SlideShare una empresa de Scribd logo
1 de 172
Descargar para leer sin conexión
Laplace Transforms 
Nirav B. Vyas 
Department of Mathematics 
Atmiya Institute of Technology and Science 
Yogidham, Kalavad road 
Rajkot - 360005 . Gujarat 
N. B. Vyas Laplace Transforms
Laplace Transforms 
De
nition: 
Let f(t) be a function of t de
ned for all t  0 then Laplace 
transform of f(t) is denoted by Lff(t)g or  f(s) and is 
de
ned as 
L ff (t)g =  f (s) = 
Z1 
0 
estf (t) dt 
provided the integral exists where s is a parameter ( real or 
complex). 
N. B. Vyas Laplace Transforms
Laplace Transforms 
NOTATIONS: 
The original functions are denoted by lowercase letters such 
as f(t); g(t); ::: 
Laplace transforms by the same letters with bars such as 
 f(s)g(s); ::: 
N. B. Vyas Laplace Transforms
Linearity of the Laplace Transforms 
Theorem 1: 
If Lff (t)g =  f (s) and Lfg (t)g = g (s) then for any constants a and b 
Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g 
N. B. Vyas Laplace Transforms
Linearity of the Laplace Transforms 
Theorem 1: 
If Lff (t)g =  f (s) and Lfg (t)g = g (s) then for any constants a and b 
Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g 
Corollary 1: 
Putting a = 0 and b = 0, we get L[0] = 0 
N. B. Vyas Laplace Transforms
Linearity of the Laplace Transforms 
Theorem 1: 
If Lff (t)g =  f (s) and Lfg (t)g = g (s) then for any constants a and b 
Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g 
Corollary 1: 
Putting a = 0 and b = 0, we get L[0] = 0 
Corollary 2: 
Putting b = 0, we get L[af(t)] = aL[f(t)] 
N. B. Vyas Laplace Transforms
Linearity of the Laplace Transforms 
Theorem 1: 
If Lff (t)g =  f (s) and Lfg (t)g = g (s) then for any constants a and b 
Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g 
Corollary 1: 
Putting a = 0 and b = 0, we get L[0] = 0 
Corollary 2: 
Putting b = 0, we get L[af(t)] = aL[f(t)] 
Corollary 3: 
L[a1f1 (t) + a2f2 (t) + ::: + anfn (t)] 
= a1L[f1(t)] + a2L[f2(t)] + ::: + anL[fn(t)] 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
1 L(1) = 
1 
s 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
1 L(1) = 
1 
s 
2 L(eat) = 
1 
s  a 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
1 L(1) = 
1 
s 
2 L(eat) = 
1 
s  a 
cor.1 If a = 0 ) L(1) = 
1 
s 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
1 L(1) = 
1 
s 
2 L(eat) = 
1 
s  a 
cor.1 If a = 0 ) L(1) = 
1 
s 
cor.2 L[eat] = 
1 
s + a 
if s  a 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
1 L(1) = 
1 
s 
2 L(eat) = 
1 
s  a 
cor.1 If a = 0 ) L(1) = 
1 
s 
cor.2 L[eat] = 
1 
s + a 
if s  a 
cor.3 L[cat] = L[eat log c] = 
1 
s  a logc 
if s  a log c and c  0 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
3 L[sinh at] = 
a 
s2  a2 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
3 L[sinh at] = 
a 
s2  a2 
4 L[cosh at] = 
s 
s2  a2 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
3 L[sinh at] = 
a 
s2  a2 
4 L[cosh at] = 
s 
s2  a2 
5 L[sin at] = 
a 
s2 + a2 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
3 L[sinh at] = 
a 
s2  a2 
4 L[cosh at] = 
s 
s2  a2 
5 L[sin at] = 
a 
s2 + a2 
6 L[cos at] = 
s 
s2 + a2 ; s  0 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
3 L[sinh at] = 
a 
s2  a2 
4 L[cosh at] = 
s 
s2  a2 
5 L[sin at] = 
a 
s2 + a2 
6 L[cos at] = 
s 
s2 + a2 ; s  0 
cor.1 L[sin t] = 
1 
s2 + 1 
; s  0 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
3 L[sinh at] = 
a 
s2  a2 
4 L[cosh at] = 
s 
s2  a2 
5 L[sin at] = 
a 
s2 + a2 
6 L[cos at] = 
s 
s2 + a2 ; s  0 
cor.1 L[sin t] = 
1 
s2 + 1 
; s  0 
cor.2 L[cos t] = 
s 
s2 + 1 
; s  0 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
7 L[tn] = 
(n + 1) 
sn+1 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
7 L[tn] = 
(n + 1) 
sn+1 
= 
n! 
sn+1 ; n = 0; 1; 2; ::: 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
7 L[tn] = 
(n + 1) 
sn+1 
= 
n! 
sn+1 ; n = 0; 1; 2; ::: 
cor.1 If n = 0, L[1] = 
1 
s 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
7 L[tn] = 
(n + 1) 
sn+1 
= 
n! 
sn+1 ; n = 0; 1; 2; ::: 
cor.1 If n = 0, L[1] = 
1 
s 
cor.2 If n =  
1 
2 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
7 L[tn] = 
(n + 1) 
sn+1 
= 
n! 
sn+1 ; n = 0; 1; 2; ::: 
cor.1 If n = 0, L[1] = 
1 
s 
cor.2 If n =  
1 
2 
L 
 
t1 
2 
 
= 
(1 
) 
2 1 
s 
2 
= 
r 
 
s 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
7 L[tn] = 
(n + 1) 
sn+1 
= 
n! 
sn+1 ; n = 0; 1; 2; ::: 
cor.1 If n = 0, L[1] = 
1 
s 
cor.2 If n =  
1 
2 
L 
 
t1 
2 
 
= 
(1 
) 
2 1 
s 
2 
= 
r 
 
s 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform 
1 L 
 
2t3 + e2t + t 
4 
3 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform 
1 L 
 
2t3 + e2t + t 
4 
3 
 
2 L 
 
A + B t 
1 
2 + C t 
1 
2 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform 
1 L 
 
2t3 + e2t + t 
4 
3 
 
2 L 
 
A + B t 
1 
2 + C t 
1 
2 
 
3 L 
 
eat  1 
a 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform 
1 L 
 
2t3 + e2t + t 
4 
3 
 
2 L 
 
A + B t 
1 
2 + C t 
1 
2 
 
3 L 
 
eat  1 
a 
 
4 Lfsin(at + b)g 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform 
1 L 
 
2t3 + e2t + t 
4 
3 
 
2 L 
 
A + B t 
1 
2 + C t 
1 
2 
 
3 L 
 
eat  1 
a 
 
4 Lfsin(at + b)g 
5 Lfsin 2t cos 3tg 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform 
1 L 
 
2t3 + e2t + t 
4 
3 
 
2 L 
 
A + B t 
1 
2 + C t 
1 
2 
 
3 L 
 
eat  1 
a 
 
4 Lfsin(at + b)g 
5 Lfsin 2t cos 3tg 
6 L 
 
cos24t 
	 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform 
1 L 
 
2t3 + e2t + t 
4 
3 
 
2 L 
 
A + B t 
1 
2 + C t 
1 
2 
 
3 L 
 
eat  1 
a 
 
4 Lfsin(at + b)g 
5 Lfsin 2t cos 3tg 
6 L 
 
cos24t 
	 
7 L 
 
cos32t 
	 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
Proof: By the def. of Laplace 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
Proof: By the def. of Laplace 
 
	 
1R 
L 
eatf (t) 
= 
0 
esteatf (t) dt 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
Proof: By the def. of Laplace 
 
	 
1R 
L 
eatf (t) 
= 
0 
esteatf (t) dt 
= 
1R 
0 
e(sa)tf (t) dt 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
Proof: By the def. of Laplace 
 
	 
1R 
L 
eatf (t) 
= 
0 
esteatf (t) dt 
= 
1R 
0 
e(sa)tf (t) dt 
= 
1R 
0 
ertf (t) dt 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
Proof: By the def. of Laplace 
 
	 
1R 
L 
eatf (t) 
= 
0 
esteatf (t) dt 
= 
1R 
0 
e(sa)tf (t) dt 
= 
1R 
0 
ertf (t) dt 
=  f(r) 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
Proof: By the def. of Laplace 
 
	 
1R 
L 
eatf (t) 
= 
0 
esteatf (t) dt 
= 
1R 
0 
e(sa)tf (t) dt 
= 
1R 
0 
ertf (t) dt 
=  f(r) 
=  f(s  a) 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
Proof: By the def. of Laplace 
 
	 
1R 
L 
eatf (t) 
= 
0 
esteatf (t) dt 
= 
1R 
0 
e(sa)tf (t) dt 
= 
1R 
0 
ertf (t) dt 
=  f(r) 
=  f(s  a) 
Thus if we know the transformation  f(s) of f(t) then we can 
write the transformation of eatf(t) simply replacing s by s  a to 
get F(s  a) 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
Note: 
1 L(eat) = 
1 
s  a 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
Note: 
1 L(eat) = 
1 
s  a 
2 L[eattn] = 
(n + 1) 
(s  a)n+1 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
Note: 
1 L(eat) = 
1 
s  a 
2 L[eattn] = 
(n + 1) 
(s  a)n+1 
3 L[eatsinh bt] = 
b 
(s  a)2  b2 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
Note: 
1 L(eat) = 
1 
s  a 
2 L[eattn] = 
(n + 1) 
(s  a)n+1 
3 L[eatsinh bt] = 
b 
(s  a)2  b2 
4 L[eatcosh bt] = 
s 
(s  a)2  b2 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
Note: 
1 L(eat) = 
1 
s  a 
2 L[eattn] = 
(n + 1) 
(s  a)n+1 
3 L[eatsinh bt] = 
b 
(s  a)2  b2 
4 L[eatcosh bt] = 
s 
(s  a)2  b2 
5 L[eatsin bt] = 
b 
(s  a)2 + b2 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
Note: 
1 L(eat) = 
1 
s  a 
2 L[eattn] = 
(n + 1) 
(s  a)n+1 
3 L[eatsinh bt] = 
b 
(s  a)2  b2 
4 L[eatcosh bt] = 
s 
(s  a)2  b2 
5 L[eatsin bt] = 
b 
(s  a)2 + b2 
6 L[eatcos bt] = 
s  a 
(s  a)2 + b2 ; s  0 
N. B. Vyas Laplace Transforms
Examples 
1 Find out the Laplace transform of e3t (2 cos 5t  3 sin 5t) 
N. B. Vyas Laplace Transforms
Examples 
1 Find out the Laplace transform of e3t (2 cos 5t  3 sin 5t) 
2 L[eatsinhbt] 
N. B. Vyas Laplace Transforms
Examples 
1 Find out the Laplace transform of e3t (2 cos 5t  3 sin 5t) 
2 L[eatsinhbt] 
3 L[t3e3t] 
N. B. Vyas Laplace Transforms
Examples 
1 Find out the Laplace transform of e3t (2 cos 5t  3 sin 5t) 
2 L[eatsinhbt] 
3 L[t3e3t] 
4 L[(t + 2)2et] 
N. B. Vyas Laplace Transforms
Examples 
1 Find out the Laplace transform of e3t (2 cos 5t  3 sin 5t) 
2 L[eatsinhbt] 
3 L[t3e3t] 
4 L[(t + 2)2et] 
5 L[etsin2t] 
N. B. Vyas Laplace Transforms
Examples 
1 Find out the Laplace transform of e3t (2 cos 5t  3 sin 5t) 
2 L[eatsinhbt] 
3 L[t3e3t] 
4 L[(t + 2)2et] 
5 L[etsin2t] 
6 L[cosh at sin at] 
N. B. Vyas Laplace Transforms
Examples 
Ex. Find the Laplace transform of the function which is de
ned as 
f(t) = 
 
