Semantic Web SEO: Using Linked Dataand schema.org to improve Library Reachand Digital Repository AccessKenning	  Arlitsch	...
Today’s	  Objec.ves	  u    Basic	  understanding	  of	        v    Semantic	  Web	  SEO	  for	  digital	  repositories	 ...
Agenda	  u    Why	  SEO	  &	  the	  Semantic	  Web	  Matters	        v  Performance	  &	  Accountability	        v  The...
You	  can	  not	  evaluate	  what	  you	  do	  not	  measure	  	  "We	  cannot	  call	  a	  digital-­‐library	  or	  elect...
Funding	  providers	  want	  more	  accountability	          and	  demonstrated	  value*	          u  “IMLS	  is	  focusi...
Accountability	  extends	  beyond	  gran.ng	  agencies	  u    State	  Legislatures	        v  Local	  tax	  payers	  u ...
Accountability	  at	  the	  Ins.tu.onal	  level	  u    Enable	  all	  your	  Stakeholders	        v  Collection	  Manage...
2010:	  began	  looking	  at	  proxy	  metrics	  for	  digital	          collec.on	  public	  accessibility	  and	  use	  ...
Basic	  SEO	  has	  improved	  collec.on	  accessibility	            in	  Google	  across	  the	  board…	                 ...
…almost	  100%	  of	  USpace	  IR	  content	  is	         accessible	  to	  patrons	  using	  Google.	                    ...
…resul.ng	  in	  more	  referrals	  and	  visitors	               12 week comparison 2010 vs. 2012
Agenda	  u    Why	  SEO	  &	  the	  Semantic	  Web	  Matters	        v  Performance	  &	  Accountability	        v  The...
Today’s	  Key	  Premise,	  Concepts	  &	  Focus	  u  SEO	  Goals	  are	  to	  increase	  access,	  visibility	  and	     ...
Why	  seman.c	  search	  is	  useful	      u    Perfect	  application	  for	  research	  &	  discovery	  of	            c...
Seman.c	  implies	  “meaning”	  or	  “understanding”	  
Seman.c	  implies	  “meaning”	  or	  “understanding”	  u  Why	  would	  I	  search	  for	  “historic	  landmarks	  in	   ...
Seman.c	  implies	  “meaning”	  or	  “understanding”	  u  Why	  would	  I	  search	  for	  “historic	  landmarks	  in	   ...
Seman.c	  implies	  “meaning”	  or	  “understanding”	  
4	  Major	  SE’s	  commiZed	  to	  Schema.org	  as	  their	  seman.c	  model	  
The	  4	  major	  SE’s	  have	  commiZed	          Schema.org	  as	  their	  Seman.c	  model	          u    SE	  Understa...
Agenda	  u    Why	  SEO	  &	  the	  Semantic	  Web	  Matters	        v  Performance	  &	  Accountability	        v  The...
Created	  a	  SEO	  Scorecard	  designed	  to	  support	  pre	  /	  post	  funding	  decisions	  u    Assembled	  Team	  ...
Created	  a	  SEO	  Scorecard	  designed	  to	  support	  pre	  /	  post	  funding	  decisions	  
Workshop	  Process	  u  Diagrams	  and	  Process	  of	  what	  we	  did	  at	  Utah	  u  Live	  Demo	  Using	  Montana	 ...
Diagram	  of	  problem	  domain	  
Steps	  for	  se]ng	  up	  Measurement	  &	  Evalua.on	  for	  your	  Ins.tu.on	  and	  Staff	  1.    Associate	  a	  Googl...
Diagram	  of	  what	  it	  all	  looks	  like	                  2            1
Diagram	  of	  what	  it	  all	  looks	  like	                    4              3
Step	  1:	  Associate	  a	  Google	  Account*	     (Master)	  with	  your	  Ins.tu.on	      u  Use	  an	  internal	  list...
Step	  1:	  Associate	  a	  Google	  Account	  (Master)	  with	  your	  Ins.tu.on	  
Step	  2:	  	  Staff	  create	  their	  own	  Google	      Account*	  (Master)	  using	  Ins.tu.on	  email	      	  * https...
