SlideShare una empresa de Scribd logo
1 de 54
Descargar para leer sin conexión
Double Angles
Double Angles
      
 sin 2  sin   
Double Angles
      
 sin 2  sin   
        sin  cos   cos  sin 
Double Angles
      
 sin 2  sin   
         sin  cos   cos  sin 
  sin 2  2sin  cos 
Double Angles
      
 sin 2  sin   
         sin  cos   cos  sin 
  sin 2  2sin  cos 

 cos 2  cos    
Double Angles
      
 sin 2  sin   
         sin  cos   cos  sin 
  sin 2  2sin  cos 

 cos 2  cos    
         cos  cos   sin  sin 
Double Angles
      
 sin 2  sin   
         sin  cos   cos  sin 
  sin 2  2sin  cos 

 cos 2  cos    
         cos  cos   sin  sin 
 cos 2  cos 2   sin 2 
Double Angles
      
 sin 2  sin   
         sin  cos   cos  sin 
  sin 2  2sin  cos 

 cos 2  cos    
         cos  cos   sin  sin 
 cos 2  cos 2   sin 2 
          cos 2   1  cos 2  
Double Angles
      
 sin 2  sin   
         sin  cos   cos  sin 
  sin 2  2sin  cos 

 cos 2  cos    
         cos  cos   sin  sin 
 cos 2  cos 2   sin 2 
          cos 2   1  cos 2  
  cos 2  2cos 2   1
Double Angles
      
 sin 2  sin   
         sin  cos   cos  sin 
  sin 2  2sin  cos 

 cos 2  cos    
         cos  cos   sin  sin 
 cos 2  cos 2   sin 2 
          cos 2   1  cos 2  
  cos 2  2cos 2   1
          2 1  sin 2    1
Double Angles
      
 sin 2  sin   
         sin  cos   cos  sin 
  sin 2  2sin  cos 

 cos 2  cos    
         cos  cos   sin  sin 
 cos 2  cos 2   sin 2 
          cos 2   1  cos 2  
  cos 2  2cos 2   1
          2 1  sin 2    1
  cos 2  1  2sin 2 
Double Angles
      
 sin 2  sin   
         sin  cos   cos  sin 
  sin 2  2sin  cos 

 cos 2  cos    
         cos  cos   sin  sin 
 cos 2  cos 2   sin 2 
          cos 2   1  cos 2  
  cos 2  2cos 2   1
          2 1  sin 2    1
  cos 2  1  2sin 2 
  tan 2  tan    
Double Angles
      
 sin 2  sin   
         sin  cos   cos  sin 
  sin 2  2sin  cos 

 cos 2  cos    
         cos  cos   sin  sin 
 cos 2  cos 2   sin 2 
          cos 2   1  cos 2  
  cos 2  2cos 2   1
          2 1  sin 2    1
  cos 2  1  2sin 2 
  tan 2  tan    
            tan   tan 
         
           1  tan  tan 
Double Angles
      
 sin 2  sin   
         sin  cos   cos  sin 
  sin 2  2sin  cos 

 cos 2  cos    
         cos  cos   sin  sin 
 cos 2  cos 2   sin 2 
          cos 2   1  cos 2  
  cos 2  2cos 2   1
          2 1  sin 2    1
  cos 2  1  2sin 2 
  tan 2  tan                              2 tan 
            tan   tan              tan 2 
                                              1  tan 2 
           1  tan  tan 
Double Angles   sin 2  2 sin  cos
Double Angles   sin 2  2 sin  cos
                cos 2  cos 2   sin 2 
Double Angles   sin 2  2 sin  cos
                cos 2  cos 2   sin 2 
                        2 cos 2   1
Double Angles   sin 2  2 sin  cos
                cos 2  cos 2   sin 2 
                                                      1
                        2 cos   1
                               2
                                              cos   1  cos 2 
                                                   2

