a workbench.
Tool Use Example -- Measure
Following a turning operation, a
machinist checks the diameter of a
small shaft with a micrometer. The
micrometer is located on and returned
to the workbench 2 steps away.
Measure Supplemental Values
• M6 -- Snap gauge; OD to 2”
• M10 -- Snap gauge; OD to 4”
• M16 -- Plug gauge; go/no-go to 1”
• M24 -- Thread gauge; go/no-go int/ext to 1”
• M24 -- Vernier Depth Gauge; to 6”
• M42 -- Thread gauge; go/no-go int/ext 1-2”
Record
• Write:

covers routine clerical activities.
» Index value based on number of digits or words

• Mark:

covers marking object
» Each mark is considered a “digit”
Tool Use Example -- Record
After finishing an assigned job, the
operator picks up a clipboard and
pencil (simo) from the workbench,
fills out the completion date on the
job card, and signs his name. He then
returns the board and pencil to the
workbench.
Tool Use Example -- Record
To order a part, a clerk takes a pencil
from her shirt pocket and writes a sixdigit part number on the requisition
form on her desk. She then clips the
pencil back in her pocket.
Tool Use Example -- Record
Part of a packing operation involves
identifying the components in the
carton. This involves picking up a felt
marker (within reach) and marking a
6-digit number on the container.
Think
Most of the time “think” occurs
internal to the manual work, but there
are times it must be considered as a
separate activity.
Think -- Inspect
The type of inspection work we’re
looking at here is that where only
simple “yes / no” decisions are
quickly made on the existence of a
particular defect in a part.
Inspect -- Read
• The column Digits or Single Words is to be used
for reading technical data (part numbers, codes,
quantities, etc.)
• The column Text of Words is used when
analyzing situations in which the operator reads
words arranged into sentences or paragraphs.
• Other, specialized, values exist for reading gauges,
scales, date/time, & tables.
Tool Use Example -- Think
During a testing operation, an
electronics technician picks up a
meter lead, places it on a terminal,
and reads voltage off the meter scale.
The lead is then put aside.
Tool Use Example -- Think
Prior to starting a turning operation, an
operator picks up a work order set and
reads a paragraph that describes the
method to be followed. It contains an
average of 30 words. The operator then
places the set aside on the workbench.

Más contenido relacionado

La actualidad más candente

SBS - SMED Training (Set Up Reduction)
SBS - SMED Training (Set Up Reduction)SBS - SMED Training (Set Up Reduction)
SBS - SMED Training (Set Up Reduction)
Chris Cummins
 
History of Lean manufacturing & TPS 14 Principal
History of Lean manufacturing & TPS 14 PrincipalHistory of Lean manufacturing & TPS 14 Principal
History of Lean manufacturing & TPS 14 Principal
Sumon Kumar Kundu
 
Work Measurement and Operational Effectiveness
Work Measurement and Operational EffectivenessWork Measurement and Operational Effectiveness
Work Measurement and Operational Effectiveness
grubinm
 
standardised-work-overview-and-documents
standardised-work-overview-and-documentsstandardised-work-overview-and-documents
standardised-work-overview-and-documents
Angelo Del Grosso
 

La actualidad más candente (20)

SBS - SMED Training (Set Up Reduction)
SBS - SMED Training (Set Up Reduction)SBS - SMED Training (Set Up Reduction)
SBS - SMED Training (Set Up Reduction)
 
Method study
Method studyMethod study
Method study
 
Single Minute Exchange of Dies (SMED)
Single Minute Exchange of Dies (SMED)Single Minute Exchange of Dies (SMED)
Single Minute Exchange of Dies (SMED)
 
SMED
SMEDSMED
SMED
 
PPT ON SINGLE MINUTE EXCHANGE OF DIES (SMED)
PPT ON SINGLE MINUTE EXCHANGE OF DIES (SMED)PPT ON SINGLE MINUTE EXCHANGE OF DIES (SMED)
PPT ON SINGLE MINUTE EXCHANGE OF DIES (SMED)
 
