SlideShare una empresa de Scribd logo
1 de 28
1
:: PRESENTATION ON ::
Linear Transformation
Guided by : Mr Sachin Gaikwad
Department of
Computer Engineering
2th semester
2
Prepared By
Odhavani prashant
160920107003
Linear Transformation
3
Zero transformation : VT  vv ,0)(WVT :
Identity transformation : VVT : VT  vvv ,)(
VWVT  vu,,:Properties of linear transformations :
00 )((1)T )()((2) vv TT 
)()()((3) vuvu TTT  1 1 2 2
1 1 2 2
1 1 2 2
(4) If
Then ( ) ( )
( ) ( ) ( )
n n
n n
n n
c v c v c v
T T c v c v c v
c T v c T v c T v
   
   
   
v
v
L
L
L
The Kernel and Range of a Linear Transformation
4
 Kernel of a linear transformation T
Let be a linear transformation then the set of all vectors
v in V that satisfy is called the kernel of T and is denoted by ker(T)
},0)(|{)ker( VTT  vvv
WVT :
The kernel is a subspace of V
The kernel of a linear transformation is a subspace of the domain V.
then.ofkernelin thevectorsbeandLet Tvu
000)()()(  vuvu TTT
00)()(  ccTcT uu )ker(Tc  u
)ker(T vu
.ofsubspaceais)ker(Thus, VT
Note:
The kernel of T is sometimes called the nullspace of T.
WVT :
5
6
Ex : Finding a basis for the kernel
















82000
10201
01312
11021
andRiniswhere,)(bydefinedbe:Let 545
A
ATRRT xxx
Find a basis for ker(T) as a subspace of R5.
7
Solution
 














 















000000
041000
020110
010201
082000
010201
001312
011021
0
.. EJG
A
































































1
4
0
2
1
0
0
1
1
2
4
2
2
5
4
3
2
1
ts
t
t
s
ts
ts
x
x
x
x
x
x
  TB ofkernelfor thebasisone:)1,4,0,2,1(),0,0,1,1,2( 
Range of a linear transformation T
)(bydenotedisandTofrangethecalledisVin
vectorofimagesarein W thatwvectorsallofsetThen the
L.T.abe:Let
Trange
WVT 
}|)({)( VTTrange  vv
8
.:Tnnsformatiolinear traaofrangeThe WWV foecapsbusasi
The range of T is a subspace of W
TTT ofrangein thevectorbe)(and)(Let vu
)()()()( TrangeTTT  vuvu
)()()( TrangecTcT  uu
),( VVV  vuvu
)( VcV  uu
.subspaceis)(Therefore, WTrange
9
Notes:-
ofsubspaceis)()1( VTKer
L.T.ais: WVT 
ofsubspaceis)()2( WTrange
10
11
Ex: Finding a basis for the range of a linear transformation
















82000
10201
01312
11021
andiswhere,)(bydefinedbe:Let 545
A
RATRRT xxx
Find a basis for the range of T.
12
BA EJG















 















00000
41000
20110
10201
82000
10201
01312
11021
..
54321 ccccc 54321 wwwww
  Tofrangefor thebasisais)2,0,1,1(),0,0,1,2(),0,1,2,1( 
Solution
 
  )(forbasisais,,
)(forbasisais,,
421
421
ACSccc
BCSwww
Rank and Nullity of Linear Transformation
13
 Rank of a linear transformation T:V→W:
TTrank ofrangetheofdimensionthe)( 
 Nullity of a linear transformation T:V→W:
TTnullity ofkerneltheofdimensionthe)( 
 Note:
)()(
)()(
then,)(bygivenL.T.thebe:Let
AnullityTnullity
ArankTrank
ATRRT mn


 xx
Sum of rank and nullity
AmatrixnmT anbydrepresenteisLet 
)ofdomaindim()ofkerneldim()ofrangedim(
)()(
TTT
nTnullityTrank


rArank )(Assume
Let T:V→W be a L.T. form an n dimation 1 Vector space
V into a Vector space W . Then
14
rArank
ATTrank


)(
)ofspacecolumndim()ofrangedim()((1)
nrnrTnullityTrank  )()()(
rn
ATTnullity

 )ofspacesolutiondim()ofkerneldim()()2(
15
Sum of rank and nullity
16
Ex : Finding the rank and nullity of a linear transformation









 


000
110
201
bydefine:L.T.theofnullityandranktheFind 33
A
RRT
123)()ofdomaindim()(
2)()(


