SlideShare una empresa de Scribd logo
1 de 87
CChhaapptteerr 77 
AAttoommiicc SSttrruuccttuurree
EElleeccttrroonniicc SSttrruuccttuurree 
Our goal: 
•Understand why some substances behave as they do. 
• For example: Why are K and Na reactive metals? Why do 
H and Cl combine to make HCl? Why are some 
compounds molecular rather than ionic? 
Atom interact through their outer parts, their electrons. 
The arrangement of electrons in atoms are referred to as their 
electronic structure. 
Electron structure relates to: 
•Number of electrons an atom possess. 
•Where they are located. 
•What energies they possess.
TThhee WWaavvee NNaattuurree ooff LLiigghhtt 
Study of light emitted or absorbed by substances has lead to the 
understanding of the electronic structure of atoms. 
Light made up of electromagnetic (E.M) radiation 
Characteristics of light: 
• All waves have a characteristic wavelength, l, and amplitude, A. 
• The frequency, n, of a wave is the number of cycles which pass a 
point in one second. Measured in hertz , 1 hertz = 1 
cycle/second 
• The speed of a wave, v, is given by its frequency multiplied by 
its wavelength: λ α (1/ ν) λ ν = constant (c) 
c = λ ν c : speed of light = 3 x 108 m/s
Identifying l and n
EElleeccttrroommaaggnneettiicc RRaaddiiaattiioonn 
• Modern atomic theory arose out of studies of the 
interaction of radiation with matter. 
• Electromagnetic (E.M.) radiation moves through a 
vacuum with a speed of 2.99792458 ´ 108 m/s. 
• There are many kind of E.M. radiation with different 
wavelengths and frequencies shown in the following 
figure. 
• Visible radiation is the only part our eye can detect. It has 
wavelengths between 400 nm (violet) and 750 nm (red).
The Electromagnetic Spectrum
Example(1): 
What is the wavelength of light with a frequency 5.89 x 105 
Hz. 
λ = c 
ν = 3 x 108 m/s 
5.89 x 105 s-1 
= 509 m (Radio wave) 
Example (2): 
What is the frequency of blue light with a wavelength of 
484 nm? 
ν = c 
λ = 3 x 108 m/s 
484 x 10-9 m = 6.2 x 1014 s-1 or Hz
TThhee NNaattuurree ooff MMaatttteerr 
In 1990 Matter and energy were seen as different from each 
other in fundamental ways 
Matter: 
consist of particles 
Particles have a mass 
Its position in space can be specified. 
Energy: 
could come in waves, with any frequency. 
Massless and delocalized. 
Their position in space could not be specified. 
It was assumed that there was no intermingling of matter 
and light
At the beginning of 20 century, certain experimental results 
suggested that this picture was incorrect 
The first important advance came from Max Planck, he found that 
the cooling of hot objects couldn’t be explained by viewing 
energy as a wave. 
Plank found that the results could not be explain in term of the 
physics of his day (matter absorb or emit any quantity of energy) . 
Plank account for these observation by postulating that: 
The energy can be gained or lost only in whole-number multiple 
of the quantity hhνν 
ΔΔ EE == nnhhνν wwhheerree nn iiss aann iinntteeggeerr ((11,, 22,, 
33……)).. 
hh :: iiss PPllaanncckk’’ss ccoonnssttaanntt == 66..662266 xx 1100--3344 JJ ss 
IItt sseeeemmeedd cclleeaarr tthhaatt eenneerrggyy iiss qquuaannttiizzeedd aanndd ccaann ooccccuurr iinn ddiissccrreettee 
uunniitt ooff ssiizzee hhνν ,, tthheessee ppaacckkeettss ooff eenneerrggyy ((hhνν)) aarree ccaalllleedd qquuaannttuumm.. 
A system can transfer energy only in whole quanta. 
Thus energy seems to have particulate properties
The next development came when Einstein proposed that E.M. 
radiation is itself quantized. 
He suggested that E.M. radiation can be viewed as a stream of 
“particles” called photons 
10 
Each photon has energy Ephoton = hν = hc/λ 
Combine this with E = mc2 (Einstein equation) 
hc/λ 
c2 
m = E /c2 m = 
you get the apparent mass of a photon 
m = h / (λc) 
Does a photon really have a mass? The answer appears to be yes. 
However, it is clear that photons do not have mass in the classical 
sense. A photon has mass only in relativistic sense – it has no rest 
mass.
11 
We can summarize the important conclusions from the work of 
Plank and Einstien as follows: 
 Energy is quantized, it can occur only in discrete unit called 
quanta. 
 E.M. radiation, which was previously thought to exhibit only 
wave properties, seems to show certain characteristics of 
particulate matter as well. 
This phenomenon is referred to as the dual nature of light 
Is the opposite is true? That is, does matter exhibit wave 
properties. 
de Brolie supplied the answer to this question. 
m = h /(λc) for a particle with velocity v 
m = h /(λv) λ = h/(mv) 
This equation, called de Brolie equation, allow us to calculate the 
wave lenghth of particle
12 
Example: 
The laser light of a CD is 7.80 x 102 m. calculate 
A) What is the frequency of this light? 
B) What is the energy of a photon of this light? 
C)What is the apparent mass of a photon of this light? 
A) ν = c/λ ν = 3 x 108(m/s)/ 7.80x102 m = 3.85 x 105s-1 
B) Ephoton = hν 
Ephoton = 6.626 x 10-34 J s x 3.85 x 105s-1 
Ephoton = 2.55 x 10-28 J 
C) m = h / (λc) 
m = 6.626 x 10-34 J s /7.80x102 m x 3x108(m/s) 
m = 2.83x10-45 Js2/m2 = 2.83x10-45(kg m2/s2) s2/m2 
m = 2.83x10-45kg
13 
Example: 
What is the wavelength of an electron with a mass of 
9.11 x 10-31 kg traveling at 1.0 x 107 m/s? 
m = h / (λc) 
λ = h /mc 
λ = 6.626 x 10-34 J s 
9.11 x 10-31 kg x 1.0 x 107 m/s = 7.2 x 10-11 m
14 
TThhee aattoommiicc ssppeeccttrruumm ooff hhyyddrrooggeenn 
Another important experiment was the study of the emission 
light by excited H-atoms. When hydrogen gas receives high-energy 
spark, H2 molecules absorb energy, some of H-H 
bonds are broken. The resulting H-atoms are excited; that is 
they contain excess energy which they release by emitting 
light of various wavelength to produce what is called the 
emission spectrum of H-atoms. 
To understand the significance of H-emission spectrum, we 
must describe the continuous spectrum that results when 
white light is passed through a prism,
15 
continuous spectrum 
Contain all the wavelength of visible (white) light. 
All the colors are possible. 
Like the rainbow. 
When H-emission spectrum in visible region is passed 
through prism, only a few lines can be seen, each 
correspond to a discrete wavelength. The H-emission 
spectrum is called line spectrum.
16 
Continuous spectrum
17 
HHyyddrrooggeenn ssppeeccttrruumm 
EEmmiissssiioonn ssppeeccttrruumm bbeeccaauussee tthheessee 
aarree tthhee ccoolloorrss iitt ggiivveess ooffff oorr eemmiittss 
CCaalllleedd aa lliinnee ssppeeccttrruumm.. 
TThheerree aarree jjuusstt aa ffeeww ddiissccrreettee lliinneess 
sshhoowwiinngg 
434 nm 
410 nm 
486 nm 
656 nm 
•Spectrum
18 
What is the significance of line spectrum of hydrogen? 
 It indicate only certain energies are allowed for the 
hydrogen atom. 
 Energy of electron H-is quantized 
Only certain energies are possible. 
Use DE = hn = hc / l
19 
BBoohhrr MMooddeell 
He developed the quantum model of the hydrogen atom. 
He proposed that the atom was like a solar system, the 
electron in H-atom move around the nucleus only in 
certain allowed circular orbit 
The electrons were attracted to the nucleus because of 
opposite charges. 
Didn’t fall in to the nucleus because it was moving around
20 
He didn’t know why but only certain energies were 
allowed. 
He called these allowed energies: energy levels. 
Putting energy into the atom moved the electron away 
from the nucleus from ground state to excited state. 
When it returns to ground state it gives off light of a 
certain energy 
The energy levels for H-atom are shown in the following 
figure.
21 
TThhee BBoohhrr RRiinngg AAttoomm 
n = 4 
n = 3 
n = 2 
n = 1
22 
TThhee BBoohhrr MMooddeell 
for each energy level the energy is: 
E = -2.178 x 10-18 J (Z2 / n2 ) 
n: is the energy level 
Z: is the nuclear charge, which is +1 for hydrogen. 
n = 1 is called the ground state 
when the electron is removed from the atom, n = ¥ 
When the electron moves from one energy level to 
another. 
ΔE = Efinal - Einitial 
ΔE = -2.178 x 10-18 J Z2 (1/ nf 
2 - 1/ ni 
2)
23 
Example: 
Calculate the energy need to move an electron from its 
ground state to the third energy level. 
ΔE = -2.178 x 10-18 J Z2 (1/ n2 - 1/ n2) 
f 
i 
ΔE = -2.178 x 10-18 J (+1)2 (1/9 – 1/1) 
ΔE = +1.936 x 10-18 J (+ mean energy absorbed) 
Example: 
Calculate the energy released when an electron moves from 
n= 4 to n=2 in a hydrogen atom. 
ΔE = -2.178 x 10-18 J (+1)2 (1/4 – 1/16) 
ΔE = - 5.2125 x 10-19 J
24 
Example: 
Calculate the energy required to remove the electron from 
hydrogen atom in its ground state. 
ΔE = -2.178 x 10-18 J (+1)2 (1/¥ – 1/1) 
ΔE = 2.178 x 10-18 J
25 
Bohr model: 
 Only works for hydrogen atoms and other monoelectronic 
species. 
 electrons don’t move in circles 
 the quantization of energy is right, but not because they 
are circling like planets. 
The negative sign of the energy level : 
 increase the energy of the electron when you make it 
further to the nucleus. 
 the maximum energy an electron can have is zero, at an 
infinite distance (n = ¥ ).
26 
The Quantum Mechanical MMooddeell ooff tthhee aattoomm 
A totally new approach was needed. 
Three physicists were at the forefront of this effort: 
Heisenberg, de Broglie, and Schrödinger. The approach 
they developed known as wave mechanics or quantum 
mechanics 
 De Broglie said matter could be like a wave. 
 Schrödinger proposed an equation that contains both 
wave and particle terms. 
 Much math, but what is important are the solutions. 
 Solving the equation leads to wave functions.
27 
• The wave function is a F(x, y, z) Actually F(r,θ,φ) 
• Solutions to the equation are called orbitals (not Bohr orbits). 
• Each solution is tied to a certain energy level. 