PREDETERMINED MOTION TIME SYSTEM (PMTS).pptx
PREDETERMINED MOTION TIME SYSTEM (PMTS).pptxPREDETERMINED MOTION TIME SYSTEM (PMTS).pptx
PREDETERMINED MOTION TIME SYSTEM (PMTS).pptx
 
History of Lean manufacturing & TPS 14 Principal
History of Lean manufacturing & TPS 14 PrincipalHistory of Lean manufacturing & TPS 14 Principal
History of Lean manufacturing & TPS 14 Principal
 
Work measurement
Work measurementWork measurement
Work measurement
 
Time study part 2
Time study part 2Time study part 2
Time study part 2
 
Line balancing
Line balancingLine balancing
Line balancing
 
Lean Manufacturing
Lean ManufacturingLean Manufacturing
Lean Manufacturing
 
Assembly Line Balancing | Case Study
Assembly Line Balancing | Case StudyAssembly Line Balancing | Case Study
Assembly Line Balancing | Case Study
 
Identify 7 Wastes
Identify 7 WastesIdentify 7 Wastes
Identify 7 Wastes
 
Micro-Macro Motion Study
Micro-Macro Motion StudyMicro-Macro Motion Study
Micro-Macro Motion Study
 
Example flow process charts
Example flow process chartsExample flow process charts
Example flow process charts
 
Methods-Time Measurement and Functional Capacity Evaluation 041610
Methods-Time Measurement and Functional Capacity Evaluation 041610Methods-Time Measurement and Functional Capacity Evaluation 041610
Methods-Time Measurement and Functional Capacity Evaluation 041610
 
timeSSD® the MTM-2 based ready to use elements with Standard Times
timeSSD® the MTM-2 based ready to use elements with Standard Times timeSSD® the MTM-2 based ready to use elements with Standard Times
timeSSD® the MTM-2 based ready to use elements with Standard Times
 
Work Measurement and Operational Effectiveness
Work Measurement and Operational EffectivenessWork Measurement and Operational Effectiveness
Work Measurement and Operational Effectiveness
 
standardised-work-overview-and-documents
standardised-work-overview-and-documentsstandardised-work-overview-and-documents
standardised-work-overview-and-documents
 
SMED Final
SMED FinalSMED Final
SMED Final
 

Similar a Most complete

CS670_Presentation
CS670_PresentationCS670_Presentation
CS670_Presentation
Radha K
 
PHYSICAL-EDUCATION-PRACTICAL .docx
PHYSICAL-EDUCATION-PRACTICAL .docxPHYSICAL-EDUCATION-PRACTICAL .docx
PHYSICAL-EDUCATION-PRACTICAL .docx
bablu77
 

Similar a Most complete (12)

all about basis of -Motion-Economy.pptx
all about  basis of -Motion-Economy.pptxall about  basis of -Motion-Economy.pptx
all about basis of -Motion-Economy.pptx
 
Balance and coordination in human bodies
Balance and coordination in human bodiesBalance and coordination in human bodies
Balance and coordination in human bodies
 
Chronocycle graph
Chronocycle graphChronocycle graph
Chronocycle graph
 
semi supervised Learning and Reinforcement learning (1).pptx
 semi supervised Learning and Reinforcement learning (1).pptx semi supervised Learning and Reinforcement learning (1).pptx
semi supervised Learning and Reinforcement learning (1).pptx
 
Motion study on shopfloor and design of work
Motion study on shopfloor and design of workMotion study on shopfloor and design of work
Motion study on shopfloor and design of work
 
leaps-fugl-meyer-manual-de-utilizac3a7c3a3o-Copy.pdf
leaps-fugl-meyer-manual-de-utilizac3a7c3a3o-Copy.pdfleaps-fugl-meyer-manual-de-utilizac3a7c3a3o-Copy.pdf
leaps-fugl-meyer-manual-de-utilizac3a7c3a3o-Copy.pdf
 
working_at_height_regulations_presentation.ppt
working_at_height_regulations_presentation.pptworking_at_height_regulations_presentation.ppt
working_at_height_regulations_presentation.ppt
 
working_at_height_regulations_presentation.ppt
working_at_height_regulations_presentation.pptworking_at_height_regulations_presentation.ppt
working_at_height_regulations_presentation.ppt
 
working_at_height_regulations_presentation.pptx
working_at_height_regulations_presentation.pptxworking_at_height_regulations_presentation.pptx
working_at_height_regulations_presentation.pptx
 
