SlideShare una empresa de Scribd logo
1 de 73
Technological University of the PhilippinesCollege of Industrial TechnologyMechanical Engineering Technology
		MEMBERSJohn Ephraim C.  FereiraJayson GonzalesShane GutierrezJerry GuecoJomari MenesRovin MagayReinier Karl Montas
FORMING PROCESS
Rolling Extrusion Shearing Spinning Deep Drawing Forging
Rolling
Schematic drawing of rollingrolling       Cold rolling Hot rolling
Iron and steel The earliest rolling mills were slitting mills, which were introduced from what is now Belgium to England in 1590. These passed flat bars between rolls to form a plate of iron, which was then passed between grooved rolls (slitters) to produce rods of iron. The first experiments at rolling iron for tinplate took place about 1670. In 1697, Major John Hanbury erected a mill at Pontypool to roll 'Pontypool plates'—black plate. Later this began to be rerolled and tinned to make tinplate.The earlier production of plate iron in Europe had been in forges, not rolling mills History
The slitting mill was adapted to producing hoops (for barrels) and iron with a half-round or other sections by means that were the subject of two patents of c. 1679.[citation needed] Some of the earliest literature on rolling mills can be traced back to Christopher Polhem in 1761 in PatriotistaTestamente, where he mentions rolling mills for both plate and bar iron.[14] He also explains how rolling mills can save on time and labor because a rolling mill can produce 10 to 20 and still more bars at the same time which is wanted to tilt only one bar with a hammer.[citation needed] A patent was granted to Thomas Blockley of England in 1759 for the polishing and rolling of metals. Another patent was granted in 1766 to Richard Ford of England for the first tandem mill.[15] A tandem mill is one in which the metal is rolled in successive stands; Ford’s tandem mill was for hot rolling of wire rods.
In rolling , material is passed through the gap between two rotating rollers that squeeze the material as it passes between them. The rolled material emerges with a thickness roughly equal to the gap between the rollers. When the rollers are cylindrical, rolling produces material in the form of plate or sheet. Sheet steel and aluminium for the bodies of cars and domestic appliances is made this way. Rolled sheet is often termed a ‘semifinished’ product, as it requires further processing to shape it into the final product.
Rolling
Rolling is not restricted to flat sheets, though. If the desired product has a contoured surface, then by using profiled rollers the contour can be rolled on. If the surface pattern needs to be deeper than is possible during one rolling pass then multiple rollers can be used; for example, railway tracks are made by rolling between pairs of progressively deeper contoured rollers. The various stages for rails are shown in Figure 33.
Figure 33: Stages in rolling railway track Figure 30: Extrusion bridge die making a hollow section product. Note that in the picture the die has been split to show the material passing through it. In reality, the die and the ring fit together, with a gap for the extruded material to flow through
In common with other forming processes, metals may be hot or cold rolled. The significant differences between hot and cold rolling are in the amount of energy needed to roll a given volume of material and in the resulting microstructures. The cooler the metal, the higher its yield stress and the more energy has to be supplied in order to shape it. As in extrusion, metals in large lumps are often hot rolled at homologous temperatures above 0.6. At this temperature the yield stress and work hardening are reduced. Railway lines require hot rolling in order to achieve the large change in shape from a rectangular bar. However, a major disadvantage of hot rolling is that the surface of the material becomes oxidised by the air, resulting in a poor surface finish.
If the metal is ductile then it may be cold rolled using smaller strains. This has some advantages: the work hardening at these temperatures can give the product a useful increase in strength. During cold rolling, oxidation is reduced and a good surface finish can be produced by using polished rollers. So, cold rolling is a good finishing treatment in the production of plate and sheet. The sheets of steel for car bodies are finished by cold rolling because a good surface finish is essential in this product.
Extrusion Extruded Aluminums
The process begins by heating the stock material (for hot or warm extrusion). It is then loaded into the container in the press. A dummy block is placed behind it where the ram then presses on the material to push it out of the die. Afterward the extrusion is stretched in order to straighten it. If better properties are required then it may be heat treated or cold worked.
History In 1797, Joseph Bramah patented the first extrusion process for making lead pipe. It involved preheating the metal and then forcing it through a die via a hand driven plunger. The process wasn't developed until 1820 when Thomas Burr constructed the first hydraulic powered press. At this time the process was called squirting. In 1894, Alexander Dick expanded the extrusion process to copper and brass alloys.
is a process used to create objects of a fixed cross-sectional profile. A material is pushed or drawn through a die of the desired cross-section. The two main advantages of this process over other manufacturing processes are its ability to create very complex cross-sections and work materials that are brittle, because the material only encounters compressive and shear stresses. It also forms finished parts with an excellent surface finish.[1] Extrusion may be continuous (theoretically producing indefinitely long material) or semi-continuous (producing many pieces). The extrusion process can be done with the material hot or cold. The principle of this process is very similar to squeezing toothpaste from a tube. Material is forced through a shaped hollow die in such a way that it is plastically deformed and takes up the shape of the die. The hole in the die can have almost any shape, so if the die is circular, for example, a wire or rod is produced (Figure 29).
[object Object],[object Object]
forging