t/T 0  t  T 
1 when t  T 
N. B. Vyas Laplace Transforms
Examples 
Ex. Find Laplace transform of f(t) = 
 
sin t 0  t   
0 when t   
N. B. Vyas Laplace Transforms
Examples 
Ex. Find Laplace transform of f(t) where f(t) = 
 
t 0  t  4 
5 when t  4 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
Lff (t)g = 
1 Z 
0 
estf (t) dt 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
Lff (t)g = 
1 Z 
0 
estf (t) dt 
L 
 
eatf (bt) 
	 
= 
1 Z 
0 
esteatf (bt) dt 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
Lff (t)g = 
1 Z 
0 
estf (t) dt 
L 
 
eatf (bt) 
	 
= 
1 Z 
0 
esteatf (bt) dt 
= 
1R 
0 
e(sa)tf (bt) dt 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
Lff (t)g = 
1 Z 
0 
estf (t) dt 
L 
 
eatf (bt) 
	 
= 
1 Z 
0 
esteatf (bt) dt 
= 
1R 
0 
e(sa)tf (bt) dt 
= 
1R 
0 
e( sa 
b )btf (bt) dt 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
Lff (t)g = 
1 Z 
0 
estf (t) dt 
L 
 
eatf (bt) 
	 
= 
1 Z 
0 
esteatf (bt) dt 
= 
1R 
0 
e(sa)tf (bt) dt 
= 
1R 
0 
e( sa 
b )btf (bt) dt 
Let bt = u ) b dt = du 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
Lff (t)g = 
1 Z 
0 
estf (t) dt 
L 
 
eatf (bt) 
	 
= 
1 Z 
0 
esteatf (bt) dt 
= 
1R 
0 
e(sa)tf (bt) dt 
= 
1R 
0 
e( sa 
b )btf (bt) dt 
Let bt = u ) b dt = du 
 
	 
1R 
L 
eatf (bt) 
= 
0 
e( sa 
b )uf (u) 
du 
b 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
Lff (t)g = 
1 Z 
0 
estf (t) dt 
L 
 
eatf (bt) 
	 
= 
1 Z 
0 
esteatf (bt) dt 
= 
1R 
0 
e(sa)tf (bt) dt 
= 
1R 
0 
e( sa 
b )btf (bt) dt 
Let bt = u ) b dt = du 
 
	 
1R 
L 
eatf (bt) 
= 
0 
e( sa 
b )uf (u) 
du 
b 
= 
1 
b 
 f 
 
s  a 
b 
 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
1 L1 
 
1 
s 
 
= 1 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
1 L1 
 
1 
s 
 
= 1 
2 L1 
 
1 
s  a 
 
= eat 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
1 L1 
 
1 
s 
 
= 1 
2 L1 
 
1 
s  a 
 
= eat 
3 L1 
 
1 
s2 + a2 
 
= 
1 
a 
sin at 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
1 L1 
 
1 
s 
 
= 1 
2 L1 
 
1 
s  a 
 
= eat 
3 L1 
 
1 
s2 + a2 
 
= 
1 
a 
sin at 
4 L1 
 
s 
s2 + a2 
 
= cos at 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
1 L1 
 
1 
s 
 
= 1 
2 L1 
 
1 
s  a 
 
= eat 
3 L1 
 
1 
s2 + a2 
 
= 
1 
a 
sin at 
4 L1 
 
s 
s2 + a2 
 
= cos at 
5 L1 
 
1 
s2  a2 
 
= 
1 
a 
sinh at 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
1 L1 
 
1 
s 
 
= 1 
2 L1 
 
1 
s  a 
 
= eat 
3 L1 
 
1 
s2 + a2 
 
= 
1 
a 
sin at 
4 L1 
 
s 
s2 + a2 
 
= cos at 
5 L1 
 
1 
s2  a2 
 
= 
1 
a 
sinh at 
6 L1 
 
s 
s2  a2 
 
= cosh at 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
1 L1 
 
1 
s 
 
= 1 
2 L1 
 
1 
s  a 
 
= eat 
3 L1 
 
1 
s2 + a2 
 
= 
1 
a 
sin at 
4 L1 
 
s 
s2 + a2 
 
= cos at 
5 L1 
 
1 
s2  a2 
 
= 
1 
a 
sinh at 
6 L1 
 
s 
s2  a2 
 
= cosh at 
7 L1 
 
1 
sn 
 
= 
tn1 
(n  1)! 
N. B. Vyas Laplace Transforms
Partial Fractions 
N. B. Vyas Laplace Transforms
Partial Fractions 
N. B. Vyas Laplace Transforms
Partial Fractions 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - I 
1 L1 
 
s2  3s + 4 
s3 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - I 
1 L1 
 
s2  3s + 4 
s3 
 
2 L1 
 
3 
2 
 
s4  2s2 + 1 
s5 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - I 
1 L1 
 
s2  3s + 4 
s3 
 
2 L1 
 
3 
2 
 
s4  2s2 + 1 
s5 
 
3 L1 
 
s + 7 
(s + 1)2 + 1 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - I 
1 L1 
 
s2  3s + 4 
s3 
 
2 L1 
 
3 
2 
 
s4  2s2 + 1 
s5 
 
3 L1 
 
s + 7 
(s + 1)2 + 1 
 
4 L1 
 
3s + 5 
(s + 1)4 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - I 
1 L1 
 
s2  3s + 4 
s3 
 
2 L1 
 
3 
2 
 
s4  2s2 + 1 
s5 
 
3 L1 
 
s + 7 
(s + 1)2 + 1 
 
4 L1 
 
3s + 5 
(s + 1)4 
 
5 L1 
 
3s 
s2 + 2s  8 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - I 
1 L1 
 
s2  3s + 4 
s3 
 
2 L1 
 
3 
2 
 
s4  2s2 + 1 
s5 
 
3 L1 
 
s + 7 
(s + 1)2 + 1 
 
4 L1 
 
3s + 5 
(s + 1)4 
 
5 L1 
 
3s 
s2 + 2s  8 
 
6 L1 
 
3s + 7 
s2  2s  3 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - I 
1 L1 
 
s2  3s + 4 
s3 
 
2 L1 
 
3 
2 
 
s4  2s2 + 1 
s5 
 
3 L1 
 
s + 7 
(s + 1)2 + 1 
 
4 L1 
 
3s + 5 
(s + 1)4 
 
5 L1 
 
3s 
s2 + 2s  8 
 
6 L1 
 
3s + 7 
s2  2s  3 
 
7 L1 
 
2s2  6s + 5 
s3  6s2 + 11s  6 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - II 
1 L1 
 
s + 29 
(s + 4)(s2 + 9) 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - II 
1 L1 
 
s + 29 
(s + 4)(s2 + 9) 
 
2 L1 
 
s 
(s2  1) 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - II 
1 L1 
 
s + 29 
(s + 4)(s2 + 9) 
 
2 L1 
 
s 
(s2  1) 
 
3 L1 
 
4s + 5 
(s  1)2(s + 2) 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - II 
1 L1 
 
s + 29 
(s + 4)(s2 + 9) 
 
2 L1 
 
s 
(s2  1) 
 
3 L1 
 
4s + 5 
(s  1)2(s + 2) 
 
4 L1 
 
2s2  1 
(s2 + 1)(s2 + 4) 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - II 
1 L1 
 
s + 29 
(s + 4)(s2 + 9) 
 
2 L1 
 
s 
(s2  1) 
 
3 L1 
 
4s + 5 
(s  1)2(s + 2) 
 
4 L1 
 
2s2  1 
(s2 + 1)(s2 + 4) 
 
5 L1 
 
s 
s4 + s2 + 1 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - II 
1 L1 
 
s + 29 
(s + 4)(s2 + 9) 
 
2 L1 
 
s 
(s2  1) 
 
3 L1 
 
4s + 5 
(s  1)2(s + 2) 
 
4 L1 
 
2s2  1 
(s2 + 1)(s2 + 4) 
 
5 L1 
 
s 
s4 + s2 + 1 
 
6 L1 
 
s 
s4 + 4a4 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - II 
1 L1 
 
s + 29 
(s + 4)(s2 + 9) 
 
2 L1 
 
s 
(s2  1) 
 
3 L1 
 
4s + 5 
(s  1)2(s + 2) 
 
4 L1 
 
2s2  1 
(s2 + 1)(s2 + 4) 
 