Step	  3:	  Ac.vate	  Google	  Services	  using	  your	  Ins.tu.on	  Google	  Account	  (Master)	  
Step	  4:	  Add	  Staff	  to	  Google	  Services	  using	  their	  Ins.tu.on	  email	  addresses	  
Step	  3	  &	  4:	  Successful	  Google	  Analy.cs	  
Step	  3	  &	  4:	  Successful	  Google	  Webmaster	  Tools	  
Next	  steps	  are	  to	  test	  scalable	  tools	  and	  repeatable	  process	  u  Found	  issues	  with	  most	  Analyt...
What	  type	  of	  web	  analy.cs	  socware	  does                                                          	     your	  I...
Both	  types	  have	  poten&al	  accuracy	  issues	        for	  IRs	  A.  Analytics	  Services	      v  Under	  count	  ...
Analy.cs	  Services	  do	  not	  track	  non-­‐HTML	  downloads	  out	  of	  the	  box	                                   ...
Analy.cs	  Services	  do	  not	  track	  non-­‐HTML	  file	  downloads	  via	  direct	  external	  links	                  ...
Agenda	  u    Why	  SEO	  &	  the	  Semantic	  Web	  Matters	        v  Performance	  &	  Accountability	        v  The...
Tradi.onal	  SEO	  is	  s.ll	  very	  important,	  but	  not	  today’s	  focus.	  u  Descriptive	  Page	  Titles,	  ancho...
Recommended	  Background	  informa.on	  u    Ronallo,	  Jason.	  "HTML5	  Microdata	  and	  Schema.	  org."	  Code4Lib	  ...
Challenge	  is	  presen.ng	  structured	  data	  SE’s	        can	  iden.fy,	  parse	  and	  digest	                      ...
Google	  Scholar	  can	  read	  and	  understand!	                      Google Scholar
However,	  Google	  can	  not	  understand	  or	  read	  any	  of	  our	  “structured	  data”	                            ...
Work	  Shop	  Excercise	                        Meta	  Tag	                                                               ...
Describe	  concepts	  using	  Schema.org	  to	  help	  SE	  understand	  your	  repository	  u    Answer	  Questions	    ...
WebPage	  concepts	  relevant	  to	  digital	     repositories	     u  Creative	  Works	  >	  WebPage*   u  WebPage	  Cl...
Typical	  Digital	  Repository	  Content	     u    CreativeWorks	  Classes	           v  Article	  >	  ScholarlyArticle	...
Organiza.ons	  might	  be	  relevant	     u    Organization*	           v  EducationalOrganization	              n  Col...
What	  People	  might	  be	  relevant	     u    Person*	                                    u    Important	  Properties	...
What	  loca.ons	  might	  be	  relevant?	     u    Place*	           v  LandmarksOrHistoricalBuildings	     u    Intang...
Check	  your	  work	  using	  Google	  Rich	  Snipet	     Tool	  <title>Search engine optimization (SEO) for digital repos...
Ques.ons	  &	  Study	  Par.cipa.on?	  Kenning	  Arlitsch	  Dean	  of	  the	  Library	  at	  Montana	  State	  University	 ...
Próxima SlideShare
Cargando en…5
×

Semantic Web SEO: Using Linked Data and schema.org to improve Library Reach and Digital Repository Access

4.238 visualizaciones

Publicado el

Semantic Web SEO is characterized by a number of concepts that help achieve the goals of increasing library reach by making digital collections more accessible and visible. Intelligent search engines will seek and utilize well-structured linked data that improves processing efficiency and the ability to return more accurate results and a richer search experience for users. Semantic search places less importance on the wording of a query and uses probabilities and algorithms to determine intent of the user. In this workshop we demonstrate how linked data concepts and Schema.org can be incorporated into digital libraries to improve search engine contextual understanding of collections and deliver a better experience to their users.
SEO requires tools to measure the effect of your efforts and the value it produces. We will provide a framework and a Google Analytics Scorecard that digital repository collection managers, libraries and their funders can use as a baseline for making informed decisions and tracking progress toward the goal of increasing access and visibility of digital libraries.
