Publicidad
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
Publicidad
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
Publicidad
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
Publicidad
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
Publicidad
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
Publicidad
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
Publicidad
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
Publicidad
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
Publicidad
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
Publicidad
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
1300 MATHS FORMULA.pdf
Próximo SlideShare
1300 MATHS FORMULA.pdf1300 MATHS FORMULA.pdf
Cargando en ... 3
1 de 338
Publicidad

Más contenido relacionado

Último(20)

Publicidad

1300 MATHS FORMULA.pdf

  1. 1300 Math Formulas = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = fp_k= =VVQVNMTTQN= = `çéóêáÖÜí=«=OMMQ=^KpîáêáåK=^ää=oáÖÜíë=oÉëÉêîÉÇK=
  2. i = qÜáë=é~ÖÉ=áë=áåíÉåíáçå~ääó=äÉÑí=Ää~åâK=
  3. ii Preface = = = = qÜáë= Ü~åÇÄççâ= áë= ~= ÅçãéäÉíÉ= ÇÉëâíçé= êÉÑÉêÉåÅÉ= Ñçê= ëíì- ÇÉåíë= ~åÇ= ÉåÖáåÉÉêëK= fí= Ü~ë= ÉîÉêóíÜáåÖ= Ñêçã= ÜáÖÜ= ëÅÜççä= ã~íÜ=íç=ã~íÜ=Ñçê=~Çî~åÅÉÇ=ìåÇÉêÖê~Çì~íÉë=áå=ÉåÖáåÉÉêáåÖI= ÉÅçåçãáÅëI=éÜóëáÅ~ä=ëÅáÉåÅÉëI=~åÇ=ã~íÜÉã~íáÅëK=qÜÉ=ÉÄççâ= Åçåí~áåë= ÜìåÇêÉÇë= çÑ= Ñçêãìä~ëI= í~ÄäÉëI= ~åÇ= ÑáÖìêÉë= Ñêçã= kìãÄÉê=pÉíëI=^äÖÉÄê~I=dÉçãÉíêóI=qêáÖçåçãÉíêóI=j~íêáÅÉë= ~åÇ= aÉíÉêãáå~åíëI= sÉÅíçêëI= ^å~äóíáÅ= dÉçãÉíêóI= `~äÅìäìëI= aáÑÑÉêÉåíá~ä=bèì~íáçåëI=pÉêáÉëI=~åÇ=mêçÄ~Äáäáíó=qÜÉçêóK== qÜÉ= ëíêìÅíìêÉÇ= í~ÄäÉ= çÑ= ÅçåíÉåíëI= äáåâëI= ~åÇ= ä~óçìí= ã~âÉ= ÑáåÇáåÖ= íÜÉ= êÉäÉî~åí= áåÑçêã~íáçå= èìáÅâ= ~åÇ= é~áåäÉëëI= ëç= áí= Å~å=ÄÉ=ìëÉÇ=~ë=~å=ÉîÉêóÇ~ó=çåäáåÉ=êÉÑÉêÉåÅÉ=ÖìáÇÉK=== = =