TrankTTnullity
ArankTrank
Solution
One-to-one Linear Transformation
17
vector.singleaofconsistsrangein theevery w
ofpreimagetheifone-to-onecalledis:functionA WVT 
.thatimplies
)()(inV,vanduallforifone-to-oneis
vu
vu

 TTT
one-to-one not one-to-one
}0{)(if1-1isTThenL.T.abe:Let  TKerWVT
1-1isSuppose T 0:solutiononeonlyhavecan0)(Then  vvT
}0{)(i.e. TKer
)()(and}0{)(Suppose vTuTTKer 
0)()()(  vTuTvuT
0)(  vuTKervu
1-1isT
One-to-one Linear Transformation
18
Onto Transformation
19
.ofdimensionthetoequalisofranktheiffontoisThen
l.dimensionafiniteiswhereL.T.,abe:Let
WTT
WWVT 
20One-to-one and onto linear transformation
onto.isitifonlyandifone-to-oneisThen.dimension
ofbothandspaceorwith vectL.T.abe:Let
Tn
WVWVT 
0))(dim(and}0{)(thenone,-to-oneisIf  TKerTKerT
)dim())(dim())(dim( WnTKernTrange 
onto.isly,Consequent T
0)ofrangedim())(dim(  nnTnTKer
one.-to-oneisTherefore,T
nWTT  )dim()ofrangedim(thenonto,isIf
21
Inverse linear Transformation
ineveryfors.t.L.T.are:and:If 21
nnnnn
RRRTRRT v
))((and))(( 2112 vvvv  TTTT
invertiblebetosaidisandofinversethecalledisThen 112 TTT
Note:
If the transformation T is invertible, then the
inverse is unique and denoted by T–1 .
22Finding the inverse of a linear transformation
bydefinedis:L.T.The 33
RRT 
)42,33,32(),,( 321321321321 xxxxxxxxxxxxT 
142
133
132
formatrixstandardThe










A
T
321
321
321
42
33
32
xxx
xxx
xxx



 









100142
010133
001132
3IA
Show that T is invertible, and find its inverse.
22
Solution
23 1..
326100
101010
011001













  AIEJG
11
isformatrixstandardtheandinvertibleisTherefore 
ATT












326
101
011
1
A































 
321
31
21
3
2
1
11
326326
101
011
)(
xxx
xx
xx
x
x
x
AT vv
)326,,(),,(
s,other wordIn
3213121321
1
xxxxxxxxxxT 
24
Finding the matrix of a linear transformation
.formatrixstandardtheFindaxis.-xtheontoinpointeach
projectingbygivenis:nnsformatiolinear traThe
2
22
TR
RRT 
)0,(),( xyxT      




00
01
)1,0()0,1()()( 21 TTeTeTA
Notes:
(1) The standard matrix for the zero transformation from Rn into Rm is the mn zero matrix.
(2) The standard matrix for the zero transformation from Rn into Rnis the nn identity matrix In
Solution
25
Composition of T1:Rn→Rm with T2:Rm→Rp
n
RTTT  vvv )),(()( 12
112 ofdomainofdomain, TTTTT  
Composition of linear transformations
then,andmatricesstandardwith
L.T.be:and:Let
21
21
AA
RRTRRT pmmn

L.T.ais)),(()(bydefined,:ncompositioThe(1) 12 vv TTTRRT pn

12productmatrixby thegivenisformatrixstandardThe)2( AAATA 
Note:
1221 TTTT  
26
The standard matrix of a composition
33
21 intofromL.T.beandLet RRTT
),0,2(),,(1 zxyxzyxT  ),z,(),,(2 yyxzyxT 
,'andnscompositiofor thematricesstandardtheFind 2112 TTTTTT  
)formatrixstandard(
101
000
012
11 TA










 )formatrixstandard(
010
100
011
22 TA









 

26
Solution
2712formatrixstandardThe TTT 
21'formatrixstandardThe TTT 
























 

000
101
012
101
000
012
010
100
011
12 AAA









 










 











001
000
122
010
100
011
101
000
012
' 21AAA
27
Thankyou
28

Más contenido relacionado

La actualidad más candente

Linear transformations and matrices
Linear transformations and matricesLinear transformations and matrices
Linear transformations and matrices
EasyStudy3
 

La actualidad más candente (20)

Linear transformations and matrices
Linear transformations and matricesLinear transformations and matrices
Linear transformations and matrices
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem
 
Ameer 14208
Ameer 14208Ameer 14208
Ameer 14208
 
Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
 
Matrix of linear transformation
Matrix of linear transformationMatrix of linear transformation
Matrix of linear transformation
 