                                                      2
Double Angles   sin 2  2 sin  cos
                cos 2  cos 2   sin 2 
                                                      1
                        2 cos   1
                               2
                                              cos   1  cos 2 
                                                   2

                                                      2

                         1 2 sin 2 
Double Angles   sin 2  2 sin  cos
                cos 2  cos 2   sin 2 
                                                      1
                        2 cos   1
                               2
                                              cos   1  cos 2 
                                                   2

                                                      2
                                                      1
                         1 2 sin 2         sin   1  cos 2 
                                                  2

                                                      2
Double Angles   sin 2  2 sin  cos
                cos 2  cos 2   sin 2 
                                                      1
                        2 cos   1
                               2
                                              cos   1  cos 2 
                                                   2

                                                      2
                                                      1
                        1 2 sin 2          sin   1  cos 2 
                                                  2

                                                      2
                           2 tan 
                tan 2 
                         1  tan 2 
Double Angles        sin 2  2 sin  cos
                     cos 2  cos 2   sin 2 
                                                           1
                              2 cos   1
                                    2
                                                   cos   1  cos 2 
                                                        2

                                                           2
                                                           1
                              1 2 sin 2         sin   1  cos 2 
                                                       2

                                                           2
                                 2 tan 
                      tan 2 
                               1  tan 2 
                     2
e.g.  i  If cos   , find tan 2
                     3
Double Angles        sin 2  2 sin  cos
                     cos 2  cos 2   sin 2 
                                                           1
                              2 cos   1
                                    2
                                                   cos   1  cos 2 
                                                        2

                                                           2
                                                           1
                              1 2 sin 2         sin   1  cos 2 
                                                       2

                                                           2
                                 2 tan 
                      tan 2 
                               1  tan 2 
                     2
e.g.  i  If cos   , find tan 2
                     3                                         3
                                                                        5
                                                              
                                                                   2
Double Angles         sin 2  2 sin  cos
                      cos 2  cos 2   sin 2 
                                                            1
                                2 cos   1
                                       2
                                                    cos   1  cos 2 
                                                         2

                                                            2
                                                            1
                                 1 2 sin 2       sin   1  cos 2 
                                                        2

                                                            2
                                    2 tan 
                         tan 2 
                                  1  tan 2 
                        2
e.g.  i  If cos   , find tan 2
                        3                                       3
                                                                         5
                 2 tan 
   tan 2                                                     
               1  tan 2                                           2
Double Angles         sin 2  2 sin  cos
                      cos 2  cos 2   sin 2 
                                                               1
                               2 cos   1
                                      2
                                                       cos   1  cos 2 
                                                                2

                                                               2
                                                               1
                                 1 2 sin 2          sin   1  cos 2 
                                                           2

                                                               2
                                    2 tan 
                         tan 2 
                                  1  tan 2 
                        2
e.g.  i  If cos   , find tan 2                   5
                        3                       2                 3
                                    tan 2  
                                                      2                    5
                 2 tan 
   tan 2                                        
                                                            2       
               1  tan 2                              5
                                               1                     2
                                                     2 
Double Angles         sin 2  2 sin  cos
                      cos 2  cos 2   sin 2 
                                                              1
                               2 cos   1
                                       2
                                                      cos   1  cos 2 
                                                             2

                                                              2
                                                              1
                                 1 2 sin 2         sin   1  cos 2 
                                                          2

                                                              2
                                    2 tan 
                         tan 2 
                                  1  tan 2 
                        2
e.g.  i  If cos   , find tan 2                5
                        3                        2              3
                 2 tan             tan 2        2                     5
   tan 2                                          5
                                                         2       
               1  tan 2                      1                   2
                                                    2 
                                                  5
                                              
