SlideShare una empresa de Scribd logo
1 de 66
Descargar para leer sin conexión
Roots and Coefficients
Roots and Coefficients
     For P x   ax n  bx n 1  cx n  2 
Roots and Coefficients
           For P x   ax n  bx n 1  cx n  2 
      b
    a (sum of roots, 1 at a time i.e.        )
Roots and Coefficients
            For P x   ax n  bx n 1  cx n  2 
        b
   a (sum of roots, 1 at a time i.e.        )
        c
   
        a
           (sum of roots, 2 at a time i.e.       )
Roots and Coefficients
             For P x   ax n  bx n 1  cx n  2 
        b
    a (sum of roots, 1 at a time i.e.        )
        c
   
        a
           (sum of roots, 2 at a time i.e.       )

        d
   a (sum of roots, 3 at a time i.e.    )
Roots and Coefficients
             For P x   ax n  bx n 1  cx n  2 
         b
    a (sum of roots, 1 at a time i.e.        )
         c
    
         a
            (sum of roots, 2 at a time i.e.       )

         d
   a (sum of roots, 3 at a time i.e.    )
         e
   a (sum of roots, 4 at a time)
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                          and
                       1 1 
                         
                                
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                          and
                       1 1 
                         
                                
This can be generalised to;
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                            and
                         1 1 
                           
                                  
This can be generalised to;

                           2 
                    2           2
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                            and
                         1 1 
                           
                                  
This can be generalised to;

                           2 
                    2           2



                    1  
                                (order 2)
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                            and
                         1 1 
                           
                                  
This can be generalised to;

                           2 
                    2           2



                    1  
                                (order 2)


                                     (order 3)
                          
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                            and
                         1 1 
                           
                                   
This can be generalised to;

                           2 
                    2            2



                    1  
                                 (order 2)


                                      (order 3)
                          

                                     (order 4)
                          
e.g. (i) x 3  2 x 2  3 x  4  0, find;
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)  
         b)   
         c)   
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
         e)   3
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
         e)   3                       3  2 2  3  4  0
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
         e)   3                       3  2 2  3  4  0
                                        3  2  2  3  4  0
                                         3  2 2  3  4  0
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
         e)   3                       3  2 2  3  4  0
                                        3  2  2  3  4  0
                                         3  2 2  3  4  0

                                   3  2  2  3   12  0
  3  2  2  3   12  0
  3  2  2  3   12  0
  3  2  2  3   12
  3  2  2  3   12  0
  3  2  2  3   12
       2 2   32   12
      2
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
                            4  2  3  3 2  4   0
                                 4  2 3  3 2  4  0
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
                            4  2  3  3 2  4   0
                                 4  2 3  3 2  4  0

                      4  2  3  3  2  4   0
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
                            4  2  3  3 2  4   0
                                 4  2 3  3 2  4  0

                      4  2  3  3  2  4   0

                      4  2  3  3  2  4 
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
                            4  2  3  3 2  4   0
                                 4  2 3  3 2  4  0

                      4  2  3  3  2  4   0

                      4  2  3  3  2  4 
                            22   3 2   42 
                            18
g)           
g)           
                
g)           
                
    2   2   2   
g)           
                
    2   2   2   
    4  2  2    2   
    8  4  4   2   4  2  2  
    8  4   2    
g)           
                
    2   2   2   
    4  2  2    2   
    8  4  4   2   4  2  2  
    8  4   2    
    8  42   23  4
   2
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
                                x 2  k 2 x 2  px  q 
                                 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q
                                 x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
                                x 2  k 2 x 2  px  q 
                                 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q
                             x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
     p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
                                x 2  k 2 x 2  px  q 
                                 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q
                             x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
     p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
      Substitute (1) into (3)
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
                                x 2  k 2 x 2  px  q 
                                 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q
                             x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
     p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
      Substitute (1) into (3)                  k 2a  c
c) Show that c 2  a 2 d  abc
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
                     bc c 2
                         2 d
                     a a
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
                     bc c 2                   c
                         2 d        ( k 2  )
                     a a                      a
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
                     bc c 2                     c
                         2 d          ( k 2  )
                     a a                        a
                    abc  c 2  a 2 d
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
                     bc c 2                     c
                         2 d          ( k 2  )
                     a a                        a
                    abc  c 2  a 2 d
                   c 2  a 2 d  abc
d) If 2 is also a root of the equation, and b = 0, show that c is even.
d) If 2 is also a root of the equation, and b = 0, show that c is even.
   Let  be the 4th root
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
                c  2a
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
                c  2a
                 c  2M
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
                c  2a
                 c  2 M  and a are both integers, M is an integer
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
                c  2a
                 c  2 M  and a are both integers, M is an integer
        Thus c is an even number, as it is divisible by 2
Exercise 5D; 1 to 9

