SlideShare una empresa de Scribd logo
Tangents & Normals
     (ii) Using Cartesian
Tangents & Normals
              (ii) Using Cartesian
(1) Tangent
Tangents & Normals
                  (ii) Using Cartesian
(1) Tangent
         y    x 2  4ay




                 x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent
         y          x 2  4ay



              P( x1 , y1 )

                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent
         y          x 2  4ay



              P( x1 , y1 )

                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a



              P( x1 , y1 )

                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                   x2
         y          x 2  4ay              y
                                              4a
                                          dy x
                                            
                                          dx 2a
              P( x1 , y1 )

                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                   x2
         y          x 2  4ay              y
                                              4a
                                          dy x
                                            
                                          dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                   x2
         y          x 2  4ay              y
                                              4a
                                          dy x
                                            
                                          dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                  x1
                                       slope of tangent is
                                                            2a
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a
                                           dy x
                                             
                                           dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                      x1
                                       slope of tangent is
                                                               2a
                                                   x
                                          y  y1  1  x  x1 
                                                   2a
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a
                                           dy x
                                             
                                           dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                      x1
                                       slope of tangent is
                                                               2a
                                                   x
                                          y  y1  1  x  x1 
                                                   2a
                                          2ay  2ay1  xx1  x12
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a
                                           dy x
                                             
                                           dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                      x1
                                       slope of tangent is
                                                               2a
                                                   x
                                          y  y1  1  x  x1 
                                                   2a
                                          2ay  2ay1  xx1  x12
                                          2ay  2ay1  xx1  4ay1
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a
                                           dy x
                                             
                                           dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                      x1
                                       slope of tangent is
                                                               2a
                                                   x
                                          y  y1  1  x  x1 
                                                   2a
                                          2ay  2ay1  xx1  x12
                                          2ay  2ay1  xx1  4ay1
                                                    xx1  2a y  y1 
(2) Normal
(2) Normal
        y    x 2  4ay




                x
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )

                        x
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )

                        x
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                        x
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                                                        2a
                        x      2  slope of normal is 
                                                        x1
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                                                        2a
                        x      2  slope of normal is 
                                                        x1
                                             2a
                                   y  y1        x  x1 
                                             x1
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                                                        2a
                        x      2  slope of normal is 
                                                        x1
                                             2a
                                   y  y1        x  x1 
                                             x1
                                    x1 y  x1 y1  2ax  2ax1
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                                                        2a
                        x      2  slope of normal is 
                                                        x1
                                             2a
                                   y  y1        x  x1 
                                             x1
                                    x1 y  x1 y1  2ax  2ax1
                                    2ax  x1 y  2ax1  x1 y1
(3) Line cutting/touching/missing parabola
(3) Line cutting/touching/missing parabola
        y          x 2  4ay




                       x
(3) Line cutting/touching/missing parabola
        y          x 2  4ay




                       x
(3) Line cutting/touching/missing parabola
        y          x 2  4ay




                       x
(3) Line cutting/touching/missing parabola
        y          x 2  4ay
                           y  mx  b



                       x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay      parabola and tangent meet when;
                           y  mx  b



                       x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b       x 2  4a  mx  b 




                        x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b       x 2  4a  mx  b 
                                            x 2  4amx  4ab  0