History Forging is one of the oldest known metalworking processes. Traditionaly, forging was performed by a smith using hammer and anvil, and though the use of water power in the production and working of iron dates to the 12th century, the hammer and the anvil are not obsolete.
Advantages and disadvantages   		Forging can produce a piece that is stronger than an  equivalent cast or machined part. As the metal is shaped during the forging process, its internal grain deforms to follow the general shape of the part. As a result, the grain is continuous throughout the part, giving rise to a piece with improved strength characteristics.
Temperature All the following forging processes can be performed at various temperatures, however they are generally classified by whether the metal temperature is above or below recrystallization temperature.
If the temperature is above the material’s recrystallization temperature it is deemed hot forging; if the temperature is below the material’s recrystallization temperature but above 3/10ths of the recrystallization temperature (on an absolute scale) it ts deemed warm forging; if below 3/10ths of the recrytallization temperature ( usually room temperature)  then it is deemed cold forging.
The main advantage of hot forging is that as the metal deformed work hardening effects are negated by the recrystallization process.     Cold forging typically results in work hardening of the piece
Processes There are many different kinds of forging processes available, however they can be grouped into three main classes: Drawn out: length increases, cross-section decreases Upset: length decreases, cross-section increases Squeezed in closed compression dies: produces multidirectional flow
Common Forging process: Roll forging, swaging, cogging, open-die forging, impression die forging, automatic hot forging and upsetting.
Drop forging                                                    drop forging is a forging process where a hammer is raised up and then dropped onto the workpiece to deform it according to the shape of the die.
There are two types of drop forging: Open-die forging and closed-die forging. As the names imply, the difference is in the shape of the die, with the former not fully enclosing the workpiece, while the latter does.
Press forging Press forging works by slowly applying a continuous pressure or force, which differs from the near-instantaneous impact of drop-hammer forging.
  The amount of   Time the dies    are in contact    with the  workpiece is    measured in   seconds (as    compared to   the milliseconds of drop-hammer forges). The pres forging operation can be done either cold or hot.
The main advantage of press forging, as compared to drop-hammer forging, is its ability to deform the complete workpiece. Drop-hammer usually only deforms the surface of the workpiece in contact with the hammer and anvil; the interior of the workpiece will stay relatively undeformed.
Upset forging Upset forging increases the  diameter of the workpiece by compressing its length.  Based on the number of piece produced this is the   most widely used forging process. A few examples of common parts produced using the upset forging process are
Engine valves Couplings Bolts Screws
Upset forging is usually done in special high speed machines called crank presses, but upsetting can also be done in a vertical crank press or a hydraulic press. The machines are usually set up to work in the horizontal plane, to facilitate the quick exchange of workpieces from a station to the next. The initial workpiece is usually wire rod, but some machine can accept bars up to 25cm (9.8in) in diameter and a capacity of over 1000tons. The standard upsetting machine employs split dies that contain multiple captives
The dies open enough to  allow the workpiece to  move from one cavity to the next; the dies then  close and the heading  tool, or ram then moves  longitudinally against the bar, upsetting it into the cavity.  If all of the cavities are utilized on every cycle then a finished part will be produced with every cycle, which is why this process is ideal for mass production.
The following rules must be followed when designing parts to be upset forged: The length of unsupported metal that can be upset in one blow without injurious buckling should be limited to three times the diameter of the bar. Lengths of stock greater than three times the diameter may be upset successfully provided that the diameter of the upset is not more than 1.5 times the diameter of the stock In an upset requiring stock length greater than three times the diameter of the stock, and where the diameter of the cavity is not more than 1.5 times the diameter of the stock, the length of unsupported metal beyond the face of the die must not exceed the diameter of the bar.
Automatic hot forging automatic hot forging process involves feeding mill-length steel bars (typically 7m / 23ft long) into one end of the machine at a room temperature and hot forged products emerge from the other end. This all occurs very quickly; small parts can be made at rate of 180 parts per minute (ppm) and larger can be made at a rate of 90ppm. The parts can be solid or hallow, round or symmetrical, up to 6 kg (13lb), and up to 18cm (7.1in) in diameter.
The main advantages to this process are its high output rate and ability to accept low cost materials. Little labor is required to operate the machinery. The final product is consistent 1,050°C (1,920°F) so air cooling will result in a part that is still easily machined. Tool life is doubled that of conventional forging because contact times are on the order of 6/100 of a second.
The process starts by heating up the bar 1,200 to 1,300°C (2,192 to 2,372°F) in less than 60 seconds using high power induction coils. It is then descaled with rollers, sheared into blanks, and transferred several successive forming stages, during which it is upset, performed, final forged, and pierced (if necessary). This process can also be couple with high speed cold forming operations. Examples of parts made by this process are:
Tra                                       Wheel hub bearing                                                  unit Transmission gears
Tapered roller bearing  stainless steel flanges coupling neck rings for LP gas cylinders
Roll forging Roll forging is a process where round or flat bar stock is reduced in thickness and increased in length. Roll forging is     performed using two      cylindrical or semi-      cylindrical rolls, each      containing one or more     shaped grooves.