Attendees of this workshop will gain knowledge in the following areas:
1. A basic understanding of Semantic Web SEO and its two most important concepts for digital repositories.
2. A baseline Google Analytics dashboard to support pre/post funding decisions and the knowledge to get started
3. Simplifying the setup and administration of Google Analytics and Google Webmaster for their entire organization and their stakeholders
4. A basic understanding of how to incorporate Schema.org and linked data into a digital repository

Session Leaders:
Kenning Arlitsch, Montana State University
Patrick OBrien, Montana State University

Publicado en: Tecnología
0 comentarios
2 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

Sin descargas
Visualizaciones
Visualizaciones totales
4.238
En SlideShare
0
De insertados
0
Número de insertados
509
Acciones
Compartido
0
Descargas
23
Comentarios
0
Recomendaciones
2
Insertados 0
No insertados

No hay notas en la diapositiva.

Semantic Web SEO: Using Linked Data and schema.org to improve Library Reach and Digital Repository Access

  1. 1. Semantic Web SEO: Using Linked Dataand schema.org to improve Library Reachand Digital Repository AccessKenning  Arlitsch  &  Patrick  OBrien  DLF  Fall  –  Denver,  Colorado  November  5,  2012  
  2. 2. Today’s  Objec.ves  u  Basic  understanding  of   v  Semantic  Web  SEO  for  digital  repositories   v  How  to  get  started  incorporating  Schema.org  and  linked  data   into  a  digital  repository  u  Implement  baseline  metrics  to  support  pre/post  funding   decisions  of  digital  repositories   v  Simplify  setup  and  administration  of  Google  Analytics  and   Google  Webmaster  for  an  organization  and  its  stakeholders   v  Implement  Digital  Repository  SEO  Google  Analytics  dashboard  
  3. 3. Agenda  u  Why  SEO  &  the  Semantic  Web  Matters   v  Performance  &  Accountability   v  The  semantics  of  what  really  matters  today  u  How  to  Get  Started   v  SEO  Administration  at  an  Institutional  Scale   v  Enhance  Your  Data   v  Clean  up  You  Data  
  4. 4. You  can  not  evaluate  what  you  do  not  measure    "We  cannot  call  a  digital-­‐library  or  electronic-­‐ publishing  system  a  success  if  we  cannot   measure  and  interpret  its  use"     -­‐  -­‐  Ann  Peterson  Bishop   “Logins  and  Bailouts:  Measuring  Access,  Use,  and  Success  in  Digital  Libraries”   The  Journal  of  Electronic  Publishing   Volume  4,  Issue  2,  December,  1998  
  5. 5. Funding  providers  want  more  accountability   and  demonstrated  value*   u  “IMLS  is  focusing  on  areas  where  it  can  best   effect  change  and  measure  its  results.”**     u  The  IMLS  assessment  model  will  “identify   effective  museum  and  library  services  through   performance  monitoring”  among  other  things.**  * ACRL Research Planning and Review Committee, “2010 top ten trends in academic libraries,” June 2010**Institute of Museum and Library Services. 2011. “Creating a Nation of Learners; IMLS Five-Year Strategic Plan 2012–2016”
  6. 6. Accountability  extends  beyond  gran.ng  agencies  u  State  Legislatures   v  Local  tax  payers  u  University  administration  u  Library  administration  u  Donors  u  Association  of  Research  Libraries  statistics  
  7. 7. Accountability  at  the  Ins.tu.onal  level  u  Enable  all  your  Stakeholders   v  Collection  Managers   v  IT  Personnel   v  Administrators  u  Avoid  the  free-­‐for-­‐all  of  silos  u  Establish  an  institutional  master  account   v  Administer  rights   v  Everyone  uses  same  baseline  metrics  and  tools  
  8. 8. 2010:  began  looking  at  proxy  metrics  for  digital   collec.on  public  accessibility  and  use   u  12+  Billion     v  Number  of  search  queries  submitted  to  Google  each   month  by  Americans*   u  12%   v  Percentage  of  our  digital  collection  content  in   Google  index   u  0.5%   v  Percentage  of  our  USpace  IR  scholarly  papers   accessible  to  researchers  using  Google  Scholar  * http://www.comscore.com/Press_Events/Press_Releases/2012/1/comScore_Releases_December_2011_U.S._Search_Engine_Rankings
  9. 9. Basic  SEO  has  improved  collec.on  accessibility   in  Google  across  the  board…   Google Index Ratio - All Collections* 12%  Average   51%   79%   37%   High**   87%   100%   0%   25%   50%   75%   100%   07/05/10   04/04/11   11/30/11   * Google Index Ratio = URLs submitted / URLs Indexed by Google for about 150 collections containing ~170,00 URLs **Highest index ratio achieved for Collections with over 500 URLs submitted to Google
  10. 10. …almost  100%  of  USpace  IR  content  is   accessible  to  patrons  using  Google.   Google Index Ratio 12%   07/05/10   ETD  1   69%   11/19/10   97%   10/16/11   0%   ETD  2   68%   98%   23%   UScholar  Works   51%   98%   4%   Board  of  Regents   47%   97%   0%   25%   50%   75%   100%  *October 16, 2011 Weighted Average Google Index Ratio = 97.82% (10,306/10,536).