Measurement of-speed
Measurement of-speedMeasurement of-speed
Measurement of-speed
 
CS670_Presentation
CS670_PresentationCS670_Presentation
CS670_Presentation
 
PHYSICAL-EDUCATION-PRACTICAL .docx
PHYSICAL-EDUCATION-PRACTICAL .docxPHYSICAL-EDUCATION-PRACTICAL .docx
PHYSICAL-EDUCATION-PRACTICAL .docx
 

Último

Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 

Último (20)

Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 

Most complete

  • 1. MOST Maynard Operation Sequence Technique Work Measurement System By Yogesh Nakhate
  • 2. Methods - Time Measurement H. B. Maynard was one of three persons instrumental in the creation of MTM.
  • 3. Kjell Zandin, while working in the Swedish Division of H. B. Maynard in the late 1960’s, detected striking similarities in the sequence of MTM defined motions whenever an object was handled.
  • 4. Under MOST, the primary work units are no longer basic motions as in MTM, but collections of these basic motions dealing with moving object.
  • 5. MOST makes the assumption that to move an object, a standard sequence of events occurs.
  • 6. Under MOST, objects can be moved in only one of two ways: • They are picked up and moved freely through space -- the GENERAL MOVE. • They are moved and maintain contact with another surface -- the CONTROLLED MOVE.
  • 7. The MOST Family • • • • Basic MOST -- General Operations Mini MOST -- Repetitive Operations Maxi MOST -- Non-repetitive Operations Clerical MOST -- Clerical Operations
  • 8. Maxi MOST is used to analyze operations that are likely to be performed less than 150 times per week.
  • 9. Basic MOST is used for operations that are likely to be performed more than 150 times but less than 1500 times per week.
  • 10. Mini MOST is used to analyze operations likely to be repeated more than 1500 times per week.
  • 11. The Decision Diagram provides a simple procedure for selecting the most appropriate MOST Work Measurement System to use.
  • 12. The MOST Decision Diagram is based on +/- 5% accuracy and a 95% confidence level.
  • 13. System Selection Charts may be used in lieu of the Decision Diagram for choosing the best MOST Work Measurement System to use.
  • 14. The MOST Standard Form provides the analyst with a simple, consistent format for analyzing work using the method.
  • 15. It should be possible to complete a MOST analysis by observing two complete cycles of work in slow motion.
  • 16. If the method is well established and the analyst knows the operation and conditions, the Basic MOST calculations can be made from the office and used to predict the times for a new procedure.
  • 17. General Rules for Using MOST • Each sequence model is fixed. • No letter may be added or omitted for the General or Controlled Move Sequence. • In general, no letter may be added or omitted for the Tool Use Sequence, with a few exceptions.
  • 18. TMU TMU = Time Measurement Unit 1 TMU = 0.0006 minutes 1 TMU = 0.036 seconds
  • 19. How it works • The purpose of the MOST system is to calculate the cycle time for an operation based on Pre-determined time study data.
  • 20. Doing the math • A typical MOST work sequence code would look like this: • A10 B6 G3 A6 P3 A0 • Step 1 add up all the subscript numbers 10+6+3+6+3+0= 28 (the subscript is the MOST index value) • Step 2 Multiple the sum of the index by 10 – This answer gives the TMU equivalent 28 x 10 = 280 TMU • Step 3 Convert to time 280 TMU * .036 seconds = 10.08 seconds 1 TMU
  • 22. Four subactivities constitute the General Move Sequence • “A” Action Distance (mainly horizontal) • “B” Body Motion (mainly vertical) • “G” Gain Control • “P” Placement
  • 23. Roughly 50% of all manual work occurs as a General Move. The percentage runs higher for assembly and material handling and lower for machine shop operations.
  • 24. The General Move follows a fixed sequence of steps: • Reach, either directly or in conjunction with body motions or steps. • Gain control of the object. • Move the object, as in “reach”. • Place the object in temporary or final position. • Return to the workplace.
  • 25. The General Move Sequence Model ABG ABP A
  • 26. Action Distance (A) This parameter is used to analyze all spatial movement or actions of the fingers, hands, and/or feet.
  • 27. A0 < 2 Inches This is any displacement of the fingers, hands, and/or feet a distance of 2 inches or less.
