SlideShare una empresa de Scribd logo
1 de 50
Descargar para leer sin conexión
Probability & Counting
         Techniques
2007 Extension 1 HSC Q5b)
Mr and Mrs Roberts and their four children go to the theatre. They are
randomly allocated six adjacent seats in a single row.
What is the probability that the four children are allocated seats next to
each other?
Probability & Counting
         Techniques
2007 Extension 1 HSC Q5b)
Mr and Mrs Roberts and their four children go to the theatre. They are
randomly allocated six adjacent seats in a single row.
What is the probability that the four children are allocated seats next to
each other?




                                      3!4!
 P(children sit next to each other) 
                                       6!
Probability & Counting
         Techniques
2007 Extension 1 HSC Q5b)
Mr and Mrs Roberts and their four children go to the theatre. They are
randomly allocated six adjacent seats in a single row.
What is the probability that the four children are allocated seats next to
each other?




                                      3!4!
 P(children sit next to each other) 
                                       6!
                                              ways of arranging 6 people
Probability & Counting
         Techniques
2007 Extension 1 HSC Q5b)
Mr and Mrs Roberts and their four children go to the theatre. They are
randomly allocated six adjacent seats in a single row.
What is the probability that the four children are allocated seats next to
each other?
      ways of arranging 3 objects
  i.e 2 adults + 1 group of 4 children

                                      3!4!
 P(children sit next to each other) 
                                       6!
                                              ways of arranging 6 people
Probability & Counting
         Techniques
2007 Extension 1 HSC Q5b)
Mr and Mrs Roberts and their four children go to the theatre. They are
randomly allocated six adjacent seats in a single row.
What is the probability that the four children are allocated seats next to
each other?
      ways of arranging 3 objects
  i.e 2 adults + 1 group of 4 children       ways of arranging 4 children

                                      3!4!
 P(children sit next to each other) 
                                       6!
                                              ways of arranging 6 people
Probability & Counting
         Techniques
2007 Extension 1 HSC Q5b)
Mr and Mrs Roberts and their four children go to the theatre. They are
randomly allocated six adjacent seats in a single row.
What is the probability that the four children are allocated seats next to
each other?
      ways of arranging 3 objects
  i.e 2 adults + 1 group of 4 children       ways of arranging 4 children

                                      3!4!
 P(children sit next to each other) 
                                       6!
                                              ways of arranging 6 people
                                      1
                                    