 A heated bar is inserted        into the rolls and when it hits a stop, the rolls rotate and the bar is progressively shaped as it is rolled out of the machine.
The workpiece is then transferred to the next set of grooves or turned around and reinserted into the same grooves. This continues until the desired shape and size achieved. The advantage of this is there is no flash and it imparts a favorable grain structure into the workpiece.
Spinning
Spinning is used to make tubular(axis-symmetric) parts by fixing a piece of sheet stock to a rotating form (mandrel). Rollers or rigid tools press the stock against the form, stretching it, until the stock takes the shape of the form. Spinning is used to make rocket motor casings, missile nose cones, satellite dishes and metal kitchen funnels. is the process of forming a circular shape e.g. a cone, hemisphere, deep cup, etc. from a disc of sheet material by forcing it against a shaped former as the disc and former are rotated.   The mandrel is held on the drive headstock spindle.  The forcing tool is controlled either manually or using an electohydraulic drive system.
Before the 1950s, spinning was performed on a simple turning lathe. When new technologies were introduced to the field of metal spinning and powered dedicated spinning machines were available, shear forming started its development in Sweden.
The process brings low capital-investment, tooling and energy costs; short setup times; quick and inexpensive adaptation of tooling and methods to accommodate design changes; and ability to carry out other operations such as beading, profiling, trimming and turning in the same production cycle with one setup. Forming forces are appreciably lower than competing processes due to localized working. Benefits
Importance of Shear Forming or Spinning Operations in Manufacturing Shear forming and conventional spinning are being used less than other manufacturing processes such as deep drawing and ironing. Being able to achieve almost net shape, thin sectioned parts, makes spinning a versatile process used widely in the production of lightweight items. Other advantages of shear spinning include the good mechanical properties of the final item and a very good surface finish. Typical components produced by mechanically powered spinning machines include rocket nose cones, gas turbine engine and dish aerials.
Shearing Shearing is a metal fabricating process used to cut straight lines on flat metal stock. During the shearing process, an upper blade and a lower blade are forced past each other with the space between them determined by a required offset. Normally, one of the blades remains stationary.
Typically, the upper shear blade is mounted at an angle to the lower blade that is normally mounted horizontally. The shearing process performs only fundamental straight-line cutting but any geometrical shape with a straight line cut can usually be produced on a shear.
Characteristics of Shearing Process
Its ability to make straight-line cuts on flat sheet stock Metal placement between an upper and lower shear blades Its trademark production of burred and slightly deformed metal edges Its ability to cut relatively small lengths of material at any time since the shearing blades can be mounted at an angle to reduce the necessary shearing force required.
Materials Commonly Sheared - Aluminum - Brass - Bronze - Mild steel - Stainless steel
The Shearing Process uses Three Types of Tool systems. They are used for Shearing: Sheet metal and plate using a squaring or bow tie shear Angle materials using and angle shear, and  Bar stock using a bar shear.
Deep Drawing
is a sheet metalforming process in which a sheet metal blank is radially drawn into a forming die by the mechanical action of a punch.[1] It is thus a shape transformation process with material retention. The process is considered "deep" drawing when the depth of the drawn part exceeds its diameter. This is achieved by redrawing the part through a series of dies. The flange region (sheet metal in the die shoulder area) experiences a radial drawing stress and a tangential compressive stress due to the material retention property. These compressive stresses (hoop stresses) result in flange wrinkles (wrinkles of the first order). Wrinkles can be prevented by using a blank holder, the function of which is to facilitate controlled material flow into the die radius.
The important features of deep drawing are shown in the figure below.   The pressure ring bears on the upper surface of the blank preventing wrinkling of the metal as it is drawn radially over the upper surface of the die.  There is the option of applying pressure to the base of the cup using a pressure pad.   Thinning results from this process, the worst being at the bottom radius as a result of drawing the full disc diameter inward under the pressure ring.  The thinning is the least at the top of the cup
If the deep drawing process can not produce a cup sufficiently deep in one operation then it is possible to split the operation into a number of stages.   Also a redrawing operation is used.  The drawing process results in work hardening and therefore the component may need to be bright annealed between drawing operations.  The redrawing operation is shown in the figure below.   The indirect redrawing operation has the advantage over the direct one in that the material bending is all in one direction i.e. there is no bending-unbending ( as occurs in the direct method).
Tool materials Punches and dies are typically made of tool steel, however carbon steel is cheaper, but not as hard and is therefore used in less severe applications, it is also common to see cemented carbides used where high wear and abrasive resistance is present. Alloy steels are normally used for the ejector system to kick the part out and in durable and heat resistant blankholders.[
Deep drawing has been classified into conventional and unconventional deep drawing. The main aim of any unconventional deep drawing process is to extend the formability limits of the process. Some of the unconventional processes include hydromechanical deep drawing, Hydroform process, Aquadraw process, Guerin process, Marform process and the hydraulic deep drawing process to name a few. Variations
Example of Deep Drawn Part Example of Deep Drawn line
Forming