5 L1 
 
s 
s4 + s2 + 1 
 
6 L1 
 
s 
s4 + 4a4 
 
7 L1 
 
s + 3 
s2 + 6s + 13 
 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
i.e. Lff0(t)g = sL ff(t)g  f(0) 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
i.e. Lff0(t)g = sL ff(t)g  f(0) 
Simillarly Lff00(t)g = sL ff0(t)g  f0(0) 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
i.e. Lff0(t)g = sL ff(t)g  f(0) 
Simillarly Lff00(t)g = sL ff0(t)g  f0(0) 
= s [sL ff(t)g  f(0)]  f0(0) 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
i.e. Lff0(t)g = sL ff(t)g  f(0) 
Simillarly Lff00(t)g = sL ff0(t)g  f0(0) 
= s [sL ff(t)g  f(0)]  f0(0) 
= s2Lff(t)g  sf(0)  f0(0) 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
i.e. Lff0(t)g = sL ff(t)g  f(0) 
Simillarly Lff00(t)g = sL ff0(t)g  f0(0) 
= s [sL ff(t)g  f(0)]  f0(0) 
= s2Lff(t)g  sf(0)  f0(0) 
= s2  f(s)  sf(0)  f0(0) 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
i.e. Lff0(t)g = sL ff(t)g  f(0) 
Simillarly Lff00(t)g = sL ff0(t)g  f0(0) 
= s [sL ff(t)g  f(0)]  f0(0) 
= s2Lff(t)g  sf(0)  f0(0) 
= s2  f(s)  sf(0)  f0(0) 
In general 
Lffn(t)g = sn  f(s)  sn1f(0)  sn2f0(0)  : : :  fn1(0) 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
i.e. Lff0(t)g = sL ff(t)g  f(0) 
Simillarly Lff00(t)g = sL ff0(t)g  f0(0) 
= s [sL ff(t)g  f(0)]  f0(0) 
= s2Lff(t)g  sf(0)  f0(0) 
= s2  f(s)  sf(0)  f0(0) 
In general 
Lffn(t)g = sn  f(s)  sn1f(0)  sn2f0(0)  : : :  fn1(0) 
N. B. Vyas Laplace Transforms
Examples of Transformation of Derivatives 
Ex. Derive the Laplace transform of sin at and cos at 
N. B. Vyas Laplace Transforms
Examples of Transformation of Derivatives 
Ex. Derive the Laplace transform of sin at and cos at 
Ex. Obtain Lftng from L(1) = 
1 
s 
N. B. Vyas Laplace Transforms
Examples of Transformation of Derivatives 
Ex. Derive the Laplace transform of sin at and cos at 
Ex. Obtain Lftng from L(1) = 
1 
s 
Ex. Find L(t sin at) 
N. B. Vyas Laplace Transforms
Examples of Transformation of Derivatives 
Ex. Derive the Laplace transform of sin at and cos at 
Ex. Obtain Lftng from L(1) = 
1 
s 
Ex. Find L(t sin at) 
Ex. Find L(t cos at) 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) 
f(u)du 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) and I(0) = 0 
f(u)du 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) and I(0) = 0 
f(u)du 
) Lff(t)g = LfI0(t)g = sI(s)  I(0) = sI(s) 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) and I(0) = 0 
f(u)du 
) Lff(t)g = LfI0(t)g = sI(s)  I(0) = sI(s) 
) Lff(t)g = sI(s) 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) and I(0) = 0 
f(u)du 
) Lff(t)g = LfI0(t)g = sI(s)  I(0) = sI(s) 
) Lff(t)g = sI(s) 
) Lff(t)g = sL fI(t)g 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) and I(0) = 0 
f(u)du 
) Lff(t)g = LfI0(t)g = sI(s)  I(0) = sI(s) 
) Lff(t)g = sI(s) 
) Lff(t)g = Z sL fI(t)g 
t 
) f(s)  = sL 
0 
 
f(u)du 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) and I(0) = 0 
f(u)du 
) Lff(t)g = LfI0(t)g = sI(s)  I(0) = sI(s) 
) Lff(t)g = sI(s) 
) Lff(t)g = Z sL fI(t)g 
t 
) f(s)  = sL 
0 
 
f(u)du 
) 1 
s 
 f(s) = L 
Z t 
0 
 
f(u)du 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) and I(0) = 0 
f(u)du 
) Lff(t)g = LfI0(t)g = sI(s)  I(0) = sI(s) 
) Lff(t)g = sI(s) 
) Lff(t)g = Z sL fI(t)g 
t 
) f(s)  = sL 
0 
 
f(u)du 
) 1 
s 
 f(s) = L 
Z t 
0 
 
f(u)du 
) L1 
 
1 
s 
 f(s) 
 
= 
Z t 
0 
f(u)du 
N. B. Vyas Laplace Transforms
Examples of Transformation of Integrals 
Ex. Prove that: L1 
 
1 
s2 + 1 
 
= sin t 
Ex. Prove that: L1 
 
1 
s(s2 + 1) 
 
= 1  cos t 
Ex. Find inverse Laplace transform of 
1 
s3(s2 + a2) 
N. B. Vyas Laplace Transforms
Multiplication by tn 
Thm: If L[f(t)] =  f(s) then Lftnf(t)g = (1)n dn 
dsn 
 
 f(s) 
 
N. B. Vyas Laplace Transforms
Multiplication by tn 
Thm: If L[f(t)] =  f(s) then Lftnf(t)g = (1)n dn 
dsn 
 
 f(s) 
 
if Lftf (t)g = (1)1 d 
ds 
 
 f(s) 
 
then L1 
 
 f0(s) 
	 
= tf (t) 
N. B. Vyas Laplace Transforms
Examples of Laplace transform when tn is in 
multiplication 
1 L 
 
t2eat 
	 
N. B. Vyas Laplace Transforms
Examples of Laplace transform when tn is in 
multiplication 
1 L 
 
t2eat 
	 
2 L 
 
t3e3t 
	 
N. B. Vyas Laplace Transforms
Examples of Laplace transform when tn is in 
multiplication 
1 L 
 
t2eat 
	 
2 L 
 
t3e3t 
	 
3 Lftcos atg 
N. B. Vyas Laplace Transforms
Examples of Laplace transform when tn is in 
multiplication 
1 L 
 
t2eat 
	 
2 L 
 
t3e3t 
	 
3 Lftcos atg 
4 L 
 
tsin2t 
	 
N. B. Vyas Laplace Transforms
Examples of Laplace transform when tn is in 
multiplication 
1 L 
 
t2eat 
	 
2 L 
 
t3e3t 
	 
3 Lftcos atg 
4 L 
 
tsin2t 
	 
5 L 
 
te2tcos 3t 
	 
N. B. Vyas Laplace Transforms
Examples of Laplace transform when tn is in 
multiplication 
1 L 
 
t2eat 
	 
2 L 
 
t3e3t 
	 
3 Lftcos atg 
4 L 
 
tsin2t 
	 
5 L 
 
te2tcos 3t 
	 
6 Lftcos(4t + 3)g 
N. B. Vyas Laplace Transforms
Division by t 
Thm: If L[f(t)] =  f(s) then L 
 
1 
t 
 
f(t) 
= 
Z 1 
s 
 f(s) provided the 
integral exists. 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform when t is in division 
1 L 
 
sin t 
t 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform when t is in division 
1 L 
 
sin t 
t 
 
2 L 
 
1  cos 2t 
t 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform when t is in division 
1 L 
 
sin t 
t 
 
2 L 
 
1  cos 2t 
t 
 
3 L 
 
eat  ebt 
t 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform when t is in division 
1 L 
 
sin t 
t 
 
2 L 
 
1  cos 2t 
t 
 
3 L 
 
eat  ebt 
t 
 
4 L 
 
cos 2t  cos 3t 
t 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform when t is in division 
1 L 
 
sin t 
t 
 
2 L 
 
1  cos 2t 
t 
 
3 L 
 
eat  ebt 
t 
 
4 L 
 
cos 2t  cos 3t 
t 
 
5 L 
 
1  et 
t 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform when t is in division 
1 L 
 
sin t 
t 
 
2 L 
 
1  cos 2t 
t 
 
3 L 
 
eat  ebt 
t 
 
4 L 
 
cos 2t  cos 3t 
t 
 
5 L 
 
1  et 
t 
 
6 L 
 
cos at  cos bt 
t 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform when t is in division 
1 L 
 
sin t 
t 
 
2 L 
 
1  cos 2t 
t 
 
3 L 
 
eat  ebt 
t 
 
4 L 
 
cos 2t  cos 3t 
t 
 
5 L 
 
1  et 
t 
 
6 L 
 
cos at  cos bt 
t 
 
7 L 
 
etsin t 
t 
 
N. B. Vyas Laplace Transforms
Examples of in
nite integral using Laplace Transform 
1 Find 
Z 1 
0 
te2tsin t dt 
N. B. Vyas Laplace Transforms
Examples of in
nite integral using Laplace Transform 
1 Find 
Z 1 
0 
te2tsin t dt 
2 Find 
Z 1 
0 
sin mt 
t 
dt 
N. B. Vyas Laplace Transforms
Examples of in
nite integral using Laplace Transform 
1 Find 
Z 1 
0 
te2tsin t dt 
2 Find 
Z 1 
0 
sin mt 
t 
dt 
3 Find 
Z 1 
0 
et  e3t 
t 
dt 
N. B. Vyas Laplace Transforms
Examples of in
nite integral using Laplace Transform 
1 Find 
Z 1 
0 
te2tsin t dt 
2 Find 
Z 1 
0 
sin mt 
t 
dt 
3 Find 
Z 1 
0 
et  e3t 
t 
dt 
4 Find 
Z 1 
0 
etsin2 t 
t 
dt 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform 
1 L1 
 
s 
(s2 + a2)2 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform 
1 L1 
 
s 
(s2 + a2)2 
 
2 L1 
 
cot1 s 
a 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform 
1 L1 
 
s 
(s2 + a2)2 
 
2 L1 
 
cot1 s 
a 
 
3 L1 
 
log 
 
s + 1 
s  1 
 
N. B. Vyas Laplace Transforms
Convolution 
Defn: 
Convolution of function Z f(t) and g(t) is denoted f(t)  g(t) and 
t 
de
ned as f(t)  g(t) = 
0 
f(u)g(t  u) du 
N. B. Vyas Laplace Transforms
Convolution 
Defn: 
Convolution of function Z f(t) and g(t) is denoted f(t)  g(t) and 
t 
de
ned as f(t)  g(t) = 
0 
f(u)g(t  u) du 
Theorem:  
Convolution theorem 
If L1 
f(s) 
 	 
= f(t) and L1 fg(s)g = g(t) then 
L1 
 
 f(s)g(s) 
 