Más contenido relacionado

La actualidad más candente

04 quadratic equations
04   quadratic equations04   quadratic equations
04 quadratic equationsprofashfaq
 
AA Section 2-9
AA Section 2-9AA Section 2-9
AA Section 2-9Jimbo Lamb
 
Chapter 11 16 solucionario larson
Chapter 11 16 solucionario larson  Chapter 11 16 solucionario larson
Chapter 11 16 solucionario larson Bruno Ignacio
 
鳳山高級中學 B1 3 3---ans
鳳山高級中學   B1  3 3---ans鳳山高級中學   B1  3 3---ans
鳳山高級中學 B1 3 3---ans祥益 顏祥益
 
Ee107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khlEe107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khlSporsho
 
12X1 T01 01 log laws
12X1 T01 01 log laws12X1 T01 01 log laws
12X1 T01 01 log lawsNigel Simmons
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiationJaydevVadachhak
 
X2 T02 03 roots & coefficients
X2 T02 03 roots & coefficientsX2 T02 03 roots & coefficients
X2 T02 03 roots & coefficientsNigel Simmons
 

La actualidad más candente (10)

04 quadratic equations
04   quadratic equations04   quadratic equations
04 quadratic equations
 
#Maths wrkshts
#Maths wrkshts#Maths wrkshts
#Maths wrkshts
 
AA Section 2-9
AA Section 2-9AA Section 2-9
AA Section 2-9
 
Chapter 11 16 solucionario larson
Chapter 11 16 solucionario larson  Chapter 11 16 solucionario larson
Chapter 11 16 solucionario larson
 
鳳山高級中學 B1 3 3---ans
鳳山高級中學   B1  3 3---ans鳳山高級中學   B1  3 3---ans
鳳山高級中學 B1 3 3---ans
 
Sol7
Sol7Sol7
Sol7
 
Ee107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khlEe107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khl
 
12X1 T01 01 log laws
12X1 T01 01 log laws12X1 T01 01 log laws
12X1 T01 01 log laws
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
 
X2 T02 03 roots & coefficients
X2 T02 03 roots & coefficientsX2 T02 03 roots & coefficients
X2 T02 03 roots & coefficients
 

Destacado

Xavacans Viquilletra - Treball sobre el personatge més buscat
Xavacans Viquilletra - Treball sobre el personatge més buscatXavacans Viquilletra - Treball sobre el personatge més buscat
Xavacans Viquilletra - Treball sobre el personatge més buscatXavacans
 
跨媒體相乘效益:酷卡X酷叩
跨媒體相乘效益:酷卡X酷叩跨媒體相乘效益:酷卡X酷叩
跨媒體相乘效益:酷卡X酷叩Soundera
 
Xarxa 31 [castellano] Octubre
Xarxa 31 [castellano] OctubreXarxa 31 [castellano] Octubre
Xarxa 31 [castellano] Octubreceliacscat
 
X Cross Universidad Camilo José Cela
X Cross Universidad Camilo José CelaX Cross Universidad Camilo José Cela
X Cross Universidad Camilo José CelaEAE Business School
 
X2 t06 03 circular motion (2012)
X2 t06 03 circular motion (2012)X2 t06 03 circular motion (2012)
X2 t06 03 circular motion (2012)Nigel Simmons
 
X common error 121_for beta
X common error 121_for betaX common error 121_for beta
X common error 121_for betaavtardhillon
 
School District Communications Assessment and Planning
School District Communications Assessment and Planning School District Communications Assessment and Planning
School District Communications Assessment and Planning donovan-group
 
x b_prahoveanu_schiffer
x b_prahoveanu_schifferx b_prahoveanu_schiffer
x b_prahoveanu_schifferG30k2
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)Nigel Simmons
 