  4. iii Contents = = = = 1 krj_bo=pbqp= NKN= pÉí=fÇÉåíáíáÉë==1= NKO= pÉíë=çÑ=kìãÄÉêë==5= NKP= _~ëáÅ=fÇÉåíáíáÉë==7= NKQ= `çãéäÉñ=kìãÄÉêë==8= = 2 ^idb_o^= OKN= c~ÅíçêáåÖ=cçêãìä~ë==12= OKO= mêçÇìÅí=cçêãìä~ë==13= OKP= mçïÉêë==14= OKQ= oççíë==15= OKR= içÖ~êáíÜãë==16= OKS= bèì~íáçåë==18= OKT= fåÉèì~äáíáÉë==19= OKU= `çãéçìåÇ=fåíÉêÉëí=cçêãìä~ë==22= = 3 dbljbqov= PKN= oáÖÜí=qêá~åÖäÉ==24= PKO= fëçëÅÉäÉë=qêá~åÖäÉ==27= PKP= bèìáä~íÉê~ä=qêá~åÖäÉ==28= PKQ= pÅ~äÉåÉ=qêá~åÖäÉ==29= PKR= pèì~êÉ==33= PKS= oÉÅí~åÖäÉ==34= PKT= m~ê~ääÉäçÖê~ã==35= PKU= oÜçãÄìë==36= PKV= qê~éÉòçáÇ==37= PKNM= fëçëÅÉäÉë=qê~éÉòçáÇ==38= PKNN= fëçëÅÉäÉë=qê~éÉòçáÇ=ïáíÜ=fåëÅêáÄÉÇ=`áêÅäÉ==40= PKNO= qê~éÉòçáÇ=ïáíÜ=fåëÅêáÄÉÇ=`áêÅäÉ==41=
  5. iv PKNP= háíÉ==42= PKNQ= `óÅäáÅ=nì~Çêáä~íÉê~ä==43= PKNR= q~åÖÉåíá~ä=nì~Çêáä~íÉê~ä==45= PKNS= dÉåÉê~ä=nì~Çêáä~íÉê~ä==46= PKNT= oÉÖìä~ê=eÉñ~Öçå==47= PKNU= oÉÖìä~ê=mçäóÖçå==48= PKNV= `áêÅäÉ==50= PKOM= pÉÅíçê=çÑ=~=`áêÅäÉ==53= PKON= pÉÖãÉåí=çÑ=~=`áêÅäÉ==54= PKOO= `ìÄÉ==55= PKOP= oÉÅí~åÖìä~ê=m~ê~ääÉäÉéáéÉÇ==56= PKOQ= mêáëã==57= PKOR= oÉÖìä~ê=qÉíê~ÜÉÇêçå==58= PKOS= oÉÖìä~ê=móê~ãáÇ==59= PKOT= cêìëíìã=çÑ=~=oÉÖìä~ê=móê~ãáÇ==61= PKOU= oÉÅí~åÖìä~ê=oáÖÜí=tÉÇÖÉ==62= PKOV= mä~íçåáÅ=pçäáÇë==63= PKPM= oáÖÜí=`áêÅìä~ê=`óäáåÇÉê==66= PKPN= oáÖÜí=`áêÅìä~ê=`óäáåÇÉê=ïáíÜ=~å=lÄäáèìÉ=mä~åÉ=c~ÅÉ==68= PKPO= oáÖÜí=`áêÅìä~ê=`çåÉ==69= PKPP= cêìëíìã=çÑ=~=oáÖÜí=`áêÅìä~ê=`çåÉ==70= PKPQ= péÜÉêÉ==72= PKPR= péÜÉêáÅ~ä=`~é==72= PKPS= péÜÉêáÅ~ä=pÉÅíçê==73= PKPT= péÜÉêáÅ~ä=pÉÖãÉåí==74= PKPU= péÜÉêáÅ~ä=tÉÇÖÉ==75= PKPV= bääáéëçáÇ==76= PKQM= `áêÅìä~ê=qçêìë==78= = = 4 qofdlkljbqov= QKN= o~Çá~å=~åÇ=aÉÖêÉÉ=jÉ~ëìêÉë=çÑ=^åÖäÉë==80= QKO= aÉÑáåáíáçåë=~åÇ=dê~éÜë=çÑ=qêáÖçåçãÉíêáÅ=cìåÅíáçåë==81= QKP= páÖåë=çÑ=qêáÖçåçãÉíêáÅ=cìåÅíáçåë==86= QKQ= qêáÖçåçãÉíêáÅ=cìåÅíáçåë=çÑ=`çããçå=^åÖäÉë==87= QKR= jçëí=fãéçêí~åí=cçêãìä~ë==88=