                                                  1
                                                
                                                  4
                                               4 5
5   5
 ii  Find the exact value of sin cos
                                  12   12
5   5
 ii  Find the exact value of sin cos
                                  12   12
                    5   5 1     5  5 
                 sin cos   =  2sin cos 
                    12   12 2     12  12 
5   5
 ii  Find the exact value of sin cos
                                  12   12
                    5   5 1     5  5 
                 sin cos   =  2sin cos 
                    12   12 2     12  12 
                                 1  5 
                                = sin  2  
                                 2  12 
5   5
 ii  Find the exact value of sin cos
                                  12   12
                    5   5 1     5  5 
                 sin cos   =  2sin cos 
                    12   12 2     12  12 
                                 1  5 
                                = sin  2  
                                 2  12 
                                 1 5
                                = sin
                                 2    6
5   5
 ii  Find the exact value of sin cos
                                  12   12
                    5   5 1     5  5 
                 sin cos   =  2sin cos 
                    12   12 2     12  12 
                                 1  5 
                                = sin  2  
                                 2  12 
                                 1 5
                                = sin
                                 2    6
                                 1 1
                                = 
                                 2 2
                                  1
                                =
                                  4
2                              
 iii  If cos  , find the exact value of sin
                 3                              2
2                              
 iii  If cos  , find the exact value of sin
                 3                              2
                                       1
                           sin 2       1  cos 2 
                                       2
2                              
 iii  If cos  , find the exact value of sin
                 3                              2
                                1
                                  1  cos 2 
                           sin 2  
                                2
                             2 1
                         sin  1  cos  
                              2 2
2                              
 iii  If cos  , find the exact value of sin
                 3                              2
                                 1
                                   1  cos 2 
                           sin 2  
                                 2
                             2  1
                         sin  1  cos  
                              2 2
                                 1 2
                                 1  
                                 2 3
2                              
 iii  If cos  , find the exact value of sin
                 3                              2
                                  1
                           sin 2  1  cos 2 
                                  2
                             2   1
                         sin  1  cos  
                              2 2
                                  1 2
                                 1  
                                  2 3
                                  1
                                
                                  6
2                              
 iii  If cos  , find the exact value of sin
                 3                              2
                                    1
                           sin 2    1  cos 2 
                                    2
                              2    1
                         sin  1  cos  
                               2 2
                                    1 2
                                   1  
                                    2 3
                                    1
                                  
                                    6
                                       1
                            sin  
                                2        6
1  cos 2 x
 iv  Prove                tan x
               1  cos 2 x
1  cos 2 x
 iv  Prove                tan x
               1  cos 2 x

               1  cos 2 x       1  1  2sin 2 x 
                             
               1  cos 2 x       1   2cos 2 x  1
1  cos 2 x
 iv  Prove                tan x
               1  cos 2 x

               1  cos 2 x       1  1  2sin 2 x 
                             
               1  cos 2 x       1   2cos 2 x  1

                               2sin 2 x
                             
                               2cos 2 x
1  cos 2 x
 iv  Prove                tan x
               1  cos 2 x

               1  cos 2 x       1  1  2sin 2 x 
                             
               1  cos 2 x       1   2cos 2 x  1

                               2sin 2 x
                             
                               2cos 2 x

                               sin 2 x
                             
                               cos 2 x
1  cos 2 x
 iv  Prove                tan x
               1  cos 2 x

               1  cos 2 x       1  1  2sin 2 x 
                             
               1  cos 2 x       1   2cos 2 x  1

                               2sin 2 x
                             
                               2cos 2 x

                               sin 2 x
                             
                               cos 2 x
                              tan 2 x
1  cos 2 x
 iv  Prove                tan x
               1  cos 2 x