= 
Z t 
0 
f(u)g(t  u) du 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
then L((t)) = 
Z 1 
0 
est 
Z t 
0 
 
dt 
f(u)g(t  u) du 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
then L((t)) = 
Z 1 
0 
est 
Z t 
0 
 
dt 
f(u)g(t  u) du 
= 
Z 1 
0 
Z t 
0 
estf(u)g(t  u) du dt 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
then L((t)) = 
Z 1 
0 
est 
Z t 
0 
 
dt 
f(u)g(t  u) du 
= 
Z 1 
0 
Z t 
0 
estf(u)g(t  u) du dt 
The region integration for this double integration is entire area 
lying between the lines u = 0 and u = t. On changing the order 
of integration, we get 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
then L((t)) = 
Z 1 
0 
est 
Z t 
0 
 
dt 
f(u)g(t  u) du 
= 
Z 1 
0 
Z t 
0 
estf(u)g(t  u) du dt 
The region integration for this double integration is entire area 
lying between the lines u = 0 and u = t. On changing the order 
of integration, Z we get 
1 
L((t)) = 
0 
Z 1 
u 
estf(u)g(t  u) dt du 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
then L((t)) = 
Z 1 
0 
est 
Z t 
0 
 
dt 
f(u)g(t  u) du 
= 
Z 1 
0 
Z t 
0 
estf(u)g(t  u) du dt 
The region integration for this double integration is entire area 
lying between the lines u = 0 and u = t. On changing the order 
of integration, Z we get 
1 
L((t)) = 
0 
Z 1 
u 
estf(u)g(t  u) dt du 
= 
Z 1 
0 
esuf(u) 
Z 1 
u 
 
du 
est+sug(t  u) dt 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
then L((t)) = 
Z 1 
0 
est 
Z t 
0 
 
dt 
f(u)g(t  u) du 
= 
Z 1 
0 
Z t 
0 
estf(u)g(t  u) du dt 
The region integration for this double integration is entire area 
lying between the lines u = 0 and u = t. On changing the order 
of integration, Z we get 
1 
L((t)) = 
0 
Z 1 
u 
estf(u)g(t  u) dt du 
= 
Z 1 
0 
esuf(u) 
Z 1 
u 
 
du 
est+sug(t  u) dt 
= 
Z 1 
0 
esuf(u) 
Z 1 
u 
 
du 
es(tu)g(t  u) dt 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
then L((t)) = 
Z 1 
0 
est 
Z t 
0 
 
dt 
f(u)g(t  u) du 
= 
Z 1 
0 
Z t 
0 
estf(u)g(t  u) du dt 
The region integration for this double integration is entire area 
lying between the lines u = 0 and u = t. On changing the order 
of integration, Z we get 
1 
L((t)) = 
0 
Z 1 
u 
estf(u)g(t  u) dt du 
= 
Z 1 
0 
esuf(u) 
Z 1 
u 
 
du 
est+sug(t  u) dt 
= 
Z 1 
0 
esuf(u) 
Z 1 
u 
 
du 
es(tu)g(t  u) dt 
= 
Z 1 
0 
esuf(u) 
Z 1 
u 
esvg(v) dv 
 
du, Putting t  u = v 
N. B. Vyas Laplace Transforms
Convolution 
= 
Z 1 
0 
esuf(u)g(s)du 
N. B. Vyas Laplace Transforms
Convolution 
= 
Z 1 
0 
esuf(u)g(s)du 
= g(s) 
Z 1 
0 
esuf(u)du 
N. B. Vyas Laplace Transforms
Convolution 
= 
Z 1 
0 
esuf(u)g(s)du 
= g(s) 
Z 1 
0 
esuf(u)du 
) L((t)) = g(s)  f(s) 
N. B. Vyas Laplace Transforms
Convolution 
= 
Z 1 
0 
esuf(u)g(s)du 
= g(s) 
Z 1 
0 
esuf(u)du 
) L((t)) = g(s) f(s) 
  
L1 
g(s) f(s) 
 	 
= (t) = 
Z t 
0 
f(u)g(t  u) du 
N. B. Vyas Laplace Transforms
Examples of Convolution theorem 
Apply convolution theorem to evaluate: 
Ex. L1 
 
1 
s2(s  1) 
 
N. B. Vyas Laplace Transforms
Examples of Convolution theorem 
Apply convolution theorem to evaluate: 
Ex. L1 
 
1 
s2(s  1) 
 
Ex. L1 
 
s 
(s2 + 4)2 
 
N. B. Vyas Laplace Transforms
Examples of Convolution theorem 
Apply convolution theorem to evaluate: 
Ex. L1 
 
1 
s2(s  1) 
 
Ex. L1 
 
s 
(s2 + 4)2 
 
Ex. L1 
 
1 
(s + a)(s + b) 
 
N. B. Vyas Laplace Transforms
Examples of Convolution theorem 
Apply convolution theorem to evaluate: 
Ex. L1 
 
1 
s2(s  1) 
 
Ex. L1 
 
s 
(s2 + 4)2 
 
Ex. L1 
 
1 
(s + a)(s + b) 
 
Ex. L1 
 
1 
s(s2 + 4) 
 
N. B. Vyas Laplace Transforms
Application to Dierential Equations 
Ex. Use transform method to solve y00 + 3y0 + 2y = et, y(0) = 1 , 
y0(0) = 0 
N. B. Vyas Laplace Transforms
Application to Dierential Equations 
Ex. Use transform method to solve y00 + 3y0 + 2y = et, y(0) = 1 , 
y0(0) = 0 
Ex. Solve the equation x00 + 2x0 + 5x = et sin t, x(0) = 0 , x0(0) = 1 
N. B. Vyas Laplace Transforms
Laplace transform of Periodic function 
If f(t) is sectionally continuous function over an 
interval of length p (0  t  p) and f(t) is a 
periodic function with period p (p  0), that is 
f(t + p) = f(t), then its Laplace transform exists 
and 
1 
Lff(t)g = 
1  eps 
Z p 
0 
estf(t)dt, (s  0) 
N. B. Vyas Laplace Transforms
Laplace transform of Periodic function 
Periodic Square Wave 
Ex. Find the Laplace transform of the square wave 
function of period 2a de
ned as 
f(t) = 
 
k if 0  t  a 
k if a  t  2a 
N. B. Vyas Laplace Transforms
Laplace transform of Periodic function 
Periodic Triangular Wave 
Ex. Find the Laplace transform of periodic function 
f(t) = 
 
t if 0  t  a 
2a  t if a  t  2a 
with period 2a 
N. B. Vyas Laplace Transforms
Unit Step function or Heaviside's unit function 
The Heaviside step function, or the unit step 
function, usually denoted by H (but sometimes u 
or ), is a discontinuous function whose value is 
zero for negative argument and one for positive 
argument. 
N. B. Vyas Laplace Transforms
Unit Step function or Heaviside's unit function 
The Heaviside step function, or the unit step 
function, usually denoted by H (but sometimes u 
or ), is a discontinuous function whose value is 
zero for negative argument and one for positive 
argument. 
The function is used in the mathematics of control 
theory, signal processing, structural mechanics, 
etc.. 
N. B. Vyas Laplace Transforms
Unit Step function or Heaviside's unit function 
It is denoted by ua(t) or  
u(t  a) or H(t  a) and 
is de
ned as H(t  a) = 
0 t  a 
1 t  a 
N. B. Vyas Laplace Transforms

Más contenido relacionado

La actualidad más candente

Over view of Laplace Transform and its Properties
Over view of Laplace Transform and its Properties Over view of Laplace Transform and its Properties
Over view of Laplace Transform and its Properties Neel Shah
 
Laplace transform
Laplace transformLaplace transform
Laplace transformAmit Kundu
 
Chapter 2 laplace transform
Chapter 2 laplace transformChapter 2 laplace transform
Chapter 2 laplace transformLenchoDuguma
 
Chapter 2 Laplace Transform
Chapter 2 Laplace TransformChapter 2 Laplace Transform
Chapter 2 Laplace TransformZakiah Saad
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its applicationJaydrath Sindhav
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transformsRahul Narang
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its ApplicationChandra Kundu
 
Laplace Transform And Its Applications
Laplace Transform And Its ApplicationsLaplace Transform And Its Applications
Laplace Transform And Its ApplicationsSmit Shah
 
Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic FunctionDhaval Shukla
 
EM3 mini project Laplace Transform
EM3 mini project Laplace TransformEM3 mini project Laplace Transform
EM3 mini project Laplace TransformAditi523129
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform 001Abhishek1
 
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...Waqas Afzal
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its applicationmayur1347
 

La actualidad más candente (20)

Properties of laplace transform
Properties of laplace transformProperties of laplace transform
Properties of laplace transform
 
Over view of Laplace Transform and its Properties
Over view of Laplace Transform and its Properties Over view of Laplace Transform and its Properties
Over view of Laplace Transform and its Properties
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Chapter 2 laplace transform
Chapter 2 laplace transformChapter 2 laplace transform
Chapter 2 laplace transform
 
Chapter 2 Laplace Transform
Chapter 2 Laplace TransformChapter 2 Laplace Transform
Chapter 2 Laplace Transform
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
 
Importance & Application of Laplace Transform
Importance & Application of Laplace TransformImportance & Application of Laplace Transform
Importance & Application of Laplace Transform
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
 
Laplace Transform And Its Applications
Laplace Transform And Its ApplicationsLaplace Transform And Its Applications
Laplace Transform And Its Applications
 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
 
Z transform
Z transformZ transform
Z transform
 
Fourier series and transforms
Fourier series and transformsFourier series and transforms
Fourier series and transforms
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic Function
 
EM3 mini project Laplace Transform
EM3 mini project Laplace TransformEM3 mini project Laplace Transform
EM3 mini project Laplace Transform
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform
 
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
 

Similar a Laplace Transforms Explained

Similar a Laplace Transforms Explained (20)

LaplaceTransformIIT.pdf
LaplaceTransformIIT.pdfLaplaceTransformIIT.pdf
LaplaceTransformIIT.pdf
 
NotesLaplace.pdf
NotesLaplace.pdfNotesLaplace.pdf
NotesLaplace.pdf
 
Ch06 2
Ch06 2Ch06 2
Ch06 2
 
Chapter 9(laplace transform)
Chapter 9(laplace transform)Chapter 9(laplace transform)
Chapter 9(laplace transform)
 
Jif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transformJif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transform
 
lec04.pdf
lec04.pdflec04.pdf
lec04.pdf
 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace Transform
 
Laplace transforms and problems
Laplace transforms and problemsLaplace transforms and problems
Laplace transforms and problems
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Laplace
LaplaceLaplace
Laplace
 
Laplace
LaplaceLaplace
Laplace
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
 
Laplace_1.ppt
Laplace_1.pptLaplace_1.ppt
Laplace_1.ppt
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
TLT
TLTTLT
TLT
 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace Transform
 
Inverse laplace
Inverse laplaceInverse laplace
Inverse laplace
 
On Laplace Transform.ppt
On Laplace Transform.pptOn Laplace Transform.ppt
On Laplace Transform.ppt
 
Proyecto parcial iii_ proyecciones lineales
Proyecto parcial iii_ proyecciones linealesProyecto parcial iii_ proyecciones lineales
Proyecto parcial iii_ proyecciones lineales
 
Laplace quad
Laplace quadLaplace quad
Laplace quad
 

Más de Dr. Nirav Vyas

Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanDr. Nirav Vyas
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressionsDr. Nirav Vyas
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressionsDr. Nirav Vyas
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture NotesDr. Nirav Vyas
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture NotesDr. Nirav Vyas
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesDr. Nirav Vyas
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesDr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Dr. Nirav Vyas
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - NotesDr. Nirav Vyas
 

