SlideShare una empresa de Scribd logo
1 de 41
Descargar para leer sin conexión
Integration By Parts
Integration By Parts
When an integral is a product of two functions and neither is the
derivative of the other, we integrate by parts.
Integration By Parts
When an integral is a product of two functions and neither is the
derivative of the other, we integrate by parts.

                      udv  uv   vdu
Integration By Parts
When an integral is a product of two functions and neither is the
derivative of the other, we integrate by parts.

                      udv  uv   vdu
u   should be chosen so that differentiation makes it a
    simpler function.
Integration By Parts
When an integral is a product of two functions and neither is the
derivative of the other, we integrate by parts.

                       udv  uv   vdu
 u   should be chosen so that differentiation makes it a
     simpler function.
dv   should be chosen so that it can be integrated
e.g. (i)    x cos xdx
e.g. (i)    x cos xdx   ux
e.g. (i)    x cos xdx    ux
                         du  dx
e.g. (i)    x cos xdx    ux
                         du  dx   dv  cos xdx
e.g. (i)    x cos xdx    ux       v  sin x
                         du  dx   dv  cos xdx
e.g. (i)    x cos xdx              ux       v  sin x
            x sin x   sin xdx   du  dx   dv  cos xdx
e.g. (i)    x cos xdx              ux       v  sin x
            x sin x   sin xdx   du  dx   dv  cos xdx
            x sin x  cos x  c
e.g. (i)    x cos xdx              ux       v  sin x
            x sin x   sin xdx   du  dx   dv  cos xdx
            x sin x  cos x  c



     ii  log xdx
e.g. (i)    x cos xdx              ux         v  sin x
            x sin x   sin xdx   du  dx     dv  cos xdx
            x sin x  cos x  c



     ii  log xdx                u  log x
e.g. (i)    x cos xdx              ux          v  sin x
            x sin x   sin xdx   du  dx      dv  cos xdx
            x sin x  cos x  c



     ii  log xdx                 u  log x
                                        dx
                                   du 
                                         x
e.g. (i)    x cos xdx              ux          v  sin x
            x sin x   sin xdx   du  dx      dv  cos xdx
            x sin x  cos x  c



     ii  log xdx                 u  log x
                                        dx
                                   du          dv  dx
                                         x
e.g. (i)    x cos xdx              ux          v  sin x
            x sin x   sin xdx   du  dx      dv  cos xdx
            x sin x  cos x  c



     ii  log xdx                 u  log x    vx
                                        dx
                                   du          dv  dx
                                         x
e.g. (i)    x cos xdx              ux          v  sin x
            x sin x   sin xdx   du  dx      dv  cos xdx
            x sin x  cos x  c



     ii  log xdx                 u  log x    vx
            x log x   dx        du 
                                        dx
                                                dv  dx
                                         x
e.g. (i)    x cos xdx              ux          v  sin x
            x sin x   sin xdx   du  dx      dv  cos xdx
            x sin x  cos x  c



     ii  log xdx                 u  log x    vx
            x log x   dx        du 
                                        dx
                                                dv  dx
                                         x
            x log x  x  c
1
iii  xe 7 x dx
     0
1
iii  xe 7 x dx   ux
     0
1
iii  xe 7 x dx    ux
     0
                     du  dx
1
iii  xe 7 x dx    ux
     0
                     du  dx   dv  e 7 x dx
1
                                  1 7 x
iii  xe dx
        7 x
                 ux       v e
    0
                                  7
                du  dx   dv  e 7 x dx
1
                                                    1 7 x
iii  xe dx
        7 x
                                   ux       v e
    0
                                                    7
                 1    1           du  dx   dv  e 7 x dx
     xe 7 x    e 7 x dx
       1           1
      7
               0 7
                    0
1
                                                    1 7 x
iii  xe dx
        7 x
                                   ux       v e
    0
                                                    7
                 1    1           du  dx   dv  e 7 x dx
     xe 7 x    e 7 x dx
       1           1
      7
               0 7
                    0
                           1
      1 7 x 1 7 x 
     xe  e 
      7      49     0
1
                                                         1 7 x
iii  xe dx
        7 x
                                        ux       v e
    0
                                                         7
                 1     1               du  dx   dv  e 7 x dx
     xe 7 x    e 7 x dx
       1           1
      7
               0 7
                    0
                           1
      1 7 x 1 7 x 
     xe  e 
      7      49     0

    1 e 7  1 e 7   0  1 
                                 
       7       49   49 
       8         1
     e 7 
       49       49
iv  e x cos xdx
iv  e x cos xdx   u  ex
iv  e x cos xdx    u  ex
                     du  e x dx
iv  e x cos xdx    u  ex
                     du  e x dx   dv  cos xdx
iv  e x cos xdx    u  ex        v  sin x
                     du  e x dx   dv  cos xdx
iv  e x cos xdx            u  ex        v  sin x
                             du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x             x
iv  e x cos xdx            u  ex        v  sin x
                             du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x             x


                              u  ex
iv  e x cos xdx            u  ex        v  sin x
                             du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x             x


                              u  ex
                             du  e x dx
iv  e x cos xdx            u  ex        v  sin x
                             du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x             x


                              u  ex
                             du  e x dx   dv  sin xdx
iv  e x cos xdx            u  ex        v  sin x
                             du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x             x


                              u  ex        v   cos x
                             du  e x dx   dv  sin xdx
iv  e x cos xdx                      u  ex        v  sin x
                                       du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x                 x


                                        u  ex        v   cos x
    e sin x  e cos x   e cos xdx
       x             x       x

                                       du  e x dx   dv  sin xdx
iv  e x cos xdx                             u  ex        v  sin x
                                              du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x                 x


                                               u  ex        v   cos x
    e sin x  e cos x   e cos xdx
       x             x        x