  11. 11. …resul.ng  in  more  referrals  and  visitors   12 week comparison 2010 vs. 2012
  12. 12. Agenda  u  Why  SEO  &  the  Semantic  Web  Matters   v  Performance  &  Accountability   v  The  semantics  of  what  really  matters  today  u  How  to  Get  Started   v  SEO  Administration  at  an  Institutional  Scale   v  Enhance  Your  Data   v  Clean  up  You  Data  
  13. 13. Today’s  Key  Premise,  Concepts  &  Focus  u  SEO  Goals  are  to  increase  access,  visibility  and   use  by  patrons  that  value  our  content  u  Semantic  Web  is  a  framework  of  standards  and   technologies  to  share,  integrate  and  represent   data  as  concepts  across  different  content,   information  and  system  boundaries.  u  Semantic  Search  incorporates  the  Semantic   Web  to  understand  the  context  and  intent  of   users  seeking  information  and  the  concepts   contained  within  a  document  
  14. 14. Why  seman.c  search  is  useful   u  Perfect  application  for  research  &  discovery  of   concepts   v  Apple  Siri   v  IBM  Watson   v  Google  Knowledge  Graph   u  Making  content  Search  Engine  Readable  &   semantically  Understandable  can  increase   v  click  though  rates  (CTR)  by  15%*   v  organic  trafjic  by  30%*  * http://searchengineland.com/how-to-get-a-30-increase-in-ctr-with-structured-markup-105830
  15. 15. Seman.c  implies  “meaning”  or  “understanding”  
  16. 16. Seman.c  implies  “meaning”  or  “understanding”  u  Why  would  I  search  for  “historic  landmarks  in   Denver”?  u  Anticipates  what  information  I  want?    
  17. 17. Seman.c  implies  “meaning”  or  “understanding”  u  Why  would  I  search  for  “historic  landmarks  in   Denver”?  u  Anticipates  what  information  I  want?    
  18. 18. Seman.c  implies  “meaning”  or  “understanding”  
  19. 19. 4  Major  SE’s  commiZed  to  Schema.org  as  their  seman.c  model  
  20. 20. The  4  major  SE’s  have  commiZed   Schema.org  as  their  Seman.c  model   u  SE  Understandable   v  Schema.org  is  a  mechanism  (i.e.,  ontology)  to   communicate  the  meaning  of  your  data   u  SE  Readable   v  Microdata  and  RDFa  are  the  preferred  way  SE’s  read   your  data   u  US  submits  19  Billion  queries  per  month  to  3  of   these  SE’s*   u  We  have  not  found  any  tools  within  reach  of   typical  Library  budgets,  or  skill  sets,  that  are   easily  implementable  * http://www.comscore.com/Press_Events/Press_Releases/2012/1/comScore_Releases_December_2011_U.S._Search_Engine_Rankings
  21. 21. Agenda  u  Why  SEO  &  the  Semantic  Web  Matters   v  Performance  &  Accountability   v  The  semantics  of  what  really  matters  today  u  How  to  Get  Started   v  SEO  Administration  at  an  Institutional  Scale   v  Enhance  Your  Data   v  Clean  up  You  Data  
  22. 22. Created  a  SEO  Scorecard  designed  to  support  pre  /  post  funding  decisions  u  Assembled  Team  of   v  Collection  Managers   v  Business  School  Group  Project   v  2nd  Year  MBA  Team  u  Focused  on  the  10  Google  Analytics  features  that   support     v  IMLS  &  NEH  strategic  plan   v  SEO  Collection  Manager  Goals  
  23. 23. Created  a  SEO  Scorecard  designed  to  support  pre  /  post  funding  decisions  