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Sheet Metal Forming
Sheet Metal FormingSheet Metal Forming
Sheet Metal Forming
 
Continuous casting
Continuous castingContinuous casting
Continuous casting
 
Heat Treatment Process
Heat Treatment ProcessHeat Treatment Process
Heat Treatment Process
 
5.moulding sand
5.moulding sand5.moulding sand
5.moulding sand
 
Unit 1 casting processes
Unit 1 casting processesUnit 1 casting processes
Unit 1 casting processes
 
Gating and riser in casting
Gating  and riser in castingGating  and riser in casting
Gating and riser in casting
 
Ch 21 sand casting
Ch 21 sand castingCh 21 sand casting
Ch 21 sand casting
 
Unit 3-METAL FORMING PROCESSES
Unit 3-METAL FORMING PROCESSESUnit 3-METAL FORMING PROCESSES
Unit 3-METAL FORMING PROCESSES
 
Casting process
Casting processCasting process
Casting process
 
METAL FORMING PROCESS
METAL FORMING PROCESSMETAL FORMING PROCESS
METAL FORMING PROCESS
 
Deep drawing
Deep drawingDeep drawing
Deep drawing
 
Metal Forming Process
Metal Forming ProcessMetal Forming Process
Metal Forming Process
 
forging
forgingforging
forging
 
Casting and types
Casting and typesCasting and types
Casting and types
 
PPT ON FORGING
PPT ON FORGINGPPT ON FORGING
PPT ON FORGING
 
SOLIDIFICATION OF CASTING
SOLIDIFICATION OF CASTINGSOLIDIFICATION OF CASTING
SOLIDIFICATION OF CASTING
 
U2 p casting processes
U2 p casting processesU2 p casting processes
U2 p casting processes
 
Casting
CastingCasting
Casting
 
bending processes and springback
bending processes and springbackbending processes and springback
bending processes and springback
 
shell moulding
shell mouldingshell moulding
shell moulding
 

Destacado

Modeling of the Heating Sequences of Lightweight Steel/Aluminum Bimaterial Bi...
Modeling of the Heating Sequences of Lightweight Steel/Aluminum Bimaterial Bi...Modeling of the Heating Sequences of Lightweight Steel/Aluminum Bimaterial Bi...
Modeling of the Heating Sequences of Lightweight Steel/Aluminum Bimaterial Bi...
Fluxtrol Inc.
 
Analysis of water hammer forming on the sheet metal
Analysis of water hammer forming on the sheet metalAnalysis of water hammer forming on the sheet metal
Analysis of water hammer forming on the sheet metal
Alexander Decker
 

Destacado (16)

Modeling of the Heating Sequences of Lightweight Steel/Aluminum Bimaterial Bi...
Modeling of the Heating Sequences of Lightweight Steel/Aluminum Bimaterial Bi...Modeling of the Heating Sequences of Lightweight Steel/Aluminum Bimaterial Bi...
Modeling of the Heating Sequences of Lightweight Steel/Aluminum Bimaterial Bi...
 
Flexible Tooling in Metal forming
Flexible Tooling in Metal formingFlexible Tooling in Metal forming
Flexible Tooling in Metal forming
 
Analysis of water hammer forming on the sheet metal
Analysis of water hammer forming on the sheet metalAnalysis of water hammer forming on the sheet metal
Analysis of water hammer forming on the sheet metal
 
AMP combined pdf unit 1- 3 by(badebhau4@gmail.com)
AMP combined pdf unit 1- 3 by(badebhau4@gmail.com)AMP combined pdf unit 1- 3 by(badebhau4@gmail.com)
AMP combined pdf unit 1- 3 by(badebhau4@gmail.com)
 
Unconventional metal forming process
Unconventional metal forming processUnconventional metal forming process
Unconventional metal forming process
 
Dr.R.Narayanasamy - Power Point on Deep Drawing
Dr.R.Narayanasamy - Power Point on Deep DrawingDr.R.Narayanasamy - Power Point on Deep Drawing
Dr.R.Narayanasamy - Power Point on Deep Drawing
 
ELECTROHYDRAULIC FORMING AND ELECTROMAGNETIC FORMING
ELECTROHYDRAULIC FORMING AND ELECTROMAGNETIC FORMINGELECTROHYDRAULIC FORMING AND ELECTROMAGNETIC FORMING
ELECTROHYDRAULIC FORMING AND ELECTROMAGNETIC FORMING
 
Unit 4 ppt mt1
Unit 4 ppt mt1Unit 4 ppt mt1
Unit 4 ppt mt1
 
Explosive forming
Explosive formingExplosive forming
Explosive forming
 
Forming and rolling class 25 mar ppt
Forming and rolling class 25 mar pptForming and rolling class 25 mar ppt
Forming and rolling class 25 mar ppt
 
Recent advances in Metal Forming process
Recent advances in Metal Forming processRecent advances in Metal Forming process
Recent advances in Metal Forming process
 
Lecture 1 metal_forming
Lecture 1 metal_formingLecture 1 metal_forming
Lecture 1 metal_forming
 
R O L L I N G
R O L L I N GR O L L I N G
R O L L I N G
 
Sheet metal forming processes Erdi Karaçal Mechanical Engineer University of ...
Sheet metal forming processes Erdi Karaçal Mechanical Engineer University of ...Sheet metal forming processes Erdi Karaçal Mechanical Engineer University of ...
Sheet metal forming processes Erdi Karaçal Mechanical Engineer University of ...
 
