SlideShare una empresa de Scribd logo
1 de 29
Descargar para leer sin conexión
Geometrical Theorems about
         Parabola
Geometrical Theorems about
(1) Focal Chords
                 Parabola
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                Tangents are perpendicular to each other
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                  Tangents are perpendicular to each other
 3 Show that the point of intersection,T , of the tangents is
     a  p  q  , apq
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                Tangents are perpendicular to each other
 3 Show that the point of intersection,T , of the tangents is
   a  p  q  , apq                 y  apq
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                Tangents are perpendicular to each other
 3 Show that the point of intersection,T , of the tangents is
   a  p  q  , apq                 y  apq
                                      y  a       pq  1
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                Tangents are perpendicular to each other
 3 Show that the point of intersection,T , of the tangents is
   a  p  q  , apq                 y  apq
                                      y  a      pq  1
                                Tangents meet on the directrix
(2) Reflection Property
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis

                                    1 Show tangent at P is y  px  ap 2
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis

                                    1 Show tangent at P is y  px  ap 2

                                    2 tangent meets y axis when x = 0
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis

                                    1 Show tangent at P is y  px  ap 2

                                    2 tangent meets y axis when x = 0
                                              K is 0,ap 2 
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis

                                    1 Show tangent at P is y  px  ap 2

                                    2 tangent meets y axis when x = 0
                                              K is 0,ap 2 
                                               d SK  a  ap 2
2ap  0  ap  a 
                             2
d PS 
                 2      2
2ap  0  ap  a 
                                  2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1
2ap  0  ap  a 
                                  2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
2ap  0  ap  a 
                                  2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles             two = sides 
2ap  0  ap  a 
                                  2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles             two = sides 
     SPK  SKP (base 's isosceles  )
2ap  0  ap  a 
                                      2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles                 two = sides 
     SPK  SKP (base 's isosceles  )
     SKP  CPB                  (corresponding 's  , SK || CP)
2ap  0  ap  a 
                                      2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles                 two = sides 
     SPK  SKP (base 's isosceles  )
     SKP  CPB                  (corresponding 's  , SK || CP)
    SPK  CPB
2ap  0  ap  a 
                                      2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles                 two = sides 
     SPK  SKP (base 's isosceles  )
     SKP  CPB                  (corresponding 's  , SK || CP)
    SPK  CPB


                    Exercise 9I; 1, 2, 4, 7, 11, 12, 17, 18, 21

Más contenido relacionado

Destacado

11X1 T16 03 polynomial division
11X1 T16 03 polynomial division11X1 T16 03 polynomial division
11X1 T16 03 polynomial divisionNigel Simmons
 
11X1 T06 04 probability and counting techniques (2010)
11X1 T06 04 probability and counting techniques (2010)11X1 T06 04 probability and counting techniques (2010)
11X1 T06 04 probability and counting techniques (2010)Nigel Simmons
 
11X1 T15 01 applications of ap & gp
11X1 T15 01 applications of ap & gp11X1 T15 01 applications of ap & gp
11X1 T15 01 applications of ap & gpNigel Simmons
 
X1 T4 2 angles of any magnitude (2010)
X1 T4 2 angles of any magnitude (2010)X1 T4 2 angles of any magnitude (2010)
X1 T4 2 angles of any magnitude (2010)Nigel Simmons
 
X2 T05 01 by parts (2010)
X2 T05 01 by parts (2010)X2 T05 01 by parts (2010)
X2 T05 01 by parts (2010)Nigel Simmons
 
X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)Nigel Simmons
 
X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)Nigel Simmons
 
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)Nigel Simmons
 
11X1 T13 01 definitions & chord theorems (2010)
11X1 T13 01 definitions & chord theorems (2010)11X1 T13 01 definitions & chord theorems (2010)
11X1 T13 01 definitions & chord theorems (2010)Nigel Simmons
 

Destacado (9)

11X1 T16 03 polynomial division
11X1 T16 03 polynomial division11X1 T16 03 polynomial division
11X1 T16 03 polynomial division
 
11X1 T06 04 probability and counting techniques (2010)
11X1 T06 04 probability and counting techniques (2010)11X1 T06 04 probability and counting techniques (2010)
11X1 T06 04 probability and counting techniques (2010)
 
11X1 T15 01 applications of ap & gp
11X1 T15 01 applications of ap & gp11X1 T15 01 applications of ap & gp
11X1 T15 01 applications of ap & gp
 
X1 T4 2 angles of any magnitude (2010)
X1 T4 2 angles of any magnitude (2010)X1 T4 2 angles of any magnitude (2010)
X1 T4 2 angles of any magnitude (2010)
 
X2 T05 01 by parts (2010)
X2 T05 01 by parts (2010)X2 T05 01 by parts (2010)
X2 T05 01 by parts (2010)
 
X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)
 
X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)
 
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
 
11X1 T13 01 definitions & chord theorems (2010)
11X1 T13 01 definitions & chord theorems (2010)11X1 T13 01 definitions & chord theorems (2010)
11X1 T13 01 definitions & chord theorems (2010)
 

Similar a 11X1 T11 08 geometrical theorems (2010)