Más de Dr. Nirav Vyas (20)

Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressions
 
Combinations
CombinationsCombinations
Combinations
 
Permutation
PermutationPermutation
Permutation
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture Notes
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen values
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Special functions
Special functionsSpecial functions
Special functions
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Fourier series 3
Fourier series 3Fourier series 3
Fourier series 3
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Numerical Methods 3
Numerical Methods 3Numerical Methods 3
Numerical Methods 3
 

Último

Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 

Último (20)

Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 

Laplace Transforms Explained

  • 1. Laplace Transforms Nirav B. Vyas Department of Mathematics Atmiya Institute of Technology and Science Yogidham, Kalavad road Rajkot - 360005 . Gujarat N. B. Vyas Laplace Transforms
  • 3. nition: Let f(t) be a function of t de
  • 4. ned for all t 0 then Laplace transform of f(t) is denoted by Lff(t)g or f(s) and is de
  • 5. ned as L ff (t)g = f (s) = Z1 0 estf (t) dt provided the integral exists where s is a parameter ( real or complex). N. B. Vyas Laplace Transforms
  • 6. Laplace Transforms NOTATIONS: The original functions are denoted by lowercase letters such as f(t); g(t); ::: Laplace transforms by the same letters with bars such as f(s)g(s); ::: N. B. Vyas Laplace Transforms
  • 7. Linearity of the Laplace Transforms Theorem 1: If Lff (t)g = f (s) and Lfg (t)g = g (s) then for any constants a and b Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g N. B. Vyas Laplace Transforms
  • 8. Linearity of the Laplace Transforms Theorem 1: If Lff (t)g = f (s) and Lfg (t)g = g (s) then for any constants a and b Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g Corollary 1: Putting a = 0 and b = 0, we get L[0] = 0 N. B. Vyas Laplace Transforms
  • 9. Linearity of the Laplace Transforms Theorem 1: If Lff (t)g = f (s) and Lfg (t)g = g (s) then for any constants a and b Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g Corollary 1: Putting a = 0 and b = 0, we get L[0] = 0 Corollary 2: Putting b = 0, we get L[af(t)] = aL[f(t)] N. B. Vyas Laplace Transforms
  • 10. Linearity of the Laplace Transforms Theorem 1: If Lff (t)g = f (s) and Lfg (t)g = g (s) then for any constants a and b Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g Corollary 1: Putting a = 0 and b = 0, we get L[0] = 0 Corollary 2: Putting b = 0, we get L[af(t)] = aL[f(t)] Corollary 3: L[a1f1 (t) + a2f2 (t) + ::: + anfn (t)] = a1L[f1(t)] + a2L[f2(t)] + ::: + anL[fn(t)] N. B. Vyas Laplace Transforms
  • 11. Laplace Transforms of some elementary functions 1 L(1) = 1 s N. B. Vyas Laplace Transforms
  • 12. Laplace Transforms of some elementary functions 1 L(1) = 1 s 2 L(eat) = 1 s a N. B. Vyas Laplace Transforms
  • 13. Laplace Transforms of some elementary functions 1 L(1) = 1 s 2 L(eat) = 1 s a cor.1 If a = 0 ) L(1) = 1 s N. B. Vyas Laplace Transforms
  • 14. Laplace Transforms of some elementary functions 1 L(1) = 1 s 2 L(eat) = 1 s a cor.1 If a = 0 ) L(1) = 1 s cor.2 L[eat] = 1 s + a if s a N. B. Vyas Laplace Transforms
  • 15. Laplace Transforms of some elementary functions 1 L(1) = 1 s 2 L(eat) = 1 s a cor.1 If a = 0 ) L(1) = 1 s cor.2 L[eat] = 1 s + a if s a cor.3 L[cat] = L[eat log c] = 1 s a logc if s a log c and c 0 N. B. Vyas Laplace Transforms
  • 16. Laplace Transforms of some elementary functions 3 L[sinh at] = a s2 a2 N. B. Vyas Laplace Transforms
  • 17. Laplace Transforms of some elementary functions 3 L[sinh at] = a s2 a2 4 L[cosh at] = s s2 a2 N. B. Vyas Laplace Transforms
  • 18. Laplace Transforms of some elementary functions 3 L[sinh at] = a s2 a2 4 L[cosh at] = s s2 a2 5 L[sin at] = a s2 + a2 N. B. Vyas Laplace Transforms
  • 19. Laplace Transforms of some elementary functions 3 L[sinh at] = a s2 a2 4 L[cosh at] = s s2 a2 5 L[sin at] = a s2 + a2 6 L[cos at] = s s2 + a2 ; s 0 N. B. Vyas Laplace Transforms
  • 20. Laplace Transforms of some elementary functions 3 L[sinh at] = a s2 a2 4 L[cosh at] = s s2 a2 5 L[sin at] = a s2 + a2 6 L[cos at] = s s2 + a2 ; s 0 cor.1 L[sin t] = 1 s2 + 1 ; s 0 N. B. Vyas Laplace Transforms
  • 21. Laplace Transforms of some elementary functions 3 L[sinh at] = a s2 a2 4 L[cosh at] = s s2 a2 5 L[sin at] = a s2 + a2 6 L[cos at] = s s2 + a2 ; s 0 cor.1 L[sin t] = 1 s2 + 1 ; s 0 cor.2 L[cos t] = s s2 + 1 ; s 0 N. B. Vyas Laplace Transforms
  • 22. Laplace Transforms of some elementary functions 7 L[tn] = (n + 1) sn+1 N. B. Vyas Laplace Transforms
  • 23. Laplace Transforms of some elementary functions 7 L[tn] = (n + 1) sn+1 = n! sn+1 ; n = 0; 1; 2; ::: N. B. Vyas Laplace Transforms
  • 24. Laplace Transforms of some elementary functions 7 L[tn] = (n + 1) sn+1 = n! sn+1 ; n = 0; 1; 2; ::: cor.1 If n = 0, L[1] = 1 s N. B. Vyas Laplace Transforms
  • 25. Laplace Transforms of some elementary functions 7 L[tn] = (n + 1) sn+1 = n! sn+1 ; n = 0; 1; 2; ::: cor.1 If n = 0, L[1] = 1 s cor.2 If n = 1 2 N. B. Vyas Laplace Transforms
  • 26. Laplace Transforms of some elementary functions 7 L[tn] = (n + 1) sn+1 = n! sn+1 ; n = 0; 1; 2; ::: cor.1 If n = 0, L[1] = 1 s cor.2 If n = 1 2 L t1 2 = (1 ) 2 1 s 2 = r s N. B. Vyas Laplace Transforms
  • 27. Laplace Transforms of some elementary functions 7 L[tn] = (n + 1) sn+1 = n! sn+1 ; n = 0; 1; 2; ::: cor.1 If n = 0, L[1] = 1 s cor.2 If n = 1 2 L t1 2 = (1 ) 2 1 s 2 = r s N. B. Vyas Laplace Transforms
  • 28. Examples of Laplace Transform 1 L 2t3 + e2t + t 4 3 N. B. Vyas Laplace Transforms
  • 29. Examples of Laplace Transform 1 L 2t3 + e2t + t 4 3 2 L A + B t 1 2 + C t 1 2 N. B. Vyas Laplace Transforms
  • 30. Examples of Laplace Transform 1 L 2t3 + e2t + t 4 3 2 L A + B t 1 2 + C t 1 2 3 L eat 1 a N. B. Vyas Laplace Transforms
  • 31. Examples of Laplace Transform 1 L 2t3 + e2t + t 4 3 2 L A + B t 1 2 + C t 1 2 3 L eat 1 a 4 Lfsin(at + b)g N. B. Vyas Laplace Transforms
  • 32. Examples of Laplace Transform 1 L 2t3 + e2t + t 4 3 2 L A + B t 1 2 + C t 1 2 3 L eat 1 a 4 Lfsin(at + b)g 5 Lfsin 2t cos 3tg N. B. Vyas Laplace Transforms
  • 33. Examples of Laplace Transform 1 L 2t3 + e2t + t 4 3 2 L A + B t 1 2 + C t 1 2 3 L eat 1 a 4 Lfsin(at + b)g 5 Lfsin 2t cos 3tg 6 L cos24t N. B. Vyas Laplace Transforms
  • 34. Examples of Laplace Transform 1 L 2t3 + e2t + t 4 3 2 L A + B t 1 2 + C t 1 2 3 L eat 1 a 4 Lfsin(at + b)g 5 Lfsin 2t cos 3tg 6 L cos24t 7 L cos32t N. B. Vyas Laplace Transforms
  • 35. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) N. B. Vyas Laplace Transforms
  • 36. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) Proof: By the def. of Laplace N. B. Vyas Laplace Transforms
  • 37. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) Proof: By the def. of Laplace 1R L eatf (t) = 0 esteatf (t) dt N. B. Vyas Laplace Transforms
  • 38. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) Proof: By the def. of Laplace 1R L eatf (t) = 0 esteatf (t) dt = 1R 0 e(sa)tf (t) dt N. B. Vyas Laplace Transforms
  • 39. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) Proof: By the def. of Laplace 1R L eatf (t) = 0 esteatf (t) dt = 1R 0 e(sa)tf (t) dt = 1R 0 ertf (t) dt N. B. Vyas Laplace Transforms
  • 40. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) Proof: By the def. of Laplace 1R L eatf (t) = 0 esteatf (t) dt = 1R 0 e(sa)tf (t) dt = 1R 0 ertf (t) dt = f(r) N. B. Vyas Laplace Transforms
  • 41. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) Proof: By the def. of Laplace 1R L eatf (t) = 0 esteatf (t) dt = 1R 0 e(sa)tf (t) dt = 1R 0 ertf (t) dt = f(r) = f(s a) N. B. Vyas Laplace Transforms
  • 42. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) Proof: By the def. of Laplace 1R L eatf (t) = 0 esteatf (t) dt = 1R 0 e(sa)tf (t) dt = 1R 0 ertf (t) dt = f(r) = f(s a) Thus if we know the transformation f(s) of f(t) then we can write the transformation of eatf(t) simply replacing s by s a to get F(s a) N. B. Vyas Laplace Transforms