  • 28. A1 Within Reach Actions that are confined to an area described by the arc of the outstretched arm pivoted about the shoulder.
  • 29. A3 One to Two Steps The trunk of the body is shifted or displaced by walking, stepping to the side, or turning the body around using 1 or 2 steps.
  • 30. More Than 2 Steps Used with Action Distance data table to cover longer movements.
  • 31. Body Motion (B) This parameter is used to analyze either vertical motions of the body or the actions necessary to overcome an obstruction or impairment to body movement.
  • 32. B3 -- Bend & Arise, 50% Occurrence Bend & Arise is required only 50% of the time during a repetitive activity.
  • 33. B3 -- Sit or Stand without Moving Chair When the body is simply lowered into a chair from an erect position, without hand/foot motions required to manipulate the chair.
  • 34. B6 -- Bend & Arise From an erect standing position, the trunk of the body is lowered by bending from the waist and/or knees to allow the hands to reach below the knees.
  • 35. B10 -- Sit or Stand A series of several hand, foot, and body motions to move a stool / chair into position followed by the body sitting or standing.
  • 36. B16 -- Stand and Bend This is a case where a sitting person must stand up and walk to a location to gain control of an object placed below knee level, where a Bend & Arise is required.
  • 37. B16 -- Bend & Sit This applies when gaining control of an object requires a Bend & Arise followed by a Sit prior to placing the object.
  • 38. B16 -- Climb On or Off This parameter variant covers climbing on or off a work platform on any raised surface (~3 ft) using a series of hand and body motions to lift or lower the body.
  • 39. B16 -- Passing Through Door Passing through a door consists of reaching for and turning the handle, opening the door, walking through the door, and subsequently closing the door.
  • 40. Gain Control (G) This parameter is used to analyze all manual motions employed to obtain complete manual control of an object(s) and to subsequently relinquish that control.
  • 41. G1 -- Light Object Gain control of an object by grasping it as long as no difficulty is encountered.
  • 42. G1 -- Light Objects Simo One hand gains control of a light object while the other hand obtains another light object.
  • 43. G3 -- Light Object(s) Non-Simo While one hand is grasping an object, the other hand must wait before it can grasp the other object.
  • 44. G3 -- Heavy or Bulky In grasping a heavy or bulky object there is a delay between when the object is grasped and when it begins to move due to weight, bulk, etc.
  • 45. G3 -- Blind or Obstructed Access to the object is restricted because an obstacle prevents the operator from seeing the object or creates an obstruction to the hand/fingers in attempting to gain control.
  • 46. G3 -- Disengage An application of muscular force to free an object from its surroundings typified by a need to overcome resistance followed by sudden movement and recoil of the object.
  • 47. G3 -- Interlocked Interlocked means the object is intermingled or tangled with other objects and must be separated or worked free before reaching control.
  • 48. G3 -- Collect Gain control of several objects jumbled together in a pile or spread out on a surface.
  • 49. Placement (P) This parameter is used to analyze actions at the final stage of an object’s displacement to align, orient, and/or engage the object with other object(s) before control of the object is relinquished.
  • 50. P0 -- Pickup Objects This is “placement” in which no placement occurs. The object is picked up and held.
  • 51. P0 -- Toss Object(s) Another “placement” where placement does not occur. The object is released during the “action distance” (A) parameter without placing motions or pause to point the object toward the target.
  • 52. P1 -- Lay Aside The object is placed in an appropriate locations with no apparent aligning or adjusting motions.
  • 53. P1 -- Loose Fit The object is placed in a more specific location than described by the Lay Aside parameter, but with tolerances so loose that only a modest amount of control is needed for placement.
  • 54. P3 -- Adjustments Adjustments are defined as the corrective actions occurring at the point of placement, and recognized by obvious efforts, hesitations, or correcting motions to align, orient, and/or engage the object.