                                      5
2007 Extension 2 HSC Q5a)
  A bag contains 12 red marbles and 12 yellow marbles. Six marbles
   are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles
    are red. Give your answer correct to two decimal places.
2007 Extension 2 HSC Q5a)
  A bag contains 12 red marbles and 12 yellow marbles. Six marbles
   are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles
    are red. Give your answer correct to two decimal places.
               12
                 C3  12C3
    P(3 red)      24
                     C6
2007 Extension 2 HSC Q5a)
  A bag contains 12 red marbles and 12 yellow marbles. Six marbles
   are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles
    are red. Give your answer correct to two decimal places.
               12
                 C3  12C3
    P(3 red)      24
                     C6
              0.3595
              0.36 (to 2 dp)
2007 Extension 2 HSC Q5a)
  A bag contains 12 red marbles and 12 yellow marbles. Six marbles
   are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles
    are red. Give your answer correct to two decimal places.
                 12
                   C3  12C3
    P(3 red)       24
                      C6
               0.3595
               0.36 (to 2 dp)
(ii) Hence, or otherwise, calculate the probability that more than three
     of the selected marbles are red. Give your answer correct to two
     decimal places.
2007 Extension 2 HSC Q5a)
  A bag contains 12 red marbles and 12 yellow marbles. Six marbles
   are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles
    are red. Give your answer correct to two decimal places.
                 12
                   C3  12C3
    P(3 red)       24
                      C6
               0.3595
               0.36 (to 2 dp)
(ii) Hence, or otherwise, calculate the probability that more than three
     of the selected marbles are red. Give your answer correct to two
     decimal places.
    P( 3 red)  P (4 red)  P (5 red)+P (6 red)
2007 Extension 2 HSC Q5a)
  A bag contains 12 red marbles and 12 yellow marbles. Six marbles
   are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles
    are red. Give your answer correct to two decimal places.
                 12
                   C3  12C3
    P(3 red)         24
                        C6
               0.3595
               0.36 (to 2 dp)
(ii) Hence, or otherwise, calculate the probability that more than three
     of the selected marbles are red. Give your answer correct to two
     decimal places.
    P( 3 red)  P (4 red)  P (5 red)+P (6 red)
                    12
                      C4  12C2  12C5  12C1  12C6  12C0
                                    24
                                       C6
2007 Extension 2 HSC Q5a)
  A bag contains 12 red marbles and 12 yellow marbles. Six marbles
   are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles
    are red. Give your answer correct to two decimal places.
                 12
                   C3  12C3
    P(3 red)         24
                        C6
               0.3595
               0.36 (to 2 dp)
(ii) Hence, or otherwise, calculate the probability that more than three
     of the selected marbles are red. Give your answer correct to two
     decimal places.
    P( 3 red)  P (4 red)  P (5 red)+P (6 red)
                    12
                      C4  12C2  12C5  12C1  12C6  12C0
                                    24
                                       C6
                 0.3202
                 0.32 (to 2 dp)
OR
     P( 3 red)  1  P (3 red)  P ( 3 red)
OR
     P( 3 red)  1  P (3 red)  P ( 3 red)
                 1  P (3 red)  P ( 3 yellow)
OR
     P( 3 red)  1  P (3 red)  P ( 3 red)
                 1  P (3 red)  P ( 3 yellow)
                  1  P (3 red)  P ( 3 red)
OR
      P( 3 red)  1  P (3 red)  P ( 3 red)
                   1  P (3 red)  P ( 3 yellow)
                   1  P (3 red)  P ( 3 red)
     2 P ( 3 red)  1  P(3 red)
OR
      P( 3 red)  1  P (3 red)  P ( 3 red)
                  1  P (3 red)  P ( 3 yellow)
                   1  P (3 red)  P ( 3 red)
     2 P ( 3 red)  1  P(3 red)
                      1
       P( 3 red)  1  P(3 red)
                      2
OR
      P( 3 red)  1  P (3 red)  P ( 3 red)
                  1  P (3 red)  P ( 3 yellow)
                   1  P (3 red)  P ( 3 red)
     2 P ( 3 red)  1  P(3 red)
                      1
       P( 3 red)  1  P(3 red)
                      2
                      1
                    1  0.3595
                      2
OR
      P( 3 red)  1  P (3 red)  P ( 3 red)
                  1  P (3 red)  P ( 3 yellow)
                   1  P (3 red)  P ( 3 red)
     2 P ( 3 red)  1  P(3 red)
                      1
       P( 3 red)  1  P(3 red)
                      2
                      1
                    1  0.3595
                      2
                   0.3202
                   0.32 (to 2 dp)
2006 Extension 2 HSC Q5d)
In a chess match between the Home team and the Away team, a game is
played on board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is 0.2, the
probability of a draw is 0.6 and the probability that the Home team loses
is 0.2.
The results are recorded by listing the outcomes of the games for the
Home team in board order. For example, if the Home team wins on
board 2, draws on board 2, loses on board 3 and draws on board 4, the
result is recorded as WDLD.
2006 Extension 2 HSC Q5d)
In a chess match between the Home team and the Away team, a game is
played on board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is 0.2, the
probability of a draw is 0.6 and the probability that the Home team loses
is 0.2.
The results are recorded by listing the outcomes of the games for the
Home team in board order. For example, if the Home team wins on
board 2, draws on board 2, loses on board 3 and draws on board 4, the
result is recorded as WDLD.
(i) How many different recordings are possible?
2006 Extension 2 HSC Q5d)
In a chess match between the Home team and the Away team, a game is
played on board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is 0.2, the
probability of a draw is 0.6 and the probability that the Home team loses
is 0.2.
The results are recorded by listing the outcomes of the games for the
Home team in board order. For example, if the Home team wins on
board 2, draws on board 2, loses on board 3 and draws on board 4, the
result is recorded as WDLD.
(i) How many different recordings are possible?
             Recordings  3  3  3  3
2006 Extension 2 HSC Q5d)
In a chess match between the Home team and the Away team, a game is
played on board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is 0.2, the
probability of a draw is 0.6 and the probability that the Home team loses
is 0.2.
The results are recorded by listing the outcomes of the games for the
Home team in board order. For example, if the Home team wins on
board 2, draws on board 2, loses on board 3 and draws on board 4, the
result is recorded as WDLD.
(i) How many different recordings are possible?
             Recordings  3  3  3  3
                           81
2006 Extension 2 HSC Q5d)
In a chess match between the Home team and the Away team, a game is
played on board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is 0.2, the
probability of a draw is 0.6 and the probability that the Home team loses
is 0.2.
The results are recorded by listing the outcomes of the games for the
Home team in board order. For example, if the Home team wins on
board 2, draws on board 2, loses on board 3 and draws on board 4, the
result is recorded as WDLD.
(i) How many different recordings are possible?
                 Recordings  3  3  3  3
                              81
(ii) Calculate the probability of the result which is recorded as WDLD.
2006 Extension 2 HSC Q5d)
In a chess match between the Home team and the Away team, a game is
played on board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is 0.2, the
probability of a draw is 0.6 and the probability that the Home team loses
is 0.2.
The results are recorded by listing the outcomes of the games for the
Home team in board order. For example, if the Home team wins on
board 2, draws on board 2, loses on board 3 and draws on board 4, the
result is recorded as WDLD.
(i) How many different recordings are possible?
                 Recordings  3  3  3  3
                              81
(ii) Calculate the probability of the result which is recorded as WDLD.
                 P  WDLD   0.2  0.6  0.2  0.6
2006 Extension 2 HSC Q5d)
In a chess match between the Home team and the Away team, a game is
played on board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is 0.2, the
probability of a draw is 0.6 and the probability that the Home team loses
is 0.2.
The results are recorded by listing the outcomes of the games for the
Home team in board order. For example, if the Home team wins on
board 2, draws on board 2, loses on board 3 and draws on board 4, the
result is recorded as WDLD.
(i) How many different recordings are possible?
                 Recordings  3  3  3  3
                              81
(ii) Calculate the probability of the result which is recorded as WDLD.
                 P  WDLD   0.2  0.6  0.2  0.6
                              0.144
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
 first calculate probability of equal points
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
 first calculate probability of equal points
P  4 draws   0.64
              0.1296
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
 first calculate probability of equal points
P  4 draws   0.64
              0.1296
                                       4!
 P  2 wins, 2 losses   0.2  0.2 
                           2      2