Linear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetLinear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent Set
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
 
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
 
Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Chapter3 laplace
 
Unit step function
Unit step functionUnit step function
Unit step function
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Fourier-transform analysis of a unilateral fin line and its derivatives
Fourier-transform analysis of a unilateral fin line and its derivativesFourier-transform analysis of a unilateral fin line and its derivatives
Fourier-transform analysis of a unilateral fin line and its derivatives
 
Laplace transform & fourier series
Laplace transform & fourier seriesLaplace transform & fourier series
Laplace transform & fourier series
 
Lecture10 Signal and Systems
Lecture10 Signal and SystemsLecture10 Signal and Systems
Lecture10 Signal and Systems
 
Unit-1 Classification of Signals
Unit-1 Classification of SignalsUnit-1 Classification of Signals
Unit-1 Classification of Signals
 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
 
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic Function
 

Similar a Linear transformation vcla (160920107003)

An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transforms
Lily Rose
 
2. Power Computations and Analysis Techniques_verstud.pdf
2. Power Computations and Analysis Techniques_verstud.pdf2. Power Computations and Analysis Techniques_verstud.pdf
2. Power Computations and Analysis Techniques_verstud.pdf
LIEWHUIFANGUNIMAP
 
laplace transform 2 .pdf
laplace transform 2                  .pdflaplace transform 2                  .pdf
laplace transform 2 .pdf
abdnazar2003
 

Similar a Linear transformation vcla (160920107003) (20)

linear-transformations-2017-03-19-14-38-49.pdf
linear-transformations-2017-03-19-14-38-49.pdflinear-transformations-2017-03-19-14-38-49.pdf
linear-transformations-2017-03-19-14-38-49.pdf
 
Ist module 3
Ist module 3Ist module 3
Ist module 3
 
nabil-201-chap-06.ppt
nabil-201-chap-06.pptnabil-201-chap-06.ppt
nabil-201-chap-06.ppt
 
An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transforms
 
Volatility derivatives and default risk
Volatility derivatives and default riskVolatility derivatives and default risk
Volatility derivatives and default risk
 
LECT 1 Part 2 - The Transmission Line Theory.pptx
LECT 1 Part 2 - The Transmission Line Theory.pptxLECT 1 Part 2 - The Transmission Line Theory.pptx
LECT 1 Part 2 - The Transmission Line Theory.pptx
 
Signals and System Assignment Help
Signals and System Assignment HelpSignals and System Assignment Help
Signals and System Assignment Help
 
Properties of Fourier transform
Properties of Fourier transformProperties of Fourier transform
Properties of Fourier transform
 
2. Power Computations and Analysis Techniques_verstud.pdf
2. Power Computations and Analysis Techniques_verstud.pdf2. Power Computations and Analysis Techniques_verstud.pdf
2. Power Computations and Analysis Techniques_verstud.pdf
 
laplace transform 2 .pdf
laplace transform 2                  .pdflaplace transform 2                  .pdf
laplace transform 2 .pdf
 
Laplace_transforms.pdf
Laplace_transforms.pdfLaplace_transforms.pdf
Laplace_transforms.pdf
 
emtl
emtlemtl
emtl
 
On an Optimal control Problem for Parabolic Equations
On an Optimal control Problem for Parabolic EquationsOn an Optimal control Problem for Parabolic Equations
On an Optimal control Problem for Parabolic Equations
 
15963128.ppt
15963128.ppt15963128.ppt
15963128.ppt
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transform
 
Unit2
Unit2Unit2
Unit2
 
Note and assignment mis3 5.3
Note and assignment mis3 5.3Note and assignment mis3 5.3
Note and assignment mis3 5.3
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systems
 
Convolution representation impulse response
Convolution representation impulse responseConvolution representation impulse response
Convolution representation impulse response
 

Más de Prashant odhavani

Más de Prashant odhavani (8)

Computer organization prashant odhavani- 160920107003
Computer organization   prashant odhavani- 160920107003Computer organization   prashant odhavani- 160920107003
Computer organization prashant odhavani- 160920107003
 
Templates c++ - prashant odhavani - 160920107003
Templates   c++ - prashant odhavani - 160920107003Templates   c++ - prashant odhavani - 160920107003
Templates c++ - prashant odhavani - 160920107003
 
Main memory os - prashant odhavani- 160920107003
Main memory   os - prashant odhavani- 160920107003Main memory   os - prashant odhavani- 160920107003
Main memory os - prashant odhavani- 160920107003
 