               1  cos 2 x       1  1  2sin 2 x 
                             
               1  cos 2 x       1   2cos 2 x  1

                               2sin 2 x
                             
                               2cos 2 x

                               sin 2 x
                             
                               cos 2 x
                              tan 2 x
                              tan x
sin 3 cos3
(v) Prove that             2   1996 Extension 1 HSC Q4a)
                sin   cos
sin 3 cos3
(v) Prove that             2         1996 Extension 1 HSC Q4a)
                sin   cos

              sin 3 cos3     sin 3 cos   cos3 sin 
                            
               sin    cos            sin  cos 
sin 3 cos3
(v) Prove that             2          1996 Extension 1 HSC Q4a)
                sin   cos

              sin 3 cos3     sin 3 cos   cos3 sin 
                            
               sin    cos            sin  cos 
                                2 sin 3   
                              
                                2 sin  cos
sin 3 cos3
(v) Prove that             2           1996 Extension 1 HSC Q4a)
                sin   cos

              sin 3 cos3     sin 3 cos   cos3 sin 
                            
               sin    cos            sin  cos 
                                2 sin 3   
                              
                                2 sin  cos
                                  2 sin 2
                              
                                   sin 2
sin 3 cos3
(v) Prove that             2           1996 Extension 1 HSC Q4a)
                sin   cos

              sin 3 cos3     sin 3 cos   cos3 sin 
                            
               sin    cos            sin  cos 
                                2 sin 3   
                              
                                2 sin  cos
                                  2 sin 2
                              
                                   sin 2
                              2
(vi) Prove the following identity;   1994 Extension 1 HSC Q2a)
           2 tan A
                     sin 2 A
          1  tan A
                 2
(vi) Prove the following identity;          1994 Extension 1 HSC Q2a)
           2 tan A
                     sin 2 A
          1  tan A
                 2

                                  2sin A
                      2 tan A
                                 cos A
                    1  tan 2 A     sin 2 A
                                 1
                                    cos 2 A
(vi) Prove the following identity;           1994 Extension 1 HSC Q2a)
           2 tan A
                     sin 2 A
          1  tan A
                 2

                                   2sin A
                      2 tan A
                                 cos A
                    1  tan 2 A      sin 2 A
                                  1
                                     cos 2 A
                                   2 sin A cos A
                                
                                  cos 2 A  sin 2 A
(vi) Prove the following identity;           1994 Extension 1 HSC Q2a)
           2 tan A
                     sin 2 A
          1  tan A
                 2

                                   2sin A
                      2 tan A
                                 cos A
                    1  tan 2 A      sin 2 A
                                  1
                                     cos 2 A
                                   2 sin A cos A
                                
                                  cos 2 A  sin 2 A
                                  sin 2 A
                              
                                     1
(vi) Prove the following identity;           1994 Extension 1 HSC Q2a)
           2 tan A
                     sin 2 A
          1  tan A
                 2

                                   2sin A
                      2 tan A
                                 cos A
                    1  tan 2 A      sin 2 A
                                  1
                                     cos 2 A
                                   2 sin A cos A
                                
                                  cos 2 A  sin 2 A
                                  sin 2 A
                              
                                     1
                               sin 2 A
(vi) Prove the following identity;           1994 Extension 1 HSC Q2a)
           2 tan A
                     sin 2 A
          1  tan A
                 2

                                   2sin A
                      2 tan A
                                 cos A
                    1  tan 2 A      sin 2 A
                                  1
                                     cos 2 A
                                   2 sin A cos A
                                
                                  cos 2 A  sin 2 A
                                  sin 2 A
                              
                                     1
                               sin 2 A

                              Book2
   Exercise 2A; 2ade, 3bde, 5adej, 7, 8adg, 10ab, 11, 13ck, 16, 19*

Más contenido relacionado

Destacado

11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)
Nigel Simmons
 
12 x1 t08 04 greatest coefficients & terms (2012)
12 x1 t08 04 greatest coefficients & terms (2012)12 x1 t08 04 greatest coefficients & terms (2012)
12 x1 t08 04 greatest coefficients & terms (2012)
Nigel Simmons
 
11 x1 t08 04 double angles (2013)
11 x1 t08 04 double angles (2013)11 x1 t08 04 double angles (2013)
11 x1 t08 04 double angles (2013)
Nigel Simmons
 
