SlideShare una empresa de Scribd logo
1 de 40
Descargar para leer sin conexión
Forming Polynomials With
  The Roots Of Another
Forming Polynomials With
  The Roots Of Another
 If  ,  ,  ,  are the roots of a polynomial, to form an equation
 with roots;
Forming Polynomials With
  The Roots Of Another
 If  ,  ,  ,  are the roots of a polynomial, to form an equation
 with roots;
    1 1 1
 (1) , , , 
      
Forming Polynomials With
  The Roots Of Another
 If  ,  ,  ,  are the roots of a polynomial, to form an equation
 with roots;
    1 1 1                               1                    1
 (1) , , ,                   let y      and substitute x 
                                     x                    y
Forming Polynomials With
  The Roots Of Another
 If  ,  ,  ,  are the roots of a polynomial, to form an equation
 with roots;
    1 1 1                               1                    1
 (1) , , ,                   let y      and substitute x 
                                     x                    y

 (2) k , k , k ,
Forming Polynomials With
  The Roots Of Another
 If  ,  ,  ,  are the roots of a polynomial, to form an equation
 with roots;
    1 1 1                               1                    1
 (1) , , ,                   let y      and substitute x 
                                     x                    y
                                                             y
 (2) k , k , k ,           let y  kx and substitute x 
                                                             k
Forming Polynomials With
  The Roots Of Another
 If  ,  ,  ,  are the roots of a polynomial, to form an equation
 with roots;
    1 1 1                               1                    1
 (1) , , ,                   let y      and substitute x 
                                     x                    y
                                                             y
 (2) k , k , k ,           let y  kx and substitute x 
                                                             k
 (3)   c,   c,   c, 
Forming Polynomials With
  The Roots Of Another
 If  ,  ,  ,  are the roots of a polynomial, to form an equation
 with roots;
    1 1 1                               1                    1
 (1) , , ,                   let y      and substitute x 
                                     x                    y
                                                             y
 (2) k , k , k ,           let y  kx and substitute x 
                                                             k
 (3)   c,   c,   c,     let y  x  c and substitute x  y  c
Forming Polynomials With
  The Roots Of Another
 If  ,  ,  ,  are the roots of a polynomial, to form an equation
 with roots;
    1 1 1                               1                    1
 (1) , , ,                   let y      and substitute x 
                                     x                    y
                                                             y
 (2) k , k , k ,           let y  kx and substitute x 
                                                             k
 (3)   c,   c,   c,     let y  x  c and substitute x  y  c

 ( 4)  2 ,  2 ,  2 , 
Forming Polynomials With
  The Roots Of Another
 If  ,  ,  ,  are the roots of a polynomial, to form an equation
 with roots;
    1 1 1                               1                    1
 (1) , , ,                   let y      and substitute x 
                                     x                    y
                                                             y
 (2) k , k , k ,           let y  kx and substitute x 
                                                             k
 (3)   c,   c,   c,     let y  x  c and substitute x  y  c
                                                                  1
 ( 4)  ,  ,  , 
       2   2   2
                               let y  x 2 and substitute x  y   2
e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation
     whose roots are;
e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation
     whose roots are;

         1 1 1
    a)    , ,
           
e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation
     whose roots are;

         1 1 1
    a)    , ,
           
               1
         let y 
               x
               1
            x
               y
e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation
     whose roots are;

         1 1 1
    a)    , ,
           
                                    3
               1               1 1
         let y                   20
               x                y y
               1
            x
               y
e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation
     whose roots are;