Reliable data transfer CN - prashant odhavani- 160920107003
Reliable data transfer   CN - prashant odhavani- 160920107003Reliable data transfer   CN - prashant odhavani- 160920107003
Reliable data transfer CN - prashant odhavani- 160920107003
 
Nsm for ce prashant odhavani- 160920107003
Nsm for ce   prashant odhavani- 160920107003Nsm for ce   prashant odhavani- 160920107003
Nsm for ce prashant odhavani- 160920107003
 
Relational algebra dbms (2130703) - 160920107003
Relational algebra  dbms (2130703) - 160920107003Relational algebra  dbms (2130703) - 160920107003
Relational algebra dbms (2130703) - 160920107003
 
Non linear data structure ds (2190702) - 169020107003
Non linear data structure   ds (2190702) - 169020107003Non linear data structure   ds (2190702) - 169020107003
Non linear data structure ds (2190702) - 169020107003
 
Number system de (2131004) - 160920107003
Number system    de (2131004) - 160920107003Number system    de (2131004) - 160920107003
Number system de (2131004) - 160920107003
 

Último

Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 

Último (20)

Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 

Linear transformation vcla (160920107003)

  • 1. 1 :: PRESENTATION ON :: Linear Transformation Guided by : Mr Sachin Gaikwad Department of Computer Engineering 2th semester
  • 3. Linear Transformation 3 Zero transformation : VT  vv ,0)(WVT : Identity transformation : VVT : VT  vvv ,)( VWVT  vu,,:Properties of linear transformations : 00 )((1)T )()((2) vv TT  )()()((3) vuvu TTT  1 1 2 2 1 1 2 2 1 1 2 2 (4) If Then ( ) ( ) ( ) ( ) ( ) n n n n n n c v c v c v T T c v c v c v c T v c T v c T v             v v L L L
  • 4. The Kernel and Range of a Linear Transformation 4  Kernel of a linear transformation T Let be a linear transformation then the set of all vectors v in V that satisfy is called the kernel of T and is denoted by ker(T) },0)(|{)ker( VTT  vvv WVT :
  • 5. The kernel is a subspace of V The kernel of a linear transformation is a subspace of the domain V. then.ofkernelin thevectorsbeandLet Tvu 000)()()(  vuvu TTT 00)()(  ccTcT uu )ker(Tc  u )ker(T vu .ofsubspaceais)ker(Thus, VT Note: The kernel of T is sometimes called the nullspace of T. WVT : 5
  • 6. 6 Ex : Finding a basis for the kernel                 82000 10201 01312 11021 andRiniswhere,)(bydefinedbe:Let 545 A ATRRT xxx Find a basis for ker(T) as a subspace of R5.
  • 7. 7 Solution                                  000000 041000 020110 010201 082000 010201 001312 011021 0 .. EJG A                                                                 1 4 0 2 1 0 0 1 1 2 4 2 2 5 4 3 2 1 ts t t s ts ts x x x x x x   TB ofkernelfor thebasisone:)1,4,0,2,1(),0,0,1,1,2( 
  • 8. Range of a linear transformation T )(bydenotedisandTofrangethecalledisVin vectorofimagesarein W thatwvectorsallofsetThen the L.T.abe:Let Trange WVT  }|)({)( VTTrange  vv 8
  • 9. .:Tnnsformatiolinear traaofrangeThe WWV foecapsbusasi The range of T is a subspace of W TTT ofrangein thevectorbe)(and)(Let vu )()()()( TrangeTTT  vuvu )()()( TrangecTcT  uu ),( VVV  vuvu )( VcV  uu .subspaceis)(Therefore, WTrange 9
  • 10. Notes:- ofsubspaceis)()1( VTKer L.T.ais: WVT  ofsubspaceis)()2( WTrange 10
  • 11. 11 Ex: Finding a basis for the range of a linear transformation                 82000 10201 01312 11021 andiswhere,)(bydefinedbe:Let 545 A RATRRT xxx Find a basis for the range of T.
  • 12. 12 BA EJG                                 00000 41000 20110 10201 82000 10201 01312 11021 .. 54321 ccccc 54321 wwwww   Tofrangefor thebasisais)2,0,1,1(),0,0,1,2(),0,1,2,1(  Solution     )(forbasisais,, )(forbasisais,, 421 421 ACSccc BCSwww