  6. v QKS= oÉÇìÅíáçå=cçêãìä~ë==89= QKT= mÉêáçÇáÅáíó=çÑ=qêáÖçåçãÉíêáÅ=cìåÅíáçåë==90= QKU= oÉä~íáçåë=ÄÉíïÉÉå=qêáÖçåçãÉíêáÅ=cìåÅíáçåë==90= QKV= ^ÇÇáíáçå=~åÇ=pìÄíê~Åíáçå=cçêãìä~ë==91= QKNM= açìÄäÉ=^åÖäÉ=cçêãìä~ë==92= QKNN= jìäíáéäÉ=^åÖäÉ=cçêãìä~ë==93= QKNO= e~äÑ=^åÖäÉ=cçêãìä~ë==94= QKNP= e~äÑ=^åÖäÉ=q~åÖÉåí=fÇÉåíáíáÉë==94= QKNQ= qê~åëÑçêãáåÖ=çÑ=qêáÖçåçãÉíêáÅ=bñéêÉëëáçåë=íç=mêçÇìÅí==95= QKNR= qê~åëÑçêãáåÖ=çÑ=qêáÖçåçãÉíêáÅ=bñéêÉëëáçåë=íç=pìã==97=== QKNS= mçïÉêë=çÑ=qêáÖçåçãÉíêáÅ=cìåÅíáçåë==98= QKNT= dê~éÜë=çÑ=fåîÉêëÉ=qêáÖçåçãÉíêáÅ=cìåÅíáçåë==99= QKNU= mêáåÅáé~ä=s~äìÉë=çÑ=fåîÉêëÉ=qêáÖçåçãÉíêáÅ=cìåÅíáçåë==102= QKNV= oÉä~íáçåë=ÄÉíïÉÉå=fåîÉêëÉ=qêáÖçåçãÉíêáÅ=cìåÅíáçåë==103= QKOM= qêáÖçåçãÉíêáÅ=bèì~íáçåë==106= QKON= oÉä~íáçåë=íç=eóéÉêÄçäáÅ=cìåÅíáçåë==106= = = 5 j^qof`bp=^ka=abqbojfk^kqp= RKN= aÉíÉêãáå~åíë==107= RKO= mêçéÉêíáÉë=çÑ=aÉíÉêãáå~åíë==109= RKP= j~íêáÅÉë==110= RKQ= léÉê~íáçåë=ïáíÜ=j~íêáÅÉë==111= RKR= póëíÉãë=çÑ=iáåÉ~ê=bèì~íáçåë==114= = = 6 sb`qlop= SKN= sÉÅíçê=`ççêÇáå~íÉë==118= SKO= sÉÅíçê=^ÇÇáíáçå==120= SKP= sÉÅíçê=pìÄíê~Åíáçå==122= SKQ= pÅ~äáåÖ=sÉÅíçêë==122= SKR= pÅ~ä~ê=mêçÇìÅí==123= SKS= sÉÅíçê=mêçÇìÅí==125= SKT= qêáéäÉ=mêçÇìÅí=127= = = 7 ^k^ivqf`=dbljbqov= TKN= låÉ=-aáãÉåëáçå~ä=`ççêÇáå~íÉ=póëíÉã==130=
  7. vi TKO= qïç=-aáãÉåëáçå~ä=`ççêÇáå~íÉ=póëíÉã==131= TKP= píê~áÖÜí=iáåÉ=áå=mä~åÉ==139= TKQ= `áêÅäÉ==149= TKR= bääáéëÉ==152= TKS= eóéÉêÄçä~==154= TKT= m~ê~Äçä~==158= TKU= qÜêÉÉ=-aáãÉåëáçå~ä=`ççêÇáå~íÉ=póëíÉã==161= TKV= mä~åÉ==165= TKNM= píê~áÖÜí=iáåÉ=áå=pé~ÅÉ==175= TKNN= nì~ÇêáÅ=pìêÑ~ÅÉë==180= TKNO= péÜÉêÉ==189= = = 