11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theorems11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theoremsNigel Simmons
 
11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)Nigel Simmons
 
Two_variations_on_the_periscope_theorem.pdf
Two_variations_on_the_periscope_theorem.pdfTwo_variations_on_the_periscope_theorem.pdf
Two_variations_on_the_periscope_theorem.pdfIbrahimHabib26
 
Curve generation %a1 v involute and evolute
Curve generation %a1 v involute and evoluteCurve generation %a1 v involute and evolute
Curve generation %a1 v involute and evoluteTanuj Parikh
 
F Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for KaonF Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for KaonFrancesca Giordano
 
The shortest distance between skew lines
The shortest distance between skew linesThe shortest distance between skew lines
The shortest distance between skew linesTarun Gehlot
 
class 10 circles
class 10 circlesclass 10 circles
class 10 circlesAadhiSXA
 
Inmo 2013 test_paper_solution
Inmo 2013 test_paper_solutionInmo 2013 test_paper_solution
Inmo 2013 test_paper_solutionSuresh Kumar
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline statesSpringer
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline statesSpringer
 
Analisis Korespondensi
Analisis KorespondensiAnalisis Korespondensi
Analisis Korespondensidessybudiyanti
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
Permuting Polygons
Permuting PolygonsPermuting Polygons
Permuting Polygonsmathpunk
 
Planar projective geometry
Planar projective geometryPlanar projective geometry
Planar projective geometryWangdo Kim
 
Parabola
ParabolaParabola
Parabolaitutor
 

Similar a 11X1 T11 08 geometrical theorems (2010) (20)

11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theorems11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theorems
 
11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)
 
Two_variations_on_the_periscope_theorem.pdf
Two_variations_on_the_periscope_theorem.pdfTwo_variations_on_the_periscope_theorem.pdf
Two_variations_on_the_periscope_theorem.pdf
 
Curve generation %a1 v involute and evolute
Curve generation %a1 v involute and evoluteCurve generation %a1 v involute and evolute
Curve generation %a1 v involute and evolute
 
F Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for KaonF Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for Kaon
 
COORDINATE GEOMETRY II
COORDINATE GEOMETRY IICOORDINATE GEOMETRY II
COORDINATE GEOMETRY II
 
The shortest distance between skew lines
The shortest distance between skew linesThe shortest distance between skew lines
The shortest distance between skew lines
 
class 10 circles
class 10 circlesclass 10 circles
class 10 circles
 
Inmo 2013 test_paper_solution
Inmo 2013 test_paper_solutionInmo 2013 test_paper_solution
Inmo 2013 test_paper_solution
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline states
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline states
 
Analisis Korespondensi
Analisis KorespondensiAnalisis Korespondensi
Analisis Korespondensi
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Curves part two
Curves part twoCurves part two
Curves part two
 
Parabola
ParabolaParabola
Parabola
 
Permuting Polygons
Permuting PolygonsPermuting Polygons
Permuting Polygons
 
Planar projective geometry
Planar projective geometryPlanar projective geometry
Planar projective geometry
 
Hybridization
HybridizationHybridization
Hybridization
 
Parabola
ParabolaParabola
Parabola
 

Más de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 

Último (20)

Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 

11X1 T11 08 geometrical theorems (2010)

  • 2. Geometrical Theorems about (1) Focal Chords Parabola
  • 3. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix.
  • 4. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1
  • 5. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q.
  • 6. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1
  • 7. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other
  • 8. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other 3 Show that the point of intersection,T , of the tangents is a  p  q  , apq
  • 9. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other 3 Show that the point of intersection,T , of the tangents is a  p  q  , apq y  apq
  • 10. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other 3 Show that the point of intersection,T , of the tangents is a  p  q  , apq y  apq  y  a  pq  1
  • 11. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other 3 Show that the point of intersection,T , of the tangents is a  p  q  , apq y  apq  y  a  pq  1 Tangents meet on the directrix
  • 13. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent.
  • 14. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent.
  • 15. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB
  • 16. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection)
  • 17. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis
  • 18. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis 1 Show tangent at P is y  px  ap 2
  • 19. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis 1 Show tangent at P is y  px  ap 2 2 tangent meets y axis when x = 0
  • 20. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis 1 Show tangent at P is y  px  ap 2 2 tangent meets y axis when x = 0  K is 0,ap 2 
  • 21. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis 1 Show tangent at P is y  px  ap 2 2 tangent meets y axis when x = 0  K is 0,ap 2  d SK  a  ap 2
  • 22. 2ap  0  ap  a  2 d PS  2 2
  • 23. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1
  • 24. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK
  • 25. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides 
  • 26. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides  SPK  SKP (base 's isosceles  )
  • 27. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides  SPK  SKP (base 's isosceles  ) SKP  CPB (corresponding 's  , SK || CP)
  • 28. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides  SPK  SKP (base 's isosceles  ) SKP  CPB (corresponding 's  , SK || CP)  SPK  CPB
  • 29. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides  SPK  SKP (base 's isosceles  ) SKP  CPB (corresponding 's  , SK || CP)  SPK  CPB Exercise 9I; 1, 2, 4, 7, 11, 12, 17, 18, 21