         1 1 1
    a)    , ,
           
                                    3
               1               1 1
         let y                   20
               x                y y
               1
            x                  1  y2  2 y3  0
               y
b)   1,   1,   1
b)   1,   1,   1
  let y  x  1
      x  y 1
b)   1,   1,   1
  let y  x  1           y  13   y  1  2  0
      x  y 1
b)   1,   1,   1
  let y  x  1                  y  13   y  1  2  0
      x  y 1
                         y3  3 y 2  3 y 1  y 1  2  0
                                       y3  3 y 2  4 y  0
b)   1,   1,   1
  let y  x  1                  y  13   y  1  2  0
       x  y 1
                         y3  3 y 2  3 y 1  y 1  2  0
                                       y3  3 y 2  4 y  0

 c)  2 ,  2 ,  2
b)   1,   1,   1
  let y  x  1                  y  13   y  1  2  0
       x  y 1
                         y3  3 y 2  3 y 1  y 1  2  0
                                       y3  3 y 2  4 y  0

 c)  2 ,  2 ,  2
     let y  x 2
                  1
          x y    2
b)   1,   1,   1
  let y  x  1                  y  13   y  1  2  0
       x  y 1
                         y3  3 y 2  3 y 1  y 1  2  0
                                       y3  3 y2  4 y  0

 c)  2 ,  2 ,  2                       1
                                               
                                                3   1

     let y  x 2                      y
                                      
                                           2     y2  2  0
                                               
                  1
                                              
          x y    2
b)   1,   1,   1
  let y  x  1                  y  13   y  1  2  0
       x  y 1
                         y3  3 y 2  3 y 1  y 1  2  0
                                       y3  3 y2  4 y  0

 c)  2 ,  2 ,  2                       1
                                               
                                                3   1

     let y  x 2                      y
                                      
                                           2     y2  2  0
                                               
                  1
                                              
                                               3    1
          x y    2
                                           y  y 20
                                               2    2
b)   1,   1,   1
  let y  x  1                  y  13   y  1  2  0
       x  y 1
                         y3  3 y 2  3 y 1  y 1  2  0
                                       y3  3 y2  4 y  0

 c)  2 ,  2 ,  2                       1
                                               
                                                3   1

     let y  x 2                      y
                                      
                                           2     y2  2  0
                                               
                  1
                                              
                                               3         1
          x y    2
                                           y  y 20
                                               2         2

                                                     1
                                                    y  y  1  2
                                                     2
b)   1,   1,   1
  let y  x  1                  y  13   y  1  2  0
       x  y 1
                         y3  3 y 2  3 y 1  y 1  2  0
                                       y3  3 y2  4 y  0

 c)  2 ,  2 ,  2                       1
                                               
                                                3   1

     let y  x 2                      y
                                      
                                           2     y2  2  0
                                               
                  1
                                              
                                               3         1
          x y    2
                                           y  y 20
                                               2         2

                                                     1
                                                    y  y  1  2
                                                     2


                                                    y  y  1  4
                                                             2
b)   1,   1,   1
  let y  x  1                  y  13   y  1  2  0
       x  y 1
                         y3  3 y 2  3 y 1  y 1  2  0
                                       y3  3 y2  4 y  0

 c)  2 ,  2 ,  2                       1
                                               
                                                3   1

     let y  x 2                      y
                                      
                                           2     y2  2  0
                                               
                  1
                                              
                                               3         1
          x y    2
                                           y  y 20
                                               2         2

                                                     1
                                                    y  y  1  2
                                                     2


                                                    y  y  1  4
                                                             2


                                           y3  2 y 2  y  4
                                     y3  2 y 2  y  4  0
1           1           1
d)           ,           ,
        2
                    2
                             2
1           1           1
d)           ,           ,
        2
                    2
                             2
                         1
     let y 
                         x2
                                 1
                             
             x y                2
1           1           1
d)           ,           ,
        2
                    2
                             2
             1                               3            1
     let y  2                       y
                                         
                                             2
                                                 y
                                                      
                                                          2
                                                              20
            x
                                 1
                             
             x y                2
1           1           1
d)           ,           ,
        2
                    2
                             2
             1                             3               1
     let y  2                     y
                                       
                                           2
                                               y
                                                       
                                                           2
                                                               20
            x
                                                   3
                                               