Rolling Process
Rolling ProcessRolling Process
Rolling Process
 
Roll pass design in continuous bar mills
Roll pass design in continuous bar millsRoll pass design in continuous bar mills
Roll pass design in continuous bar mills
 

Similar a Forming

Lo# 3a(2033 common) manufacturing technology PART 1
Lo# 3a(2033 common) manufacturing technology PART 1Lo# 3a(2033 common) manufacturing technology PART 1
Lo# 3a(2033 common) manufacturing technology PART 1
Abdulaziz AlSuwaidi
 
Casting 111116231645-phpapp02
Casting 111116231645-phpapp02Casting 111116231645-phpapp02
Casting 111116231645-phpapp02
hadushberhe75
 
Casting 111116231645-phpapp02
Casting 111116231645-phpapp02Casting 111116231645-phpapp02
Casting 111116231645-phpapp02
hadushberhe75
 
Forming operations
Forming operationsForming operations
Forming operations
Waqas Ahmed
 
Chapter3 metal work, casting processes and heat treatment
Chapter3 metal work, casting processes and heat treatmentChapter3 metal work, casting processes and heat treatment
Chapter3 metal work, casting processes and heat treatment
Wan Zulfadli
 

Similar a Forming (20)

Assignment on forging
Assignment on  forgingAssignment on  forging
Assignment on forging
 
METAL FORMING PROCESS IN DIPLOMA MECHANICAL
METAL FORMING PROCESS IN DIPLOMA MECHANICALMETAL FORMING PROCESS IN DIPLOMA MECHANICAL
METAL FORMING PROCESS IN DIPLOMA MECHANICAL
 
New trends in foundry technologies
New trends in foundry technologiesNew trends in foundry technologies
New trends in foundry technologies
 
AMP . Unit .1 Metal forming (badebhau4@gmail.com)
AMP . Unit .1 Metal forming (badebhau4@gmail.com)AMP . Unit .1 Metal forming (badebhau4@gmail.com)
AMP . Unit .1 Metal forming (badebhau4@gmail.com)
 
Permenant moulding methods
Permenant moulding methodsPermenant moulding methods
Permenant moulding methods
 
Advanced Manufacturing Processes PDF Full book by badebhau
Advanced Manufacturing Processes PDF Full book by badebhauAdvanced Manufacturing Processes PDF Full book by badebhau
Advanced Manufacturing Processes PDF Full book by badebhau
 
The Metal forming process process
The Metal forming process processThe Metal forming process process
The Metal forming process process
 
Manufacturing system (spring how it's made)
Manufacturing system (spring how it's made)Manufacturing system (spring how it's made)
Manufacturing system (spring how it's made)
 
Casting and its types
Casting and its typesCasting and its types
Casting and its types
 
FORGING REPORT.pptx
FORGING REPORT.pptxFORGING REPORT.pptx
FORGING REPORT.pptx
 
IIIE SECTION A MANUFACTURING TECHNOLOGY NOTES 8.die castings
IIIE SECTION A MANUFACTURING TECHNOLOGY NOTES 8.die castingsIIIE SECTION A MANUFACTURING TECHNOLOGY NOTES 8.die castings
IIIE SECTION A MANUFACTURING TECHNOLOGY NOTES 8.die castings
 
Lo# 3a(2033 common) manufacturing technology PART 1
Lo# 3a(2033 common) manufacturing technology PART 1Lo# 3a(2033 common) manufacturing technology PART 1
Lo# 3a(2033 common) manufacturing technology PART 1
 
Casting Process
Casting ProcessCasting Process
Casting Process
 
Casting 111116231645-phpapp02
Casting 111116231645-phpapp02Casting 111116231645-phpapp02
Casting 111116231645-phpapp02
 
Casting 111116231645-phpapp02
Casting 111116231645-phpapp02Casting 111116231645-phpapp02
Casting 111116231645-phpapp02
 
Manufacturing Technology 1 -unit 3
Manufacturing Technology 1 -unit 3Manufacturing Technology 1 -unit 3
Manufacturing Technology 1 -unit 3
 
Manufacturing
ManufacturingManufacturing
Manufacturing
 
Forming operations
Forming operationsForming operations
Forming operations
 
Casting
CastingCasting
Casting
 
Chapter3 metal work, casting processes and heat treatment
Chapter3 metal work, casting processes and heat treatmentChapter3 metal work, casting processes and heat treatment
Chapter3 metal work, casting processes and heat treatment
 

Último

Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂EscortCall Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
dlhescort
 
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
lizamodels9
 
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
lizamodels9
 
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service NoidaCall Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
dlhescort
 
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
lizamodels9
 
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
daisycvs
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
dlhescort
 
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
amitlee9823
 
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
amitlee9823
 
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
dollysharma2066
 

Último (20)

Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂EscortCall Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
 
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
 
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
Call Girls From Pari Chowk Greater Noida ❤️8448577510 ⊹Best Escorts Service I...
 
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service NoidaCall Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with Culture
 
Falcon's Invoice Discounting: Your Path to Prosperity
Falcon's Invoice Discounting: Your Path to ProsperityFalcon's Invoice Discounting: Your Path to Prosperity
Falcon's Invoice Discounting: Your Path to Prosperity
 
(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7
(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7
(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7
 
Famous Olympic Siblings from the 21st Century
Famous Olympic Siblings from the 21st CenturyFamous Olympic Siblings from the 21st Century
Famous Olympic Siblings from the 21st Century
 
Falcon Invoice Discounting: The best investment platform in india for investors
Falcon Invoice Discounting: The best investment platform in india for investorsFalcon Invoice Discounting: The best investment platform in india for investors
Falcon Invoice Discounting: The best investment platform in india for investors
 
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
 
Marel Q1 2024 Investor Presentation from May 8, 2024
Marel Q1 2024 Investor Presentation from May 8, 2024Marel Q1 2024 Investor Presentation from May 8, 2024
Marel Q1 2024 Investor Presentation from May 8, 2024
 
