SlideShare una empresa de Scribd logo
1 de 65
Descargar para leer sin conexión
Roots and Coefficients
Roots and Coefficients
For P x   ax n  bx n 1  cx n  2 
Roots and Coefficients
For P x   ax n  bx n 1  cx n  2 
b
  a (sum of roots, 1 at a time i.e.        )
Roots and Coefficients
For P x   ax n  bx n 1  cx n  2 
b
  a (sum of roots, 1 at a time i.e.        )
c
 
(sum of roots, 2 at a time i.e.       )

a
Roots and Coefficients
For P x   ax n  bx n 1  cx n  2 
b
  a (sum of roots, 1 at a time i.e.        )
c
 
(sum of roots, 2 at a time i.e.       )

a
d
  a (sum of roots, 3 at a time i.e.    )
Roots and Coefficients
For P x   ax n  bx n 1  cx n  2 
b
  a (sum of roots, 1 at a time i.e.        )
c
 
(sum of roots, 2 at a time i.e.       )

a
d
  a (sum of roots, 3 at a time i.e.    )
e
  a (sum of roots, 4 at a time)
We have already seen that for ax 2  bx  c;

 2   2     2  2
We have already seen that for ax 2  bx  c;

 2   2     2  2
and
1 1 
 






We have already seen that for ax 2  bx  c;

 2   2     2  2
and
1 1 
 





This can be generalised to;


We have already seen that for ax 2  bx  c;

 2   2     2  2
and
1 1 
 







This can be generalised to;



2

     2 
2
We have already seen that for ax 2  bx  c;

 2   2     2  2
and
1 1 
 







This can be generalised to;



2

     2 


   
1

2

(order 2)
We have already seen that for ax 2  bx  c;

 2   2     2  2
and
1 1 
 







This can be generalised to;



2

     2 
2


   
1





(order 2)
(order 3)
We have already seen that for ax 2  bx  c;

 2   2     2  2
and
1 1 
 







This can be generalised to;



     2 
2

2


   
1









(order 2)
(order 3)

(order 4)
e.g. (i) x 3  2 x 2  3 x  4  0, find;
e.g. (i) x 3  2 x 2  3 x  4  0, find;
a)  

b)   

c)   
e.g. (i) x 3  2 x 2  3 x  4  0, find;
a)  

b)   

c)   

=2
=3
=4
e.g. (i) x 3  2 x 2  3 x  4  0, find;
a)  

b)   

c)   

d)   2

=2
=3
=4
e.g. (i) x 3  2 x 2  3 x  4  0, find;
a)  

b)   

c)   

d)   2

=2
=3
=4

     2 
2
e.g. (i) x 3  2 x 2  3 x  4  0, find;
a)  

b)   

c)   

d)   2

=2
=3
=4

     2 
2

 2 2  23
 2
e.g. (i) x 3  2 x 2  3 x  4  0, find;
a)  

b)   

c)   

d)   2

=2
=3
=4

     2 
2

 2 2  23
 2
e)   3
e.g. (i) x 3  2 x 2  3 x  4  0, find;
a)  

b)   

c)   

d)   2

=2
=3
=4

     2 
2

 2 2  23
 2
e)   3

 3  2 2  3  4  0
e.g. (i) x 3  2 x 2  3 x  4  0, find;
a)  

b)   

c)   

d)   2

=2
=3
=4

     2 
2

 2 2  23
 2
e)   3

 3  2 2  3  4  0
 3  2  2  3  4  0

 3  2 2  3  4  0
e.g. (i) x 3  2 x 2  3 x  4  0, find;
a)  

b)   

c)   

