SlideShare una empresa de Scribd logo
1 de 60
Descargar para leer sin conexión
Roots and Coefficients
Roots and Coefficients
Quadratics

ax 2  bx  c  0
Roots and Coefficients
Quadratics

ax 2  bx  c  0

b
  
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0

b
  
a

c
 
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0

b
  
a
Cubics

ax 3  bx 2  cx  d  0

c
 
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0

b
  
a
Cubics

ax 3  bx 2  cx  d  0

     

b
a

c
 
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0
c
 
a

b
  
a
Cubics

ax 3  bx 2  cx  d  0

b
     
a

c
     
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0
c
 
a

b
  
a
Cubics

ax 3  bx 2  cx  d  0

b
     
a

d
  
a

c
     
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0
c
 
a

b
  
a
Cubics

ax 3  bx 2  cx  d  0

b
     
a

Quartics

d
  
a

c
     
a

ax 4  bx 3  cx 2  dx  e  0
Roots and Coefficients
Quadratics

ax 2  bx  c  0
c
 
a

b
  
a
Cubics

ax 3  bx 2  cx  d  0

b
     
a

Quartics

d
  
a

c
     
a

ax 4  bx 3  cx 2  dx  e  0

b
      
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0
c
 
a

b
  
a
Cubics

ax 3  bx 2  cx  d  0

b
     
a

Quartics

d
  
a

c
     
a

ax 4  bx 3  cx 2  dx  e  0

b
      
a

c
           
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0
c
 
a

b
  
a
Cubics

ax 3  bx 2  cx  d  0

b
     
a

Quartics

d
  
a

c
     
a

ax 4  bx 3  cx 2  dx  e  0

c
b
           
      
a
a
d
        
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0
c
 
a

b
  
a
Cubics

ax 3  bx 2  cx  d  0

b
     
a

Quartics

d
  
a

c
     
a

ax 4  bx 3  cx 2  dx  e  0

c
b
           
      
a
a
d
e
        
 
a
a
For the polynomial equation;

ax n  bx n1  cx n2  dx n3    0
For the polynomial equation;

ax n  bx n1  cx n2  dx n3    0
b
   a

(sum of roots, one at a time)
For the polynomial equation;

ax n  bx n1  cx n2  dx n3    0
b
   a
c
  a

(sum of roots, one at a time)
(sum of roots, two at a time)
For the polynomial equation;

ax n  bx n1  cx n2  dx n3    0
b
   a
c
  a
d
   a

(sum of roots, one at a time)
(sum of roots, two at a time)
(sum of roots, three at a time)
For the polynomial equation;

ax n  bx n1  cx n2  dx n3    0






b

a
c

a
d

a
e

a

(sum of roots, one at a time)
(sum of roots, two at a time)
(sum of roots, three at a time)
(sum of roots, four at a time)
For the polynomial equation;

ax n  bx n1  cx n2  dx n3    0






b

a
c

a
d

a
e

a

Note:



(sum of roots, one at a time)
(sum of roots, two at a time)
(sum of roots, three at a time)
(sum of roots, four at a time)

2

     2 
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

3
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

3
2

  

1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

5  1
4  4   4  7  4    7   
2  2

3
2

  

1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

5  1
4  4   4  7  4    7   
2  2
27

2

3
2

  

1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
b)  







3
2

  

1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
    
b)  










3
2

  

1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
    
b)  










3
 2
1

2


3
2

  

1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
    
b)  










3
 2
1

2
 3


3
2

  

1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

3
2

  

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
    
b)  

c)  2   2   2









3
 2
1

2
 3


1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

3
2

  

1
2

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
    
b)  

c)  2   2   2
  
2

        2      
3

 2
1

2
 3
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

3
2

  

1
2

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
    
b)  

c)  2   2   2
  
2

        2      
3
2

5

 3
    2  
 2
2
 2
1

2
 3
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

3
2

  

1
2

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
    
b)  

c)  2   2   2
  
2

        2      
3
2

5

 3
    2  
 2
2
 2
1

37
2

4
 3
1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     
1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     

     0
1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     

     0
(ii) 
1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     

     0
(ii) 

  1
1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     

     0
(ii) 

  1
(iii)

1





1





1


1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     

     0
(ii) 

  1
(iii)

1





1





1



    
  
  

1

1

1
1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     

     0
(ii) 

  1
(iii)

1





1





1



    
  
  

1

1

1



3
1
1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     

     0
(ii) 

  1
(iii)

1





1





1



    
  
  

1

1

1

3
1
3


2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 


2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 
 1      6
  
2
 


2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 
 1      6
  
2
 
  3


2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 
 1      6
  
2
 
  3



P   3  0
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 
 1      6
  
2
 
  3



P   3  0
2 3   3  k  3  6  0
3

2
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 
 1      6
  
2
 
  3



P   3  0
2 3   3  k  3  6  0
3

2

 54  9  3k  6  0
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 
 1      6
  
2
 
  3



P   3  0
2 3   3  k  3  6  0
3

2

 54  9  3k  6  0
3k  39
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 
 1      6
  