                                      2!2!
                         0.0096
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
 first calculate probability of equal points
P  4 draws   0.64
              0.1296                        ways of arranging WWLL
                                       4!
 P  2 wins, 2 losses   0.2  0.2 
                           2      2

                                      2!2!
                         0.0096
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
 first calculate probability of equal points
P  4 draws   0.64
              0.1296                            ways of arranging WWLL
                                       4!
 P  2 wins, 2 losses   0.2  0.2 
                            2      2

                                      2!2!
                         0.0096
                                                 4!
 P 1 win, 1 loss, 2 draws   0.2  0.2  0.6 
                                             2

                                                 2!
                              0.1728
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
 first calculate probability of equal points
P  4 draws   0.64
              0.1296                            ways of arranging WWLL
                                       4!
 P  2 wins, 2 losses   0.2  0.2 
                            2      2

                                      2!2!
                         0.0096                      ways of arranging WLDD
                                                 4!
 P 1 win, 1 loss, 2 draws   0.2  0.2  0.6 
                                             2

                                                 2!
                              0.1728
1
(iii) Teams score 1 point for each game won,      a point for each game
      drawn and 0 points for each game lost. 2
      What is the probability that the Home team scores more points than
      the Away team?
 first calculate probability of equal points
P  4 draws   0.64
              0.1296                            ways of arranging WWLL
                                       4!
 P  2 wins, 2 losses   0.2  0.2 
                            2      2

                                      2!2!
                         0.0096                      ways of arranging WLDD
                                                 4!
 P 1 win, 1 loss, 2 draws   0.2  0.2  0.6 
                                             2

                                                 2!
                              0.1728
P  equal points   0.1296  0.0096  0.1728
                   0.312
P  unequal points   1  0.312
                     0.688
P  unequal points   1  0.312
                     0.688
As the probabilities are equally likely for the Home and Away teams,
then either the Home team has more points or the Away team has more
points.
P  unequal points   1  0.312
                     0.688
As the probabilities are equally likely for the Home and Away teams,
then either the Home team has more points or the Away team has more
points.
                                       1
        P  Home team more points   P  unequal points 
                                       2
P  unequal points   1  0.312
                     0.688
As the probabilities are equally likely for the Home and Away teams,
then either the Home team has more points or the Away team has more
points.
                                       1
        P  Home team more points   P  unequal points 
                                       2
                                       1
                                       0.688
                                       2
                                      0.344
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6
     P( 400) 
                 9
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
                 2
               