  • 13. Rank and Nullity of Linear Transformation 13  Rank of a linear transformation T:V→W: TTrank ofrangetheofdimensionthe)(   Nullity of a linear transformation T:V→W: TTnullity ofkerneltheofdimensionthe)(   Note: )()( )()( then,)(bygivenL.T.thebe:Let AnullityTnullity ArankTrank ATRRT mn    xx
  • 14. Sum of rank and nullity AmatrixnmT anbydrepresenteisLet  )ofdomaindim()ofkerneldim()ofrangedim( )()( TTT nTnullityTrank   rArank )(Assume Let T:V→W be a L.T. form an n dimation 1 Vector space V into a Vector space W . Then 14
  • 16. 16 Ex : Finding the rank and nullity of a linear transformation              000 110 201 bydefine:L.T.theofnullityandranktheFind 33 A RRT 123)()ofdomaindim()( 2)()(   TrankTTnullity ArankTrank Solution
  • 17. One-to-one Linear Transformation 17 vector.singleaofconsistsrangein theevery w ofpreimagetheifone-to-onecalledis:functionA WVT  .thatimplies )()(inV,vanduallforifone-to-oneis vu vu   TTT one-to-one not one-to-one
  • 18. }0{)(if1-1isTThenL.T.abe:Let  TKerWVT 1-1isSuppose T 0:solutiononeonlyhavecan0)(Then  vvT }0{)(i.e. TKer )()(and}0{)(Suppose vTuTTKer  0)()()(  vTuTvuT 0)(  vuTKervu 1-1isT One-to-one Linear Transformation 18
  • 20. 20One-to-one and onto linear transformation onto.isitifonlyandifone-to-oneisThen.dimension ofbothandspaceorwith vectL.T.abe:Let Tn WVWVT  0))(dim(and}0{)(thenone,-to-oneisIf  TKerTKerT )dim())(dim())(dim( WnTKernTrange  onto.isly,Consequent T 0)ofrangedim())(dim(  nnTnTKer one.-to-oneisTherefore,T nWTT  )dim()ofrangedim(thenonto,isIf
  • 21. 21 Inverse linear Transformation ineveryfors.t.L.T.are:and:If 21 nnnnn RRRTRRT v ))((and))(( 2112 vvvv  TTTT invertiblebetosaidisandofinversethecalledisThen 112 TTT Note: If the transformation T is invertible, then the inverse is unique and denoted by T–1 .
  • 22. 22Finding the inverse of a linear transformation bydefinedis:L.T.The 33 RRT  )42,33,32(),,( 321321321321 xxxxxxxxxxxxT  142 133 132 formatrixstandardThe           A T 321 321 321 42 33 32 xxx xxx xxx               100142 010133 001132 3IA Show that T is invertible, and find its inverse. 22 Solution
  • 23. 23 1.. 326100 101010 011001                AIEJG 11 isformatrixstandardtheandinvertibleisTherefore  ATT             326 101 011 1 A                                  321 31 21 3 2 1 11 326326 101 011 )( xxx xx xx x x x AT vv )326,,(),,( s,other wordIn 3213121321 1 xxxxxxxxxxT 
  • 24. 24 Finding the matrix of a linear transformation .formatrixstandardtheFindaxis.-xtheontoinpointeach projectingbygivenis:nnsformatiolinear traThe 2 22 TR RRT  )0,(),( xyxT           00 01 )1,0()0,1()()( 21 TTeTeTA Notes: (1) The standard matrix for the zero transformation from Rn into Rm is the mn zero matrix. (2) The standard matrix for the zero transformation from Rn into Rnis the nn identity matrix In Solution
  • 25. 25 Composition of T1:Rn→Rm with T2:Rm→Rp n RTTT  vvv )),(()( 12 112 ofdomainofdomain, TTTTT   Composition of linear transformations then,andmatricesstandardwith L.T.be:and:Let 21 21 AA RRTRRT pmmn  L.T.ais)),(()(bydefined,:ncompositioThe(1) 12 vv TTTRRT pn  12productmatrixby thegivenisformatrixstandardThe)2( AAATA  Note: 1221 TTTT  
  • 26. 26 The standard matrix of a composition 33 21 intofromL.T.beandLet RRTT ),0,2(),,(1 zxyxzyxT  ),z,(),,(2 yyxzyxT  ,'andnscompositiofor thematricesstandardtheFind 2112 TTTTTT   )formatrixstandard( 101 000 012 11 TA            )formatrixstandard( 010 100 011 22 TA             26 Solution
  • 27. 2712formatrixstandardThe TTT  21'formatrixstandardThe TTT                             000 101 012 101 000 012 010 100 011 12 AAA                                   001 000 122 010 100 011 101 000 012 ' 21AAA 27