  24. 24. Workshop  Process  u  Diagrams  and  Process  of  what  we  did  at  Utah  u  Live  Demo  Using  Montana  State  (MSU)  u  Information  that  would  be  helpful  today   v  Access  to  your  organization’s  Admin  Accounts  (i.e.,   User  ID  &  password)   n  Google  Analytics   n  Google  Webmaster  Tools   v  An  internal  list  server  for  your  organizations   Managers  responsible  for  making  pre  /  post   funding  digital  repository  decisions  
  25. 25. Diagram  of  problem  domain  
  26. 26. Steps  for  se]ng  up  Measurement  &  Evalua.on  for  your  Ins.tu.on  and  Staff  1.  Associate  a  Google  Account  with  your   Institution  2.  Staff  create  their  own  Google  Account  using   their  Institution  email  address  3.  Activate  Google  Services  using  your  Institution   Google  Account   v  Google  Analytics   v  Google  Webmaster  Tools  4.  Add  Staff  to  Google  Services  using  their   Institution  email  addresses  
  27. 27. Diagram  of  what  it  all  looks  like   2 1
  28. 28. Diagram  of  what  it  all  looks  like   4 3
  29. 29. Step  1:  Associate  a  Google  Account*   (Master)  with  your  Ins.tu.on   u  Use  an  internal  list  server  e.g.,  seo@utah.edu   u  Include  managers  who  are  responsible  for   administration   v  Google  Analytics   v  Google  Web  Master  Tools  * https://accounts.google.com/NewAccount
  30. 30. Step  1:  Associate  a  Google  Account  (Master)  with  your  Ins.tu.on  
  31. 31. Step  2:    Staff  create  their  own  Google   Account*  (Master)  using  Ins.tu.on  email    * https://accounts.google.com/NewAccount
  32. 32. Step  3:  Ac.vate  Google  Services  using  your  Ins.tu.on  Google  Account  (Master)  
  33. 33. Step  4:  Add  Staff  to  Google  Services  using  their  Ins.tu.on  email  addresses  
  34. 34. Step  3  &  4:  Successful  Google  Analy.cs  
  35. 35. Step  3  &  4:  Successful  Google  Webmaster  Tools  
  36. 36. Next  steps  are  to  test  scalable  tools  and  repeatable  process  u  Found  issues  with  most  Analytics  conjigurations  u  We  Need  study  participants  to  evaluate  and  test   accuracy  of  additional  analytics  tools  being   developed  under  IMLS  Grant  program    
  37. 37. What  type  of  web  analy.cs  socware  does   your  IR  use?  A.  Analytics  Service  B.  Log  Files  C.  Dont  Know  D.  None   IR HTML Page Tagging B A {JavaScript} Log Files Analytics Service
  38. 38. Both  types  have  poten&al  accuracy  issues   for  IRs  A.  Analytics  Services   v  Under  count  non-­‐HTML  (e.g.,   PDF)  jile  downloads  B.  Log  Files   v  Over  count  visits  &  downloads   due  to  spiders,  etc.   IR v  Under  count  page  views  due  to   web  caching  –  upto  30%   HTML Page Tagging B A {JavaScript} Log Files Analytics Service
  39. 39. Analy.cs  Services  do  not  track  non-­‐HTML  downloads  out  of  the  box   Special Config Non-HTML HTML Page Tagging A {JavaScript} Analytics Service
  40. 40. Analy.cs  Services  do  not  track  non-­‐HTML  file  downloads  via  direct  external  links   Non-HTML HTML Page Tagging A {JavaScript} Analytics Service
  41. 41. Agenda  u  Why  SEO  &  the  Semantic  Web  Matters   v  Performance  &  Accountability   v  The  semantics  of  what  really  matters  today  u  How  to  Get  Started   v  SEO  Administration  at  an  Institutional  Scale   v  Enhance  Your  Data   v  Clean  up  You  Data  