d)   2

=2
=3
=4

     2 
2

 2 2  23
 2
e)   3

 3  2 2  3  4  0
 3  2  2  3  4  0
 3  2 2  3  4  0

 3  2  2  3   12  0

 3  2  2  3   12  0

 3  2  2  3   12  0

 3  2  2  3   12

 3  2  2  3   12  0

 3  2  2  3   12

 2 2   32   12
2
 3  2  2  3   12  0

 3  2  2  3   12

 2 2   32   12
2

f)   4
 3  2  2  3   12  0

 3  2  2  3   12

 2 2   32   12
2

f)   4

 4  2 3  3 2  4  0
 3  2  2  3   12  0

 3  2  2  3   12

 2 2   32   12
2

f)   4

 4  2 3  3 2  4  0
 4  2  3  3 2  4   0
 4  2 3  3 2  4  0
 3  2  2  3   12  0

 3  2  2  3   12

 2 2   32   12
2

f)   4

 4  2 3  3 2  4  0
 4  2  3  3 2  4   0
 4  2 3  3 2  4  0
 4  2  3  3  2  4   0

 3  2  2  3   12  0

 3  2  2  3   12

 2 2   32   12
2

f)   4

 4  2 3  3 2  4  0
 4  2  3  3 2  4   0
 4  2 3  3 2  4  0
 4  2  3  3  2  4   0

 4  2  3  3  2  4 

 3  2  2  3   12  0

 3  2  2  3   12

 2 2   32   12
2

f)   4

 4  2 3  3 2  4  0
 4  2  3  3 2  4   0
 4  2 3  3 2  4  0
 4  2  3  3  2  4   0

 4  2  3  3  2  4 

 22   3 2   42 
 18
g)           
g)           

             
g)           

             
 2   2   2   
g)           

             
 2   2   2   

 4  2  2    2   
 8  4  4   2   4  2  2  
 8  4   2    
g)           

             
 2   2   2   

 4  2  2    2   
 8  4  4   2   4  2  2  
 8  4   2    
 8  42   23  4
2
(ii) (1996)
Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
where a, b, c and d are all integers.
Suppose the equation has a root of the form ki, where k is real
and k  0
(ii) (1996)
Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
where a, b, c and d are all integers.
Suppose the equation has a root of the form ki, where k is real
and k  0
a) State why the conjugate –ki is also a root.
(ii) (1996)
Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
where a, b, c and d are all integers.
Suppose the equation has a root of the form ki, where k is real
and k  0
a) State why the conjugate –ki is also a root.
Roots appear in conjugate pairs when the coefficients are real.
(ii) (1996)
Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
where a, b, c and d are all integers.
Suppose the equation has a root of the form ki, where k is real
and k  0
a) State why the conjugate –ki is also a root.
Roots appear in conjugate pairs when the coefficients are real.

b) Show that c  k 2 a
(ii) (1996)
Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
where a, b, c and d are all integers.
Suppose the equation has a root of the form ki, where k is real
and k  0
a) State why the conjugate –ki is also a root.
Roots appear in conjugate pairs when the coefficients are real.
b) Show that c  k 2 a
x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
(ii) (1996)
Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
where a, b, c and d are all integers.
Suppose the equation has a root of the form ki, where k is real
and k  0
a) State why the conjugate –ki is also a root.
Roots appear in conjugate pairs when the coefficients are real.
b) Show that c  k 2 a
x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
 x 2  k 2 x 2  px  q 
 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q

 x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
(ii) (1996)
Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
where a, b, c and d are all integers.
Suppose the equation has a root of the form ki, where k is real
and k  0
a) State why the conjugate –ki is also a root.
Roots appear in conjugate pairs when the coefficients are real.
b) Show that c  k 2 a
x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
 x 2  k 2 x 2  px  q 
 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q

 x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
 p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
(ii) (1996)
Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
where a, b, c and d are all integers.
Suppose the equation has a root of the form ki, where k is real
and k  0
a) State why the conjugate –ki is also a root.
Roots appear in conjugate pairs when the coefficients are real.
b) Show that c  k 2 a
x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
 x 2  k 2 x 2  px  q 
 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q

 x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
 p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)

Substitute (1) into (3)
(ii) (1996)
Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
where a, b, c and d are all integers.
Suppose the equation has a root of the form ki, where k is real
and k  0
a) State why the conjugate –ki is also a root.
Roots appear in conjugate pairs when the coefficients are real.
b) Show that c  k 2 a
x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
 x 2  k 2 x 2  px  q 
 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q

 x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
 p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
k 2a  c
Substitute (1) into (3)
c) Show that c 2  a 2 d  abc
c) Show that c 2  a 2 d  abc
Using (2); q  b  k 2
c) Show that c 2  a 2 d  abc
Using (2); q  b  k 2

Sub into (4); k 2 b  k 2   d
c) Show that c 2  a 2 d  abc
Using (2); q  b  k 2

Sub into (4); k 2 b  k 2   d
bk 2  k 4  d
c) Show that c 2  a 2 d  abc
Using (2); q  b  k 2