  • 55. P3 -- Light Pressure Because of close tolerances or the nature of the placement, the application of muscular force is needed to seat the object.
  • 56. P3 -- Double With “double”, two distinct phases occur during the total placing activity.
  • 57. P3 -- Loose Fit Blind In this case the operator must feel around for the placement location before a loose placement can occur.
  • 58. P6 -- Care or Precision Extreme care is needed to place an object within a closely defined relationship with another object, and characterized by the obvious slow motion of the placement due to the high degree of concentration required.
  • 59. P6 -- Heavy Pressure As a result of very tight tolerances, a high degree of muscular force is needed to engage the object.
  • 60. P6 -- Blind or Obstructed Accessibility to the point of placement is restricted because an obstacle prevents the operator from seeing the point of placement, or creates an obstruction to the hand/fingers when attempting to place the object.
  • 61. P6 -- Intermediate Moves Several intermediate moves of the object are required prior to placing.
  • 62. General Move Example From a stack located 10 feet away, a heavy object must be picked up and moved 5 feet and placed on top of a workbench with some adjustments.
  • 63. General Move Example An assembly worker gets a handful of washers (6) from a bin located within reach and puts one on each of six bolts located within reach, which are four inches apart.
  • 64. General Move Example A worker gains control of two fittings that are within reach and located more than two inches apart, one at a time, and places them on separate trays that are within reach and located less than 2 inches apart.
  • 66. Three new subactivities are found in the Controlled Move Sequence “M” Move Controlled “X” Process Times “I” Align
  • 67. The Controlled Move Sequence describes the manual displacement of an object over a “controlled” path.
  • 68. The Controlled Move follows a fixed sequence of steps: Reach, either directly or in conjunction with body motions or steps. Gain control of the object. Move the object over a controlled path. Allow time for the process to occur. Align the object after the move/process. Return to the workplace.
  • 69. A Controlled Move is performed under the following conditions: • The object or device is restrained by its attachment to another object • It’s controlled during the move by the contact it makes with the surface of another object. • It must be moved on a controlled path to accomplish the activity.
  • 70. Move Controlled (M) This parameter is used to analyze all manually guided movements or actions of an object over a controlled path.
  • 71. M1 -- One Stage < 12” Object displacement is achieved by a movement of the fingers/hands/feet not exceeding 12 inches.
  • 72. M1 -- Button/Switch/Knob The device is actuated by a short pressing, moving, or rotating action of the fingers/hands/wrist/feet.
  • 73. M3 -- One Stage > 12” Object displacement is achieved by a movement of the hands, arms, or feet, plus body motion, exceeding 12 inches.
  • 74. M3 -- Resistance, Seat/Unseat Conditions surrounding the object or device require that resistance be overcome prior to, during, or after the Controlled Move.
  • 75. M3 -- High Control This parameter reflects the need to align an object using a high degree of visual concentration.
  • 76. M3 -- Two Stages < 12” An object is displaced in two directions or increments a distance not exceeding 12 inches per stage without relinquishing control.
  • 77. M6 -- Two Stages > 12” -- OR-With One - Two Steps An object is displaced in two directions or increments a distance exceeding 12 inches per stage without relinquishing control.
  • 78. M10 -- Three to Four Stages --- OR --3 - 5 Steps An object is displaced three or four directions or increments without relinquishing control or pushed/pulled on a conveyor belt.
  • 79. M16 -- Move Controlled with 6 9 Steps Push or pull an object(s) using 6 - 9 steps.
  • 80. “Cranking” action is performed by moving the fingers, hand, wrist, and/or forearm in a circular path more than half a revolution. Less than this is considered a Push/Pull/Pivot.
  • 81. Push - Pull Cranking If cranking results in a back - and forth movement of the elbow instead of pivoting at the wrist and / or elbow, it is considered push - pull cranking.
  • 82. Pivotal cranking is more efficient than push - pull cranking, and should be used whenever possible.