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
 
How to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityHow to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League City
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
 
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
 
Eluru Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Eluru Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort ServiceEluru Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Eluru Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
 
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
 
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
 
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
 
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
 

Forming

  • 1. Technological University of the PhilippinesCollege of Industrial TechnologyMechanical Engineering Technology
  • 2. MEMBERSJohn Ephraim C. FereiraJayson GonzalesShane GutierrezJerry GuecoJomari MenesRovin MagayReinier Karl Montas
  • 4. Rolling Extrusion Shearing Spinning Deep Drawing Forging
  • 6. Schematic drawing of rollingrolling Cold rolling Hot rolling
  • 7. Iron and steel The earliest rolling mills were slitting mills, which were introduced from what is now Belgium to England in 1590. These passed flat bars between rolls to form a plate of iron, which was then passed between grooved rolls (slitters) to produce rods of iron. The first experiments at rolling iron for tinplate took place about 1670. In 1697, Major John Hanbury erected a mill at Pontypool to roll 'Pontypool plates'—black plate. Later this began to be rerolled and tinned to make tinplate.The earlier production of plate iron in Europe had been in forges, not rolling mills History
  • 8. The slitting mill was adapted to producing hoops (for barrels) and iron with a half-round or other sections by means that were the subject of two patents of c. 1679.[citation needed] Some of the earliest literature on rolling mills can be traced back to Christopher Polhem in 1761 in PatriotistaTestamente, where he mentions rolling mills for both plate and bar iron.[14] He also explains how rolling mills can save on time and labor because a rolling mill can produce 10 to 20 and still more bars at the same time which is wanted to tilt only one bar with a hammer.[citation needed] A patent was granted to Thomas Blockley of England in 1759 for the polishing and rolling of metals. Another patent was granted in 1766 to Richard Ford of England for the first tandem mill.[15] A tandem mill is one in which the metal is rolled in successive stands; Ford’s tandem mill was for hot rolling of wire rods.
  • 9. In rolling , material is passed through the gap between two rotating rollers that squeeze the material as it passes between them. The rolled material emerges with a thickness roughly equal to the gap between the rollers. When the rollers are cylindrical, rolling produces material in the form of plate or sheet. Sheet steel and aluminium for the bodies of cars and domestic appliances is made this way. Rolled sheet is often termed a ‘semifinished’ product, as it requires further processing to shape it into the final product.
  • 11. Rolling is not restricted to flat sheets, though. If the desired product has a contoured surface, then by using profiled rollers the contour can be rolled on. If the surface pattern needs to be deeper than is possible during one rolling pass then multiple rollers can be used; for example, railway tracks are made by rolling between pairs of progressively deeper contoured rollers. The various stages for rails are shown in Figure 33.
  • 12. Figure 33: Stages in rolling railway track Figure 30: Extrusion bridge die making a hollow section product. Note that in the picture the die has been split to show the material passing through it. In reality, the die and the ring fit together, with a gap for the extruded material to flow through
  • 13. In common with other forming processes, metals may be hot or cold rolled. The significant differences between hot and cold rolling are in the amount of energy needed to roll a given volume of material and in the resulting microstructures. The cooler the metal, the higher its yield stress and the more energy has to be supplied in order to shape it. As in extrusion, metals in large lumps are often hot rolled at homologous temperatures above 0.6. At this temperature the yield stress and work hardening are reduced. Railway lines require hot rolling in order to achieve the large change in shape from a rectangular bar. However, a major disadvantage of hot rolling is that the surface of the material becomes oxidised by the air, resulting in a poor surface finish.
  • 14. If the metal is ductile then it may be cold rolled using smaller strains. This has some advantages: the work hardening at these temperatures can give the product a useful increase in strength. During cold rolling, oxidation is reduced and a good surface finish can be produced by using polished rollers. So, cold rolling is a good finishing treatment in the production of plate and sheet. The sheets of steel for car bodies are finished by cold rolling because a good surface finish is essential in this product.
  • 16. The process begins by heating the stock material (for hot or warm extrusion). It is then loaded into the container in the press. A dummy block is placed behind it where the ram then presses on the material to push it out of the die. Afterward the extrusion is stretched in order to straighten it. If better properties are required then it may be heat treated or cold worked.
  • 17.
  • 18. History In 1797, Joseph Bramah patented the first extrusion process for making lead pipe. It involved preheating the metal and then forcing it through a die via a hand driven plunger. The process wasn't developed until 1820 when Thomas Burr constructed the first hydraulic powered press. At this time the process was called squirting. In 1894, Alexander Dick expanded the extrusion process to copper and brass alloys.
  • 19. is a process used to create objects of a fixed cross-sectional profile. A material is pushed or drawn through a die of the desired cross-section. The two main advantages of this process over other manufacturing processes are its ability to create very complex cross-sections and work materials that are brittle, because the material only encounters compressive and shear stresses. It also forms finished parts with an excellent surface finish.[1] Extrusion may be continuous (theoretically producing indefinitely long material) or semi-continuous (producing many pieces). The extrusion process can be done with the material hot or cold. The principle of this process is very similar to squeezing toothpaste from a tube. Material is forced through a shaped hollow die in such a way that it is plastically deformed and takes up the shape of the die. The hole in the die can have almost any shape, so if the die is circular, for example, a wire or rod is produced (Figure 29).