                        x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0

                        x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                               16a 2 m 2  16ab
                                               16a  am 2  b 
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                                  16a 2 m 2  16ab
                                                  16a  am 2  b 
        two solutions (cuts) when am2  b  0
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                               16a 2 m 2  16ab
                                               16a  am 2  b 
        two solutions (cuts) when am2  b  0
         one solution (touches) when am2  b  0
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                               16a 2 m 2  16ab
                                               16a  am 2  b 
        two solutions (cuts) when am2  b  0
         one solution (touches) when am2  b  0        (common idea)
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                               16a 2 m 2  16ab
                                               16a  am 2  b 
        two solutions (cuts) when am2  b  0
         one solution (touches) when am2  b  0        (common idea)
          no solutions (misses) when am2  b  0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
             2  3m  b
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
             2  3m  b
               b  2  3m
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                b  2  3m
        tangents are y  mx  2  3m
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                b  2  3m
        tangents are y  mx  2  3m
             x2  4 y
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                 b  2  3m
        tangents are y  mx  2  3m
             x2  4 y
              x 2  4  mx  2  3m 
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                 b  2  3m
        tangents are y  mx  2  3m
             x2  4 y
              x 2  4  mx  2  3m 
              x 2  4mx  12m  8  0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                 b  2  3m
        tangents are y  mx  2  3m
             x2  4 y
              x 2  4  mx  2  3m 
              x 2  4mx  12m  8  0
              line is a tangent if   0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
                          m2  3m  2  0
                    m  1 m  2   0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
                          m2  3m  2  0
                    m  1 m  2   0
                    m  1 or m  2
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
                          m2  3m  2  0
                    m  1 m  2   0
                   m  1 or m  2
     tangents are y  x  1 and y  2 x  4
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0        Exercise 9G; 1ac, 2ac,
                                                   3a, 4, 7, 9, 11, 12,
               line is a tangent if   0
                                                     13, 15, 17, 18
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
                          m2  3m  2  0
                    m  1 m  2   0
                   m  1 or m  2
     tangents are y  x  1 and y  2 x  4

Más contenido relacionado

La actualidad más candente

Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesMatthew Leingang
 
2010 mathematics hsc solutions
2010 mathematics hsc solutions2010 mathematics hsc solutions
2010 mathematics hsc solutionsjharnwell
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivativessahil9100
 
Inverse circular function
Inverse circular functionInverse circular function
Inverse circular functionAPEX INSTITUTE
 
Monte-Carlo method for Two-Stage SLP
Monte-Carlo method for Two-Stage SLPMonte-Carlo method for Two-Stage SLP
Monte-Carlo method for Two-Stage SLPSSA KPI
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Applied Calculus Chapter 4 multiple integrals
Applied Calculus Chapter  4 multiple integralsApplied Calculus Chapter  4 multiple integrals
Applied Calculus Chapter 4 multiple integralsJ C
 
Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.Leonid Zhukov
 
15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-noteotpeng
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2zukun
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230samhui48
 

La actualidad más candente (16)

Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
2010 mathematics hsc solutions
2010 mathematics hsc solutions2010 mathematics hsc solutions
2010 mathematics hsc solutions
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 
Inverse circular function
Inverse circular functionInverse circular function
Inverse circular function
 
Monte-Carlo method for Two-Stage SLP
Monte-Carlo method for Two-Stage SLPMonte-Carlo method for Two-Stage SLP
Monte-Carlo method for Two-Stage SLP
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lagrange
LagrangeLagrange
Lagrange
 
Applied Calculus Chapter 4 multiple integrals
Applied Calculus Chapter  4 multiple integralsApplied Calculus Chapter  4 multiple integrals
Applied Calculus Chapter 4 multiple integrals
 
Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.
 
Lista exercintegrais
Lista exercintegraisLista exercintegrais
Lista exercintegrais
 
Section7 stochastic
Section7 stochasticSection7 stochastic
Section7 stochastic
 
15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230
 

Destacado

11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)Nigel Simmons
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)Nigel Simmons
 
11X1 T08 04 chain rule
11X1 T08 04 chain rule11X1 T08 04 chain rule
11X1 T08 04 chain ruleNigel Simmons
 
12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)Nigel Simmons
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)Nigel Simmons
 
11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)Nigel Simmons
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)Nigel Simmons
 

Destacado (7)

11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)
 
11X1 T08 04 chain rule
11X1 T08 04 chain rule11X1 T08 04 chain rule
11X1 T08 04 chain rule
 
12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)
 
11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)
 

Similar a 11 x1 t11 06 tangents & normals ii (2012)

11X1 T12 05 tangents & normals I
11X1 T12 05 tangents & normals I11X1 T12 05 tangents & normals I
11X1 T12 05 tangents & normals INigel Simmons
 
11X1 T11 05 tangents and normals I
11X1 T11 05 tangents and normals I11X1 T11 05 tangents and normals I
11X1 T11 05 tangents and normals INigel Simmons
 