• The wave function gives the shape of the electronic 
orbital. 
• The square of the wave function, gives the probability of 
finding the electron, that is, gives the electron density for 
the atom. 
• There is a limit to what we can know from Schrödinger 
equation. 
• We can’t know how the electron is moving or how it gets 
from one energy level to another.
Electron Density Distribution 
•Probability of finding an electron in a 
hydrogen atom in its ground state.
29 
QQuuaannttuumm NNuummbbeerrss 
There are many solutions to Schrödinger’s equation 
Each solution can be described with quantum numbers that 
describe some aspect of the solution. 
 Principal quantum number (n): 
has an integral value: 1, 2, 3, ……, it is related to the size 
and energy of an orbital. 
As (n) increase: 
 orbital become larger, electron spends more time farther 
from the nucleus 
 higher energy, because the electron is less tightly bound 
to nucleus, energy is less negative.
30 
 Angular momentum quantum number (ℓ): 
 has integer values from 0 to n-1 for each value of n 
 It is related to the shape of the orbital (as shown in the 
following figures 
 the value of (ℓ) for a particular orbital is commonly 
assigned a letter: ℓ = 0 is called s , ℓ = 1 is called p 
ℓ =2 is called d , ℓ =3 is called ƒ , ℓ =4 is called g 
 Magnetic quantum number (m ℓ): 
– integer values between - ℓ and + ℓ including zero. 
– The value of mℓ is related to the orientation of the 
orbital in space relative to the other orbitals in the 
atom.
31 
s-orbitals 
All s-orbitals are spherical. 
1s 2s 3s
32 
P orbitals 
There are three p-orbitals px, py, and pz. 
The three p-orbitals lie along the x-, y- and z- axes of a 
Cartesian system. 
The letters correspond to allowed values of mℓ of -1, 0,an +1. 
Electron-distribution of a 2p orbital.
d-orbitals
34 
f-orbitals
35 
 Electron spin quantum number (m s): 
the electron has a magnetic moment with two possible 
when the atom placed in an external magnetic field 
– Can have 2 values , either +1/2 or -1/2
36 
For our purpose, the main significance of electron spin is 
connected with the postulate of Pauli: in a given atom no 
two electrons can have the same set of four quantum 
numbers (n , ℓ, m ℓ, and ms ), this is called Pauli exclusion 
principle. Since electrons in the same orbital have the same 
value of n , ℓ, m ℓ , they must have different values of ms . 
Then, since only two value of ms are allowed, an orbital can 
hold only two electrons, and they must have opposite spin.
37 
Quantum number for the first four level of orbitals in H-atom: 
n ℓ Orbital 
designation 
m ℓ No. of 
orbitals 
1 0 1s 0 1 
2 0 2s 0 1 
1 2p 1+ ,0 ,1- 3 
3 0 3s 0 1 
1 3p 1+ ,0 ,1- 3 
2 3d 2+,1+ ,0 ,1- ,2- 5 
4 0 4s 0 1 
1 4p 1+ ,0 ,1- 3 
2 4d 2+,1+ ,0 ,1- ,2- 5 
3 4f ,2+ ,1+ ,0 ,1- ,2-,3- 
3+ 
7
Example: 
 For n = 4, what are the possible values of ℓ. 
38 
ℓ = 0→ n -1 , so ℓ = 0 → 4-1 
ℓ = 0, 1, 2, 3 
s, p, d, f 
 For ℓ = 2. What are the possible values of mℓ 
mℓ = - ℓ → +ℓ mℓ = -2 → +2 
mℓ = -2, -1, 0, +1, +2 
 How many possible values for ℓ and mℓ are there when 
n = 3 
ℓ = 3-1 = 2 ℓ = 0, 1, 2 
for ℓ = 0 mℓ = 0 ,, for ℓ = 1 mℓ = -1, 0, +1 
for ℓ = 2 mℓ = -2, -1, 0, +1, +2
39 
7s 
6s 
5s 
Increasing energy 1s 
4s 
3s 
2s 
7p 6d 
6p 
5p 
4p 
3p 
2p 
5d 
4d 
3d 
5f 
4f 
Orbitals and Their Energies
40 
TThhee PPeerriiooddiicc TTaabbllee 
 Developed independently by German Julius Lothar 
Meyer and Russian Dmitri Mendeleev (1870”s) 
 Didn’t know much about atom. 
 Put atoms in columns by similar properties. 
 Predicted properties of missing elements.
41 
Aufbau PPrriinncciippllee aanndd tthhee ppeerriiooddiicc ttaabbllee 
Our main assumption is that the atoms have the same type 
of orbitals as have been described from the hydrogen atom. 
As protons are added one by one to the nucleus to build up 
the elements, electrons are similarly added to these H-like 
orbitals. This is called aufbau principle 
H has one electron, occupy the 1s orbital 
The configuration for H can be represent as: 
H: 1s1 
1s 
Quantum no. for the electron is: 
n=1, ℓ = 0, mℓ =0, ms =+1/2 
Helium has two electron
42 
Helium has two electrons 
He: 1s2 
Lithium has three electrons 
Li: 1s2 2s1 2p 
Be: 1s2 2s2 2p 
B: 1s2 2s2 2p1 
Quantum no. for the first electron 
is: n=1, ℓ = 0, mℓ =0, ms =+1/2 
Quantum no. for the second electron 
is: n=1, ℓ = 0, mℓ =0, ms = -1/2 
1s 
1s 2s 2p 
1s 2s 2p 
1s 2s 2p
43 
C: 1s2 2s2 2p2 
Two electrons occupy 2p orbital, since there are three 2p 
orbitals with the same energy, the mutually repulsive 
electrons will occupy separate 2p orbitals 
Hund’s rule: the lowest energy configuration for an atom 
is the one having the maximum number of unpaired 
electrons. 
N: 1s2 2s2 2p3 
O: 1s2 2s2 2p4 
1s 2s 2p 
1s 2s 2p 
1s 2s 2p
44 
F: 1s2 2s2 2p5 
Ne: 1s2 2s2 2p6 
1s 2s 2p 
With neon, the orbital with n =1 and n = 2 are now completely 
filled. 
Na: 1s2 2s2 2p63s1 can be abbreviate as Na : [Ne] 3s1 
Write the symbol of the noble gas before the element 
Then the rest of the electrons. 
Mg: [Ne] 3s2 
Al: [Ne] 3s2 3p1 
1s 2s 2p 
Ne
45 
At this point it is useful to introduce the following concepts: 
 Valence electrons- the electrons in the outermost principle 
quantum level of an atom (not d). 
 Core electrons- the inner electrons 
 Hund’s Rule- The lowest energy configuration for an atom 
is the one have the maximum number of unpaired electrons 
in the orbital. 
Example: 
element valence electrons core electrons 
O 6 2 
N 5 2 
Ne 8 2 
Mg 2 10
46 
K: 1s2 2s2 2p63s13p64s1 or [Ar] 4s1 (valence electrons = 1) 
Ca: 1s2 2s2 2p63s13p64s2 or [Ar] 4s2 (valence electrons = 1) 
Sc: [Ar] 4s23d1 Ti: [Ar] 4s23d2 V: [Ar] 4s23d3 
Valence electrons: 3 4 5 
The expected configuration for chromium is: 
Cr: [Ar] 4s23d4 however, the observed configuration is: 
Cr: [Ar] 4s13d5 both 4s and 3d half-filled 
Also the expected configuration for Cu is: Cu : [Ar] 4s23d9 
The observed configuration is: Cu : [Ar] 4s13d10 
4s is half-filled, 3d is filled
48 
FFiillll ffrroomm tthhee bboottttoomm uupp ffoolllloowwiinngg tthhee 
aarrrroowwss 
7s 7p 7d 7f 
6s 6p 6d 6f 
5s 5p 5d 5f 
4s 4p 4d 4f 
3s 3p 3d 
2s 2p 
1s
49 
Electron Configurations aanndd tthhee PPeerriiooddiicc TTaabbllee 
The periodic table can be used as a guide for electron 
configurations. 
• the groups label (1A-8A) called the main-groups or 
representative elements (no. of the group = valence electrons 
• the groups label (1B-8B) called the Transion elements 
• the (n+1)s orbital is always fill before nd orbitals. 
• The period number is the value of n. 
• Groups 1A and 2A (1  2) have the s-orbital filled. 
• Groups 3A - 8A (13 - 18) have the p-orbital filled. 
• Groups 3B - 2B (3 - 12) have the d-orbital filled. 
• The lanthanides and actinides have the f-orbital filled.
50 
 Elements in the same column have the same electron 
configuration. 
 Put in columns because of similar properties. 
 Similar properties because of electron configuration. 
 Noble gases have filled energy levels. 
 Transition metals are filling the d orbitals
51 
PPeerriiooddiicc TTrreennddss iinn aattoommiicc pprrooppeerrttiieess 
 Ionization energy (I.E.): 
Ionization energy the energy required to remove an electron 
form a gaseous atom or ion in its ground state. 
X(g) → X+ 
(g) + e 
We will consider the energy required to remove several 
electrons from Al in the ground state. 
Al(g) → Al+ 
(g) + e I1 = 580 kJ/mol 
Al+ 
(g) → Al+2 
(g) + e I2 = 1815 kJ/mol 
Al+2 
(g) → Al+3 
(g) + e I3 = 2740 kJ/mol 
(g) → Al+4 
(g) + e I4 = 11600 kJ/mol 
Al+3
52 
Several points can be illustrated from these results: 
Highest energy electron (the one bound least tightly) that is removed first. 
The first ionization energy I1 is the energy required to remove the first 
electron (highest-energy electron) 
 The value of I1 is considerably smaller than the value of I2 (second 
ionization energy). The primary factor is simply charge, electron is removed 
from +1 ion (Al+) . 
The increase in positive charge bind the electron more firmly, and the 
ionization energy increases. The same trend shows up in I3 and I4, where the 
electron is removed from Al+2 and Al+3 ions respectively. 
The increase in I.E. from I1 to I2 occur also because the first electron is 
removed from 3p orbital that is higher in energy than 3s orbital from which 
the second electron is removed. 
The largest jump in I.E. by far occur in going from the I3 and I4 because 
Al+3 has the configuration (1s2 2s2 2p6), the core electrons are bound much 
more tightly than valence electrons.
53 
In the following table, the ionization energies for all the period 3 
are given. Note the large jump in energy in each case in going 
from removal of valence electrons to removal of core electrons 
Symbol I1 I2 I3 
H He 
Li 
Be 
BC 
NO 
F 
Ne 
1312 
2731 
520 
900 
800 
1086 
1402 
1314 
1681 
2080 
5247 
7297 
1757 
2430 
2352 
2857 
3391 
3375 
3963 
11810 
14840 
3569 
4619 
4577 
5301 
6045
54 
He 
First Ionization energy Atomic number 
H 
C 
Be 
Li 
N 
B 
The values of the first I.E. for the elements 
are shown in the following figure:
55 
Note that: 
 As you go down a group first I.E. decreases because of electron 
being removed are, on average, farther from the nucleus. As n 
increases, the size of the orbital increases, and the electron is easier to 
remove. 
 As you go across a period from left to right, first I.E. increases 
because - Same shielding (same principle 
quantum level) . 
- Increasing nuclear charge (electrons are 
strongly bound) 
There are some trends in I.E. in going across period. For example, 
trends occur from Be to B and from N to O. it can be explain in term 
of electron repulsion. Half-filled and filled orbitals are harder to 
remove electrons from 