  • 20.
  • 22. History Forging is one of the oldest known metalworking processes. Traditionaly, forging was performed by a smith using hammer and anvil, and though the use of water power in the production and working of iron dates to the 12th century, the hammer and the anvil are not obsolete.
  • 23. Advantages and disadvantages Forging can produce a piece that is stronger than an equivalent cast or machined part. As the metal is shaped during the forging process, its internal grain deforms to follow the general shape of the part. As a result, the grain is continuous throughout the part, giving rise to a piece with improved strength characteristics.
  • 24. Temperature All the following forging processes can be performed at various temperatures, however they are generally classified by whether the metal temperature is above or below recrystallization temperature.
  • 25. If the temperature is above the material’s recrystallization temperature it is deemed hot forging; if the temperature is below the material’s recrystallization temperature but above 3/10ths of the recrystallization temperature (on an absolute scale) it ts deemed warm forging; if below 3/10ths of the recrytallization temperature ( usually room temperature) then it is deemed cold forging.
  • 26. The main advantage of hot forging is that as the metal deformed work hardening effects are negated by the recrystallization process. Cold forging typically results in work hardening of the piece
  • 27. Processes There are many different kinds of forging processes available, however they can be grouped into three main classes: Drawn out: length increases, cross-section decreases Upset: length decreases, cross-section increases Squeezed in closed compression dies: produces multidirectional flow
  • 28. Common Forging process: Roll forging, swaging, cogging, open-die forging, impression die forging, automatic hot forging and upsetting.
  • 29. Drop forging drop forging is a forging process where a hammer is raised up and then dropped onto the workpiece to deform it according to the shape of the die.
  • 30. There are two types of drop forging: Open-die forging and closed-die forging. As the names imply, the difference is in the shape of the die, with the former not fully enclosing the workpiece, while the latter does.
  • 31. Press forging Press forging works by slowly applying a continuous pressure or force, which differs from the near-instantaneous impact of drop-hammer forging.
  • 32. The amount of Time the dies are in contact with the workpiece is measured in seconds (as compared to the milliseconds of drop-hammer forges). The pres forging operation can be done either cold or hot.
  • 33. The main advantage of press forging, as compared to drop-hammer forging, is its ability to deform the complete workpiece. Drop-hammer usually only deforms the surface of the workpiece in contact with the hammer and anvil; the interior of the workpiece will stay relatively undeformed.
  • 34. Upset forging Upset forging increases the diameter of the workpiece by compressing its length. Based on the number of piece produced this is the most widely used forging process. A few examples of common parts produced using the upset forging process are
  • 35. Engine valves Couplings Bolts Screws
  • 36. Upset forging is usually done in special high speed machines called crank presses, but upsetting can also be done in a vertical crank press or a hydraulic press. The machines are usually set up to work in the horizontal plane, to facilitate the quick exchange of workpieces from a station to the next. The initial workpiece is usually wire rod, but some machine can accept bars up to 25cm (9.8in) in diameter and a capacity of over 1000tons. The standard upsetting machine employs split dies that contain multiple captives
  • 37. The dies open enough to allow the workpiece to move from one cavity to the next; the dies then close and the heading tool, or ram then moves longitudinally against the bar, upsetting it into the cavity. If all of the cavities are utilized on every cycle then a finished part will be produced with every cycle, which is why this process is ideal for mass production.
  • 38. The following rules must be followed when designing parts to be upset forged: The length of unsupported metal that can be upset in one blow without injurious buckling should be limited to three times the diameter of the bar. Lengths of stock greater than three times the diameter may be upset successfully provided that the diameter of the upset is not more than 1.5 times the diameter of the stock In an upset requiring stock length greater than three times the diameter of the stock, and where the diameter of the cavity is not more than 1.5 times the diameter of the stock, the length of unsupported metal beyond the face of the die must not exceed the diameter of the bar.
  • 39.
  • 40. Automatic hot forging automatic hot forging process involves feeding mill-length steel bars (typically 7m / 23ft long) into one end of the machine at a room temperature and hot forged products emerge from the other end. This all occurs very quickly; small parts can be made at rate of 180 parts per minute (ppm) and larger can be made at a rate of 90ppm. The parts can be solid or hallow, round or symmetrical, up to 6 kg (13lb), and up to 18cm (7.1in) in diameter.
  • 41. The main advantages to this process are its high output rate and ability to accept low cost materials. Little labor is required to operate the machinery. The final product is consistent 1,050°C (1,920°F) so air cooling will result in a part that is still easily machined. Tool life is doubled that of conventional forging because contact times are on the order of 6/100 of a second.
  • 42. The process starts by heating up the bar 1,200 to 1,300°C (2,192 to 2,372°F) in less than 60 seconds using high power induction coils. It is then descaled with rollers, sheared into blanks, and transferred several successive forming stages, during which it is upset, performed, final forged, and pierced (if necessary). This process can also be couple with high speed cold forming operations. Examples of parts made by this process are:
  • 43. Tra Wheel hub bearing unit Transmission gears
  • 44. Tapered roller bearing stainless steel flanges coupling neck rings for LP gas cylinders