11 x1 t11 05 tangents & normals i (2012)
11 x1 t11 05 tangents & normals i (2012)11 x1 t11 05 tangents & normals i (2012)
11 x1 t11 05 tangents & normals i (2012)Nigel Simmons
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)Nigel Simmons
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)Nigel Simmons
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)Nigel Simmons
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)Nigel Simmons
 
001 basic concepts
001 basic concepts001 basic concepts
001 basic conceptsphysics101
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt projectcea0001
 
Particle filter
Particle filterParticle filter
Particle filterbugway
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)Nigel Simmons
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)Nigel Simmons
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)Nigel Simmons
 
study Accelerating Spatially Varying Gaussian Filters
study Accelerating Spatially Varying Gaussian Filtersstudy Accelerating Spatially Varying Gaussian Filters
study Accelerating Spatially Varying Gaussian FiltersChiamin Hsu
 

Similar a 11 x1 t11 06 tangents & normals ii (2012) (20)

11X1 T12 05 tangents & normals I
11X1 T12 05 tangents & normals I11X1 T12 05 tangents & normals I
11X1 T12 05 tangents & normals I
 
11X1 T11 05 tangents and normals I
11X1 T11 05 tangents and normals I11X1 T11 05 tangents and normals I
11X1 T11 05 tangents and normals I
 
11 x1 t11 05 tangents & normals i (2012)
11 x1 t11 05 tangents & normals i (2012)11 x1 t11 05 tangents & normals i (2012)
11 x1 t11 05 tangents & normals i (2012)
 
sol pg 89
sol pg 89 sol pg 89
sol pg 89
 
Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)
 
001 basic concepts
001 basic concepts001 basic concepts
001 basic concepts
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Particle filter
Particle filterParticle filter
Particle filter
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
 
study Accelerating Spatially Varying Gaussian Filters
study Accelerating Spatially Varying Gaussian Filtersstudy Accelerating Spatially Varying Gaussian Filters
study Accelerating Spatially Varying Gaussian Filters
 

Más de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxbennyroshan06
 
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxJose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxricssacare
 
Open Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPointOpen Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPointELaRue0
 
[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online Presentation[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online PresentationGDSCYCCE
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersPedroFerreira53928
 
Application of Matrices in real life. Presentation on application of matrices
Application of Matrices in real life. Presentation on application of matricesApplication of Matrices in real life. Presentation on application of matrices
Application of Matrices in real life. Presentation on application of matricesRased Khan
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxEduSkills OECD
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxakshayaramakrishnan21
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsCol Mukteshwar Prasad
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasiemaillard
 
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & EngineeringBasic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & EngineeringDenish Jangid
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePedroFerreira53928
 
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...Nguyen Thanh Tu Collection
 
Advances in production technology of Grapes.pdf
Advances in production technology of Grapes.pdfAdvances in production technology of Grapes.pdf
Advances in production technology of Grapes.pdfDr. M. Kumaresan Hort.
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXMIRIAMSALINAS13
 
The Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational ResourcesThe Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational Resourcesaileywriter
 
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General Quiz
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General QuizPragya Champions Chalice 2024 Prelims & Finals Q/A set, General Quiz
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General QuizPragya - UEM Kolkata Quiz Club
 
The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryEugene Lysak
 

Último (20)

MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
 
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxJose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
 
Open Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPointOpen Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPoint
 
[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online Presentation[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online Presentation
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
Application of Matrices in real life. Presentation on application of matrices
Application of Matrices in real life. Presentation on application of matricesApplication of Matrices in real life. Presentation on application of matrices
Application of Matrices in real life. Presentation on application of matrices
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptx
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
NCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdfNCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdf
 
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & EngineeringBasic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
B.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdfB.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdf
 
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
 
Advances in production technology of Grapes.pdf
Advances in production technology of Grapes.pdfAdvances in production technology of Grapes.pdf
Advances in production technology of Grapes.pdf
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
The Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational ResourcesThe Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational Resources
 