11 x1 t07 04 quadrilateral family (2012)
11 x1 t07 04 quadrilateral family (2012)11 x1 t07 04 quadrilateral family (2012)
11 x1 t07 04 quadrilateral family (2012)
Nigel Simmons
 
11 x1 t07 03 congruent triangles (2013)
11 x1 t07 03 congruent triangles (2013)11 x1 t07 03 congruent triangles (2013)
11 x1 t07 03 congruent triangles (2013)
Nigel Simmons
 
11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)
Nigel Simmons
 
11 x1 t07 01 angle theorems (2013)
11 x1 t07 01 angle theorems (2013)11 x1 t07 01 angle theorems (2013)
11 x1 t07 01 angle theorems (2013)
Nigel Simmons
 
11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)
Nigel Simmons
 
11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)
Nigel Simmons
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)
Nigel Simmons
 
Geo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and TrianglesGeo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and Triangles
jtentinger
 
11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)
Nigel Simmons
 
11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)
Nigel Simmons
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)
Nigel Simmons
 
11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines
Nigel Simmons
 
11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)
Nigel Simmons
 
Displasias esqueléticas. APUNTE
Displasias esqueléticas. APUNTEDisplasias esqueléticas. APUNTE
Displasias esqueléticas. APUNTE
Tony Terrones
 
Caracteristicas clinicas y cefalometricas, clase I
Caracteristicas clinicas y cefalometricas, clase ICaracteristicas clinicas y cefalometricas, clase I
Caracteristicas clinicas y cefalometricas, clase I
Sofía Sari
 

Destacado (20)

11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)
 
12 x1 t08 04 greatest coefficients & terms (2012)
12 x1 t08 04 greatest coefficients & terms (2012)12 x1 t08 04 greatest coefficients & terms (2012)
12 x1 t08 04 greatest coefficients & terms (2012)
 
11 x1 t08 04 double angles (2013)
11 x1 t08 04 double angles (2013)11 x1 t08 04 double angles (2013)
11 x1 t08 04 double angles (2013)
 
11 x1 t07 04 quadrilateral family (2012)
11 x1 t07 04 quadrilateral family (2012)11 x1 t07 04 quadrilateral family (2012)
11 x1 t07 04 quadrilateral family (2012)
 
11 x1 t07 03 congruent triangles (2013)
11 x1 t07 03 congruent triangles (2013)11 x1 t07 03 congruent triangles (2013)
11 x1 t07 03 congruent triangles (2013)
 
11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)
 
11 x1 t07 01 angle theorems (2013)
11 x1 t07 01 angle theorems (2013)11 x1 t07 01 angle theorems (2013)
11 x1 t07 01 angle theorems (2013)
 
11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)
 
11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)
 
Geo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and TrianglesGeo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and Triangles
 
11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)
 
11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)
 
11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines
 
11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)
 
Displasias esqueléticas. APUNTE
Displasias esqueléticas. APUNTEDisplasias esqueléticas. APUNTE
Displasias esqueléticas. APUNTE
 
Biotipos faciales
Biotipos facialesBiotipos faciales
Biotipos faciales
 
Caracteristicas clinicas y cefalometricas, clase I
Caracteristicas clinicas y cefalometricas, clase ICaracteristicas clinicas y cefalometricas, clase I
Caracteristicas clinicas y cefalometricas, clase I
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

Más de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

11 x1 t08 04 double angles (2012)