8 afccbobkqf^i=`^i`rirp= UKN= cìåÅíáçåë=~åÇ=qÜÉáê=dê~éÜë==191= UKO= iáãáíë=çÑ=cìåÅíáçåë==208= UKP= aÉÑáåáíáçå=~åÇ=mêçéÉêíáÉë=çÑ=íÜÉ=aÉêáî~íáîÉ==209= UKQ= q~ÄäÉ=çÑ=aÉêáî~íáîÉë==211= UKR= eáÖÜÉê=lêÇÉê=aÉêáî~íáîÉë==215= UKS= ^ééäáÅ~íáçåë=çÑ=aÉêáî~íáîÉ==217= UKT= aáÑÑÉêÉåíá~ä==221= UKU= jìäíáî~êá~ÄäÉ=cìåÅíáçåë==222= UKV= aáÑÑÉêÉåíá~ä=léÉê~íçêë==225= = = 9 fkqbdo^i=`^i`rirp= VKN= fåÇÉÑáåáíÉ=fåíÉÖê~ä==227= VKO= fåíÉÖê~äë=çÑ=o~íáçå~ä=cìåÅíáçåë==228= VKP= fåíÉÖê~äë=çÑ=fêê~íáçå~ä=cìåÅíáçåë==231= VKQ= fåíÉÖê~äë=çÑ=qêáÖçåçãÉíêáÅ=cìåÅíáçåë==237= VKR= fåíÉÖê~äë=çÑ=eóéÉêÄçäáÅ=cìåÅíáçåë==241= VKS= fåíÉÖê~äë=çÑ=bñéçåÉåíá~ä=~åÇ=içÖ~êáíÜãáÅ=cìåÅíáçåë==242= VKT= oÉÇìÅíáçå=cçêãìä~ë==243= VKU= aÉÑáåáíÉ=fåíÉÖê~ä==247= VKV= fãéêçéÉê=fåíÉÖê~ä==253= VKNM= açìÄäÉ=fåíÉÖê~ä==257= VKNN= qêáéäÉ=fåíÉÖê~ä==269=
  8. vii VKNO= iáåÉ=fåíÉÖê~ä==275= VKNP= pìêÑ~ÅÉ=fåíÉÖê~ä==285= = = 10 afccbobkqf^i=bnr^qflkp= NMKN= cáêëí=lêÇÉê=lêÇáå~êó=aáÑÑÉêÉåíá~ä=bèì~íáçåë==295= NMKO= pÉÅçåÇ=lêÇÉê=lêÇáå~êó=aáÑÑÉêÉåíá~ä=bèì~íáçåë==298= NMKP= pçãÉ=m~êíá~ä=aáÑÑÉêÉåíá~ä=bèì~íáçåë==302= = = 11 pbofbp= NNKN= ^êáíÜãÉíáÅ=pÉêáÉë==304= NNKO= dÉçãÉíêáÅ=pÉêáÉë==305= NNKP= pçãÉ=cáåáíÉ=pÉêáÉë==305= NNKQ= fåÑáåáíÉ=pÉêáÉë==307= NNKR= mêçéÉêíáÉë=çÑ=`çåîÉêÖÉåí=pÉêáÉë==307= NNKS= `çåîÉêÖÉåÅÉ=qÉëíë==308= NNKT= ^äíÉêå~íáåÖ=pÉêáÉë==310= NNKU= mçïÉê=pÉêáÉë==311= NNKV= aáÑÑÉêÉåíá~íáçå=~åÇ=fåíÉÖê~íáçå=çÑ=mçïÉê=pÉêáÉë==312= NNKNM= q~óäçê=~åÇ=j~Åä~ìêáå=pÉêáÉë==313= NNKNN= mçïÉê=pÉêáÉë=bñé~åëáçåë=Ñçê=pçãÉ=cìåÅíáçåë==314= NNKNO= _áåçãá~ä=pÉêáÉë==316= NNKNP= cçìêáÉê=pÉêáÉë==316= = = 12 mol_^_fifqv= NOKN= mÉêãìí~íáçåë=~åÇ=`çãÄáå~íáçåë==318= NOKO= mêçÄ~Äáäáíó=cçêãìä~ë==319= = = = = =
  9. viii = qÜáë=é~ÖÉ=áë=áåíÉåíáçå~ääó=äÉÑí=Ää~åâK= =