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General Quiz
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General QuizPragya Champions Chalice 2024 Prelims & Finals Q/A set, General Quiz
Pragya Champions Chalice 2024 Prelims & Finals Q/A set, General Quiz
 
The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. Henry
 

11 x1 t11 06 tangents & normals ii (2012)

  • 1. Tangents & Normals (ii) Using Cartesian
  • 2. Tangents & Normals (ii) Using Cartesian (1) Tangent
  • 3. Tangents & Normals (ii) Using Cartesian (1) Tangent y x 2  4ay x
  • 4. Tangents & Normals (ii) Using Cartesian (1) Tangent y x 2  4ay P( x1 , y1 ) x
  • 5. Tangents & Normals (ii) Using Cartesian (1) Tangent y x 2  4ay P( x1 , y1 ) x
  • 6. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a P( x1 , y1 ) x
  • 7. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a P( x1 , y1 ) x
  • 8. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x
  • 9. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a
  • 10. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a x y  y1  1  x  x1  2a
  • 11. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a x y  y1  1  x  x1  2a 2ay  2ay1  xx1  x12
  • 12. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a x y  y1  1  x  x1  2a 2ay  2ay1  xx1  x12 2ay  2ay1  xx1  4ay1
  • 13. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a x y  y1  1  x  x1  2a 2ay  2ay1  xx1  x12 2ay  2ay1  xx1  4ay1 xx1  2a y  y1 
  • 15. (2) Normal y x 2  4ay x
  • 16. (2) Normal y x 2  4ay P( x1 , y1 ) x
  • 17. (2) Normal y x 2  4ay P( x1 , y1 ) x
  • 18. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a x
  • 19. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a 2a x 2  slope of normal is  x1
  • 20. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a 2a x 2  slope of normal is  x1  2a y  y1   x  x1  x1
  • 21. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a 2a x 2  slope of normal is  x1  2a y  y1   x  x1  x1 x1 y  x1 y1  2ax  2ax1
  • 22. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a 2a x 2  slope of normal is  x1  2a y  y1   x  x1  x1 x1 y  x1 y1  2ax  2ax1 2ax  x1 y  2ax1  x1 y1
  • 24. (3) Line cutting/touching/missing parabola y x 2  4ay x
  • 25. (3) Line cutting/touching/missing parabola y x 2  4ay x
  • 26. (3) Line cutting/touching/missing parabola y x 2  4ay x
  • 27. (3) Line cutting/touching/missing parabola y x 2  4ay y  mx  b x
  • 28. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x
  • 29. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x
  • 30. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 x
  • 31. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 x
  • 32. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x
  • 33. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0
  • 34. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac
  • 35. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2
  • 36. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b 
  • 37. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b   two solutions (cuts) when am2  b  0
  • 38. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b   two solutions (cuts) when am2  b  0 one solution (touches) when am2  b  0
  • 39. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b   two solutions (cuts) when am2  b  0 one solution (touches) when am2  b  0 (common idea)
  • 40. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b   two solutions (cuts) when am2  b  0 one solution (touches) when am2  b  0 (common idea) no solutions (misses) when am2  b  0
  • 41. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2).
  • 42. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b
  • 43. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b
  • 44. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m
  • 45. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m
  • 46. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y
  • 47. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m 
  • 48. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0
  • 49. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0
  • 50. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2
  • 51. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2 16m2  48m  32  0
  • 52. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2 16m2  48m  32  0 m2  3m  2  0  m  1 m  2   0
  • 53. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2 16m2  48m  32  0 m2  3m  2  0  m  1 m  2   0 m  1 or m  2
  • 54. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2 16m2  48m  32  0 m2  3m  2  0  m  1 m  2   0 m  1 or m  2  tangents are y  x  1 and y  2 x  4
  • 55. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 Exercise 9G; 1ac, 2ac, 3a, 4, 7, 9, 11, 12, line is a tangent if   0 13, 15, 17, 18  4m   4 112m  8  0 2 16m2  48m  32  0 m2  3m  2  0  m  1 m  2   0 m  1 or m  2  tangents are y  x  1 and y  2 x  4