  • 43. First Shifting Theorem Note: 1 L(eat) = 1 s a N. B. Vyas Laplace Transforms
  • 44. First Shifting Theorem Note: 1 L(eat) = 1 s a 2 L[eattn] = (n + 1) (s a)n+1 N. B. Vyas Laplace Transforms
  • 45. First Shifting Theorem Note: 1 L(eat) = 1 s a 2 L[eattn] = (n + 1) (s a)n+1 3 L[eatsinh bt] = b (s a)2 b2 N. B. Vyas Laplace Transforms
  • 46. First Shifting Theorem Note: 1 L(eat) = 1 s a 2 L[eattn] = (n + 1) (s a)n+1 3 L[eatsinh bt] = b (s a)2 b2 4 L[eatcosh bt] = s (s a)2 b2 N. B. Vyas Laplace Transforms
  • 47. First Shifting Theorem Note: 1 L(eat) = 1 s a 2 L[eattn] = (n + 1) (s a)n+1 3 L[eatsinh bt] = b (s a)2 b2 4 L[eatcosh bt] = s (s a)2 b2 5 L[eatsin bt] = b (s a)2 + b2 N. B. Vyas Laplace Transforms
  • 48. First Shifting Theorem Note: 1 L(eat) = 1 s a 2 L[eattn] = (n + 1) (s a)n+1 3 L[eatsinh bt] = b (s a)2 b2 4 L[eatcosh bt] = s (s a)2 b2 5 L[eatsin bt] = b (s a)2 + b2 6 L[eatcos bt] = s a (s a)2 + b2 ; s 0 N. B. Vyas Laplace Transforms
  • 49. Examples 1 Find out the Laplace transform of e3t (2 cos 5t 3 sin 5t) N. B. Vyas Laplace Transforms
  • 50. Examples 1 Find out the Laplace transform of e3t (2 cos 5t 3 sin 5t) 2 L[eatsinhbt] N. B. Vyas Laplace Transforms
  • 51. Examples 1 Find out the Laplace transform of e3t (2 cos 5t 3 sin 5t) 2 L[eatsinhbt] 3 L[t3e3t] N. B. Vyas Laplace Transforms
  • 52. Examples 1 Find out the Laplace transform of e3t (2 cos 5t 3 sin 5t) 2 L[eatsinhbt] 3 L[t3e3t] 4 L[(t + 2)2et] N. B. Vyas Laplace Transforms
  • 53. Examples 1 Find out the Laplace transform of e3t (2 cos 5t 3 sin 5t) 2 L[eatsinhbt] 3 L[t3e3t] 4 L[(t + 2)2et] 5 L[etsin2t] N. B. Vyas Laplace Transforms
  • 54. Examples 1 Find out the Laplace transform of e3t (2 cos 5t 3 sin 5t) 2 L[eatsinhbt] 3 L[t3e3t] 4 L[(t + 2)2et] 5 L[etsin2t] 6 L[cosh at sin at] N. B. Vyas Laplace Transforms
  • 55. Examples Ex. Find the Laplace transform of the function which is de
  • 56. ned as f(t) = t/T 0 t T 1 when t T N. B. Vyas Laplace Transforms
  • 57. Examples Ex. Find Laplace transform of f(t) = sin t 0 t 0 when t N. B. Vyas Laplace Transforms
  • 58. Examples Ex. Find Laplace transform of f(t) where f(t) = t 0 t 4 5 when t 4 N. B. Vyas Laplace Transforms
  • 59. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 N. B. Vyas Laplace Transforms
  • 60. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace N. B. Vyas Laplace Transforms
  • 61. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace Lff (t)g = 1 Z 0 estf (t) dt N. B. Vyas Laplace Transforms
  • 62. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace Lff (t)g = 1 Z 0 estf (t) dt L eatf (bt) = 1 Z 0 esteatf (bt) dt N. B. Vyas Laplace Transforms
  • 63. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace Lff (t)g = 1 Z 0 estf (t) dt L eatf (bt) = 1 Z 0 esteatf (bt) dt = 1R 0 e(sa)tf (bt) dt N. B. Vyas Laplace Transforms
  • 64. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace Lff (t)g = 1 Z 0 estf (t) dt L eatf (bt) = 1 Z 0 esteatf (bt) dt = 1R 0 e(sa)tf (bt) dt = 1R 0 e( sa b )btf (bt) dt N. B. Vyas Laplace Transforms
  • 65. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace Lff (t)g = 1 Z 0 estf (t) dt L eatf (bt) = 1 Z 0 esteatf (bt) dt = 1R 0 e(sa)tf (bt) dt = 1R 0 e( sa b )btf (bt) dt Let bt = u ) b dt = du N. B. Vyas Laplace Transforms
  • 66. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace Lff (t)g = 1 Z 0 estf (t) dt L eatf (bt) = 1 Z 0 esteatf (bt) dt = 1R 0 e(sa)tf (bt) dt = 1R 0 e( sa b )btf (bt) dt Let bt = u ) b dt = du 1R L eatf (bt) = 0 e( sa b )uf (u) du b N. B. Vyas Laplace Transforms
  • 67. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace Lff (t)g = 1 Z 0 estf (t) dt L eatf (bt) = 1 Z 0 esteatf (bt) dt = 1R 0 e(sa)tf (bt) dt = 1R 0 e( sa b )btf (bt) dt Let bt = u ) b dt = du 1R L eatf (bt) = 0 e( sa b )uf (u) du b = 1 b f s a b N. B. Vyas Laplace Transforms
  • 68. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) N. B. Vyas Laplace Transforms
  • 69. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) 1 L1 1 s = 1 N. B. Vyas Laplace Transforms
  • 70. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) 1 L1 1 s = 1 2 L1 1 s a = eat N. B. Vyas Laplace Transforms
  • 71. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) 1 L1 1 s = 1 2 L1 1 s a = eat 3 L1 1 s2 + a2 = 1 a sin at N. B. Vyas Laplace Transforms
  • 72. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) 1 L1 1 s = 1 2 L1 1 s a = eat 3 L1 1 s2 + a2 = 1 a sin at 4 L1 s s2 + a2 = cos at N. B. Vyas Laplace Transforms
  • 73. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) 1 L1 1 s = 1 2 L1 1 s a = eat 3 L1 1 s2 + a2 = 1 a sin at 4 L1 s s2 + a2 = cos at 5 L1 1 s2 a2 = 1 a sinh at N. B. Vyas Laplace Transforms
  • 74. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) 1 L1 1 s = 1 2 L1 1 s a = eat 3 L1 1 s2 + a2 = 1 a sin at 4 L1 s s2 + a2 = cos at 5 L1 1 s2 a2 = 1 a sinh at 6 L1 s s2 a2 = cosh at N. B. Vyas Laplace Transforms
  • 75. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) 1 L1 1 s = 1 2 L1 1 s a = eat 3 L1 1 s2 + a2 = 1 a sin at 4 L1 s s2 + a2 = cos at 5 L1 1 s2 a2 = 1 a sinh at 6 L1 s s2 a2 = cosh at 7 L1 1 sn = tn1 (n 1)! N. B. Vyas Laplace Transforms
  • 76. Partial Fractions N. B. Vyas Laplace Transforms
  • 77. Partial Fractions N. B. Vyas Laplace Transforms
  • 78. Partial Fractions N. B. Vyas Laplace Transforms
  • 79. Examples of Inverse Laplace Transform - I 1 L1 s2 3s + 4 s3 N. B. Vyas Laplace Transforms
  • 80. Examples of Inverse Laplace Transform - I 1 L1 s2 3s + 4 s3 2 L1 3 2 s4 2s2 + 1 s5 N. B. Vyas Laplace Transforms
  • 81. Examples of Inverse Laplace Transform - I 1 L1 s2 3s + 4 s3 2 L1 3 2 s4 2s2 + 1 s5 3 L1 s + 7 (s + 1)2 + 1 N. B. Vyas Laplace Transforms
  • 82. Examples of Inverse Laplace Transform - I 1 L1 s2 3s + 4 s3 2 L1 3 2 s4 2s2 + 1 s5 3 L1 s + 7 (s + 1)2 + 1 4 L1 3s + 5 (s + 1)4 N. B. Vyas Laplace Transforms
  • 83. Examples of Inverse Laplace Transform - I 1 L1 s2 3s + 4 s3 2 L1 3 2 s4 2s2 + 1 s5 3 L1 s + 7 (s + 1)2 + 1 4 L1 3s + 5 (s + 1)4 5 L1 3s s2 + 2s 8 N. B. Vyas Laplace Transforms
  • 84. Examples of Inverse Laplace Transform - I 1 L1 s2 3s + 4 s3 2 L1 3 2 s4 2s2 + 1 s5 3 L1 s + 7 (s + 1)2 + 1 4 L1 3s + 5 (s + 1)4 5 L1 3s s2 + 2s 8 6 L1 3s + 7 s2 2s 3 N. B. Vyas Laplace Transforms
  • 85. Examples of Inverse Laplace Transform - I 1 L1 s2 3s + 4 s3 2 L1 3 2 s4 2s2 + 1 s5 3 L1 s + 7 (s + 1)2 + 1 4 L1 3s + 5 (s + 1)4 5 L1 3s s2 + 2s 8 6 L1 3s + 7 s2 2s 3 7 L1 2s2 6s + 5 s3 6s2 + 11s 6 N. B. Vyas Laplace Transforms
  • 86. Examples of Inverse Laplace Transform - II 1 L1 s + 29 (s + 4)(s2 + 9) N. B. Vyas Laplace Transforms
  • 87. Examples of Inverse Laplace Transform - II 1 L1 s + 29 (s + 4)(s2 + 9) 2 L1 s (s2 1) N. B. Vyas Laplace Transforms
  • 88. Examples of Inverse Laplace Transform - II 1 L1 s + 29 (s + 4)(s2 + 9) 2 L1 s (s2 1) 3 L1 4s + 5 (s 1)2(s + 2) N. B. Vyas Laplace Transforms
  • 89. Examples of Inverse Laplace Transform - II 1 L1 s + 29 (s + 4)(s2 + 9) 2 L1 s (s2 1) 3 L1 4s + 5 (s 1)2(s + 2) 4 L1 2s2 1 (s2 + 1)(s2 + 4) N. B. Vyas Laplace Transforms
  • 90. Examples of Inverse Laplace Transform - II 1 L1 s + 29 (s + 4)(s2 + 9) 2 L1 s (s2 1) 3 L1 4s + 5 (s 1)2(s + 2) 4 L1 2s2 1 (s2 + 1)(s2 + 4) 5 L1 s s4 + s2 + 1 N. B. Vyas Laplace Transforms
  • 91. Examples of Inverse Laplace Transform - II 1 L1 s + 29 (s + 4)(s2 + 9) 2 L1 s (s2 1) 3 L1 4s + 5 (s 1)2(s + 2) 4 L1 2s2 1 (s2 + 1)(s2 + 4) 5 L1 s s4 + s2 + 1 6 L1 s s4 + 4a4 N. B. Vyas Laplace Transforms
  • 92. Examples of Inverse Laplace Transform - II 1 L1 s + 29 (s + 4)(s2 + 9) 2 L1 s (s2 1) 3 L1 4s + 5 (s 1)2(s + 2) 4 L1 2s2 1 (s2 + 1)(s2 + 4) 5 L1 s s4 + s2 + 1 6 L1 s s4 + 4a4 7 L1 s + 3 s2 + 6s + 13 N. B. Vyas Laplace Transforms
  • 93. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 N. B. Vyas Laplace Transforms
  • 94. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 i.e. Lff0(t)g = sL ff(t)g f(0) N. B. Vyas Laplace Transforms