  • 2. Double Angles   sin 2  sin   
  • 3. Double Angles   sin 2  sin     sin  cos   cos  sin 
  • 4. Double Angles   sin 2  sin     sin  cos   cos  sin  sin 2  2sin  cos 
  • 5. Double Angles   sin 2  sin     sin  cos   cos  sin  sin 2  2sin  cos  cos 2  cos    
  • 6. Double Angles   sin 2  sin     sin  cos   cos  sin  sin 2  2sin  cos  cos 2  cos      cos  cos   sin  sin 
  • 7. Double Angles   sin 2  sin     sin  cos   cos  sin  sin 2  2sin  cos  cos 2  cos      cos  cos   sin  sin  cos 2  cos 2   sin 2 
  • 8. Double Angles   sin 2  sin     sin  cos   cos  sin  sin 2  2sin  cos  cos 2  cos      cos  cos   sin  sin  cos 2  cos 2   sin 2   cos 2   1  cos 2  
  • 9. Double Angles   sin 2  sin     sin  cos   cos  sin  sin 2  2sin  cos  cos 2  cos      cos  cos   sin  sin  cos 2  cos 2   sin 2   cos 2   1  cos 2   cos 2  2cos 2   1
  • 10. Double Angles   sin 2  sin     sin  cos   cos  sin  sin 2  2sin  cos  cos 2  cos      cos  cos   sin  sin  cos 2  cos 2   sin 2   cos 2   1  cos 2   cos 2  2cos 2   1  2 1  sin 2    1
  • 11. Double Angles   sin 2  sin     sin  cos   cos  sin  sin 2  2sin  cos  cos 2  cos      cos  cos   sin  sin  cos 2  cos 2   sin 2   cos 2   1  cos 2   cos 2  2cos 2   1  2 1  sin 2    1 cos 2  1  2sin 2 
  • 12. Double Angles   sin 2  sin     sin  cos   cos  sin  sin 2  2sin  cos  cos 2  cos      cos  cos   sin  sin  cos 2  cos 2   sin 2   cos 2   1  cos 2   cos 2  2cos 2   1  2 1  sin 2    1 cos 2  1  2sin 2  tan 2  tan    
  • 13. Double Angles   sin 2  sin     sin  cos   cos  sin  sin 2  2sin  cos  cos 2  cos      cos  cos   sin  sin  cos 2  cos 2   sin 2   cos 2   1  cos 2   cos 2  2cos 2   1  2 1  sin 2    1 cos 2  1  2sin 2  tan 2  tan     tan   tan   1  tan  tan 
  • 14. Double Angles   sin 2  sin     sin  cos   cos  sin  sin 2  2sin  cos  cos 2  cos      cos  cos   sin  sin  cos 2  cos 2   sin 2   cos 2   1  cos 2   cos 2  2cos 2   1  2 1  sin 2    1 cos 2  1  2sin 2  tan 2  tan     2 tan  tan   tan  tan 2   1  tan 2  1  tan  tan 
  • 15. Double Angles sin 2  2 sin  cos
  • 16. Double Angles sin 2  2 sin  cos cos 2  cos 2   sin 2 
  • 17. Double Angles sin 2  2 sin  cos cos 2  cos 2   sin 2   2 cos 2   1
  • 18. Double Angles sin 2  2 sin  cos cos 2  cos 2   sin 2  1  2 cos   1 2  cos   1  cos 2  2 2
  • 19. Double Angles sin 2  2 sin  cos cos 2  cos 2   sin 2  1  2 cos   1 2  cos   1  cos 2  2 2  1 2 sin 2 
  • 20. Double Angles sin 2  2 sin  cos cos 2  cos 2   sin 2  1  2 cos   1 2  cos   1  cos 2  2 2 1  1 2 sin 2   sin   1  cos 2  2 2