  • 45. Roll forging Roll forging is a process where round or flat bar stock is reduced in thickness and increased in length. Roll forging is performed using two cylindrical or semi- cylindrical rolls, each containing one or more shaped grooves.
  • 46. A heated bar is inserted into the rolls and when it hits a stop, the rolls rotate and the bar is progressively shaped as it is rolled out of the machine.
  • 47. The workpiece is then transferred to the next set of grooves or turned around and reinserted into the same grooves. This continues until the desired shape and size achieved. The advantage of this is there is no flash and it imparts a favorable grain structure into the workpiece.
  • 49.
  • 50.
  • 51. Spinning is used to make tubular(axis-symmetric) parts by fixing a piece of sheet stock to a rotating form (mandrel). Rollers or rigid tools press the stock against the form, stretching it, until the stock takes the shape of the form. Spinning is used to make rocket motor casings, missile nose cones, satellite dishes and metal kitchen funnels. is the process of forming a circular shape e.g. a cone, hemisphere, deep cup, etc. from a disc of sheet material by forcing it against a shaped former as the disc and former are rotated.   The mandrel is held on the drive headstock spindle.  The forcing tool is controlled either manually or using an electohydraulic drive system.
  • 52. Before the 1950s, spinning was performed on a simple turning lathe. When new technologies were introduced to the field of metal spinning and powered dedicated spinning machines were available, shear forming started its development in Sweden.
  • 53. The process brings low capital-investment, tooling and energy costs; short setup times; quick and inexpensive adaptation of tooling and methods to accommodate design changes; and ability to carry out other operations such as beading, profiling, trimming and turning in the same production cycle with one setup. Forming forces are appreciably lower than competing processes due to localized working. Benefits
  • 54. Importance of Shear Forming or Spinning Operations in Manufacturing Shear forming and conventional spinning are being used less than other manufacturing processes such as deep drawing and ironing. Being able to achieve almost net shape, thin sectioned parts, makes spinning a versatile process used widely in the production of lightweight items. Other advantages of shear spinning include the good mechanical properties of the final item and a very good surface finish. Typical components produced by mechanically powered spinning machines include rocket nose cones, gas turbine engine and dish aerials.
  • 55. Shearing Shearing is a metal fabricating process used to cut straight lines on flat metal stock. During the shearing process, an upper blade and a lower blade are forced past each other with the space between them determined by a required offset. Normally, one of the blades remains stationary.
  • 56.
  • 57. Typically, the upper shear blade is mounted at an angle to the lower blade that is normally mounted horizontally. The shearing process performs only fundamental straight-line cutting but any geometrical shape with a straight line cut can usually be produced on a shear.
  • 59. Its ability to make straight-line cuts on flat sheet stock Metal placement between an upper and lower shear blades Its trademark production of burred and slightly deformed metal edges Its ability to cut relatively small lengths of material at any time since the shearing blades can be mounted at an angle to reduce the necessary shearing force required.
  • 60. Materials Commonly Sheared - Aluminum - Brass - Bronze - Mild steel - Stainless steel
  • 61. The Shearing Process uses Three Types of Tool systems. They are used for Shearing: Sheet metal and plate using a squaring or bow tie shear Angle materials using and angle shear, and Bar stock using a bar shear.
  • 63. is a sheet metalforming process in which a sheet metal blank is radially drawn into a forming die by the mechanical action of a punch.[1] It is thus a shape transformation process with material retention. The process is considered "deep" drawing when the depth of the drawn part exceeds its diameter. This is achieved by redrawing the part through a series of dies. The flange region (sheet metal in the die shoulder area) experiences a radial drawing stress and a tangential compressive stress due to the material retention property. These compressive stresses (hoop stresses) result in flange wrinkles (wrinkles of the first order). Wrinkles can be prevented by using a blank holder, the function of which is to facilitate controlled material flow into the die radius.
  • 64.
  • 65.
  • 66. The important features of deep drawing are shown in the figure below.   The pressure ring bears on the upper surface of the blank preventing wrinkling of the metal as it is drawn radially over the upper surface of the die.  There is the option of applying pressure to the base of the cup using a pressure pad.   Thinning results from this process, the worst being at the bottom radius as a result of drawing the full disc diameter inward under the pressure ring.  The thinning is the least at the top of the cup
  • 67.
  • 68. If the deep drawing process can not produce a cup sufficiently deep in one operation then it is possible to split the operation into a number of stages.   Also a redrawing operation is used.  The drawing process results in work hardening and therefore the component may need to be bright annealed between drawing operations.  The redrawing operation is shown in the figure below.   The indirect redrawing operation has the advantage over the direct one in that the material bending is all in one direction i.e. there is no bending-unbending ( as occurs in the direct method).
  • 69.
  • 70. Tool materials Punches and dies are typically made of tool steel, however carbon steel is cheaper, but not as hard and is therefore used in less severe applications, it is also common to see cemented carbides used where high wear and abrasive resistance is present. Alloy steels are normally used for the ejector system to kick the part out and in durable and heat resistant blankholders.[
  • 71. Deep drawing has been classified into conventional and unconventional deep drawing. The main aim of any unconventional deep drawing process is to extend the formability limits of the process. Some of the unconventional processes include hydromechanical deep drawing, Hydroform process, Aquadraw process, Guerin process, Marform process and the hydraulic deep drawing process to name a few. Variations
  • 72. Example of Deep Drawn Part Example of Deep Drawn line