56 
The ionization energies for the representative elements are 
summarized in the following figure
57 
 Atomic Size or radius: 
The size of the orbital cannot be specified exactly (The electron cloud 
doesn’t have a definite edge), neither can the size of an atom. 
We can make some arbitrary choice to obtain values for atomic radii. 
These values can be obtain by measuring the distance between atoms 
in chemical compounds. 
For example, in Br2 molecule, the distance between the two nuclei is 
228 pm. The Br atomic radius is assumed to be half this distance, or 
114 pm, as shown in the following figure.
58 
AAttoommiicc SSiizzee 
}Radius 
 AAttoommiicc RRaaddiiuuss == hhaallff tthhee ddiissttaannccee bbeettwweeeenn 
ttwwoo nnuucclleeii ooff aa ddiiaattoommiicc mmoolleeccuullee
59 
 IInnfflluueenncceedd bbyy ttwwoo ffaaccttoorrss 
 SShhiieellddiinngg 
 MMoorree sshhiieellddiinngg iiss ffuurrtthheerr aawwaayy 
 CChhaarrggee oonn nnuucclleeuuss 
 MMoorree cchhaarrggee ppuullllss eelleeccttrroonnss iinn 
cclloosseerr
60 
AAss wwee ggoo ddoowwnn aa 
ggrroouupp eeaacchh aattoomm 
hhaass aannootthheerr 
eenneerrggyy lleevveell.. 
SSoo tthhee aattoommss ggeett 
bbiiggggeerr 
H 
Li 
Na 
K 
Rb
61 
 As you ggoo aaccrroossss aa ppeerriioodd tthhee rraaddiiuuss 
ggeettss ssmmaalllleerr.. 
 SSaammee eenneerrggyy lleevveell 
 MMoorree nnuucclleeaarr cchhaarrggee 
 OOuutteerrmmoosstt eelleeccttrroonnss aarree cclloosseerr 
Na Mg Al Si P S Cl Ar
62 
OOvveerraallll 
nm) 
Na 
(Radius Li 
Ar 
Atomic Ne 
H 
10 
Atomic Number K 
Rb 
Kr
63 
Electron Affinity: 
The energy change associated with adding an electron to a 
gaseous atom. 
X(g) + e X- 
(g) 
High electron affinity gives you energy- 
 exothermic 
 More negative
64 
In general, electron 
affinity becomes more 
exothermic as you go 
from left to right across 
a row. 
Increase (more - ) from 
left to right (greater 
nuclear charge). 
 Decrease as we go down 
a group (More 
shielding)
65 
© 2009, Prentice-Hall, Inc. 
TTrreennddss iinn EElleeccttrroonn AAffffiinniittyy 
TThheerree aarree 
aaggaaiinn,, 
hhoowweevveerr,, ttwwoo 
ddiissccoonnttiinnuuiittiiee 
ss iinn tthhiiss ttrreenndd..
66 
© 2009, Prentice-Hall, Inc. 
TTrreennddss iinn EElleeccttrroonn AAffffiinniittyy 
 TThhee ffiirrsstt ooccccuurrss 
bbeettwweeeenn GGrroouuppss IIAA 
aanndd IIIIAA.. 
– TThhee aaddddeedd eelleeccttrroonn 
mmuusstt ggoo iinn aa pp-- 
oorrbbiittaall,, nnoott aann ss-- 
oorrbbiittaall.. 
– TThhee eelleeccttrroonn iiss 
ffaarrtthheerr ffrroomm nnuucclleeuuss 
aanndd ffeeeellss rreeppuullssiioonn 
ffrroomm tthhee ss--eelleeccttrroonnss..
67 
© 2009, Prentice-Hall, Inc. 
TTrreennddss iinn EElleeccttrroonn AAffffiinniittyy 
 TThhee sseeccoonndd ooccccuurrss 
bbeettwweeeenn GGrroouuppss IIVVAA 
aanndd VVAA.. 
– GGrroouupp VVAA hhaass nnoo 
eemmppttyy oorrbbiittaallss.. 
– TThhee eexxttrraa eelleeccttrroonn 
mmuusstt ggoo iinnttoo aann 
aallrreeaaddyy ooccccuuppiieedd 
oorrbbiittaall,, ccrreeaattiinngg 
rreeppuullssiioonn..
68 
IIoonniicc SSiizzee 
 CCaattiioonnss ffoorrmm bbyy lloossiinngg eelleeccttrroonnss 
 CCaattiioonnss aarree ssmmaalllleerr tthhaann tthhee aattoomm 
tthheeyy ccoommee ffrroomm 
 MMeettaallss ffoorrmm ccaattiioonnss 
 CCaattiioonnss ooff rreepprreesseennttaattiivvee eelleemmeennttss 
hhaavvee nnoobbllee ggaass ccoonnffiigguurraattiioonn..
69 
IIoonniicc ssiizzee 
 AAnniioonnss ffoorrmm bbyy ggaaiinniinngg eelleeccttrroonnss 
 AAnniioonnss aarree bbiiggggeerr tthhaann tthhee aattoomm tthheeyy 
ccoommee ffrroomm 
 NNoonnmmeettaallss ffoorrmm aanniioonnss 
 AAnniioonnss ooff rreepprreesseennttaattiivvee eelleemmeennttss 
hhaavvee nnoobbllee ggaass ccoonnffiigguurraattiioonn..
70 
CCoonnffiigguurraattiioonn ooff IIoonnss 
 IIoonnss aallwwaayyss hhaavvee nnoobbllee ggaass 
ccoonnffiigguurraattiioonn 
 NNaa iiss 11ss2222ss2222pp6633ss11 
 FFoorrmmss aa 11++ iioonn -- 11ss2222ss2222pp66 
 SSaammee ccoonnffiigguurraattiioonn aass nneeoonn 
 MMeettaallss ffoorrmm iioonnss wwiitthh tthhee 
ccoonnffiigguurraattiioonn ooff tthhee nnoobbllee ggaass bbeeffoorree 
tthheemm -- tthheeyy lloossee eelleeccttrroonnss
71 
CCoonnffiigguurraattiioonn ooff IIoonnss 
 NNoonn--mmeettaallss ffoorrmm iioonnss bbyy ggaaiinniinngg 
eelleeccttrroonnss ttoo aacchhiieevvee nnoobbllee ggaass 
ccoonnffiigguurraattiioonn.. 
 TThheeyy eenndd uupp wwiitthh tthhee ccoonnffiigguurraattiioonn 
ooff tthhee nnoobbllee ggaass aafftteerr tthheemm..
72 
GGrroouupp ttrreennddss 
 AAddddiinngg eenneerrggyy lleevveell 
 IIoonnss ggeett bbiiggggeerr aass 
yyoouu ggoo ddoowwnn 
Li+1 
Na+1 
K+1 
Rb+1 
Cs+1
73 
PPeerriiooddiicc TTrreennddss 
 AAccrroossss tthhee ppeerriioodd nnuucclleeaarr cchhaarrggee 
iinnccrreeaasseess ssoo tthheeyy ggeett ssmmaalllleerr.. 
 EEnneerrggyy lleevveell cchhaannggeess bbeettwweeeenn 
aanniioonnss aanndd ccaattiioonnss 
Li+1 
Be+2 
B+3 
C+4 
N-3 
O-2 F-1
74 
SSiizzee ooff IIssooeelleeccttrroonniicc iioonnss 
 IIssoo -- ssaammee 
 IIssoo eelleeccttrroonniicc iioonnss hhaavvee tthhee ssaammee ## 
ooff eelleeccttrroonnss 
 AAll++33 MMgg++22 NNaa++11 NNee FF--11 OO--22 aanndd NN--33 
 aallll hhaavvee 1100 eelleeccttrroonnss 
 aallll hhaavvee tthhee ccoonnffiigguurraattiioonn 11ss2222ss2222pp66
75 
SSiizzee ooff IIssooeelleeccttrroonniicc iioonnss 
 PPoossiittiivvee iioonnss hhaavvee mmoorree pprroottoonnss ssoo 
tthheeyy aarree ssmmaalllleerr 
Al+3 
Na+1 Ne F-1 O-2 N-3 
Mg+2
76 
EElleeccttrroonneeggaattiivviittyy
77 
EElleeccttrroonneeggaattiivviittyy 
 TThhee tteennddeennccyy ffoorr aann aattoomm ttoo aattttrraacctt 
eelleeccttrroonnss ttoo iittsseellff wwhheenn iitt iiss 
cchheemmiiccaallllyy ccoommbbiinneedd wwiitthh aannootthheerr 
eelleemmeenntt.. 
 HHooww ““ggrreeeeddyy”” 
 BBiigg eelleeccttrroonneeggaattiivviittyy mmeeaannss iitt ppuullllss 
tthhee eelleeccttrroonn ttoowwaarrdd iittsseellff.. 
 AAttoommss wwiitthh llaarrggee nneeggaattiivvee eelleeccttrroonn 
aaffffiinniittyy hhaavvee llaarrggeerr eelleeccttrroonneeggaattiivviittyy..
78 
GGrroouupp TTrreenndd 
 TThhee ffuurrtthheerr ddoowwnn aa ggrroouupp mmoorree 
sshhiieellddiinngg 
 LLeessss aattttrraacctteedd ((ZZeeffff)) 
 LLooww eelleeccttrroonneeggaattiivviittyy..
79 
PPeerriiooddiicc TTrreenndd 
 MMeettaallss aarree aatt tthhee lleefftt eenndd 
 LLooww iioonniizzaattiioonn eenneerrggyy-- llooww eeffffeeccttiivvee 
nnuucclleeaarr cchhaarrggee 
 LLooww eelleeccttrroonneeggaattiivviittyy 
 AAtt tthhee rriigghhtt eenndd aarree tthhee nnoonnmmeettaallss 
 MMoorree nneeggaattiivvee eelleeccttrroonn aaffffiinniittyy 
 HHiigghh eelleeccttrroonneeggaattiivviittyy 
 EExxcceepptt nnoobbllee ggaasseess
80 
Ionization energy, electronegativity 
Electron affinity INCREASE
81 
Atomic size increases, 
Ionic size increases
82 
PPaarrttss ooff tthhee PPeerriiooddiicc TTaabbllee
83 
TThhee iinnffoorrmmaattiioonn iitt hhiiddeess 
 KKnnooww tthhee ssppeecciiaall ggrroouuppss 
 IItt iiss tthhee nnuummbbeerr aanndd ttyyppee ooff vvaalleennccee 
eelleeccttrroonnss tthhaatt ddeetteerrmmiinnee aann aattoomm’’ss 
cchheemmiissttrryy.. 
 YYoouu ccaann ggeett tthhee eelleeccttrroonn ccoonnffiigguurraattiioonn 
ffrroomm iitt.. 
 MMeettaallss lloossee eelleeccttrroonnss hhaavvee tthhee lloowweesstt IIEE 
 NNoonn mmeettaallss-- ggaaiinn eelleeccttrroonnss mmoosstt 
nneeggaattiivvee eelleeccttrroonn aaffffiinniittiieess
84 
TThhee AAllkkaallii MMeettaallss 
 DDooeessnn’’tt iinncclluuddee hhyyddrrooggeenn-- iitt bbeehhaavveess 
aass aa nnoonn--mmeettaall 
 ddeeccrreeaassee iinn IIEE 
 iinnccrreeaassee iinn rraaddiiuuss 
 DDeeccrreeaassee iinn ddeennssiittyy 
 ddeeccrreeaassee iinn mmeellttiinngg ppooiinntt 
 BBeehhaavvee aass rreedduucciinngg aaggeennttss
85 
RReedduucciinngg aabbiilliittyy 
 LLoowweerr IIEE bbeetttteerr rreedduucciinngg aaggeennttss 
 CCssRRbbKKNNaaLLii 
 wwoorrkkss ffoorr ssoolliiddss,, bbuutt nnoott iinn aaqquueeoouuss 
ssoolluuttiioonnss.. 
 IInn ssoolluuttiioonn LLiiKKNNaa 
 WWhhyy?? 
 IItt’’ss tthhee wwaatteerr --tthheerree iiss aann eenneerrggyy 
cchhaannggee aassssoocciiaatteedd wwiitthh ddiissssoollvviinngg
86 
HHyyddrraattiioonn EEnneerrggyy 
 LLii++((gg)) →→ LLii++((aaqq)) iiss eexxootthheerrmmiicc 
 ffoorr LLii++ --551100 kkJJ//mmooll 
 ffoorr NNaa++ --440022 kkJJ//mmooll 
 ffoorr KK++ --331144 kkJJ//mmooll 
 LLii iiss ssoo bbiigg bbeeccaauussee ooff iitt hhaass aa hhiigghh 
cchhaarrggee ddeennssiittyy,, aa lloott ooff cchhaarrggee oonn aa 
ssmmaallll aattoomm.. 
 LLii lloosseess iittss eelleeccttrroonn mmoorree eeaassiillyy 
bbeeccaauussee ooff tthhiiss iinn aaqquueeoouuss ssoolluuttiioonnss
87 
TThhee rreeaaccttiioonn wwiitthh wwaatteerr 
 NNaa aanndd KK rreeaacctt eexxpplloossiivveellyy wwiitthh wwaatteerr 
 LLii ddooeessnn’’tt.. 
 EEvveenn tthhoouugghh tthhee rreeaaccttiioonn ooff LLii hhaass aa 
mmoorree nneeggaattiivvee DHH tthhaann tthhaatt ooff NNaa aanndd 
KK 
 NNaa aanndd KK mmeelltt 
 DHH ddooeess nnoott tteellll yyoouu ssppeeeedd ooff rreeaaccttiioonn 
 MMoorree iinn CChhaapptteerr 1122..