  • 21. Double Angles sin 2  2 sin  cos cos 2  cos 2   sin 2  1  2 cos   1 2  cos   1  cos 2  2 2 1  1 2 sin 2   sin   1  cos 2  2 2 2 tan  tan 2  1  tan 2 
  • 22. Double Angles sin 2  2 sin  cos cos 2  cos 2   sin 2  1  2 cos   1 2  cos   1  cos 2  2 2 1  1 2 sin 2   sin   1  cos 2  2 2 2 tan  tan 2  1  tan 2  2 e.g.  i  If cos   , find tan 2 3
  • 23. Double Angles sin 2  2 sin  cos cos 2  cos 2   sin 2  1  2 cos   1 2  cos   1  cos 2  2 2 1  1 2 sin 2   sin   1  cos 2  2 2 2 tan  tan 2  1  tan 2  2 e.g.  i  If cos   , find tan 2 3 3 5  2
  • 24. Double Angles sin 2  2 sin  cos cos 2  cos 2   sin 2  1  2 cos   1 2  cos   1  cos 2  2 2 1  1 2 sin 2   sin   1  cos 2  2 2 2 tan  tan 2  1  tan 2  2 e.g.  i  If cos   , find tan 2 3 3 5 2 tan  tan 2   1  tan 2  2
  • 25. Double Angles sin 2  2 sin  cos cos 2  cos 2   sin 2  1  2 cos   1 2  cos   1  cos 2  2 2 1  1 2 sin 2   sin   1  cos 2  2 2 2 tan  tan 2  1  tan 2  2 e.g.  i  If cos   , find tan 2  5 3 2  3 tan 2   2  5 2 tan  tan 2   2  1  tan 2  5 1   2  2 
  • 26. Double Angles sin 2  2 sin  cos cos 2  cos 2   sin 2  1  2 cos   1 2  cos   1  cos 2  2 2 1  1 2 sin 2   sin   1  cos 2  2 2 2 tan  tan 2  1  tan 2  2 e.g.  i  If cos   , find tan 2  5 3 2  3 2 tan  tan 2   2  5 tan 2   5 2  1  tan 2  1   2  2  5  1  4  4 5
  • 27. 5 5  ii  Find the exact value of sin cos 12 12
  • 28. 5 5  ii  Find the exact value of sin cos 12 12 5 5 1  5 5  sin cos =  2sin cos  12 12 2  12 12 
  • 29. 5 5  ii  Find the exact value of sin cos 12 12 5 5 1  5 5  sin cos =  2sin cos  12 12 2  12 12  1  5  = sin  2   2  12 
  • 30. 5 5  ii  Find the exact value of sin cos 12 12 5 5 1  5 5  sin cos =  2sin cos  12 12 2  12 12  1  5  = sin  2   2  12  1 5 = sin 2 6
  • 31. 5 5  ii  Find the exact value of sin cos 12 12 5 5 1  5 5  sin cos =  2sin cos  12 12 2  12 12  1  5  = sin  2   2  12  1 5 = sin 2 6 1 1 =  2 2 1 = 4
  • 32. 2   iii  If cos  , find the exact value of sin 3 2
  • 33. 2   iii  If cos  , find the exact value of sin 3 2 1 sin 2   1  cos 2  2
  • 34. 2   iii  If cos  , find the exact value of sin 3 2 1 1  cos 2  sin 2   2 2 1  sin  1  cos   2 2
  • 35. 2   iii  If cos  , find the exact value of sin 3 2 1 1  cos 2  sin 2   2 2 1  sin  1  cos   2 2 1 2  1   2 3
  • 36. 2   iii  If cos  , find the exact value of sin 3 2 1 sin 2  1  cos 2  2 2 1  sin  1  cos   2 2 1 2  1   2 3 1  6
  • 37. 2   iii  If cos  , find the exact value of sin 3 2 1 sin 2   1  cos 2  2 2 1  sin  1  cos   2 2 1 2  1   2 3 1  6  1 sin   2 6