  • 83. Process Time Process time is that portion of work controlled by electronic or mechanical devices / machines, not by manual actions.
  • 84. As a rule of thumb, the process time expressed as an index number should not exceed 20% of the cycle time.
  • 85. Alignment refers to manual actions following the Move Controlled or at the conclusion of process time to achieve an alignment or specific orientation of objects.
  • 86. Within the area of normal vision (a 4” diameter circle), the alignment of an object to two points can be performed without any additional “eye times”.
  • 87. I1 -- To One Point Following a controlled move, an object is aligned to one point.
  • 88. I3 -- To Two Points < 4” Apart The object is aligned to points not more than 4 inches apart following a Controlled Move.
  • 89. I6 -- To Two Points > 4” Apart The object is aligned to points more than 4 inches apart following a Controlled Move.
  • 90. I16 -- Precision The object is aligned to several points with extreme care or precision following a Controlled Move.
  • 91. I3 -- To Workpiece A Machining Operations parameter where the machine tool is aligned to the workpiece prior to making a cut.
  • 92. I6 -- To Scale Mark Another Machining Operations parameter, the machine tool is aligned to a scale mark prior to making a cut.
  • 93. I10 -- To Indicator Dial The third Machining Operations parameter, the machine tool is aligned to the correct indicator dial setting prior to making a cut.
  • 94. Alignment of Nontypical Objects Nontypical objects are those that are especially large, flimsy, sharp, or require special handling.
  • 95. Alignment of a nontypical object normally takes place as a series of short correcting motions (< 2”) following the Controlled Move, usually with the assistance of stops, guides, or marks.
  • 96. Controlled Move Example From a position in front of a lathe, the operator takes two steps to the side, turns the handwheel two rotations, and sets the cutting tool by aligning the handwheel dial to a scale mark.
  • 97. Controlled Move Example A milling machine operator walks four steps to the quick-feeding cross lever and engages the feed. The machine time following the 4” lever action is 2.5 seconds.
  • 98. Controlled Move Example A material handler takes hold of a heavy carton with both hands and pushes it 18” across conveyor rollers.
  • 99. Controlled Move Example Using the foot pedal to activate the machine, a sewing machine operator makes a stitch requiring 3.5 seconds process time. The operator must reach the pedal with the foot.
  • 100. The Tool Use Sequence is a combination of the General Move and Controlled Move activities.
  • 101. Tools not listed in the tables that are similar to a tool in the table can use their time values for analysis.
  • 102. Tool Use Phases • • • • • Get Tool (Object) Put Tool (Object) in Place Use Tool Put Tool (Object) Aside Return
  • 103. The Tool Use Sequence model makes use of the “A”, “B”, “G”, and “P” parameters, which are all familiar to us, plus the new Tool Use parameters.
  • 104. The Tool Use Sequence Model ABG ABP * ABP A * consists of the “tool use” parameters F, L, C, S, M, R, & T.
  • 105. Tool Use Sequence Parameters • • • • • • • F -- Fasten L -- Loosen C -- Cut S -- Surface Treat M -- Measure R -- Record T -- Think
  • 106. Fasten / Loosen Manually or mechanically assembling or disassembling one object to or from another using the fingers, a hand, or hand tools.
  • 107. Index values for “F” and “L” are determined by the body member performing the action.
  • 108. Finger Spins are the movement of the fingers and thumb to run a threaded fastener down or out, and include a light application of pressure for seating / unseating the fastener.
  • 109. Wrist Actions • • • • Wrist Turn Wrist Stroke (with reposition) Wrist Crank Tap
  • 110. Wrist Turn During a wrist turn, the tool is not removed from the fastener during use and not repositioned on the fastener after an action.
  • 111. Wrist Stroke (with reposition) In this tool use, after each stroke with the tool and before making each subsequent stroke, the tool must be removed from the fastener and repositioned.
  • 112. Wrist Crank Wrist crank applies to tools that are spun or rotated around a fastener while remaining affixed to it.
  • 113. Tap This parameter covers the use of a hammer (or similar device) to exert short tapping motions by pivoting the hand at the wrist.