                                                        y  1  2
                               1
                                                  2
             x y              2           y
1           1           1
d)           ,           ,
        2
                    2
                             2
             1                             3               1
     let y  2                     y
                                       
                                           2
                                               y
                                                       
                                                           2
                                                               20
            x
                                                   3
                                               
                                                        y  1  2
                               1
                                                  2
             x y              2           y
                                                                         3
                                                        y  1  2 y   2
1           1           1
d)           ,           ,
        2
                    2
                             2
             1                             3               1
     let y  2                     y
                                       
                                           2
                                               y
                                                       
                                                           2
                                                               20
            x
                                                   3
                                               
                                                        y  1  2
                               1
                                                  2
             x y              2           y
                                                                         3
                                                        y  1  2 y   2


                                                    y  12  4 y 3
1           1           1
d)           ,           ,
        2
                    2
                             2
             1                                 3               1
     let y  2                         y
                                           
                                               2
                                                   y
                                                           
                                                               2
                                                                   20
            x
                                                       3
                                                   
                                                            y  1  2
                               1
                                                      2
             x y              2               y
                                                                             3
                                                            y  1  2 y   2


                                                        y  12  4 y 3
                                               y2  2 y 1  4 y3
                                   4 y3  y2  2 y 1  0
e) Find  2   2   2
e) Find  2   2   2

  2   2  2
       2 
           2
e) Find  2   2   2

  2   2  2
       2 
            2



   0   21
        2


   2
e) Find  2   2   2

  2   2  2           OR using equation found in c)
       2 
            2



   0   21
        2


   2
e) Find  2   2   2

  2   2  2           OR using equation found in c)
       2         2   2  2
            2


                            b
   0   21
        2                 
                            a
   2
e) Find  2   2   2

  2   2  2           OR using equation found in c)
       2         2   2  2
            2


                            b
   0   21
        2                 
                             a
   2                      2
                          
                             1
                           2
e) Find  2   2   2

  2   2  2                 OR using equation found in c)
       2               2   2  2
             2


                                  b
   0   21
        2                       
                                   a
   2                            2
                                
                                   1
                                 2


                          Exercise 5D; 10 to 16

            Exercise 5E; 2cd, 4b, 7, 9, 10, 18, 27, 30, 34, 35

Más contenido relacionado

Más de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 

X2 T02 04 forming polynomials (2010)