  • 38. 1  cos 2 x  iv  Prove  tan x 1  cos 2 x
  • 39. 1  cos 2 x  iv  Prove  tan x 1  cos 2 x 1  cos 2 x 1  1  2sin 2 x   1  cos 2 x 1   2cos 2 x  1
  • 40. 1  cos 2 x  iv  Prove  tan x 1  cos 2 x 1  cos 2 x 1  1  2sin 2 x   1  cos 2 x 1   2cos 2 x  1 2sin 2 x  2cos 2 x
  • 41. 1  cos 2 x  iv  Prove  tan x 1  cos 2 x 1  cos 2 x 1  1  2sin 2 x   1  cos 2 x 1   2cos 2 x  1 2sin 2 x  2cos 2 x sin 2 x  cos 2 x
  • 42. 1  cos 2 x  iv  Prove  tan x 1  cos 2 x 1  cos 2 x 1  1  2sin 2 x   1  cos 2 x 1   2cos 2 x  1 2sin 2 x  2cos 2 x sin 2 x  cos 2 x  tan 2 x
  • 43. 1  cos 2 x  iv  Prove  tan x 1  cos 2 x 1  cos 2 x 1  1  2sin 2 x   1  cos 2 x 1   2cos 2 x  1 2sin 2 x  2cos 2 x sin 2 x  cos 2 x  tan 2 x  tan x
  • 44. sin 3 cos3 (v) Prove that  2 1996 Extension 1 HSC Q4a) sin cos
  • 45. sin 3 cos3 (v) Prove that  2 1996 Extension 1 HSC Q4a) sin cos sin 3 cos3 sin 3 cos   cos3 sin    sin  cos  sin  cos 
  • 46. sin 3 cos3 (v) Prove that  2 1996 Extension 1 HSC Q4a) sin cos sin 3 cos3 sin 3 cos   cos3 sin    sin  cos  sin  cos  2 sin 3     2 sin  cos
  • 47. sin 3 cos3 (v) Prove that  2 1996 Extension 1 HSC Q4a) sin cos sin 3 cos3 sin 3 cos   cos3 sin    sin  cos  sin  cos  2 sin 3     2 sin  cos 2 sin 2  sin 2
  • 48. sin 3 cos3 (v) Prove that  2 1996 Extension 1 HSC Q4a) sin cos sin 3 cos3 sin 3 cos   cos3 sin    sin  cos  sin  cos  2 sin 3     2 sin  cos 2 sin 2  sin 2 2
  • 49. (vi) Prove the following identity; 1994 Extension 1 HSC Q2a) 2 tan A  sin 2 A 1  tan A 2
  • 50. (vi) Prove the following identity; 1994 Extension 1 HSC Q2a) 2 tan A  sin 2 A 1  tan A 2 2sin A 2 tan A  cos A 1  tan 2 A sin 2 A 1 cos 2 A
  • 51. (vi) Prove the following identity; 1994 Extension 1 HSC Q2a) 2 tan A  sin 2 A 1  tan A 2 2sin A 2 tan A  cos A 1  tan 2 A sin 2 A 1 cos 2 A 2 sin A cos A  cos 2 A  sin 2 A
  • 52. (vi) Prove the following identity; 1994 Extension 1 HSC Q2a) 2 tan A  sin 2 A 1  tan A 2 2sin A 2 tan A  cos A 1  tan 2 A sin 2 A 1 cos 2 A 2 sin A cos A  cos 2 A  sin 2 A sin 2 A  1
  • 53. (vi) Prove the following identity; 1994 Extension 1 HSC Q2a) 2 tan A  sin 2 A 1  tan A 2 2sin A 2 tan A  cos A 1  tan 2 A sin 2 A 1 cos 2 A 2 sin A cos A  cos 2 A  sin 2 A sin 2 A  1  sin 2 A
  • 54. (vi) Prove the following identity; 1994 Extension 1 HSC Q2a) 2 tan A  sin 2 A 1  tan A 2 2sin A 2 tan A  cos A 1  tan 2 A sin 2 A 1 cos 2 A 2 sin A cos A  cos 2 A  sin 2 A sin 2 A  1  sin 2 A Book2 Exercise 2A; 2ade, 3bde, 5adej, 7, 8adg, 10ab, 11, 13ck, 16, 19*