  • 95. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 i.e. Lff0(t)g = sL ff(t)g f(0) Simillarly Lff00(t)g = sL ff0(t)g f0(0) N. B. Vyas Laplace Transforms
  • 96. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 i.e. Lff0(t)g = sL ff(t)g f(0) Simillarly Lff00(t)g = sL ff0(t)g f0(0) = s [sL ff(t)g f(0)] f0(0) N. B. Vyas Laplace Transforms
  • 97. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 i.e. Lff0(t)g = sL ff(t)g f(0) Simillarly Lff00(t)g = sL ff0(t)g f0(0) = s [sL ff(t)g f(0)] f0(0) = s2Lff(t)g sf(0) f0(0) N. B. Vyas Laplace Transforms
  • 98. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 i.e. Lff0(t)g = sL ff(t)g f(0) Simillarly Lff00(t)g = sL ff0(t)g f0(0) = s [sL ff(t)g f(0)] f0(0) = s2Lff(t)g sf(0) f0(0) = s2 f(s) sf(0) f0(0) N. B. Vyas Laplace Transforms
  • 99. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 i.e. Lff0(t)g = sL ff(t)g f(0) Simillarly Lff00(t)g = sL ff0(t)g f0(0) = s [sL ff(t)g f(0)] f0(0) = s2Lff(t)g sf(0) f0(0) = s2 f(s) sf(0) f0(0) In general Lffn(t)g = sn f(s) sn1f(0) sn2f0(0) : : : fn1(0) N. B. Vyas Laplace Transforms
  • 100. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 i.e. Lff0(t)g = sL ff(t)g f(0) Simillarly Lff00(t)g = sL ff0(t)g f0(0) = s [sL ff(t)g f(0)] f0(0) = s2Lff(t)g sf(0) f0(0) = s2 f(s) sf(0) f0(0) In general Lffn(t)g = sn f(s) sn1f(0) sn2f0(0) : : : fn1(0) N. B. Vyas Laplace Transforms
  • 101. Examples of Transformation of Derivatives Ex. Derive the Laplace transform of sin at and cos at N. B. Vyas Laplace Transforms
  • 102. Examples of Transformation of Derivatives Ex. Derive the Laplace transform of sin at and cos at Ex. Obtain Lftng from L(1) = 1 s N. B. Vyas Laplace Transforms
  • 103. Examples of Transformation of Derivatives Ex. Derive the Laplace transform of sin at and cos at Ex. Obtain Lftng from L(1) = 1 s Ex. Find L(t sin at) N. B. Vyas Laplace Transforms
  • 104. Examples of Transformation of Derivatives Ex. Derive the Laplace transform of sin at and cos at Ex. Obtain Lftng from L(1) = 1 s Ex. Find L(t sin at) Ex. Find L(t cos at) N. B. Vyas Laplace Transforms
  • 105. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) N. B. Vyas Laplace Transforms
  • 106. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du N. B. Vyas Laplace Transforms
  • 107. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) f(u)du N. B. Vyas Laplace Transforms
  • 108. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) and I(0) = 0 f(u)du N. B. Vyas Laplace Transforms
  • 109. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) and I(0) = 0 f(u)du ) Lff(t)g = LfI0(t)g = sI(s) I(0) = sI(s) N. B. Vyas Laplace Transforms
  • 110. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) and I(0) = 0 f(u)du ) Lff(t)g = LfI0(t)g = sI(s) I(0) = sI(s) ) Lff(t)g = sI(s) N. B. Vyas Laplace Transforms
  • 111. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) and I(0) = 0 f(u)du ) Lff(t)g = LfI0(t)g = sI(s) I(0) = sI(s) ) Lff(t)g = sI(s) ) Lff(t)g = sL fI(t)g N. B. Vyas Laplace Transforms
  • 112. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) and I(0) = 0 f(u)du ) Lff(t)g = LfI0(t)g = sI(s) I(0) = sI(s) ) Lff(t)g = sI(s) ) Lff(t)g = Z sL fI(t)g t ) f(s) = sL 0 f(u)du N. B. Vyas Laplace Transforms
  • 113. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) and I(0) = 0 f(u)du ) Lff(t)g = LfI0(t)g = sI(s) I(0) = sI(s) ) Lff(t)g = sI(s) ) Lff(t)g = Z sL fI(t)g t ) f(s) = sL 0 f(u)du ) 1 s f(s) = L Z t 0 f(u)du N. B. Vyas Laplace Transforms
  • 114. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) and I(0) = 0 f(u)du ) Lff(t)g = LfI0(t)g = sI(s) I(0) = sI(s) ) Lff(t)g = sI(s) ) Lff(t)g = Z sL fI(t)g t ) f(s) = sL 0 f(u)du ) 1 s f(s) = L Z t 0 f(u)du ) L1 1 s f(s) = Z t 0 f(u)du N. B. Vyas Laplace Transforms
  • 115. Examples of Transformation of Integrals Ex. Prove that: L1 1 s2 + 1 = sin t Ex. Prove that: L1 1 s(s2 + 1) = 1 cos t Ex. Find inverse Laplace transform of 1 s3(s2 + a2) N. B. Vyas Laplace Transforms
  • 116. Multiplication by tn Thm: If L[f(t)] = f(s) then Lftnf(t)g = (1)n dn dsn f(s) N. B. Vyas Laplace Transforms
  • 117. Multiplication by tn Thm: If L[f(t)] = f(s) then Lftnf(t)g = (1)n dn dsn f(s) if Lftf (t)g = (1)1 d ds f(s) then L1 f0(s) = tf (t) N. B. Vyas Laplace Transforms
  • 118. Examples of Laplace transform when tn is in multiplication 1 L t2eat N. B. Vyas Laplace Transforms
  • 119. Examples of Laplace transform when tn is in multiplication 1 L t2eat 2 L t3e3t N. B. Vyas Laplace Transforms
  • 120. Examples of Laplace transform when tn is in multiplication 1 L t2eat 2 L t3e3t 3 Lftcos atg N. B. Vyas Laplace Transforms
  • 121. Examples of Laplace transform when tn is in multiplication 1 L t2eat 2 L t3e3t 3 Lftcos atg 4 L tsin2t N. B. Vyas Laplace Transforms
  • 122. Examples of Laplace transform when tn is in multiplication 1 L t2eat 2 L t3e3t 3 Lftcos atg 4 L tsin2t 5 L te2tcos 3t N. B. Vyas Laplace Transforms
  • 123. Examples of Laplace transform when tn is in multiplication 1 L t2eat 2 L t3e3t 3 Lftcos atg 4 L tsin2t 5 L te2tcos 3t 6 Lftcos(4t + 3)g N. B. Vyas Laplace Transforms
  • 124. Division by t Thm: If L[f(t)] = f(s) then L 1 t f(t) = Z 1 s f(s) provided the integral exists. N. B. Vyas Laplace Transforms
  • 125. Examples of Laplace Transform when t is in division 1 L sin t t N. B. Vyas Laplace Transforms
  • 126. Examples of Laplace Transform when t is in division 1 L sin t t 2 L 1 cos 2t t N. B. Vyas Laplace Transforms
  • 127. Examples of Laplace Transform when t is in division 1 L sin t t 2 L 1 cos 2t t 3 L eat ebt t N. B. Vyas Laplace Transforms
  • 128. Examples of Laplace Transform when t is in division 1 L sin t t 2 L 1 cos 2t t 3 L eat ebt t 4 L cos 2t cos 3t t N. B. Vyas Laplace Transforms
  • 129. Examples of Laplace Transform when t is in division 1 L sin t t 2 L 1 cos 2t t 3 L eat ebt t 4 L cos 2t cos 3t t 5 L 1 et t N. B. Vyas Laplace Transforms
  • 130. Examples of Laplace Transform when t is in division 1 L sin t t 2 L 1 cos 2t t 3 L eat ebt t 4 L cos 2t cos 3t t 5 L 1 et t 6 L cos at cos bt t N. B. Vyas Laplace Transforms
  • 131. Examples of Laplace Transform when t is in division 1 L sin t t 2 L 1 cos 2t t 3 L eat ebt t 4 L cos 2t cos 3t t 5 L 1 et t 6 L cos at cos bt t 7 L etsin t t N. B. Vyas Laplace Transforms
  • 133. nite integral using Laplace Transform 1 Find Z 1 0 te2tsin t dt N. B. Vyas Laplace Transforms
  • 135. nite integral using Laplace Transform 1 Find Z 1 0 te2tsin t dt 2 Find Z 1 0 sin mt t dt N. B. Vyas Laplace Transforms
  • 137. nite integral using Laplace Transform 1 Find Z 1 0 te2tsin t dt 2 Find Z 1 0 sin mt t dt 3 Find Z 1 0 et e3t t dt N. B. Vyas Laplace Transforms
  • 139. nite integral using Laplace Transform 1 Find Z 1 0 te2tsin t dt 2 Find Z 1 0 sin mt t dt 3 Find Z 1 0 et e3t t dt 4 Find Z 1 0 etsin2 t t dt N. B. Vyas Laplace Transforms
  • 140. Examples of Inverse Laplace Transform 1 L1 s (s2 + a2)2 N. B. Vyas Laplace Transforms
  • 141. Examples of Inverse Laplace Transform 1 L1 s (s2 + a2)2 2 L1 cot1 s a N. B. Vyas Laplace Transforms
  • 142. Examples of Inverse Laplace Transform 1 L1 s (s2 + a2)2 2 L1 cot1 s a 3 L1 log s + 1 s 1 N. B. Vyas Laplace Transforms
  • 143. Convolution Defn: Convolution of function Z f(t) and g(t) is denoted f(t) g(t) and t de
  • 144. ned as f(t) g(t) = 0 f(u)g(t u) du N. B. Vyas Laplace Transforms
  • 145. Convolution Defn: Convolution of function Z f(t) and g(t) is denoted f(t) g(t) and t de
  • 146. ned as f(t) g(t) = 0 f(u)g(t u) du Theorem: Convolution theorem If L1 f(s) = f(t) and L1 fg(s)g = g(t) then L1 f(s)g(s) = Z t 0 f(u)g(t u) du N. B. Vyas Laplace Transforms
  • 147. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du N. B. Vyas Laplace Transforms
  • 148. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du then L((t)) = Z 1 0 est Z t 0 dt f(u)g(t u) du N. B. Vyas Laplace Transforms
  • 149. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du then L((t)) = Z 1 0 est Z t 0 dt f(u)g(t u) du = Z 1 0 Z t 0 estf(u)g(t u) du dt N. B. Vyas Laplace Transforms