Sub into (4); k 2 b  k 2   d
bk 2  k 4  d
bc c 2
 2 d
a a
c) Show that c 2  a 2 d  abc
Using (2); q  b  k 2

Sub into (4); k 2 b  k 2   d
bk 2  k 4  d
bc c 2
 2 d
a a

c
( k 2  )
a
c) Show that c 2  a 2 d  abc
Using (2); q  b  k 2

Sub into (4); k 2 b  k 2   d
bk 2  k 4  d
bc c 2
 2 d
a a
abc  c 2  a 2 d

c
( k 2  )
a
c) Show that c 2  a 2 d  abc
Using (2); q  b  k 2

Sub into (4); k 2 b  k 2   d
bk 2  k 4  d
bc c 2
 2 d
a a
abc  c 2  a 2 d
c 2  a 2 d  abc

c
( k 2  )
a
d) If 2 is also a root of the equation, and b = 0, show that c is even.
d) If 2 is also a root of the equation, and b = 0, show that c is even.
Let  be the 4th root
d) If 2 is also a root of the equation, and b = 0, show that c is even.
Let  be the 4th root
As the other three roots are integer multiples, and the product of
the roots is an integer;
 is an integer
d) If 2 is also a root of the equation, and b = 0, show that c is even.
Let  be the 4th root
As the other three roots are integer multiples, and the product of
the roots is an integer;
 is an integer

 ki ki   2 ki   2ki     ki    ki   2  b

  
d) If 2 is also a root of the equation, and b = 0, show that c is even.
Let  be the 4th root
As the other three roots are integer multiples, and the product of
the roots is an integer;
 is an integer

 ki ki   2 ki   2ki     ki    ki   2  b
k 2  2  0
k 2  2

  
d) If 2 is also a root of the equation, and b = 0, show that c is even.
Let  be the 4th root
As the other three roots are integer multiples, and the product of
the roots is an integer;
 is an integer

 ki ki   2 ki   2ki     ki    ki   2  b
From c)  c  k 2 a

k 2  2  0
k 2  2

  
d) If 2 is also a root of the equation, and b = 0, show that c is even.
Let  be the 4th root
As the other three roots are integer multiples, and the product of
the roots is an integer;
 is an integer

 ki ki   2 ki   2ki     ki    ki   2  b
From c)  c  k 2 a

c  2a

k 2  2  0
k 2  2

  
d) If 2 is also a root of the equation, and b = 0, show that c is even.
Let  be the 4th root
As the other three roots are integer multiples, and the product of
the roots is an integer;
 is an integer

 ki ki   2 ki   2ki     ki    ki   2  b
From c)  c  k 2 a

c  2a
c  2M

k 2  2  0
k 2  2

  
d) If 2 is also a root of the equation, and b = 0, show that c is even.
Let  be the 4th root
As the other three roots are integer multiples, and the product of
the roots is an integer;
 is an integer

 ki ki   2 ki   2ki     ki    ki   2  b
From c)  c  k 2 a

  

k 2  2  0
k 2  2

c  2a
c  2 M  and a are both integers, M is an integer
d) If 2 is also a root of the equation, and b = 0, show that c is even.
Let  be the 4th root
As the other three roots are integer multiples, and the product of
the roots is an integer;
 is an integer

 ki ki   2 ki   2ki     ki    ki   2  b
From c)  c  k 2 a
c  2a
c  2M

  

k 2  2  0
k 2  2

 and a are both integers, M is an integer

Thus c is an even number, as it is divisible by 2
d) If 2 is also a root of the equation, and b = 0, show that c is even.
Let  be the 4th root
As the other three roots are integer multiples, and the product of
the roots is an integer;
 is an integer

 ki ki   2 ki   2ki     ki    ki   2  b
From c)  c  k 2 a
c  2a
c  2M

  

k 2  2  0
k 2  2

 and a are both integers, M is an integer

Thus c is an even number, as it is divisible by 2
Patel: Exercise 5D; 1 to 9

Más contenido relacionado

La actualidad más candente

CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCarlon Baird
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCarlon Baird
 
Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookRushane Barnes
 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)Nigel Simmons
 