                                              du  e x dx   dv  sin xdx
   2  e x cos xdx  e x sin x  e x cos x
iv  e x cos xdx                                 u  ex        v  sin x
                                                  du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x                 x


                                                   u  ex        v   cos x
    e sin x  e cos x   e cos xdx
       x             x        x

                                                  du  e x dx   dv  sin xdx
   2  e x cos xdx  e x sin x  e x cos x
                     1           1
       e x cos xdx  e x sin x  e x cos x  c
                     2           2
iv  e x cos xdx                                 u  ex        v  sin x
                                                  du  e x dx   dv  cos xdx
    e sin x   e sin xdx
       x                 x


                                                   u  ex        v   cos x
    e sin x  e cos x   e cos xdx
       x             x        x

                                                  du  e x dx   dv  sin xdx
   2  e x cos xdx  e x sin x  e x cos x
                     1           1
       e x cos xdx  e x sin x  e x cos x  c
                     2           2




                 Exercise 2B; 1 to 6 ac, 7 to 11, 12 ace etc

Más contenido relacionado

Más de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 

Más de Nigel Simmons (20)

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 

X2 t04 01 by parts (2013)

  • 2. Integration By Parts When an integral is a product of two functions and neither is the derivative of the other, we integrate by parts.
  • 3. Integration By Parts When an integral is a product of two functions and neither is the derivative of the other, we integrate by parts.  udv  uv   vdu
  • 4. Integration By Parts When an integral is a product of two functions and neither is the derivative of the other, we integrate by parts.  udv  uv   vdu u should be chosen so that differentiation makes it a simpler function.
  • 5. Integration By Parts When an integral is a product of two functions and neither is the derivative of the other, we integrate by parts.  udv  uv   vdu u should be chosen so that differentiation makes it a simpler function. dv should be chosen so that it can be integrated
  • 6. e.g. (i)  x cos xdx
  • 7. e.g. (i)  x cos xdx ux
  • 8. e.g. (i)  x cos xdx ux du  dx
  • 9. e.g. (i)  x cos xdx ux du  dx dv  cos xdx
  • 10. e.g. (i)  x cos xdx ux v  sin x du  dx dv  cos xdx
  • 11. e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx
  • 12. e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c
  • 13. e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c ii  log xdx
  • 14. e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c ii  log xdx u  log x
  • 15. e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c ii  log xdx u  log x dx du  x
  • 16. e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c ii  log xdx u  log x dx du  dv  dx x
  • 17. e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c ii  log xdx u  log x vx dx du  dv  dx x
  • 18. e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c ii  log xdx u  log x vx  x log x   dx du  dx dv  dx x
  • 19. e.g. (i)  x cos xdx ux v  sin x  x sin x   sin xdx du  dx dv  cos xdx  x sin x  cos x  c ii  log xdx u  log x vx  x log x   dx du  dx dv  dx x  x log x  x  c
  • 20. 1 iii  xe 7 x dx 0
  • 21. 1 iii  xe 7 x dx ux 0
  • 22. 1 iii  xe 7 x dx ux 0 du  dx
  • 23. 1 iii  xe 7 x dx ux 0 du  dx dv  e 7 x dx
  • 24. 1 1 7 x iii  xe dx 7 x ux v e 0 7 du  dx dv  e 7 x dx
  • 25. 1 1 7 x iii  xe dx 7 x ux v e 0 7 1 1 du  dx dv  e 7 x dx   xe 7 x    e 7 x dx 1 1  7  0 7  0
  • 26. 1 1 7 x iii  xe dx 7 x ux v e 0 7 1 1 du  dx dv  e 7 x dx   xe 7 x    e 7 x dx 1 1  7  0 7  0 1  1 7 x 1 7 x    xe  e   7 49 0
  • 27. 1 1 7 x iii  xe dx 7 x ux v e 0 7 1 1 du  dx dv  e 7 x dx   xe 7 x    e 7 x dx 1 1  7  0 7  0 1  1 7 x 1 7 x    xe  e   7 49 0  1 e 7  1 e 7   0  1      7 49   49  8 1   e 7  49 49
  • 28. iv  e x cos xdx
  • 29. iv  e x cos xdx u  ex
  • 30. iv  e x cos xdx u  ex du  e x dx
  • 31. iv  e x cos xdx u  ex du  e x dx dv  cos xdx
  • 32. iv  e x cos xdx u  ex v  sin x du  e x dx dv  cos xdx
  • 33. iv  e x cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x
  • 34. iv  e x cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex
  • 35. iv  e x cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex du  e x dx
  • 36. iv  e x cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex du  e x dx dv  sin xdx
  • 37. iv  e x cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex v   cos x du  e x dx dv  sin xdx
  • 38. iv  e x cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex v   cos x  e sin x  e cos x   e cos xdx x x x du  e x dx dv  sin xdx
  • 39. iv  e x cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex v   cos x  e sin x  e cos x   e cos xdx x x x du  e x dx dv  sin xdx  2  e x cos xdx  e x sin x  e x cos x
  • 40. iv  e x cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex v   cos x  e sin x  e cos x   e cos xdx x x x du  e x dx dv  sin xdx  2  e x cos xdx  e x sin x  e x cos x 1 1  e x cos xdx  e x sin x  e x cos x  c 2 2
  • 41. iv  e x cos xdx u  ex v  sin x du  e x dx dv  cos xdx  e sin x   e sin xdx x x u  ex v   cos x  e sin x  e cos x   e cos xdx x x x du  e x dx dv  sin xdx  2  e x cos xdx  e x sin x  e x cos x 1 1  e x cos xdx  e x sin x  e x cos x  c 2 2 Exercise 2B; 1 to 6 ac, 7 to 11, 12 ace etc