  • 1. Forming Polynomials With The Roots Of Another
  • 2. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots;
  • 3. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    
  • 4. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 1 1 (1) , , ,  let y  and substitute x     x y
  • 5. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 1 1 (1) , , ,  let y  and substitute x     x y (2) k , k , k ,
  • 6. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 1 1 (1) , , ,  let y  and substitute x     x y y (2) k , k , k , let y  kx and substitute x  k
  • 7. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 1 1 (1) , , ,  let y  and substitute x     x y y (2) k , k , k , let y  kx and substitute x  k (3)   c,   c,   c, 
  • 8. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 1 1 (1) , , ,  let y  and substitute x     x y y (2) k , k , k , let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c
  • 9. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 1 1 (1) , , ,  let y  and substitute x     x y y (2) k , k , k , let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c ( 4)  2 ,  2 ,  2 , 
  • 10. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 1 1 (1) , , ,  let y  and substitute x     x y y (2) k , k , k , let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c 1 ( 4)  ,  ,  ,  2 2 2 let y  x 2 and substitute x  y 2
  • 11. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are;
  • 12. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; 1 1 1 a) , ,   
  • 13. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; 1 1 1 a) , ,    1 let y  x 1 x y
  • 14. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; 1 1 1 a) , ,    3 1 1 1 let y     20 x  y y 1 x y
  • 15. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; 1 1 1 a) , ,    3 1 1 1 let y     20 x  y y 1 x 1  y2  2 y3  0 y
  • 16. b)   1,   1,   1
  • 17. b)   1,   1,   1 let y  x  1 x  y 1
  • 18. b)   1,   1,   1 let y  x  1  y  13   y  1  2  0 x  y 1
  • 19. b)   1,   1,   1 let y  x  1  y  13   y  1  2  0 x  y 1 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y 2  4 y  0
  • 20. b)   1,   1,   1 let y  x  1  y  13   y  1  2  0 x  y 1 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y 2  4 y  0 c)  2 ,  2 ,  2
  • 21. b)   1,   1,   1 let y  x  1  y  13   y  1  2  0 x  y 1 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y 2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 1 x y 2
  • 22. b)   1,   1,   1 let y  x  1  y  13   y  1  2  0 x  y 1 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2  1  3 1 let y  x 2 y  2   y2  2  0  1   x y 2
  • 23. b)   1,   1,   1 let y  x  1  y  13   y  1  2  0 x  y 1 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2  1  3 1 let y  x 2 y  2   y2  2  0  1   3 1 x y 2 y  y 20 2 2
  • 24. b)   1,   1,   1 let y  x  1  y  13   y  1  2  0 x  y 1 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2  1  3 1 let y  x 2 y  2   y2  2  0  1   3 1 x y 2 y  y 20 2 2 1 y  y  1  2 2
  • 25. b)   1,   1,   1 let y  x  1  y  13   y  1  2  0 x  y 1 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2  1  3 1 let y  x 2 y  2   y2  2  0  1   3 1 x y 2 y  y 20 2 2 1 y  y  1  2 2 y  y  1  4 2
  • 26. b)   1,   1,   1 let y  x  1  y  13   y  1  2  0 x  y 1 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2  1  3 1 let y  x 2 y  2   y2  2  0  1   3 1 x y 2 y  y 20 2 2 1 y  y  1  2 2 y  y  1  4 2 y3  2 y 2  y  4 y3  2 y 2  y  4  0
  • 27. 1 1 1 d) , ,  2  2 2
  • 28. 1 1 1 d) , ,  2  2 2 1 let y  x2 1  x y 2
  • 29. 1 1 1 d) , ,  2  2 2 1 3 1 let y  2 y  2 y  2 20 x 1  x y 2
  • 30. 1 1 1 d) , ,  2  2 2 1 3 1 let y  2 y  2 y  2 20 x 3   y  1  2 1  2 x y 2 y
  • 31. 1 1 1 d) , ,  2  2 2 1 3 1 let y  2 y  2 y  2 20 x 3   y  1  2 1  2 x y 2 y 3  y  1  2 y 2
  • 32. 1 1 1 d) , ,  2  2 2 1 3 1 let y  2 y  2 y  2 20 x 3   y  1  2 1  2 x y 2 y 3  y  1  2 y 2  y  12  4 y 3
  • 33. 1 1 1 d) , ,  2  2 2 1 3 1 let y  2 y  2 y  2 20 x 3   y  1  2 1  2 x y 2 y 3  y  1  2 y 2  y  12  4 y 3 y2  2 y 1  4 y3 4 y3  y2  2 y 1  0
  • 34. e) Find  2   2   2
  • 35. e) Find  2   2   2 2   2  2      2  2
  • 36. e) Find  2   2   2 2   2  2      2  2  0   21 2  2
  • 37. e) Find  2   2   2 2   2  2 OR using equation found in c)      2  2  0   21 2  2
  • 38. e) Find  2   2   2 2   2  2 OR using equation found in c)      2  2   2  2 2 b  0   21 2  a  2
  • 39. e) Find  2   2   2 2   2  2 OR using equation found in c)      2  2   2  2 2 b  0   21 2  a  2 2  1  2
  • 40. e) Find  2   2   2 2   2  2 OR using equation found in c)      2  2   2  2 2 b  0   21 2  a  2 2  1  2 Exercise 5D; 10 to 16 Exercise 5E; 2cd, 4b, 7, 9, 10, 18, 27, 30, 34, 35