  • 114. Arm Actions • • • • • Arm Turn Arm Stroke (with reposition) Arm Crank Strike T-Wrench (two hands)
  • 115. Arm Turn(s) Arm Turn(s), applying to ratchets, occur when the tool is held near the end of the handle, resulting in a pulling action on the tool.
  • 116. Arm Stroke (with reposition) Following each stroke or pull with the tool, it must be removed and repositioned again on the fastener before making a subsequent pull.
  • 117. Arm Crank The tool is used with a circular movement of the forearm as it is pivoted at the elbow or the shoulder to push or crank the tool around the fastener.
  • 118. Strike Strike is the use of a hammer with an up and - down motion performed with the hand as it is pivoted from the elbow.
  • 119. T-Wrench (two hands) A two - handed arm action, including the reach for each hand to the opposite handle before making the next turn, and involving a 180 degree turn of the T-wrench with each action.
  • 120. Power Tools The use of electric and pneumatic power wrenches to run a standard threaded fastener down or out a length 1 1/2 times the bolt diameter.
  • 121. The time values generated by the data card for power tool use must be compared to the times generated by the tools used in the shop, and adjusted if necessary.
  • 122. Torque Wrenches • F6 -- Torque wrench handle length to 10”. • F10 -- Handle length from 10 - 15”. • F16 -- Handle length from 15 - 40”. • In all cases, the value is for one arm action and includes the time either to align the dial or to await the click.
  • 123. Tool Placement As a general rule, the “P” parameter for the Fasten / Loosen tools will carry the index values indicated in the Tool Placement table.
  • 124. Tool Use Frequencies Example An operator picks up a screwdriver within reach and tightens two screws with six wrist turns each and then sets aside the screwdriver.
  • 125. Multiple Tool Actions Example A screw is fastened with a screwdriver. A total of 18 spins and 4 wrist turns are necessary.
  • 126. Multiple Tool Actions Example A nut is fastened with a ratchet wrench. Following 3 wrist cranks, 6 wrist turns are applied.
  • 127. Tool Use Example -- F / L Obtain a nut from a parts bin located within reach, place it on a bolt, and run it down with 7 finger actions.
  • 128. Tool Use Example - F / L Pick up a small screwdriver that lies within reach and fasten a screw with 6 finger actions, and set aside the tool.
  • 129. Tool Use Example -- F / L Obtain a power wrench that lies within reach, run down four 3/8” bolts located 6” apart, and set aside wrench.
  • 130. Tool Use Example -- F / L From a position in front of an engine lathe, obtain a large T-wrench located 5 steps away and loosen one bolt on a chuck on the engine lathe with both hands using five arm actions. Set aside the T-wrench from the machine, but within reach.
  • 132. Pliers • C3 -- Soft: Using pliers with one hand and making one cut. • C6 -- Medium: Using pliers with one hand and making two cuts. • C10 -- Hard: Using the pliers with two hands and making two cuts.
  • 133. Pliers • C1 -- Grip:Using pliers to hold an item and subsequently release the pressure on the item. Close pliers jaws on two wires • C6 -- Twist: and use two twisting actions to join the wires together. Close pliers jaws on wire • C6 -- Form Loop: and using two actions, bend loop in end of wire. Use pliers to bend • C16 -- Secure Cotter Pin: both legs on cotter pin to hold it in position.
  • 134. Index values using scissors are selected according to the number of cuts used.
  • 135. Tool Use Example -- Cut An operator picks up a knife from a workbench two steps away, makes one cut across the top of a cardboard box, and sets aside the knife on the workbench.
  • 136. Tool Use Example -- Cut During a sewing operation, a tailor cuts the thread from the machine before setting aside the finished garment. The scissors are held in the palm during the sewing operation.
  • 137. Tool Use Example -- Cut Following a soldering operation, an electronic component assembler must cut off the excess small - gauge wire from a terminal connection. The pliers are located within reach.
  • 138. Tool Use Example -- Cut An electrician working on transmission lines takes a pair of pliers from the tool belt and cuts off a piece of line. The line is heavy, such that 2 hands are needed to cut through the wire.