11X1 T17 07 approximations
11X1 T17 07 approximations11X1 T17 07 approximations
11X1 T17 07 approximationsNigel Simmons
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)Nigel Simmons
 
119 Powerpoint 2.6
119 Powerpoint 2.6119 Powerpoint 2.6
119 Powerpoint 2.6Jeneva Clark
 
11X1 T14 02 definite integral
11X1 T14 02 definite integral11X1 T14 02 definite integral
11X1 T14 02 definite integralNigel Simmons
 
Comp decomp worked
Comp decomp workedComp decomp worked
Comp decomp workedJonna Ramsey
 
maths revision to help you
 maths revision to help you maths revision to help you
maths revision to help youJakeHornsby3219
 
Polynomials - Remainder Theorem
Polynomials -  Remainder TheoremPolynomials -  Remainder Theorem
Polynomials - Remainder Theorem2IIM
 
Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)sanjay gupta
 
Calculus :Tutorial 2
Calculus :Tutorial 2Calculus :Tutorial 2
Calculus :Tutorial 2Nuril Ekma
 

La actualidad más candente (19)

CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
 
Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - Textbook
 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)
 
11X1 T17 07 approximations
11X1 T17 07 approximations11X1 T17 07 approximations
11X1 T17 07 approximations
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 
11X1 T14 04 areas
11X1 T14 04 areas11X1 T14 04 areas
11X1 T14 04 areas
 
relations-function
relations-functionrelations-function
relations-function
 
119 Powerpoint 2.6
119 Powerpoint 2.6119 Powerpoint 2.6
119 Powerpoint 2.6
 
Logarithm
LogarithmLogarithm
Logarithm
 
A0212010109
A0212010109A0212010109
A0212010109
 
11X1 T14 02 definite integral
11X1 T14 02 definite integral11X1 T14 02 definite integral
11X1 T14 02 definite integral
 
Comp decomp worked
Comp decomp workedComp decomp worked
Comp decomp worked
 
maths revision to help you
 maths revision to help you maths revision to help you
maths revision to help you
 
Polynomials - Remainder Theorem
Polynomials -  Remainder TheoremPolynomials -  Remainder Theorem
Polynomials - Remainder Theorem
 
E029024030
E029024030E029024030
E029024030
 
Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)
 
sets
setssets
sets
 
Calculus :Tutorial 2
Calculus :Tutorial 2Calculus :Tutorial 2
Calculus :Tutorial 2
 

Destacado

11 x1 t13 07 products of intercepts (2012)
11 x1 t13 07 products of intercepts (2012)11 x1 t13 07 products of intercepts (2012)
11 x1 t13 07 products of intercepts (2012)Nigel Simmons
 
11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
X2 t08 04 inequality techniques (2012)
X2 t08 04 inequality techniques (2012)X2 t08 04 inequality techniques (2012)
X2 t08 04 inequality techniques (2012)Nigel Simmons
 
11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)Nigel Simmons
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)Nigel Simmons
 
11 x1 t05 05 perpendicular distance (2013)
11 x1 t05 05 perpendicular distance (2013)11 x1 t05 05 perpendicular distance (2013)
11 x1 t05 05 perpendicular distance (2013)Nigel Simmons
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)Nigel Simmons
 
11 x1 t13 06 tangent theorems 2 (2012)
11 x1 t13 06 tangent theorems 2 (2012)11 x1 t13 06 tangent theorems 2 (2012)
11 x1 t13 06 tangent theorems 2 (2012)Nigel Simmons
 
11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)Nigel Simmons
 
11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)Nigel Simmons
 
11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theorems11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theoremsNigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 

Destacado (16)

11 x1 t13 07 products of intercepts (2012)
11 x1 t13 07 products of intercepts (2012)11 x1 t13 07 products of intercepts (2012)
11 x1 t13 07 products of intercepts (2012)
 
11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
X2 t08 04 inequality techniques (2012)
X2 t08 04 inequality techniques (2012)X2 t08 04 inequality techniques (2012)
X2 t08 04 inequality techniques (2012)
 
11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)
 
11 x1 t05 05 perpendicular distance (2013)
11 x1 t05 05 perpendicular distance (2013)11 x1 t05 05 perpendicular distance (2013)
11 x1 t05 05 perpendicular distance (2013)
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)
 