  10. 1 Chapter 1 Number Sets = = = = 1.1 Set Identities = pÉíëW=^I=_I=`= råáîÉêë~ä=ëÉíW=f= `çãéäÉãÉåí=W= ^′ = mêçéÉê=ëìÄëÉíW= _ ^ ⊂ == bãéíó=ëÉíW=∅= råáçå=çÑ=ëÉíëW= _ ^ ∪ = fåíÉêëÉÅíáçå=çÑ=ëÉíëW= _ ^ ∩ = aáÑÑÉêÉåÅÉ=çÑ=ëÉíëW= _ y ^ = = = 1. f ^ ⊂ = = 2. ^ ^ ⊂ = = 3. _ ^ = =áÑ= _ ^ ⊂ =~åÇ= ^ _ ⊂ .= = 4. bãéíó=pÉí= ^ ⊂ ∅ = = 5. råáçå=çÑ=pÉíë== { } _ ñ çê ^ ñ ö ñ _ ^ ` ∈ ∈ = ∪ = = =
  11. CHAPTER 1. NUMBER SETS 2 ===== = = Figure 1. = 6. `çããìí~íáîáíó= ^ _ _ ^ ∪ = ∪ = = 7. ^ëëçÅá~íáîáíó= ( ) ( ) ` _ ^ ` _ ^ ∪ ∪ = ∪ ∪ = = 8. fåíÉêëÉÅíáçå=çÑ=pÉíë= { } _ ñ ~åÇ ^ ñ ö ñ _ ^ ` ∈ ∈ = ∪ = = = = ===== = = Figure 2. = 9. `çããìí~íáîáíó= ^ _ _ ^ ∩ = ∩ = = 10. ^ëëçÅá~íáîáíó= ( ) ( ) ` _ ^ ` _ ^ ∩ ∩ = ∩ ∩ = =
  12. CHAPTER 1. NUMBER SETS 3 11. aáëíêáÄìíáîáíó= ( ) ( ) ( ) ` ^ _ ^ ` _ ^ ∪ ∩ ∪ = ∩ ∪ I= ( ) ( ) ( ) ` ^ _ ^ ` _ ^ ∩ ∪ ∩ = ∪ ∩ K= = 12. fÇÉãéçíÉåÅó= ^ ^ ^ = ∩ I== ^ ^ ^ = ∪ = = 13. açãáå~íáçå= ∅ = ∅ ∩ ^ I= f f ^ = ∪ = = 14. fÇÉåíáíó= ^ ^ = ∅ ∪ I== ^ f ^ = ∩ = 15. `çãéäÉãÉåí= { } ^ ñ ö f ñ ^ ∉ ∈ = ′ = 16. `çãéäÉãÉåí=çÑ=fåíÉêëÉÅíáçå=~åÇ=råáçå f ^ ^ = ′ ∪ I== ∅ = ′ ∩ ^ ^ = = 17. aÉ=jçêÖ~å∞ë=i~ïë ( ) _ ^ _ ^ ′ ∩ ′ = ′ ∪ I== ( ) _ ^ _ ^ ′ ∪ ′ = ′ ∩ = = 18. aáÑÑÉêÉåÅÉ=çÑ=pÉíë { } ^ ñ ~åÇ _ ñ ö ñ ^ y _ ` ∉ ∈ = = = =
  13. CHAPTER 1. NUMBER SETS 4 ===== = = Figure 3. = 19. ( ) _ ^ y _ ^ y _ ∩ = = 20. ^ _ ^ y _ ′ ∩ = = 21. ∅ = ^ y ^ = 22. ^ _ y ^ = =áÑ= ∅ = ∩_ ^ . = ===== = = Figure 4. = 23. ( ) ( ) ( ) ` _ y ` ^ ` _ y ^ ∩ ∩ = ∩ 24. ^ y f ^ = ′ 25. `~êíÉëá~å=mêçÇìÅí ( ) { } _ ó ~åÇ ^ ñ ö ó I ñ _ ^ ` ∈ ∈ = × = = =