  42. 42. Tradi.onal  SEO  is  s.ll  very  important,  but  not  today’s  focus.  u  Descriptive  Page  Titles,  anchor  text,   descriptions,  etc.  u  Easy  &  Intuitive  Site  Navigation  u  Submit  sitemaps/conjigure  robots.txt  jile  u  Monitor/address  errors  u  Inform  staff  &  assign  ownership  u  Clean  metadata  u  Upgrade  repository  software  
  43. 43. Recommended  Background  informa.on  u  Ronallo,  Jason.  "HTML5  Microdata  and  Schema.  org."  Code4Lib  Journal  (2012).   http://journal.code4lib.org/articles/6400u  Arlitsch,  Kenning,  and  Patrick  OBrien.  "Invisible  Institutional  Repositories:   Addressing  the  Low  Indexing  Ratios  of  IRs  in  Google  Scholar."  Library  Hi  Tech   30,  no.  1  (2012):  60-­‐81.   http://www.emeraldinsight.com/journals.htm?articleid=17020806u  Arlitsch,  Kenning,  and  Patrick  OBrien.  "Search  Engine  Optimization  (SEO)  for   Institutional  Repositories."  In  Technical  Advances  for  Innovation  in  Cultural   Heritage  Institutions  (TAI  CHI)  Webinar  Series;  2012  Mar  16;  pp.  1-­‐48.  OCLC   Research,  Online  Computer  Library  Center,  Inc.  (OCLC),  2012.     http://www.oclc.org/resources/research/events/20120316seo.pdfu  Arlitsch,  Kenning,  and  Patrick  OBrien.  "Search  engine  optimization  (SEO)  for   digital  repositories."  In  Coalition  for  Networked  Information  (CNI)  Spring   2011  Membership  Meeting;  2011  Apr  4-­‐5;  San  Deigo,  California,  USA;  pp.  1-­‐25.   J.  Willard  Marriott  Library,  University  Libraries,  University  of  Utah,  2011.   http://content.lib.utah.edu/utils/getfile/collection/uspace/id/1976/filename/713.pdf
  44. 44. Challenge  is  presen.ng  structured  data  SE’s   can  iden.fy,  parse  and  digest   Human ReadableWoljinger,  N.  H.,  &  McKeever,  M.  (2006,  July).  Thanks  for  nothing:  changes  in  income  and  labor  force  participation  for  never-­‐married  mothers  since  1982.  In  101st  American  Sociological  Association  (ASA)  Annual  Meeting;  2006  Aug  11-­‐14;  Montreal,  Canada  (No.  2006-­‐07-­‐04,  pp.  1-­‐42).  Institute  of  Public  &  International  Affairs  (IPIA),  University  of  Utah.   Machine Understandable
  45. 45. Google  Scholar  can  read  and  understand!   Google Scholar
  46. 46. However,  Google  can  not  understand  or  read  any  of  our  “structured  data”   nd able de rsta No t Un rg = ad able em a.o t Re Sch No N o DFa= R data or icro N oM
  47. 47. Work  Shop  Excercise   Meta  Tag   Working  Paper  1  -­‐  citation_author   Arlitsch,  Kenning;  OBrien,  Patrick  2  -­‐  citation_date   2011-­‐04-­‐05  3  -­‐  citation_title   Search  engine  optimization  (SEO)  for  digital  repositories  6  -­‐  citation_volume  7  -­‐  citation_issue  8  -­‐  citation_jirstpage   1  9  -­‐  citation_lastpage   25  10  -­‐  citation_doi    13  -­‐  citation_keywords   SEO  Tips,  Special  Collections,  Digital  Collection,  Institutional  Repository,  Digital   Repository  16  -­‐  citation_technical_report_institution   University  of  Utah  17  -­‐  citation_technical_report_number  18  -­‐  citation_language   en  19  -­‐  citation_conference_title   Coalion  for  Networked  Informaon  (CNI)  Spring  2011  Membership  Meeng;  201  Apr  4-­‐5;   San  Diego,  California,  USA  21  -­‐  citation_pdf_url     http://content.lib.utah.edu/utils/getfile/collection/uspace/id/1976/filename/713.pdf22  -­‐  citation_abstract_html_url   http://content.lib.utah.edu/cdm/ref/collection/uspace/id/197623  –  University   University  of  Utah  24  –  College   University  Libraries  25  –  Department   J.  Willard  MarrioO  Library  26  –  subject.LCSH   Web  search  engines;  Web  sites-­‐-­‐Registraon  with  search  engines;  Digital  libraries-­‐-­‐Collecon   development  