11 x1 t13 06 tangent theorems 2 (2012)
11 x1 t13 06 tangent theorems 2 (2012)11 x1 t13 06 tangent theorems 2 (2012)
11 x1 t13 06 tangent theorems 2 (2012)
 
11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)
 
11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)
 
11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theorems11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theorems
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

Similar a X2 t02 03 roots & coefficients (2013)

11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)Nigel Simmons
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)Nigel Simmons
 
11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)Nigel Simmons
 
11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of rootsNigel Simmons
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)Nigel Simmons
 
X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)Nigel Simmons
 
X2 T02 03 roots & coefficients
X2 T02 03 roots & coefficientsX2 T02 03 roots & coefficients
X2 T02 03 roots & coefficientsNigel Simmons
 
X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)Nigel Simmons
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)Nigel Simmons
 
Lecture 08 quadratic formula and nature of roots
Lecture 08 quadratic formula and nature of rootsLecture 08 quadratic formula and nature of roots
Lecture 08 quadratic formula and nature of rootsHazel Joy Chong
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)Nigel Simmons
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11X1 T11 05 the discriminant
11X1 T11 05 the discriminant11X1 T11 05 the discriminant
11X1 T11 05 the discriminantNigel Simmons
 
11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)Nigel Simmons
 
11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)Nigel Simmons
 
11X1 T10 05 the discriminant (2010)
11X1 T10 05 the discriminant (2010)11X1 T10 05 the discriminant (2010)
11X1 T10 05 the discriminant (2010)Nigel Simmons
 
X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)Nigel Simmons
 
1.3 Pythagorean Theorem
1.3 Pythagorean Theorem1.3 Pythagorean Theorem
1.3 Pythagorean Theoremsmiller5
 

Similar a X2 t02 03 roots & coefficients (2013) (20)

11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
 
11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)
 
11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)
 
X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)
 
X2 T02 03 roots & coefficients
X2 T02 03 roots & coefficientsX2 T02 03 roots & coefficients
X2 T02 03 roots & coefficients
 
X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)
 
Lecture 08 quadratic formula and nature of roots
Lecture 08 quadratic formula and nature of rootsLecture 08 quadratic formula and nature of roots
Lecture 08 quadratic formula and nature of roots
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11X1 T11 05 the discriminant
11X1 T11 05 the discriminant11X1 T11 05 the discriminant
11X1 T11 05 the discriminant
 
11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)
 
11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)
 
11X1 T10 05 the discriminant (2010)
11X1 T10 05 the discriminant (2010)11X1 T10 05 the discriminant (2010)
11X1 T10 05 the discriminant (2010)
 
X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)
 
1.3 Pythagorean Theorem
1.3 Pythagorean Theorem1.3 Pythagorean Theorem
1.3 Pythagorean Theorem
 

Más de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)Nigel Simmons
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)Nigel Simmons
 
X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
 
X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)
 

Último

Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 

Último (20)

Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 

X2 t02 03 roots & coefficients (2013)