X2 T05 05 trig substitutions (2010)
X2 T05 05 trig substitutions (2010)X2 T05 05 trig substitutions (2010)
X2 T05 05 trig substitutions (2010)Nigel Simmons
 
X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)Nigel Simmons
 
[x]cube LABS Portfolio
[x]cube LABS Portfolio[x]cube LABS Portfolio
[x]cube LABS PortfolioRavi Korukonda
 
Wisenten Kraansvlak
Wisenten KraansvlakWisenten Kraansvlak
Wisenten Kraansvlakhanskampf
 

Destacado (20)

Xavacans Viquilletra - Treball sobre el personatge més buscat
Xavacans Viquilletra - Treball sobre el personatge més buscatXavacans Viquilletra - Treball sobre el personatge més buscat
Xavacans Viquilletra - Treball sobre el personatge més buscat
 
跨媒體相乘效益:酷卡X酷叩
跨媒體相乘效益:酷卡X酷叩跨媒體相乘效益:酷卡X酷叩
跨媒體相乘效益:酷卡X酷叩
 
Xarxa 31 [castellano] Octubre
Xarxa 31 [castellano] OctubreXarxa 31 [castellano] Octubre
Xarxa 31 [castellano] Octubre
 
X Cross Universidad Camilo José Cela
X Cross Universidad Camilo José CelaX Cross Universidad Camilo José Cela
X Cross Universidad Camilo José Cela
 
X asanec ajvr
X asanec ajvrX asanec ajvr
X asanec ajvr
 
X2 t06 03 circular motion (2012)
X2 t06 03 circular motion (2012)X2 t06 03 circular motion (2012)
X2 t06 03 circular motion (2012)
 
Xarrada de l'associació Me moc en bici
Xarrada de l'associació Me moc en biciXarrada de l'associació Me moc en bici
Xarrada de l'associació Me moc en bici
 
X common error 121_for beta
X common error 121_for betaX common error 121_for beta
X common error 121_for beta
 
xasada
xasadaxasada
xasada
 
X1r ads sergz
X1r ads sergzX1r ads sergz
X1r ads sergz
 
School District Communications Assessment and Planning
School District Communications Assessment and Planning School District Communications Assessment and Planning
School District Communications Assessment and Planning
 
Xd......ekuad or
Xd......ekuad orXd......ekuad or
Xd......ekuad or
 
X78201259
X78201259X78201259
X78201259
 
x b_prahoveanu_schiffer
x b_prahoveanu_schifferx b_prahoveanu_schiffer
x b_prahoveanu_schiffer
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
 
X2 T05 05 trig substitutions (2010)
X2 T05 05 trig substitutions (2010)X2 T05 05 trig substitutions (2010)
X2 T05 05 trig substitutions (2010)
 
X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)
 
[x]cube LABS Portfolio
[x]cube LABS Portfolio[x]cube LABS Portfolio
[x]cube LABS Portfolio
 
Wisenten Kraansvlak
Wisenten KraansvlakWisenten Kraansvlak
Wisenten Kraansvlak
 
Xen desktop 6
Xen desktop 6Xen desktop 6
Xen desktop 6
 

Similar a Roots and Coefficients Relationships

X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)Nigel Simmons
 
11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of rootsNigel Simmons
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)Nigel Simmons
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)Nigel Simmons
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)Nigel Simmons
 
14 +3+practice+b+adv
14 +3+practice+b+adv14 +3+practice+b+adv
14 +3+practice+b+advNene Thomas
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)Nigel Simmons
 
X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)Nigel Simmons
 
Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102nurulhanim
 
Calculus :Tutorial 2
Calculus :Tutorial 2Calculus :Tutorial 2
Calculus :Tutorial 2Nuril Ekma
 
Tutorial 2 mth 3201
Tutorial 2 mth 3201Tutorial 2 mth 3201
Tutorial 2 mth 3201Drradz Maths
 
Chapter 4 Extra Practice Answers
Chapter 4 Extra Practice AnswersChapter 4 Extra Practice Answers
Chapter 4 Extra Practice Answersleblance
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)Nigel Simmons
 
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAIS
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAISLISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAIS
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAISwillianv
 

Similar a Roots and Coefficients Relationships (20)

X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)
 
11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
14 +3+practice+b+adv
14 +3+practice+b+adv14 +3+practice+b+adv
14 +3+practice+b+adv
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)
 