  48. 48. Describe  concepts  using  Schema.org  to  help  SE  understand  your  repository  u  Answer  Questions   v  What  type  of  WebPage?   v  What  content  /  data  does  the  page  contain?   v  Who  was  involved?     n  Organizations?   n  People?   v  Where  is  it?  u  Look  at  the  properties  to  see  if  the  concept   applies  
  49. 49. WebPage  concepts  relevant  to  digital   repositories   u  Creative  Works  >  WebPage* u  WebPage  Classes   u  Important  Properties   v  SearchResultsPage   v  description   v  CollectionPage   v  breadCrumb   n  ImageGallery   n  VideoGallery   v  isPartOf   v  ItemPage   v  signijicantLink   v  signijicantLinks  * http://schema.org/WebPage
  50. 50. Typical  Digital  Repository  Content   u  CreativeWorks  Classes   v  Article  >  ScholarlyArticle   v  Book   v  Map   u  Important  Properties   v  Painting   v  publisher   v  Photograph   v  sourceOrganization   v  MediaObject   v  contentLocation   n  AudioObject   v  copyrightHolder   n  ImageObject   v  author   n  MusicVideoObject   n  VideoObject  * http://schema.org/ScholarlyArticle
  51. 51. Organiza.ons  might  be  relevant   u  Organization*   v  EducationalOrganization   n  CollegeOrUniversity   v  LocalBusiness   u  Important  Properties   n  Library**   v  member   v  employee   v  contactPoint  * http://schema.org/Organization** http://schema.org/Library
  52. 52. What  People  might  be  relevant   u  Person*   u  Important  Properties   v  memberOf   v  worksFor   v  jobTitle   v  email   v  afjiliation   v  alumniOf  * http://schema.org/Person
  53. 53. What  loca.ons  might  be  relevant?   u  Place*   v  LandmarksOrHistoricalBuildings   u  Intangible  >  StructuredValue   v  GeoCoordinates   u  Important  Properties   v  geo   v  photo   v  address   v  containedIn  * http://schema.org/Place
  54. 54. Check  your  work  using  Google  Rich  Snipet   Tool  <title>Search engine optimization (SEO) for digital repositories</title><body itemscope itemtype="http://schema.org/WebPage"><div itemprop="breadcrumb"> <a href="category/ir.html">Uspace Instutional Repository</a> > <a href="category/CollegeofSocialBehavioralScience.html">University Libraries</a> > <a href="category/books-literature.html">J. Willard Marriott Library</a> ></div><div itemscope itemtype="http://schema.org/ScholarlyArticle"> <span itemprop="name">Search engine optimization (SEO) for digital repositories</span> <div itemscope itemtype="http://schema.org/Person"> <span itemprop="name">Patrick OBrien</span> <a href="http://www.linkedin.com/in/obrienpatricks" itemprop="url">Patrick OBrien Resume</a> <span itemprop="jobTitle">Semantic Web Research Director</span> <div itemprop="affiliation" itemscope itemtype="http://schema.org/CollegeOrUniversity"> <span itemprop="name">Montana State University Library</span> </div> <div itemprop="affiliation" itemscope itemtype="http://schema.org/Organization"> <a href="http://www.RevXcorp.com" itemprop="name">RevX Corporation</a> </div> </div></div></body>
  55. 55. Ques.ons  &  Study  Par.cipa.on?  Kenning  Arlitsch  Dean  of  the  Library  at  Montana  State  University  kenning.arlitsch@montana.edu    Patrick  OBrien  Semantic  Web  Research  Director  patrick.obrien4@montana.edu    

×