Más contenido relacionado

La actualidad más candente

Nuclei And Atoms Class 12
Nuclei And Atoms Class 12Nuclei And Atoms Class 12
Nuclei And Atoms Class 12
Self-employed
 
AP Chemistry Chapter 6 Sample Exercise
AP Chemistry Chapter 6 Sample ExerciseAP Chemistry Chapter 6 Sample Exercise
AP Chemistry Chapter 6 Sample Exercise
Jane Hamze
 
New chm 151_unit_4_power_points
New chm 151_unit_4_power_pointsNew chm 151_unit_4_power_points
New chm 151_unit_4_power_points
caneman1
 

La actualidad más candente (19)

Notes for Atoms Molecules and Nuclei - Part III
Notes for Atoms Molecules and Nuclei - Part IIINotes for Atoms Molecules and Nuclei - Part III
Notes for Atoms Molecules and Nuclei - Part III
 
Molecular spectroscopy
Molecular spectroscopyMolecular spectroscopy
Molecular spectroscopy
 
Atoms Molecules and Nuclei - Part II
Atoms Molecules and Nuclei - Part IIAtoms Molecules and Nuclei - Part II
Atoms Molecules and Nuclei - Part II
 
Adv chem chapt 7
Adv chem chapt 7Adv chem chapt 7
Adv chem chapt 7
 
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics ICHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
 
Hydrogen atom
Hydrogen atomHydrogen atom
Hydrogen atom
 
Lect24 handout
Lect24 handoutLect24 handout
Lect24 handout
 
Atomic structure presentation
Atomic structure presentationAtomic structure presentation
Atomic structure presentation
 
Nuclei And Atoms Class 12
Nuclei And Atoms Class 12Nuclei And Atoms Class 12
Nuclei And Atoms Class 12
 
Lect. 16 applications of rotational spectroscopy problems
Lect. 16 applications of rotational spectroscopy problemsLect. 16 applications of rotational spectroscopy problems
Lect. 16 applications of rotational spectroscopy problems
 
Wave mechanics
Wave mechanicsWave mechanics
Wave mechanics
 
Quantum course
Quantum courseQuantum course
Quantum course
 
Quantum mechanics S5
Quantum mechanics S5 Quantum mechanics S5
Quantum mechanics S5
 
Quantum theory ppt
Quantum theory ppt Quantum theory ppt
Quantum theory ppt
 
AP Chemistry Chapter 6 Sample Exercise
AP Chemistry Chapter 6 Sample ExerciseAP Chemistry Chapter 6 Sample Exercise
AP Chemistry Chapter 6 Sample Exercise
 
New chm 151_unit_4_power_points
New chm 151_unit_4_power_pointsNew chm 151_unit_4_power_points
New chm 151_unit_4_power_points
 
De broglie waves
De broglie wavesDe broglie waves
De broglie waves
 
Atom hidrogen
Atom hidrogenAtom hidrogen
Atom hidrogen
 
Basic Nuc Physics
Basic Nuc PhysicsBasic Nuc Physics
Basic Nuc Physics
 

Destacado

Jefferies conference investor presentation final
Jefferies conference investor presentation finalJefferies conference investor presentation final
Jefferies conference investor presentation final
Oshkosh_Investors
 

Destacado (19)

3,stoichiometry
3,stoichiometry3,stoichiometry
3,stoichiometry
 
برمجة 1
برمجة 1برمجة 1
برمجة 1
 
5,gases
5,gases5,gases
5,gases
 
4,reaction in aq.solution
4,reaction in aq.solution4,reaction in aq.solution
4,reaction in aq.solution
 
1,the study of change
1,the study of change1,the study of change
1,the study of change
 
GHS Conference Investor Presentation Final
GHS Conference Investor Presentation FinalGHS Conference Investor Presentation Final
GHS Conference Investor Presentation Final
 