  • 150. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du then L((t)) = Z 1 0 est Z t 0 dt f(u)g(t u) du = Z 1 0 Z t 0 estf(u)g(t u) du dt The region integration for this double integration is entire area lying between the lines u = 0 and u = t. On changing the order of integration, we get N. B. Vyas Laplace Transforms
  • 151. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du then L((t)) = Z 1 0 est Z t 0 dt f(u)g(t u) du = Z 1 0 Z t 0 estf(u)g(t u) du dt The region integration for this double integration is entire area lying between the lines u = 0 and u = t. On changing the order of integration, Z we get 1 L((t)) = 0 Z 1 u estf(u)g(t u) dt du N. B. Vyas Laplace Transforms
  • 152. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du then L((t)) = Z 1 0 est Z t 0 dt f(u)g(t u) du = Z 1 0 Z t 0 estf(u)g(t u) du dt The region integration for this double integration is entire area lying between the lines u = 0 and u = t. On changing the order of integration, Z we get 1 L((t)) = 0 Z 1 u estf(u)g(t u) dt du = Z 1 0 esuf(u) Z 1 u du est+sug(t u) dt N. B. Vyas Laplace Transforms
  • 153. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du then L((t)) = Z 1 0 est Z t 0 dt f(u)g(t u) du = Z 1 0 Z t 0 estf(u)g(t u) du dt The region integration for this double integration is entire area lying between the lines u = 0 and u = t. On changing the order of integration, Z we get 1 L((t)) = 0 Z 1 u estf(u)g(t u) dt du = Z 1 0 esuf(u) Z 1 u du est+sug(t u) dt = Z 1 0 esuf(u) Z 1 u du es(tu)g(t u) dt N. B. Vyas Laplace Transforms
  • 154. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du then L((t)) = Z 1 0 est Z t 0 dt f(u)g(t u) du = Z 1 0 Z t 0 estf(u)g(t u) du dt The region integration for this double integration is entire area lying between the lines u = 0 and u = t. On changing the order of integration, Z we get 1 L((t)) = 0 Z 1 u estf(u)g(t u) dt du = Z 1 0 esuf(u) Z 1 u du est+sug(t u) dt = Z 1 0 esuf(u) Z 1 u du es(tu)g(t u) dt = Z 1 0 esuf(u) Z 1 u esvg(v) dv du, Putting t u = v N. B. Vyas Laplace Transforms
  • 155. Convolution = Z 1 0 esuf(u)g(s)du N. B. Vyas Laplace Transforms
  • 156. Convolution = Z 1 0 esuf(u)g(s)du = g(s) Z 1 0 esuf(u)du N. B. Vyas Laplace Transforms
  • 157. Convolution = Z 1 0 esuf(u)g(s)du = g(s) Z 1 0 esuf(u)du ) L((t)) = g(s) f(s) N. B. Vyas Laplace Transforms
  • 158. Convolution = Z 1 0 esuf(u)g(s)du = g(s) Z 1 0 esuf(u)du ) L((t)) = g(s) f(s) L1 g(s) f(s) = (t) = Z t 0 f(u)g(t u) du N. B. Vyas Laplace Transforms
  • 159. Examples of Convolution theorem Apply convolution theorem to evaluate: Ex. L1 1 s2(s 1) N. B. Vyas Laplace Transforms
  • 160. Examples of Convolution theorem Apply convolution theorem to evaluate: Ex. L1 1 s2(s 1) Ex. L1 s (s2 + 4)2 N. B. Vyas Laplace Transforms
  • 161. Examples of Convolution theorem Apply convolution theorem to evaluate: Ex. L1 1 s2(s 1) Ex. L1 s (s2 + 4)2 Ex. L1 1 (s + a)(s + b) N. B. Vyas Laplace Transforms
  • 162. Examples of Convolution theorem Apply convolution theorem to evaluate: Ex. L1 1 s2(s 1) Ex. L1 s (s2 + 4)2 Ex. L1 1 (s + a)(s + b) Ex. L1 1 s(s2 + 4) N. B. Vyas Laplace Transforms
  • 163. Application to Dierential Equations Ex. Use transform method to solve y00 + 3y0 + 2y = et, y(0) = 1 , y0(0) = 0 N. B. Vyas Laplace Transforms
  • 164. Application to Dierential Equations Ex. Use transform method to solve y00 + 3y0 + 2y = et, y(0) = 1 , y0(0) = 0 Ex. Solve the equation x00 + 2x0 + 5x = et sin t, x(0) = 0 , x0(0) = 1 N. B. Vyas Laplace Transforms
  • 165. Laplace transform of Periodic function If f(t) is sectionally continuous function over an interval of length p (0 t p) and f(t) is a periodic function with period p (p 0), that is f(t + p) = f(t), then its Laplace transform exists and 1 Lff(t)g = 1 eps Z p 0 estf(t)dt, (s 0) N. B. Vyas Laplace Transforms
  • 166. Laplace transform of Periodic function Periodic Square Wave Ex. Find the Laplace transform of the square wave function of period 2a de
  • 167. ned as f(t) = k if 0 t a k if a t 2a N. B. Vyas Laplace Transforms
  • 168. Laplace transform of Periodic function Periodic Triangular Wave Ex. Find the Laplace transform of periodic function f(t) = t if 0 t a 2a t if a t 2a with period 2a N. B. Vyas Laplace Transforms
  • 169. Unit Step function or Heaviside's unit function The Heaviside step function, or the unit step function, usually denoted by H (but sometimes u or ), is a discontinuous function whose value is zero for negative argument and one for positive argument. N. B. Vyas Laplace Transforms
  • 170. Unit Step function or Heaviside's unit function The Heaviside step function, or the unit step function, usually denoted by H (but sometimes u or ), is a discontinuous function whose value is zero for negative argument and one for positive argument. The function is used in the mathematics of control theory, signal processing, structural mechanics, etc.. N. B. Vyas Laplace Transforms
  • 171. Unit Step function or Heaviside's unit function It is denoted by ua(t) or u(t a) or H(t a) and is de
  • 172. ned as H(t a) = 0 t a 1 t a N. B. Vyas Laplace Transforms
  • 173. Unit Step function or Heaviside's unit function It is denoted by ua(t) or u(t a) or H(t a) and is de
  • 174. ned as H(t a) = 0 t a 1 t a In particular, when a = 0 H(t) = 0 t 0 1 t 0 N. B. Vyas Laplace Transforms
  • 175. Unit Step function or Heaviside's unit function N. B. Vyas Laplace Transforms
  • 176. Unit Step function or Heaviside's unit function Laplace Transform of Unit Step Function: By de
  • 177. nition of Z Laplace transform 1 Lfu(t a)g = 0 estu(t a)dt N. B. Vyas Laplace Transforms
  • 178. Unit Step function or Heaviside's unit function Laplace Transform of Unit Step Function: By de
  • 179. nition of Z Laplace transform 1 Lfu(t a)g = 0 estu(t a)dt = Z a 0 est(0)dt + Z 1 a est(1)dt N. B. Vyas Laplace Transforms
  • 180. Unit Step function or Heaviside's unit function Laplace Transform of Unit Step Function: By de
  • 181. nition of Z Laplace transform 1 Lfu(t a)g = 0 estu(t a)dt = Z a 0 est(0)dt + Z 1 a est(1)dt = Z 1 a estdt = est s 1 a = 1 s eas N. B. Vyas Laplace Transforms
  • 182. Unit Step function or Heaviside's unit function Laplace Transform of Unit Step Function: By de
  • 183. nition of Z Laplace transform 1 Lfu(t a)g = 0 estu(t a)dt = Z a 0 est(0)dt + Z 1 a est(1)dt = Z 1 a estdt = est s 1 a = 1 s eas ) L1 1 s eas = u(t a) N. B. Vyas Laplace Transforms
  • 184. Unit Step function or Heaviside's unit function Laplace Transform of Unit Step Function: By de
  • 185. nition of Z Laplace transform 1 Lfu(t a)g = 0 estu(t a)dt = Z a 0 est(0)dt + Z 1 a est(1)dt = Z 1 a estdt = est s 1 a = 1 s eas ) L1 1 s eas = u(t a) In particular, if a = 0 N. B. Vyas Laplace Transforms
  • 186. Unit Step function or Heaviside's unit function Laplace Transform of Unit Step Function: By de
  • 187. nition of Z Laplace transform 1 Lfu(t a)g = 0 estu(t a)dt = Z a 0 est(0)dt + Z 1 a est(1)dt = Z 1 a estdt = est s 1 a = 1 s eas ) L1 1 s eas = u(t a) In particular, if a = 0 L(u(t)) = 1 s ) L1 1 s = u(t) N. B. Vyas Laplace Transforms
  • 188. Second Shifting Theorem Second Shifting Theorem: If Lff(t)g = f(s), then Lff(t a)u(t a)g = eas f(s) N. B. Vyas Laplace Transforms
  • 189. Second Shifting Theorem Second Shifting Theorem: If Lff(t)g = f(s), then Lff(t a)u(t a)g = eas f(s) ) L1[eas f(s)] = f(t a)u(t a) Corollary: Lff(t)H(t a)g = easLff(t + a)g N. B. Vyas Laplace Transforms
  • 190. Second Shifting Theorem Second Shifting Theorem: If Lff(t)g = f(s), then Lff(t a)u(t a)g = eas f(s) ) L1[eas f(s)] = f(t a)u(t a) Corollary: Lff(t)H(t a)g = easLff(t + a)g Corollary: LfH(t a) H(t b)g = eas ebs s N. B. Vyas Laplace Transforms
  • 191. Second Shifting Theorem Second Shifting Theorem: If Lff(t)g = f(s), then Lff(t a)u(t a)g = eas f(s) ) L1[eas f(s)] = f(t a)u(t a) Corollary: Lff(t)H(t a)g = easLff(t + a)g Corollary: LfH(t a) H(t b)g = eas ebs s Corollary: Lff(t) [H(t a) H(t b)]g = easLff(t+a)gebsLff(t+b)g N. B. Vyas Laplace Transforms