2
 
  3



P   3  0
2 3   3  k  3  6  0
3

2

 54  9  3k  6  0
3k  39
k  13
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
r  1
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
r  1
(ii) Find the value of s + t
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
r  1
(ii) Find the value of s + t

1   1         s
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
r  1
(ii) Find the value of s + t

1   1         s
s   2
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
r  1
(ii) Find the value of s + t

1   1         s
s   2

1     t
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
r  1
(ii) Find the value of s + t

1   1         s
s   2

1     t
t 2
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
r  1
(ii) Find the value of s + t

1   1         s
s   2

1     t
t 2

s  t  0
Exercise 4F; 2, 4, 5ac, 6ac, 8, 10a, 13, 15,
16ad, 17, 18, 19

Más contenido relacionado

Destacado

11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)Nigel Simmons
 
11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)Nigel Simmons
 
11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)Nigel Simmons
 
11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)Nigel Simmons
 
11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)Nigel Simmons
 
11X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 211X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 2Nigel Simmons
 
11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)Nigel Simmons
 
11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)Nigel Simmons
 
11 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 211 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 2Nigel Simmons
 
11 x1 t13 03 angle theorems 2 (2013)
11 x1 t13 03 angle theorems 2 (2013)11 x1 t13 03 angle theorems 2 (2013)
11 x1 t13 03 angle theorems 2 (2013)Nigel Simmons
 
11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)Nigel Simmons
 
11X1 T13 07 products of intercepts (2011)
11X1 T13 07 products of intercepts (2011)11X1 T13 07 products of intercepts (2011)
11X1 T13 07 products of intercepts (2011)Nigel Simmons
 
11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)Nigel Simmons
 
11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)Nigel Simmons
 
11 x1 t13 07 products of intercepts (2013)
11 x1 t13 07 products of intercepts (2013)11 x1 t13 07 products of intercepts (2013)
11 x1 t13 07 products of intercepts (2013)Nigel Simmons
 
11 x1 t07 04 quadrilateral family (2012)
11 x1 t07 04 quadrilateral family (2012)11 x1 t07 04 quadrilateral family (2012)
11 x1 t07 04 quadrilateral family (2012)Nigel Simmons
 
11 x1 t15 04 polynomial theorems (2013)
11 x1 t15 04 polynomial theorems (2013)11 x1 t15 04 polynomial theorems (2013)
11 x1 t15 04 polynomial theorems (2013)Nigel Simmons
 
11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)Nigel Simmons
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)Nigel Simmons
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)Nigel Simmons
 

Destacado (20)

11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)
 
11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)
 
11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)
 
11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)
 
11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)
 
11X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 211X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 2
 
11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)
 
11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)
 
11 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 211 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 2
 
11 x1 t13 03 angle theorems 2 (2013)
11 x1 t13 03 angle theorems 2 (2013)11 x1 t13 03 angle theorems 2 (2013)
11 x1 t13 03 angle theorems 2 (2013)
 
11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)
 
11X1 T13 07 products of intercepts (2011)
11X1 T13 07 products of intercepts (2011)11X1 T13 07 products of intercepts (2011)
11X1 T13 07 products of intercepts (2011)
 
11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)
 
11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)
 
11 x1 t13 07 products of intercepts (2013)
11 x1 t13 07 products of intercepts (2013)11 x1 t13 07 products of intercepts (2013)
11 x1 t13 07 products of intercepts (2013)
 
11 x1 t07 04 quadrilateral family (2012)
11 x1 t07 04 quadrilateral family (2012)11 x1 t07 04 quadrilateral family (2012)
11 x1 t07 04 quadrilateral family (2012)
 
11 x1 t15 04 polynomial theorems (2013)
11 x1 t15 04 polynomial theorems (2013)11 x1 t15 04 polynomial theorems (2013)
11 x1 t15 04 polynomial theorems (2013)
 
11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)
 

Similar a 11 x1 t15 06 roots & coefficients (2013)

11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)Nigel Simmons
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)Nigel Simmons
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCarlon Baird
 
11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)Nigel Simmons
 
11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of rootsNigel Simmons
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
X2 T02 04 forming polynomials
X2 T02 04 forming polynomialsX2 T02 04 forming polynomials
X2 T02 04 forming polynomialsNigel Simmons
 
X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)Nigel Simmons
 
Lecture 08 quadratic formula and nature of roots
Lecture 08 quadratic formula and nature of rootsLecture 08 quadratic formula and nature of roots
Lecture 08 quadratic formula and nature of rootsHazel Joy Chong
 
X2 T06 03 Parallel Crosssections
X2 T06 03 Parallel CrosssectionsX2 T06 03 Parallel Crosssections
X2 T06 03 Parallel CrosssectionsNigel Simmons
 
11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
1.3 Pythagorean Theorem
1.3 Pythagorean Theorem1.3 Pythagorean Theorem
1.3 Pythagorean Theoremsmiller5
 