Q4 2014 Earnings Oshkosh
Q4 2014 Earnings OshkoshQ4 2014 Earnings Oshkosh
Q4 2014 Earnings Oshkosh
 
Baird's 2014 Industrial Conference
Baird's 2014 Industrial ConferenceBaird's 2014 Industrial Conference
Baird's 2014 Industrial Conference
 
Q1 2015 earnings slides final
Q1 2015 earnings slides finalQ1 2015 earnings slides final
Q1 2015 earnings slides final
 
8 23-16 invest m-nt conf august 16, 2016 investor handout
8 23-16 invest m-nt conf august 16, 2016 investor handout8 23-16 invest m-nt conf august 16, 2016 investor handout
8 23-16 invest m-nt conf august 16, 2016 investor handout
 
Baird conference investor presentation final wo video wo notes.ptx
Baird conference investor presentation final wo video wo notes.ptxBaird conference investor presentation final wo video wo notes.ptx
Baird conference investor presentation final wo video wo notes.ptx
 
Q4 2015 earnings slides final
Q4 2015 earnings slides finalQ4 2015 earnings slides final
Q4 2015 earnings slides final
 
Oshkosh Q3 2016 Earnings Presentation
Oshkosh Q3 2016 Earnings PresentationOshkosh Q3 2016 Earnings Presentation
Oshkosh Q3 2016 Earnings Presentation
 
Q1 2016 earnings slides final
Q1 2016 earnings slides finalQ1 2016 earnings slides final
Q1 2016 earnings slides final
 
Jefferies 2014 Global Industrials Conference slides
Jefferies 2014 Global Industrials Conference slidesJefferies 2014 Global Industrials Conference slides
Jefferies 2014 Global Industrials Conference slides
 
06 14-16 citi's conference presentation final
06 14-16 citi's conference presentation final06 14-16 citi's conference presentation final
06 14-16 citi's conference presentation final
 
Oshkosh corp 3 5-15 jpm presentation-final
Oshkosh corp 3 5-15 jpm presentation-finalOshkosh corp 3 5-15 jpm presentation-final
Oshkosh corp 3 5-15 jpm presentation-final
 
Oshkosh Corporation 2016 Analyst Day Presentation
Oshkosh Corporation 2016 Analyst Day PresentationOshkosh Corporation 2016 Analyst Day Presentation
Oshkosh Corporation 2016 Analyst Day Presentation
 
Jefferies conference investor presentation final
Jefferies conference investor presentation finalJefferies conference investor presentation final
Jefferies conference investor presentation final
 

Similar a 7,atomic structure and preriodicity

NEET Boost ypur Chemistry- Atomic structure.pdf
NEET Boost ypur Chemistry- Atomic structure.pdfNEET Boost ypur Chemistry- Atomic structure.pdf
NEET Boost ypur Chemistry- Atomic structure.pdf
chaitaligiri2029
 
New chm-151-unit-4-power-points-140227172225-phpapp02
New chm-151-unit-4-power-points-140227172225-phpapp02New chm-151-unit-4-power-points-140227172225-phpapp02
New chm-151-unit-4-power-points-140227172225-phpapp02
Cleophas Rwemera
 
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
FatimaAfzal56
 

Similar a 7,atomic structure and preriodicity (20)

Chemistry 11
Chemistry 11Chemistry 11
Chemistry 11
 
Atomic structure notes from jfc by rawat sir
Atomic structure notes from jfc by rawat sirAtomic structure notes from jfc by rawat sir
Atomic structure notes from jfc by rawat sir
 
Advchemchapt7 101015115641-phpapp02
Advchemchapt7 101015115641-phpapp02Advchemchapt7 101015115641-phpapp02
Advchemchapt7 101015115641-phpapp02
 
9_2020_05_07!07_18_38_AM.pdf
9_2020_05_07!07_18_38_AM.pdf9_2020_05_07!07_18_38_AM.pdf
9_2020_05_07!07_18_38_AM.pdf
 
Thesis on the masses of photons with different wavelengths.pdf
Thesis on the masses of photons with different wavelengths.pdf Thesis on the masses of photons with different wavelengths.pdf
Thesis on the masses of photons with different wavelengths.pdf
 
Ch 2 - The Structure of Atoms.pdf
Ch 2 - The Structure of Atoms.pdfCh 2 - The Structure of Atoms.pdf
Ch 2 - The Structure of Atoms.pdf
 
NEET Boost ypur Chemistry- Atomic structure.pdf
NEET Boost ypur Chemistry- Atomic structure.pdfNEET Boost ypur Chemistry- Atomic structure.pdf
NEET Boost ypur Chemistry- Atomic structure.pdf
 
Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES
 
Chapter 6 Lecture- Electrons in Atoms
Chapter 6 Lecture- Electrons in AtomsChapter 6 Lecture- Electrons in Atoms
Chapter 6 Lecture- Electrons in Atoms
 
Chemistry Chapter 5.pptx
Chemistry Chapter 5.pptxChemistry Chapter 5.pptx
Chemistry Chapter 5.pptx
 
Atomic structure part 2/3
Atomic structure part 2/3Atomic structure part 2/3
Atomic structure part 2/3
 
New chm-151-unit-4-power-points-140227172225-phpapp02
New chm-151-unit-4-power-points-140227172225-phpapp02New chm-151-unit-4-power-points-140227172225-phpapp02
New chm-151-unit-4-power-points-140227172225-phpapp02
 
Introduction quantum mechanics (chemistry)
Introduction quantum mechanics (chemistry)Introduction quantum mechanics (chemistry)
Introduction quantum mechanics (chemistry)
 
Atomic structure
Atomic structureAtomic structure
Atomic structure
 
Chapter 1: atomic structure
Chapter 1:  atomic structureChapter 1:  atomic structure
Chapter 1: atomic structure
 
Ch7 quantum theory and the electronic structure of atoms
Ch7 quantum theory and the electronic structure of atomsCh7 quantum theory and the electronic structure of atoms
Ch7 quantum theory and the electronic structure of atoms
 
Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02
 
De Broglie hypothesis
De Broglie hypothesisDe Broglie hypothesis
De Broglie hypothesis
 
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
 
Chapter basic of quantum mechanics
Chapter basic of quantum mechanicsChapter basic of quantum mechanics
Chapter basic of quantum mechanics
 

Último

Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
gindu3009
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
University of Hertfordshire
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
LeenakshiTyagi
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Sérgio Sacani
 

Último (20)

VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 

7,atomic structure and preriodicity

  • 1. CChhaapptteerr 77 AAttoommiicc SSttrruuccttuurree
  • 2. EElleeccttrroonniicc SSttrruuccttuurree Our goal: •Understand why some substances behave as they do. • For example: Why are K and Na reactive metals? Why do H and Cl combine to make HCl? Why are some compounds molecular rather than ionic? Atom interact through their outer parts, their electrons. The arrangement of electrons in atoms are referred to as their electronic structure. Electron structure relates to: •Number of electrons an atom possess. •Where they are located. •What energies they possess.
  • 3. TThhee WWaavvee NNaattuurree ooff LLiigghhtt Study of light emitted or absorbed by substances has lead to the understanding of the electronic structure of atoms. Light made up of electromagnetic (E.M) radiation Characteristics of light: • All waves have a characteristic wavelength, l, and amplitude, A. • The frequency, n, of a wave is the number of cycles which pass a point in one second. Measured in hertz , 1 hertz = 1 cycle/second • The speed of a wave, v, is given by its frequency multiplied by its wavelength: λ α (1/ ν) λ ν = constant (c) c = λ ν c : speed of light = 3 x 108 m/s
  • 5. EElleeccttrroommaaggnneettiicc RRaaddiiaattiioonn • Modern atomic theory arose out of studies of the interaction of radiation with matter. • Electromagnetic (E.M.) radiation moves through a vacuum with a speed of 2.99792458 ´ 108 m/s. • There are many kind of E.M. radiation with different wavelengths and frequencies shown in the following figure. • Visible radiation is the only part our eye can detect. It has wavelengths between 400 nm (violet) and 750 nm (red).
  • 7. Example(1): What is the wavelength of light with a frequency 5.89 x 105 Hz. λ = c ν = 3 x 108 m/s 5.89 x 105 s-1 = 509 m (Radio wave) Example (2): What is the frequency of blue light with a wavelength of 484 nm? ν = c λ = 3 x 108 m/s 484 x 10-9 m = 6.2 x 1014 s-1 or Hz
  • 8. TThhee NNaattuurree ooff MMaatttteerr In 1990 Matter and energy were seen as different from each other in fundamental ways Matter: consist of particles Particles have a mass Its position in space can be specified. Energy: could come in waves, with any frequency. Massless and delocalized. Their position in space could not be specified. It was assumed that there was no intermingling of matter and light
  • 9. At the beginning of 20 century, certain experimental results suggested that this picture was incorrect The first important advance came from Max Planck, he found that the cooling of hot objects couldn’t be explained by viewing energy as a wave. Plank found that the results could not be explain in term of the physics of his day (matter absorb or emit any quantity of energy) . Plank account for these observation by postulating that: The energy can be gained or lost only in whole-number multiple of the quantity hhνν ΔΔ EE == nnhhνν wwhheerree nn iiss aann iinntteeggeerr ((11,, 22,, 33……)).. hh :: iiss PPllaanncckk’’ss ccoonnssttaanntt == 66..662266 xx 1100--3344 JJ ss IItt sseeeemmeedd cclleeaarr tthhaatt eenneerrggyy iiss qquuaannttiizzeedd aanndd ccaann ooccccuurr iinn ddiissccrreettee uunniitt ooff ssiizzee hhνν ,, tthheessee ppaacckkeettss ooff eenneerrggyy ((hhνν)) aarree ccaalllleedd qquuaannttuumm.. A system can transfer energy only in whole quanta. Thus energy seems to have particulate properties
  • 10. The next development came when Einstein proposed that E.M. radiation is itself quantized. He suggested that E.M. radiation can be viewed as a stream of “particles” called photons 10 Each photon has energy Ephoton = hν = hc/λ Combine this with E = mc2 (Einstein equation) hc/λ c2 m = E /c2 m = you get the apparent mass of a photon m = h / (λc) Does a photon really have a mass? The answer appears to be yes. However, it is clear that photons do not have mass in the classical sense. A photon has mass only in relativistic sense – it has no rest mass.
  • 11. 11 We can summarize the important conclusions from the work of Plank and Einstien as follows:  Energy is quantized, it can occur only in discrete unit called quanta.  E.M. radiation, which was previously thought to exhibit only wave properties, seems to show certain characteristics of particulate matter as well. This phenomenon is referred to as the dual nature of light Is the opposite is true? That is, does matter exhibit wave properties. de Brolie supplied the answer to this question. m = h /(λc) for a particle with velocity v m = h /(λv) λ = h/(mv) This equation, called de Brolie equation, allow us to calculate the wave lenghth of particle
  • 12. 12 Example: The laser light of a CD is 7.80 x 102 m. calculate A) What is the frequency of this light? B) What is the energy of a photon of this light? C)What is the apparent mass of a photon of this light? A) ν = c/λ ν = 3 x 108(m/s)/ 7.80x102 m = 3.85 x 105s-1 B) Ephoton = hν Ephoton = 6.626 x 10-34 J s x 3.85 x 105s-1 Ephoton = 2.55 x 10-28 J C) m = h / (λc) m = 6.626 x 10-34 J s /7.80x102 m x 3x108(m/s) m = 2.83x10-45 Js2/m2 = 2.83x10-45(kg m2/s2) s2/m2 m = 2.83x10-45kg
  • 13. 13 Example: What is the wavelength of an electron with a mass of 9.11 x 10-31 kg traveling at 1.0 x 107 m/s? m = h / (λc) λ = h /mc λ = 6.626 x 10-34 J s 9.11 x 10-31 kg x 1.0 x 107 m/s = 7.2 x 10-11 m
  • 14. 14 TThhee aattoommiicc ssppeeccttrruumm ooff hhyyddrrooggeenn Another important experiment was the study of the emission light by excited H-atoms. When hydrogen gas receives high-energy spark, H2 molecules absorb energy, some of H-H bonds are broken. The resulting H-atoms are excited; that is they contain excess energy which they release by emitting light of various wavelength to produce what is called the emission spectrum of H-atoms. To understand the significance of H-emission spectrum, we must describe the continuous spectrum that results when white light is passed through a prism,
  • 15. 15 continuous spectrum Contain all the wavelength of visible (white) light. All the colors are possible. Like the rainbow. When H-emission spectrum in visible region is passed through prism, only a few lines can be seen, each correspond to a discrete wavelength. The H-emission spectrum is called line spectrum.
  • 17. 17 HHyyddrrooggeenn ssppeeccttrruumm EEmmiissssiioonn ssppeeccttrruumm bbeeccaauussee tthheessee aarree tthhee ccoolloorrss iitt ggiivveess ooffff oorr eemmiittss CCaalllleedd aa lliinnee ssppeeccttrruumm.. TThheerree aarree jjuusstt aa ffeeww ddiissccrreettee lliinneess sshhoowwiinngg 434 nm 410 nm 486 nm 656 nm •Spectrum
  • 18. 18 What is the significance of line spectrum of hydrogen? It indicate only certain energies are allowed for the hydrogen atom. Energy of electron H-is quantized Only certain energies are possible. Use DE = hn = hc / l
  • 19. 19 BBoohhrr MMooddeell He developed the quantum model of the hydrogen atom. He proposed that the atom was like a solar system, the electron in H-atom move around the nucleus only in certain allowed circular orbit The electrons were attracted to the nucleus because of opposite charges. Didn’t fall in to the nucleus because it was moving around
  • 20. 20 He didn’t know why but only certain energies were allowed. He called these allowed energies: energy levels. Putting energy into the atom moved the electron away from the nucleus from ground state to excited state. When it returns to ground state it gives off light of a certain energy The energy levels for H-atom are shown in the following figure.
  • 21. 21 TThhee BBoohhrr RRiinngg AAttoomm n = 4 n = 3 n = 2 n = 1
  • 22. 22 TThhee BBoohhrr MMooddeell for each energy level the energy is: E = -2.178 x 10-18 J (Z2 / n2 ) n: is the energy level Z: is the nuclear charge, which is +1 for hydrogen. n = 1 is called the ground state when the electron is removed from the atom, n = ¥ When the electron moves from one energy level to another. ΔE = Efinal - Einitial ΔE = -2.178 x 10-18 J Z2 (1/ nf 2 - 1/ ni 2)
  • 23. 23 Example: Calculate the energy need to move an electron from its ground state to the third energy level. ΔE = -2.178 x 10-18 J Z2 (1/ n2 - 1/ n2) f i ΔE = -2.178 x 10-18 J (+1)2 (1/9 – 1/1) ΔE = +1.936 x 10-18 J (+ mean energy absorbed) Example: Calculate the energy released when an electron moves from n= 4 to n=2 in a hydrogen atom. ΔE = -2.178 x 10-18 J (+1)2 (1/4 – 1/16) ΔE = - 5.2125 x 10-19 J
  • 24. 24 Example: Calculate the energy required to remove the electron from hydrogen atom in its ground state. ΔE = -2.178 x 10-18 J (+1)2 (1/¥ – 1/1) ΔE = 2.178 x 10-18 J
  • 25. 25 Bohr model: Only works for hydrogen atoms and other monoelectronic species. electrons don’t move in circles the quantization of energy is right, but not because they are circling like planets. The negative sign of the energy level : increase the energy of the electron when you make it further to the nucleus. the maximum energy an electron can have is zero, at an infinite distance (n = ¥ ).
  • 26. 26 The Quantum Mechanical MMooddeell ooff tthhee aattoomm A totally new approach was needed. Three physicists were at the forefront of this effort: Heisenberg, de Broglie, and Schrödinger. The approach they developed known as wave mechanics or quantum mechanics De Broglie said matter could be like a wave. Schrödinger proposed an equation that contains both wave and particle terms. Much math, but what is important are the solutions. Solving the equation leads to wave functions.