  • 139. Surface Treat Surface Treat covers the activities aimed at cleaning material or particles from or applying a substance, coating, or finish to the surface of an object.
  • 140. Index values for cleaning tools are based primarily on the amount of surface area (sq. ft.) cleaned.
  • 141. Tool Use Example: Surface Treat Before marking off a piece of sheet metal (4 ft sq) for a cutting operation, the operator takes a rag from his or her back pocket and wipes an oily film from the surface.
  • 142. Tool Use Example: Surface Treat Following a sanding operation, an operator standing at a workbench picks up a brush located within reach and brushes the dust and chips from the working are (6 ft sq), and then sets aside the brush on the workbench.
  • 143. Tool Use Example: Surface Treat Before assembling three components to a casting, the operator obtains an air hose (within reach) and blows the small metal filings left from the previous machining operation out of 3 cavities. The distance between cavities is > 2”.
  • 144. M10 -- Profile Gauge Used to compare the profile of an object to that of the gauge.
  • 145. M16 -- Fixed Scale Covers the use of a linear (yardstick) or angular (protractor) measuring device.
  • 146. M16 -- Calipers < 12” Covers the use of vernier calipers with a capacity to 12 inches.
  • 147. M24 -- Feeler Gauge Covers the use of a gauge to measure the gap between two points.
  • 148. M32 -- Steel Tape < 6 Ft. This parameter covers the use of a steel tape to measure, from a fixed position, between two points.
  • 149. Micrometers < 4” • M32 -- Depth measurement • M42 -- Outside diameter measurement • M54 -- Inside diameter measurement
  • 150. Tool Use Example -- Measure Before welding two steel plates, a welder obtains a square and checks the angle between the plates to see that it is correct. The square (a profile gauge) is located three steps away on a workbench.
  • 151. Tool Use Example -- Measure Following a turning operation, a machinist checks the diameter of a small shaft with a micrometer. The micrometer is located on and returned to the workbench 2 steps away.
  • 152. Measure Supplemental Values • M6 -- Snap gauge; OD to 2” • M10 -- Snap gauge; OD to 4” • M16 -- Plug gauge; go/no-go to 1” • M24 -- Thread gauge; go/no-go int/ext to 1” • M24 -- Vernier Depth Gauge; to 6” • M42 -- Thread gauge; go/no-go int/ext 1-2”
  • 153. Record • Write: covers routine clerical activities. » Index value based on number of digits or words • Mark: covers marking object » Each mark is considered a “digit”
  • 154. Tool Use Example -- Record After finishing an assigned job, the operator picks up a clipboard and pencil (simo) from the workbench, fills out the completion date on the job card, and signs his name. He then returns the board and pencil to the workbench.
  • 155. Tool Use Example -- Record To order a part, a clerk takes a pencil from her shirt pocket and writes a sixdigit part number on the requisition form on her desk. She then clips the pencil back in her pocket.
  • 156. Tool Use Example -- Record Part of a packing operation involves identifying the components in the carton. This involves picking up a felt marker (within reach) and marking a 6-digit number on the container.
  • 157. Think Most of the time “think” occurs internal to the manual work, but there are times it must be considered as a separate activity.
  • 158. Think -- Inspect The type of inspection work we’re looking at here is that where only simple “yes / no” decisions are quickly made on the existence of a particular defect in a part.
  • 159. Inspect -- Read • The column Digits or Single Words is to be used for reading technical data (part numbers, codes, quantities, etc.) • The column Text of Words is used when analyzing situations in which the operator reads words arranged into sentences or paragraphs. • Other, specialized, values exist for reading gauges, scales, date/time, & tables.
  • 160. Tool Use Example -- Think During a testing operation, an electronics technician picks up a meter lead, places it on a terminal, and reads voltage off the meter scale. The lead is then put aside.
  • 161. Tool Use Example -- Think Prior to starting a turning operation, an operator picks up a work order set and reads a paragraph that describes the method to be followed. It contains an average of 30 words. The operator then places the set aside on the workbench.