X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)
 
Algebra practice paper
Algebra practice paperAlgebra practice paper
Algebra practice paper
 
Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102
 
Week 10 - Trigonometry
Week 10 - TrigonometryWeek 10 - Trigonometry
Week 10 - Trigonometry
 
Calculus :Tutorial 2
Calculus :Tutorial 2Calculus :Tutorial 2
Calculus :Tutorial 2
 
Tutorial 2 mth 3201
Tutorial 2 mth 3201Tutorial 2 mth 3201
Tutorial 2 mth 3201
 
Chapter 4 Extra Practice Answers
Chapter 4 Extra Practice AnswersChapter 4 Extra Practice Answers
Chapter 4 Extra Practice Answers
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
 
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAIS
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAISLISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAIS
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAIS
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 

Más de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 

Último

Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 

Último (20)

Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 

Roots and Coefficients Relationships

  • 2. Roots and Coefficients For P x   ax n  bx n 1  cx n  2 
  • 3. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        )
  • 4. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        ) c    a (sum of roots, 2 at a time i.e.       )
  • 5. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        ) c    a (sum of roots, 2 at a time i.e.       ) d   a (sum of roots, 3 at a time i.e.    )
  • 6. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        ) c    a (sum of roots, 2 at a time i.e.       ) d   a (sum of roots, 3 at a time i.e.    ) e   a (sum of roots, 4 at a time)
  • 7. We have already seen that for ax 2  bx  c ;  2   2     2  2
  • 8. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1      
  • 9. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;
  • 10. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;       2  2 2
  • 11. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;       2  2 2 1      (order 2)
  • 12. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;       2  2 2 1      (order 2)   (order 3) 
  • 13. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;       2  2 2 1      (order 2)   (order 3)    (order 4) 
  • 14. e.g. (i) x 3  2 x 2  3 x  4  0, find;
  • 15. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   b)    c)   
  • 16. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4
  • 17. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2
  • 18. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2
  • 19. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2
  • 20. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2 e)   3
  • 21. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2 e)   3  3  2 2  3  4  0
  • 22. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2 e)   3  3  2 2  3  4  0  3  2  2  3  4  0  3  2 2  3  4  0
  • 23. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2 e)   3  3  2 2  3  4  0  3  2  2  3  4  0  3  2 2  3  4  0   3  2  2  3   12  0
  • 24.   3  2  2  3   12  0
  • 25.   3  2  2  3   12  0   3  2  2  3   12
  • 26.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2
  • 27.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4
  • 28.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0
  • 29.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0
  • 30.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0   4  2  3  3  2  4   0
  • 31.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0   4  2  3  3  2  4   0   4  2  3  3  2  4 
  • 32.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0   4  2  3  3  2  4   0   4  2  3  3  2  4   22   3 2   42   18
  • 33. g)           
  • 34. g)                         
  • 35. g)                           2   2   2   
  • 36. g)                           2   2   2     4  2  2    2     8  4  4   2   4  2  2    8  4   2    
  • 37. g)                           2   2   2     4  2  2    2     8  4  4   2   4  2  2    8  4   2      8  42   23  4 2
  • 38. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0
  • 39. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root.
  • 40. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real.
  • 41. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a
  • 42. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
  • 43. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
  • 44. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q  p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
  • 45. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q  p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4) Substitute (1) into (3)
  • 46. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q  p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4) Substitute (1) into (3) k 2a  c
  • 47. c) Show that c 2  a 2 d  abc
  • 48. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2
  • 49. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d
  • 50. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d
  • 51. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2  2 d a a
  • 52. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2 c  2 d ( k 2  ) a a a
  • 53. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2 c  2 d ( k 2  ) a a a abc  c 2  a 2 d
  • 54. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2 c  2 d ( k 2  ) a a a abc  c 2  a 2 d c 2  a 2 d  abc
  • 55. d) If 2 is also a root of the equation, and b = 0, show that c is even.
  • 56. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root
  • 57. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer
  • 58. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b
  • 59. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b   
  • 60. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2
  • 61. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a
  • 62. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a c  2a
  • 63. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a c  2a c  2M
  • 64. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a c  2a c  2 M  and a are both integers, M is an integer
  • 65. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a c  2a c  2 M  and a are both integers, M is an integer Thus c is an even number, as it is divisible by 2