                 3
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
                 2
               
                 3
(ii) What is the probability that the digits are drawn in descending
     order?
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
                 2
               
                 3
(ii) What is the probability that the digits are drawn in descending
     order?
     total arrangements of 3 digits  3!
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
                 2
               
                 3
(ii) What is the probability that the digits are drawn in descending
     order?
     total arrangements of 3 digits  3!
                                     6
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
                 2
               
                 3
(ii) What is the probability that the digits are drawn in descending
     order?
     total arrangements of 3 digits  3!
                                     6
  Only one arrangement will be in descending order
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
                 2
               
                 3
(ii) What is the probability that the digits are drawn in descending
     order?
     total arrangements of 3 digits  3!
                                     6
  Only one arrangement will be in descending order
                                     1
            P  descending order  
                                     6
2002 Extension 2 HSC Q4c)
From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are
drawn at random and laid on a table from left to right.
(i) What is the probability that the number exceeds 400?
                 6           it is the same as saying; “what is the
     P( 400) 
                 9         probability of the first number being >4”
                 2
               
                 3
(ii) What is the probability that the digits are drawn in descending
     order?
     total arrangements of 3 digits  3!
                                     6
  Only one arrangement will be in descending order
                                     1
            P  descending order  
                                     6              Exercise 10H; odd

Más contenido relacionado

Más de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 

Último (20)

Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 

11X1 T05 04 probability & counting techniques (2011)