  • 2. Roots and Coefficients For P x   ax n  bx n 1  cx n  2 
  • 3. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        )
  • 4. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        ) c   (sum of roots, 2 at a time i.e.       )  a
  • 5. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        ) c   (sum of roots, 2 at a time i.e.       )  a d   a (sum of roots, 3 at a time i.e.    )
  • 6. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        ) c   (sum of roots, 2 at a time i.e.       )  a d   a (sum of roots, 3 at a time i.e.    ) e   a (sum of roots, 4 at a time)
  • 7. We have already seen that for ax 2  bx  c;  2   2     2  2
  • 8. We have already seen that for ax 2  bx  c;  2   2     2  2 and 1 1      
  • 9. We have already seen that for ax 2  bx  c;  2   2     2  2 and 1 1      This can be generalised to; 
  • 10. We have already seen that for ax 2  bx  c;  2   2     2  2 and 1 1       This can be generalised to;  2      2  2
  • 11. We have already seen that for ax 2  bx  c;  2   2     2  2 and 1 1       This can be generalised to;  2      2       1 2 (order 2)
  • 12. We have already seen that for ax 2  bx  c;  2   2     2  2 and 1 1       This can be generalised to;  2      2  2      1    (order 2) (order 3)
  • 13. We have already seen that for ax 2  bx  c;  2   2     2  2 and 1 1       This can be generalised to;       2  2 2      1       (order 2) (order 3) (order 4)
  • 14. e.g. (i) x 3  2 x 2  3 x  4  0, find;
  • 15. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   b)    c)   
  • 16. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   b)    c)    =2 =3 =4
  • 17. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   b)    c)    d)   2 =2 =3 =4
  • 18. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   b)    c)    d)   2 =2 =3 =4      2  2
  • 19. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   b)    c)    d)   2 =2 =3 =4      2  2  2 2  23  2
  • 20. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   b)    c)    d)   2 =2 =3 =4      2  2  2 2  23  2 e)   3
  • 21. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   b)    c)    d)   2 =2 =3 =4      2  2  2 2  23  2 e)   3  3  2 2  3  4  0
  • 22. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   b)    c)    d)   2 =2 =3 =4      2  2  2 2  23  2 e)   3  3  2 2  3  4  0  3  2  2  3  4  0  3  2 2  3  4  0
  • 23. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   b)    c)    d)   2 =2 =3 =4      2  2  2 2  23  2 e)   3  3  2 2  3  4  0  3  2  2  3  4  0  3  2 2  3  4  0  3  2  2  3   12  0 
  • 24.  3  2  2  3   12  0 
  • 25.  3  2  2  3   12  0   3  2  2  3   12 
  • 26.  3  2  2  3   12  0   3  2  2  3   12   2 2   32   12 2
  • 27.  3  2  2  3   12  0   3  2  2  3   12   2 2   32   12 2 f)   4
  • 28.  3  2  2  3   12  0   3  2  2  3   12   2 2   32   12 2 f)   4  4  2 3  3 2  4  0
  • 29.  3  2  2  3   12  0   3  2  2  3   12   2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0
  • 30.  3  2  2  3   12  0   3  2  2  3   12   2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0  4  2  3  3  2  4   0 
  • 31.  3  2  2  3   12  0   3  2  2  3   12   2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0  4  2  3  3  2  4   0   4  2  3  3  2  4  
  • 32.  3  2  2  3   12  0   3  2  2  3   12   2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0  4  2  3  3  2  4   0   4  2  3  3  2  4    22   3 2   42   18
  • 33. g)           
  • 34. g)                         
  • 35. g)                           2   2   2   
  • 36. g)                           2   2   2     4  2  2    2     8  4  4   2   4  2  2    8  4   2    
  • 37. g)                           2   2   2     4  2  2    2     8  4  4   2   4  2  2    8  4   2      8  42   23  4 2
  • 38. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0
  • 39. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root.
  • 40. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real.
  • 41. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a
  • 42. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
  • 43. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
  • 44. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q  p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
  • 45. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q  p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4) Substitute (1) into (3)
  • 46. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q  p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4) k 2a  c Substitute (1) into (3)
  • 47. c) Show that c 2  a 2 d  abc
  • 48. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2
  • 49. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d
  • 50. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d
  • 51. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2  2 d a a
  • 52. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2  2 d a a c ( k 2  ) a
  • 53. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2  2 d a a abc  c 2  a 2 d c ( k 2  ) a
  • 54. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2  2 d a a abc  c 2  a 2 d c 2  a 2 d  abc c ( k 2  ) a
  • 55. d) If 2 is also a root of the equation, and b = 0, show that c is even.
  • 56. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root
  • 57. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer
  • 58. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b   
  • 59. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b k 2  2  0 k 2  2   
  • 60. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b From c)  c  k 2 a k 2  2  0 k 2  2   
  • 61. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b From c)  c  k 2 a c  2a k 2  2  0 k 2  2   
  • 62. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b From c)  c  k 2 a c  2a c  2M k 2  2  0 k 2  2   
  • 63. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b From c)  c  k 2 a    k 2  2  0 k 2  2 c  2a c  2 M  and a are both integers, M is an integer
  • 64. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b From c)  c  k 2 a c  2a c  2M    k 2  2  0 k 2  2  and a are both integers, M is an integer Thus c is an even number, as it is divisible by 2
  • 65. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b From c)  c  k 2 a c  2a c  2M    k 2  2  0 k 2  2  and a are both integers, M is an integer Thus c is an even number, as it is divisible by 2 Patel: Exercise 5D; 1 to 9