  • 27. 27 • The wave function is a F(x, y, z) Actually F(r,θ,φ) • Solutions to the equation are called orbitals (not Bohr orbits). • Each solution is tied to a certain energy level. • The wave function gives the shape of the electronic orbital. • The square of the wave function, gives the probability of finding the electron, that is, gives the electron density for the atom. • There is a limit to what we can know from Schrödinger equation. • We can’t know how the electron is moving or how it gets from one energy level to another.
  • 28. Electron Density Distribution •Probability of finding an electron in a hydrogen atom in its ground state.
  • 29. 29 QQuuaannttuumm NNuummbbeerrss There are many solutions to Schrödinger’s equation Each solution can be described with quantum numbers that describe some aspect of the solution. Principal quantum number (n): has an integral value: 1, 2, 3, ……, it is related to the size and energy of an orbital. As (n) increase:  orbital become larger, electron spends more time farther from the nucleus  higher energy, because the electron is less tightly bound to nucleus, energy is less negative.
  • 30. 30 Angular momentum quantum number (ℓ):  has integer values from 0 to n-1 for each value of n  It is related to the shape of the orbital (as shown in the following figures  the value of (ℓ) for a particular orbital is commonly assigned a letter: ℓ = 0 is called s , ℓ = 1 is called p ℓ =2 is called d , ℓ =3 is called ƒ , ℓ =4 is called g Magnetic quantum number (m ℓ): – integer values between - ℓ and + ℓ including zero. – The value of mℓ is related to the orientation of the orbital in space relative to the other orbitals in the atom.
  • 31. 31 s-orbitals All s-orbitals are spherical. 1s 2s 3s
  • 32. 32 P orbitals There are three p-orbitals px, py, and pz. The three p-orbitals lie along the x-, y- and z- axes of a Cartesian system. The letters correspond to allowed values of mℓ of -1, 0,an +1. Electron-distribution of a 2p orbital.
  • 35. 35 Electron spin quantum number (m s): the electron has a magnetic moment with two possible when the atom placed in an external magnetic field – Can have 2 values , either +1/2 or -1/2
  • 36. 36 For our purpose, the main significance of electron spin is connected with the postulate of Pauli: in a given atom no two electrons can have the same set of four quantum numbers (n , ℓ, m ℓ, and ms ), this is called Pauli exclusion principle. Since electrons in the same orbital have the same value of n , ℓ, m ℓ , they must have different values of ms . Then, since only two value of ms are allowed, an orbital can hold only two electrons, and they must have opposite spin.
  • 37. 37 Quantum number for the first four level of orbitals in H-atom: n ℓ Orbital designation m ℓ No. of orbitals 1 0 1s 0 1 2 0 2s 0 1 1 2p 1+ ,0 ,1- 3 3 0 3s 0 1 1 3p 1+ ,0 ,1- 3 2 3d 2+,1+ ,0 ,1- ,2- 5 4 0 4s 0 1 1 4p 1+ ,0 ,1- 3 2 4d 2+,1+ ,0 ,1- ,2- 5 3 4f ,2+ ,1+ ,0 ,1- ,2-,3- 3+ 7
  • 38. Example:  For n = 4, what are the possible values of ℓ. 38 ℓ = 0→ n -1 , so ℓ = 0 → 4-1 ℓ = 0, 1, 2, 3 s, p, d, f  For ℓ = 2. What are the possible values of mℓ mℓ = - ℓ → +ℓ mℓ = -2 → +2 mℓ = -2, -1, 0, +1, +2  How many possible values for ℓ and mℓ are there when n = 3 ℓ = 3-1 = 2 ℓ = 0, 1, 2 for ℓ = 0 mℓ = 0 ,, for ℓ = 1 mℓ = -1, 0, +1 for ℓ = 2 mℓ = -2, -1, 0, +1, +2
  • 39. 39 7s 6s 5s Increasing energy 1s 4s 3s 2s 7p 6d 6p 5p 4p 3p 2p 5d 4d 3d 5f 4f Orbitals and Their Energies
  • 40. 40 TThhee PPeerriiooddiicc TTaabbllee Developed independently by German Julius Lothar Meyer and Russian Dmitri Mendeleev (1870”s) Didn’t know much about atom. Put atoms in columns by similar properties. Predicted properties of missing elements.
  • 41. 41 Aufbau PPrriinncciippllee aanndd tthhee ppeerriiooddiicc ttaabbllee Our main assumption is that the atoms have the same type of orbitals as have been described from the hydrogen atom. As protons are added one by one to the nucleus to build up the elements, electrons are similarly added to these H-like orbitals. This is called aufbau principle H has one electron, occupy the 1s orbital The configuration for H can be represent as: H: 1s1 1s Quantum no. for the electron is: n=1, ℓ = 0, mℓ =0, ms =+1/2 Helium has two electron
  • 42. 42 Helium has two electrons He: 1s2 Lithium has three electrons Li: 1s2 2s1 2p Be: 1s2 2s2 2p B: 1s2 2s2 2p1 Quantum no. for the first electron is: n=1, ℓ = 0, mℓ =0, ms =+1/2 Quantum no. for the second electron is: n=1, ℓ = 0, mℓ =0, ms = -1/2 1s 1s 2s 2p 1s 2s 2p 1s 2s 2p
  • 43. 43 C: 1s2 2s2 2p2 Two electrons occupy 2p orbital, since there are three 2p orbitals with the same energy, the mutually repulsive electrons will occupy separate 2p orbitals Hund’s rule: the lowest energy configuration for an atom is the one having the maximum number of unpaired electrons. N: 1s2 2s2 2p3 O: 1s2 2s2 2p4 1s 2s 2p 1s 2s 2p 1s 2s 2p
  • 44. 44 F: 1s2 2s2 2p5 Ne: 1s2 2s2 2p6 1s 2s 2p With neon, the orbital with n =1 and n = 2 are now completely filled. Na: 1s2 2s2 2p63s1 can be abbreviate as Na : [Ne] 3s1 Write the symbol of the noble gas before the element Then the rest of the electrons. Mg: [Ne] 3s2 Al: [Ne] 3s2 3p1 1s 2s 2p Ne
  • 45. 45 At this point it is useful to introduce the following concepts: Valence electrons- the electrons in the outermost principle quantum level of an atom (not d). Core electrons- the inner electrons Hund’s Rule- The lowest energy configuration for an atom is the one have the maximum number of unpaired electrons in the orbital. Example: element valence electrons core electrons O 6 2 N 5 2 Ne 8 2 Mg 2 10
  • 46. 46 K: 1s2 2s2 2p63s13p64s1 or [Ar] 4s1 (valence electrons = 1) Ca: 1s2 2s2 2p63s13p64s2 or [Ar] 4s2 (valence electrons = 1) Sc: [Ar] 4s23d1 Ti: [Ar] 4s23d2 V: [Ar] 4s23d3 Valence electrons: 3 4 5 The expected configuration for chromium is: Cr: [Ar] 4s23d4 however, the observed configuration is: Cr: [Ar] 4s13d5 both 4s and 3d half-filled Also the expected configuration for Cu is: Cu : [Ar] 4s23d9 The observed configuration is: Cu : [Ar] 4s13d10 4s is half-filled, 3d is filled
  • 47.
  • 48. 48 FFiillll ffrroomm tthhee bboottttoomm uupp ffoolllloowwiinngg tthhee aarrrroowwss 7s 7p 7d 7f 6s 6p 6d 6f 5s 5p 5d 5f 4s 4p 4d 4f 3s 3p 3d 2s 2p 1s
  • 49. 49 Electron Configurations aanndd tthhee PPeerriiooddiicc TTaabbllee The periodic table can be used as a guide for electron configurations. • the groups label (1A-8A) called the main-groups or representative elements (no. of the group = valence electrons • the groups label (1B-8B) called the Transion elements • the (n+1)s orbital is always fill before nd orbitals. • The period number is the value of n. • Groups 1A and 2A (1 2) have the s-orbital filled. • Groups 3A - 8A (13 - 18) have the p-orbital filled. • Groups 3B - 2B (3 - 12) have the d-orbital filled. • The lanthanides and actinides have the f-orbital filled.
  • 50. 50 Elements in the same column have the same electron configuration. Put in columns because of similar properties. Similar properties because of electron configuration. Noble gases have filled energy levels. Transition metals are filling the d orbitals
  • 51. 51 PPeerriiooddiicc TTrreennddss iinn aattoommiicc pprrooppeerrttiieess Ionization energy (I.E.): Ionization energy the energy required to remove an electron form a gaseous atom or ion in its ground state. X(g) → X+ (g) + e We will consider the energy required to remove several electrons from Al in the ground state. Al(g) → Al+ (g) + e I1 = 580 kJ/mol Al+ (g) → Al+2 (g) + e I2 = 1815 kJ/mol Al+2 (g) → Al+3 (g) + e I3 = 2740 kJ/mol (g) → Al+4 (g) + e I4 = 11600 kJ/mol Al+3
  • 52. 52 Several points can be illustrated from these results: Highest energy electron (the one bound least tightly) that is removed first. The first ionization energy I1 is the energy required to remove the first electron (highest-energy electron)  The value of I1 is considerably smaller than the value of I2 (second ionization energy). The primary factor is simply charge, electron is removed from +1 ion (Al+) . The increase in positive charge bind the electron more firmly, and the ionization energy increases. The same trend shows up in I3 and I4, where the electron is removed from Al+2 and Al+3 ions respectively. The increase in I.E. from I1 to I2 occur also because the first electron is removed from 3p orbital that is higher in energy than 3s orbital from which the second electron is removed. The largest jump in I.E. by far occur in going from the I3 and I4 because Al+3 has the configuration (1s2 2s2 2p6), the core electrons are bound much more tightly than valence electrons.
  • 53. 53 In the following table, the ionization energies for all the period 3 are given. Note the large jump in energy in each case in going from removal of valence electrons to removal of core electrons Symbol I1 I2 I3 H He Li Be BC NO F Ne 1312 2731 520 900 800 1086 1402 1314 1681 2080 5247 7297 1757 2430 2352 2857 3391 3375 3963 11810 14840 3569 4619 4577 5301 6045
  • 54. 54 He First Ionization energy Atomic number H C Be Li N B The values of the first I.E. for the elements are shown in the following figure:
  • 55. 55 Note that:  As you go down a group first I.E. decreases because of electron being removed are, on average, farther from the nucleus. As n increases, the size of the orbital increases, and the electron is easier to remove.  As you go across a period from left to right, first I.E. increases because - Same shielding (same principle quantum level) . - Increasing nuclear charge (electrons are strongly bound) There are some trends in I.E. in going across period. For example, trends occur from Be to B and from N to O. it can be explain in term of electron repulsion. Half-filled and filled orbitals are harder to remove electrons from 
  • 56. 56 The ionization energies for the representative elements are summarized in the following figure
  • 57. 57 Atomic Size or radius: The size of the orbital cannot be specified exactly (The electron cloud doesn’t have a definite edge), neither can the size of an atom. We can make some arbitrary choice to obtain values for atomic radii. These values can be obtain by measuring the distance between atoms in chemical compounds. For example, in Br2 molecule, the distance between the two nuclei is 228 pm. The Br atomic radius is assumed to be half this distance, or 114 pm, as shown in the following figure.
  • 58. 58 AAttoommiicc SSiizzee }Radius AAttoommiicc RRaaddiiuuss == hhaallff tthhee ddiissttaannccee bbeettwweeeenn ttwwoo nnuucclleeii ooff aa ddiiaattoommiicc mmoolleeccuullee
  • 59. 59 IInnfflluueenncceedd bbyy ttwwoo ffaaccttoorrss SShhiieellddiinngg MMoorree sshhiieellddiinngg iiss ffuurrtthheerr aawwaayy CChhaarrggee oonn nnuucclleeuuss MMoorree cchhaarrggee ppuullllss eelleeccttrroonnss iinn cclloosseerr
  • 60. 60 AAss wwee ggoo ddoowwnn aa ggrroouupp eeaacchh aattoomm hhaass aannootthheerr eenneerrggyy lleevveell.. SSoo tthhee aattoommss ggeett bbiiggggeerr H Li Na K Rb
  • 61. 61 As you ggoo aaccrroossss aa ppeerriioodd tthhee rraaddiiuuss ggeettss ssmmaalllleerr.. SSaammee eenneerrggyy lleevveell MMoorree nnuucclleeaarr cchhaarrggee OOuutteerrmmoosstt eelleeccttrroonnss aarree cclloosseerr Na Mg Al Si P S Cl Ar
  • 62. 62 OOvveerraallll nm) Na (Radius Li Ar Atomic Ne H 10 Atomic Number K Rb Kr
  • 63. 63 Electron Affinity: The energy change associated with adding an electron to a gaseous atom. X(g) + e X- (g) High electron affinity gives you energy- exothermic More negative
  • 64. 64 In general, electron affinity becomes more exothermic as you go from left to right across a row. Increase (more - ) from left to right (greater nuclear charge). Decrease as we go down a group (More shielding)
  • 65. 65 © 2009, Prentice-Hall, Inc. TTrreennddss iinn EElleeccttrroonn AAffffiinniittyy TThheerree aarree aaggaaiinn,, hhoowweevveerr,, ttwwoo ddiissccoonnttiinnuuiittiiee ss iinn tthhiiss ttrreenndd..
  • 66. 66 © 2009, Prentice-Hall, Inc. TTrreennddss iinn EElleeccttrroonn AAffffiinniittyy TThhee ffiirrsstt ooccccuurrss bbeettwweeeenn GGrroouuppss IIAA aanndd IIIIAA.. – TThhee aaddddeedd eelleeccttrroonn mmuusstt ggoo iinn aa pp-- oorrbbiittaall,, nnoott aann ss-- oorrbbiittaall.. – TThhee eelleeccttrroonn iiss ffaarrtthheerr ffrroomm nnuucclleeuuss aanndd ffeeeellss rreeppuullssiioonn ffrroomm tthhee ss--eelleeccttrroonnss..
  • 67. 67 © 2009, Prentice-Hall, Inc. TTrreennddss iinn EElleeccttrroonn AAffffiinniittyy TThhee sseeccoonndd ooccccuurrss bbeettwweeeenn GGrroouuppss IIVVAA aanndd VVAA.. – GGrroouupp VVAA hhaass nnoo eemmppttyy oorrbbiittaallss.. – TThhee eexxttrraa eelleeccttrroonn mmuusstt ggoo iinnttoo aann aallrreeaaddyy ooccccuuppiieedd oorrbbiittaall,, ccrreeaattiinngg rreeppuullssiioonn..
  • 68. 68 IIoonniicc SSiizzee CCaattiioonnss ffoorrmm bbyy lloossiinngg eelleeccttrroonnss CCaattiioonnss aarree ssmmaalllleerr tthhaann tthhee aattoomm tthheeyy ccoommee ffrroomm MMeettaallss ffoorrmm ccaattiioonnss CCaattiioonnss ooff rreepprreesseennttaattiivvee eelleemmeennttss hhaavvee nnoobbllee ggaass ccoonnffiigguurraattiioonn..
  • 69. 69 IIoonniicc ssiizzee AAnniioonnss ffoorrmm bbyy ggaaiinniinngg eelleeccttrroonnss AAnniioonnss aarree bbiiggggeerr tthhaann tthhee aattoomm tthheeyy ccoommee ffrroomm NNoonnmmeettaallss ffoorrmm aanniioonnss AAnniioonnss ooff rreepprreesseennttaattiivvee eelleemmeennttss hhaavvee nnoobbllee ggaass ccoonnffiigguurraattiioonn..
  • 70. 70 CCoonnffiigguurraattiioonn ooff IIoonnss IIoonnss aallwwaayyss hhaavvee nnoobbllee ggaass ccoonnffiigguurraattiioonn NNaa iiss 11ss2222ss2222pp6633ss11 FFoorrmmss aa 11++ iioonn -- 11ss2222ss2222pp66 SSaammee ccoonnffiigguurraattiioonn aass nneeoonn MMeettaallss ffoorrmm iioonnss wwiitthh tthhee ccoonnffiigguurraattiioonn ooff tthhee nnoobbllee ggaass bbeeffoorree tthheemm -- tthheeyy lloossee eelleeccttrroonnss
  • 71. 71 CCoonnffiigguurraattiioonn ooff IIoonnss NNoonn--mmeettaallss ffoorrmm iioonnss bbyy ggaaiinniinngg eelleeccttrroonnss ttoo aacchhiieevvee nnoobbllee ggaass ccoonnffiigguurraattiioonn.. TThheeyy eenndd uupp wwiitthh tthhee ccoonnffiigguurraattiioonn ooff tthhee nnoobbllee ggaass aafftteerr tthheemm..
  • 72. 72 GGrroouupp ttrreennddss AAddddiinngg eenneerrggyy lleevveell IIoonnss ggeett bbiiggggeerr aass yyoouu ggoo ddoowwnn Li+1 Na+1 K+1 Rb+1 Cs+1
  • 73. 73 PPeerriiooddiicc TTrreennddss AAccrroossss tthhee ppeerriioodd nnuucclleeaarr cchhaarrggee iinnccrreeaasseess ssoo tthheeyy ggeett ssmmaalllleerr.. EEnneerrggyy lleevveell cchhaannggeess bbeettwweeeenn aanniioonnss aanndd ccaattiioonnss Li+1 Be+2 B+3 C+4 N-3 O-2 F-1
  • 74. 74 SSiizzee ooff IIssooeelleeccttrroonniicc iioonnss IIssoo -- ssaammee IIssoo eelleeccttrroonniicc iioonnss hhaavvee tthhee ssaammee ## ooff eelleeccttrroonnss AAll++33 MMgg++22 NNaa++11 NNee FF--11 OO--22 aanndd NN--33 aallll hhaavvee 1100 eelleeccttrroonnss aallll hhaavvee tthhee ccoonnffiigguurraattiioonn 11ss2222ss2222pp66
  • 75. 75 SSiizzee ooff IIssooeelleeccttrroonniicc iioonnss PPoossiittiivvee iioonnss hhaavvee mmoorree pprroottoonnss ssoo tthheeyy aarree ssmmaalllleerr Al+3 Na+1 Ne F-1 O-2 N-3 Mg+2
  • 77. 77 EElleeccttrroonneeggaattiivviittyy TThhee tteennddeennccyy ffoorr aann aattoomm ttoo aattttrraacctt eelleeccttrroonnss ttoo iittsseellff wwhheenn iitt iiss cchheemmiiccaallllyy ccoommbbiinneedd wwiitthh aannootthheerr eelleemmeenntt.. HHooww ““ggrreeeeddyy”” BBiigg eelleeccttrroonneeggaattiivviittyy mmeeaannss iitt ppuullllss tthhee eelleeccttrroonn ttoowwaarrdd iittsseellff.. AAttoommss wwiitthh llaarrggee nneeggaattiivvee eelleeccttrroonn aaffffiinniittyy hhaavvee llaarrggeerr eelleeccttrroonneeggaattiivviittyy..
  • 78. 78 GGrroouupp TTrreenndd TThhee ffuurrtthheerr ddoowwnn aa ggrroouupp mmoorree sshhiieellddiinngg LLeessss aattttrraacctteedd ((ZZeeffff)) LLooww eelleeccttrroonneeggaattiivviittyy..
  • 79. 79 PPeerriiooddiicc TTrreenndd MMeettaallss aarree aatt tthhee lleefftt eenndd LLooww iioonniizzaattiioonn eenneerrggyy-- llooww eeffffeeccttiivvee nnuucclleeaarr cchhaarrggee LLooww eelleeccttrroonneeggaattiivviittyy AAtt tthhee rriigghhtt eenndd aarree tthhee nnoonnmmeettaallss MMoorree nneeggaattiivvee eelleeccttrroonn aaffffiinniittyy HHiigghh eelleeccttrroonneeggaattiivviittyy EExxcceepptt nnoobbllee ggaasseess
  • 80. 80 Ionization energy, electronegativity Electron affinity INCREASE
  • 81. 81 Atomic size increases, Ionic size increases
  • 82. 82 PPaarrttss ooff tthhee PPeerriiooddiicc TTaabbllee
  • 83. 83 TThhee iinnffoorrmmaattiioonn iitt hhiiddeess KKnnooww tthhee ssppeecciiaall ggrroouuppss IItt iiss tthhee nnuummbbeerr aanndd ttyyppee ooff vvaalleennccee eelleeccttrroonnss tthhaatt ddeetteerrmmiinnee aann aattoomm’’ss cchheemmiissttrryy.. YYoouu ccaann ggeett tthhee eelleeccttrroonn ccoonnffiigguurraattiioonn ffrroomm iitt.. MMeettaallss lloossee eelleeccttrroonnss hhaavvee tthhee lloowweesstt IIEE NNoonn mmeettaallss-- ggaaiinn eelleeccttrroonnss mmoosstt nneeggaattiivvee eelleeccttrroonn aaffffiinniittiieess
  • 84. 84 TThhee AAllkkaallii MMeettaallss DDooeessnn’’tt iinncclluuddee hhyyddrrooggeenn-- iitt bbeehhaavveess aass aa nnoonn--mmeettaall ddeeccrreeaassee iinn IIEE iinnccrreeaassee iinn rraaddiiuuss DDeeccrreeaassee iinn ddeennssiittyy ddeeccrreeaassee iinn mmeellttiinngg ppooiinntt BBeehhaavvee aass rreedduucciinngg aaggeennttss
  • 85. 85 RReedduucciinngg aabbiilliittyy LLoowweerr IIEE bbeetttteerr rreedduucciinngg aaggeennttss CCssRRbbKKNNaaLLii wwoorrkkss ffoorr ssoolliiddss,, bbuutt nnoott iinn aaqquueeoouuss ssoolluuttiioonnss.. IInn ssoolluuttiioonn LLiiKKNNaa WWhhyy?? IItt’’ss tthhee wwaatteerr --tthheerree iiss aann eenneerrggyy cchhaannggee aassssoocciiaatteedd wwiitthh ddiissssoollvviinngg
  • 86. 86 HHyyddrraattiioonn EEnneerrggyy LLii++((gg)) →→ LLii++((aaqq)) iiss eexxootthheerrmmiicc ffoorr LLii++ --551100 kkJJ//mmooll ffoorr NNaa++ --440022 kkJJ//mmooll ffoorr KK++ --331144 kkJJ//mmooll LLii iiss ssoo bbiigg bbeeccaauussee ooff iitt hhaass aa hhiigghh cchhaarrggee ddeennssiittyy,, aa lloott ooff cchhaarrggee oonn aa ssmmaallll aattoomm.. LLii lloosseess iittss eelleeccttrroonn mmoorree eeaassiillyy bbeeccaauussee ooff tthhiiss iinn aaqquueeoouuss ssoolluuttiioonnss
  • 87. 87 TThhee rreeaaccttiioonn wwiitthh wwaatteerr NNaa aanndd KK rreeaacctt eexxpplloossiivveellyy wwiitthh wwaatteerr LLii ddooeessnn’’tt.. EEvveenn tthhoouugghh tthhee rreeaaccttiioonn ooff LLii hhaass aa mmoorree nneeggaattiivvee DHH tthhaann tthhaatt ooff NNaa aanndd KK NNaa aanndd KK mmeelltt DHH ddooeess nnoott tteellll yyoouu ssppeeeedd ooff rreeaaccttiioonn MMoorree iinn CChhaapptteerr 1122..