  • 1. Probability & Counting Techniques 2007 Extension 1 HSC Q5b) Mr and Mrs Roberts and their four children go to the theatre. They are randomly allocated six adjacent seats in a single row. What is the probability that the four children are allocated seats next to each other?
  • 2. Probability & Counting Techniques 2007 Extension 1 HSC Q5b) Mr and Mrs Roberts and their four children go to the theatre. They are randomly allocated six adjacent seats in a single row. What is the probability that the four children are allocated seats next to each other? 3!4! P(children sit next to each other)  6!
  • 3. Probability & Counting Techniques 2007 Extension 1 HSC Q5b) Mr and Mrs Roberts and their four children go to the theatre. They are randomly allocated six adjacent seats in a single row. What is the probability that the four children are allocated seats next to each other? 3!4! P(children sit next to each other)  6! ways of arranging 6 people
  • 4. Probability & Counting Techniques 2007 Extension 1 HSC Q5b) Mr and Mrs Roberts and their four children go to the theatre. They are randomly allocated six adjacent seats in a single row. What is the probability that the four children are allocated seats next to each other? ways of arranging 3 objects i.e 2 adults + 1 group of 4 children 3!4! P(children sit next to each other)  6! ways of arranging 6 people
  • 5. Probability & Counting Techniques 2007 Extension 1 HSC Q5b) Mr and Mrs Roberts and their four children go to the theatre. They are randomly allocated six adjacent seats in a single row. What is the probability that the four children are allocated seats next to each other? ways of arranging 3 objects i.e 2 adults + 1 group of 4 children ways of arranging 4 children 3!4! P(children sit next to each other)  6! ways of arranging 6 people
  • 6. Probability & Counting Techniques 2007 Extension 1 HSC Q5b) Mr and Mrs Roberts and their four children go to the theatre. They are randomly allocated six adjacent seats in a single row. What is the probability that the four children are allocated seats next to each other? ways of arranging 3 objects i.e 2 adults + 1 group of 4 children ways of arranging 4 children 3!4! P(children sit next to each other)  6! ways of arranging 6 people 1  5
  • 7. 2007 Extension 2 HSC Q5a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement. (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places.
  • 8. 2007 Extension 2 HSC Q5a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement. (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places. 12 C3  12C3 P(3 red)  24 C6
  • 9. 2007 Extension 2 HSC Q5a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement. (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places. 12 C3  12C3 P(3 red)  24 C6  0.3595  0.36 (to 2 dp)
  • 10. 2007 Extension 2 HSC Q5a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement. (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places. 12 C3  12C3 P(3 red)  24 C6  0.3595  0.36 (to 2 dp) (ii) Hence, or otherwise, calculate the probability that more than three of the selected marbles are red. Give your answer correct to two decimal places.
  • 11. 2007 Extension 2 HSC Q5a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement. (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places. 12 C3  12C3 P(3 red)  24 C6  0.3595  0.36 (to 2 dp) (ii) Hence, or otherwise, calculate the probability that more than three of the selected marbles are red. Give your answer correct to two decimal places. P( 3 red)  P (4 red)  P (5 red)+P (6 red)
  • 12. 2007 Extension 2 HSC Q5a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement. (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places. 12 C3  12C3 P(3 red)  24 C6  0.3595  0.36 (to 2 dp) (ii) Hence, or otherwise, calculate the probability that more than three of the selected marbles are red. Give your answer correct to two decimal places. P( 3 red)  P (4 red)  P (5 red)+P (6 red) 12 C4  12C2  12C5  12C1  12C6  12C0  24 C6
  • 13. 2007 Extension 2 HSC Q5a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement. (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places. 12 C3  12C3 P(3 red)  24 C6  0.3595  0.36 (to 2 dp) (ii) Hence, or otherwise, calculate the probability that more than three of the selected marbles are red. Give your answer correct to two decimal places. P( 3 red)  P (4 red)  P (5 red)+P (6 red) 12 C4  12C2  12C5  12C1  12C6  12C0  24 C6  0.3202  0.32 (to 2 dp)
  • 14. OR P( 3 red)  1  P (3 red)  P ( 3 red)
  • 15. OR P( 3 red)  1  P (3 red)  P ( 3 red)  1  P (3 red)  P ( 3 yellow)
  • 16. OR P( 3 red)  1  P (3 red)  P ( 3 red)  1  P (3 red)  P ( 3 yellow)  1  P (3 red)  P ( 3 red)
  • 17. OR P( 3 red)  1  P (3 red)  P ( 3 red)  1  P (3 red)  P ( 3 yellow)  1  P (3 red)  P ( 3 red) 2 P ( 3 red)  1  P(3 red)
  • 18. OR P( 3 red)  1  P (3 red)  P ( 3 red)  1  P (3 red)  P ( 3 yellow)  1  P (3 red)  P ( 3 red) 2 P ( 3 red)  1  P(3 red) 1 P( 3 red)  1  P(3 red) 2
  • 19. OR P( 3 red)  1  P (3 red)  P ( 3 red)  1  P (3 red)  P ( 3 yellow)  1  P (3 red)  P ( 3 red) 2 P ( 3 red)  1  P(3 red) 1 P( 3 red)  1  P(3 red) 2 1  1  0.3595 2
  • 20. OR P( 3 red)  1  P (3 red)  P ( 3 red)  1  P (3 red)  P ( 3 yellow)  1  P (3 red)  P ( 3 red) 2 P ( 3 red)  1  P(3 red) 1 P( 3 red)  1  P(3 red) 2 1  1  0.3595 2  0.3202  0.32 (to 2 dp)
  • 21. 2006 Extension 2 HSC Q5d) In a chess match between the Home team and the Away team, a game is played on board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 2, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD.
  • 22. 2006 Extension 2 HSC Q5d) In a chess match between the Home team and the Away team, a game is played on board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 2, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD. (i) How many different recordings are possible?
  • 23. 2006 Extension 2 HSC Q5d) In a chess match between the Home team and the Away team, a game is played on board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 2, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD. (i) How many different recordings are possible? Recordings  3  3  3  3