11 x1 t11 05 tangents & normals i (2013)
11 x1 t11 05 tangents & normals i (2013)11 x1 t11 05 tangents & normals i (2013)
11 x1 t11 05 tangents & normals i (2013)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)Nigel Simmons
 
11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 

Similar a 11 x1 t15 06 roots & coefficients (2013) (20)

11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
 
11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)
 
11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
X2 T02 04 forming polynomials
X2 T02 04 forming polynomialsX2 T02 04 forming polynomials
X2 T02 04 forming polynomials
 
X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)
 
Lecture 08 quadratic formula and nature of roots
Lecture 08 quadratic formula and nature of rootsLecture 08 quadratic formula and nature of roots
Lecture 08 quadratic formula and nature of roots
 
X2 T06 03 Parallel Crosssections
X2 T06 03 Parallel CrosssectionsX2 T06 03 Parallel Crosssections
X2 T06 03 Parallel Crosssections
 
11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)
 
EKR for Matchings
EKR for MatchingsEKR for Matchings
EKR for Matchings
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
1.3 Pythagorean Theorem
1.3 Pythagorean Theorem1.3 Pythagorean Theorem
1.3 Pythagorean Theorem
 
11 x1 t11 05 tangents & normals i (2013)
11 x1 t11 05 tangents & normals i (2013)11 x1 t11 05 tangents & normals i (2013)
11 x1 t11 05 tangents & normals i (2013)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)
 
11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 

Más de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 

Último

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 

Último (20)

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 

11 x1 t15 06 roots & coefficients (2013)

  • 3. Roots and Coefficients Quadratics ax 2  bx  c  0 b    a
  • 4. Roots and Coefficients Quadratics ax 2  bx  c  0 b    a c   a
  • 5. Roots and Coefficients Quadratics ax 2  bx  c  0 b    a Cubics ax 3  bx 2  cx  d  0 c   a
  • 6. Roots and Coefficients Quadratics ax 2  bx  c  0 b    a Cubics ax 3  bx 2  cx  d  0       b a c   a
  • 7. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a c       a
  • 8. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a d    a c       a
  • 9. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0
  • 10. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0 b        a
  • 11. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0 b        a c             a
  • 12. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0 c b                    a a d          a
  • 13. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0 c b                    a a d e            a a
  • 14. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0
  • 15. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a (sum of roots, one at a time)
  • 16. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a c   a (sum of roots, one at a time) (sum of roots, two at a time)
  • 17. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a c   a d    a (sum of roots, one at a time) (sum of roots, two at a time) (sum of roots, three at a time)
  • 18. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0     b  a c  a d  a e  a (sum of roots, one at a time) (sum of roots, two at a time) (sum of roots, three at a time) (sum of roots, four at a time)
  • 19. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0     b  a c  a d  a e  a Note:  (sum of roots, one at a time) (sum of roots, two at a time) (sum of roots, three at a time) (sum of roots, four at a time) 2      2  2
  • 20. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7
  • 21. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2
  • 22. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2
  • 23. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    1 2
  • 24. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 3 2    1 2
  • 25. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 3 2    1 2
  • 26. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 1 1 1 b)      3 2    1 2
  • 27. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)        3 2    1 2
  • 28. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)        3  2 1  2  3 2    1 2
  • 29. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)        3  2 1  2  3  3 2    1 2
  • 30. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2     3  2 1  2  3  1 2
  • 31. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    1 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2    2          2       3   2 1  2  3
  • 32. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    1 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2    2          2       3 2  5   3     2    2 2  2 1  2  3
  • 33. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    1 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2    2          2       3 2  5   3     2    2 2  2 1  37 2  4  3
  • 34. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)     
  • 35. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0
  • 36. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii) 
  • 37. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1
  • 38. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1 (iii) 1   1   1 
  • 39. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1 (iii) 1   1   1              1 1 1
  • 40. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1 (iii) 1   1   1              1 1 1  3 1
  • 41. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1 (iii) 1   1   1              1 1 1 3 1 3 
  • 42. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k.
  • 43. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and  
  • 44. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2   
  • 45. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3 
  • 46. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0
  • 47. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0 2 3   3  k  3  6  0 3 2
  • 48. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0 2 3   3  k  3  6  0 3 2  54  9  3k  6  0
  • 49. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0 2 3   3  k  3  6  0 3 2  54  9  3k  6  0 3k  39
  • 50. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0 2 3   3  k  3  6  0 3 2  54  9  3k  6  0 3k  39 k  13
  • 51. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r
  • 52. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r
  • 53. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1
  • 54. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t
  • 55. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s
  • 56. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s s   2
  • 57. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s s   2 1     t
  • 58. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s s   2 1     t t 2
  • 59. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s s   2 1     t t 2 s  t  0
  • 60. Exercise 4F; 2, 4, 5ac, 6ac, 8, 10a, 13, 15, 16ad, 17, 18, 19