  • 24. 2006 Extension 2 HSC Q5d) In a chess match between the Home team and the Away team, a game is played on board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 2, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD. (i) How many different recordings are possible? Recordings  3  3  3  3  81
  • 25. 2006 Extension 2 HSC Q5d) In a chess match between the Home team and the Away team, a game is played on board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 2, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD. (i) How many different recordings are possible? Recordings  3  3  3  3  81 (ii) Calculate the probability of the result which is recorded as WDLD.
  • 26. 2006 Extension 2 HSC Q5d) In a chess match between the Home team and the Away team, a game is played on board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 2, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD. (i) How many different recordings are possible? Recordings  3  3  3  3  81 (ii) Calculate the probability of the result which is recorded as WDLD. P  WDLD   0.2  0.6  0.2  0.6
  • 27. 2006 Extension 2 HSC Q5d) In a chess match between the Home team and the Away team, a game is played on board 1, board 2, board 3 and board 4. On each board, the probability that the Home team wins is 0.2, the probability of a draw is 0.6 and the probability that the Home team loses is 0.2. The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 2, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as WDLD. (i) How many different recordings are possible? Recordings  3  3  3  3  81 (ii) Calculate the probability of the result which is recorded as WDLD. P  WDLD   0.2  0.6  0.2  0.6  0.144
  • 28. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team?
  • 29. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team? first calculate probability of equal points
  • 30. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team? first calculate probability of equal points P  4 draws   0.64  0.1296
  • 31. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team? first calculate probability of equal points P  4 draws   0.64  0.1296 4! P  2 wins, 2 losses   0.2  0.2  2 2 2!2!  0.0096
  • 32. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team? first calculate probability of equal points P  4 draws   0.64  0.1296 ways of arranging WWLL 4! P  2 wins, 2 losses   0.2  0.2  2 2 2!2!  0.0096
  • 33. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team? first calculate probability of equal points P  4 draws   0.64  0.1296 ways of arranging WWLL 4! P  2 wins, 2 losses   0.2  0.2  2 2 2!2!  0.0096 4! P 1 win, 1 loss, 2 draws   0.2  0.2  0.6  2 2!  0.1728
  • 34. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team? first calculate probability of equal points P  4 draws   0.64  0.1296 ways of arranging WWLL 4! P  2 wins, 2 losses   0.2  0.2  2 2 2!2!  0.0096 ways of arranging WLDD 4! P 1 win, 1 loss, 2 draws   0.2  0.2  0.6  2 2!  0.1728
  • 35. 1 (iii) Teams score 1 point for each game won, a point for each game drawn and 0 points for each game lost. 2 What is the probability that the Home team scores more points than the Away team? first calculate probability of equal points P  4 draws   0.64  0.1296 ways of arranging WWLL 4! P  2 wins, 2 losses   0.2  0.2  2 2 2!2!  0.0096 ways of arranging WLDD 4! P 1 win, 1 loss, 2 draws   0.2  0.2  0.6  2 2!  0.1728 P  equal points   0.1296  0.0096  0.1728  0.312
  • 36. P  unequal points   1  0.312  0.688
  • 37. P  unequal points   1  0.312  0.688 As the probabilities are equally likely for the Home and Away teams, then either the Home team has more points or the Away team has more points.
  • 38. P  unequal points   1  0.312  0.688 As the probabilities are equally likely for the Home and Away teams, then either the Home team has more points or the Away team has more points. 1 P  Home team more points   P  unequal points  2
  • 39. P  unequal points   1  0.312  0.688 As the probabilities are equally likely for the Home and Away teams, then either the Home team has more points or the Away team has more points. 1 P  Home team more points   P  unequal points  2 1   0.688 2  0.344
  • 40. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right.
  • 41. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400?
  • 42. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 P( 400)  9
  • 43. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4”
  • 44. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4” 2  3
  • 45. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4” 2  3 (ii) What is the probability that the digits are drawn in descending order?
  • 46. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4” 2  3 (ii) What is the probability that the digits are drawn in descending order? total arrangements of 3 digits  3!
  • 47. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4” 2  3 (ii) What is the probability that the digits are drawn in descending order? total arrangements of 3 digits  3! 6
  • 48. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4” 2  3 (ii) What is the probability that the digits are drawn in descending order? total arrangements of 3 digits  3! 6 Only one arrangement will be in descending order
  • 49. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4” 2  3 (ii) What is the probability that the digits are drawn in descending order? total arrangements of 3 digits  3! 6 Only one arrangement will be in descending order 1 P  descending order   6
  • 50. 2002 Extension 2 HSC Q4c) From a pack of nine cards numbered 1, 2, 3, …, 9, three cards are drawn at random and laid on a table from left to right. (i) What is the probability that the number exceeds 400? 6 it is the same as saying; “what is the P( 400)  9 probability of the first number being >4” 2  3 (ii) What is the probability that the digits are drawn in descending order? total arrangements of 3 digits  3! 6 Only one arrangement will be in descending order 1 P  descending order   6 Exercise 10H; odd