  14. CHAPTER 1. NUMBER SETS 5 1.2 Sets of Numbers = k~íìê~ä=åìãÄÉêëW=k= tÜçäÉ=åìãÄÉêëW= M k = fåíÉÖÉêëW=w= mçëáíáîÉ=áåíÉÖÉêëW= + w = kÉÖ~íáîÉ=áåíÉÖÉêëW= − w = o~íáçå~ä=åìãÄÉêëW=n= oÉ~ä=åìãÄÉêëW=o== `çãéäÉñ=åìãÄÉêëW=`== = = 26. k~íìê~ä=kìãÄÉêë `çìåíáåÖ=åìãÄÉêëW { } K I P I O I N k = K= 27. tÜçäÉ=kìãÄÉêë `çìåíáåÖ=åìãÄÉêë=~åÇ=òÉêçW= { } K I P I O I N I M kM = K= = 28. fåíÉÖÉêë tÜçäÉ=åìãÄÉêë=~åÇ=íÜÉáê=çééçëáíÉë=~åÇ=òÉêçW= { } K I P I O I N k w = = + I= { } N I O I P I w − − − = − K I= { } { } K K I P I O I N I M I N I O I P I w M w w − − − = ∪ ∪ = + − K= = 29. o~íáçå~ä=kìãÄÉêë oÉéÉ~íáåÖ=çê=íÉêãáå~íáåÖ=ÇÉÅáã~äëW==       ≠ ∈ ∈ = = M Ä ~åÇ w Ä ~åÇ w ~ ~åÇ Ä ~ ñ ö ñ n K= = 30. fêê~íáçå~ä=kìãÄÉêë kçåêÉéÉ~íáåÖ=~åÇ=åçåíÉêãáå~íáåÖ=ÇÉÅáã~äëK =
  15. CHAPTER 1. NUMBER SETS 6 31. oÉ~ä=kìãÄÉêë== råáçå=çÑ=ê~íáçå~ä=~åÇ=áêê~íáçå~ä=åìãÄÉêëW=oK= = 32. `çãéäÉñ=kìãÄÉêë { } o ó ~åÇ o ñ ö áó ñ ` ∈ ∈ + = I== ïÜÉêÉ=á=áë=íÜÉ=áã~Öáå~êó=ìåáíK = 33. ` o n w k ⊂ ⊂ ⊂ ⊂ = = === = = Figure 5. = = = = = =
  16. CHAPTER 1. NUMBER SETS 7 1.3 Basic Identities = oÉ~ä=åìãÄÉêëW=~I=ÄI=Å= = = 34. ^ÇÇáíáîÉ=fÇÉåíáíó= ~ M ~ = + = = 35. ^ÇÇáíáîÉ=fåîÉêëÉ= ( ) M ~ ~ = − + = = 36. `çããìí~íáîÉ=çÑ=^ÇÇáíáçå= ~ Ä Ä ~ + = + = = 37. ^ëëçÅá~íáîÉ=çÑ=^ÇÇáíáçå= ( ) ( ) Å Ä ~ Å Ä ~ + + = + + = = 38. aÉÑáåáíáçå=çÑ=pìÄíê~Åíáçå= ( ) Ä ~ Ä ~ − + = − = = 39. jìäíáéäáÅ~íáîÉ=fÇÉåíáíó= ~ N ~ = ⋅ = = 40. jìäíáéäáÅ~íáîÉ=fåîÉêëÉ= N ~ N ~ = ⋅ I= M ~ ≠ = 41. jìäíáéäáÅ~íáçå=qáãÉë=M M M ~ = ⋅ = 42. `çããìí~íáîÉ=çÑ=jìäíáéäáÅ~íáçå= ~ Ä Ä ~ ⋅ = ⋅ = =
  17. CHAPTER 1. NUMBER SETS 8 43. ^ëëçÅá~íáîÉ=çÑ=jìäíáéäáÅ~íáçå= ( ) ( ) Å Ä ~ Å Ä ~ ⋅ ⋅ = ⋅ ⋅ = 44. aáëíêáÄìíáîÉ=i~ï= ( ) ~Å ~Ä Å Ä ~ + = + = = 45. aÉÑáåáíáçå=çÑ=aáîáëáçå= Ä N ~ Ä ~ ⋅ = = = = = 1.4 Complex Numbers = k~íìê~ä=åìãÄÉêW=å= fã~Öáå~êó=ìåáíW=á= `çãéäÉñ=åìãÄÉêW=ò= oÉ~ä=é~êíW=~I=Å= fã~Öáå~êó=é~êíW=ÄáI=Çá= jçÇìäìë=çÑ=~=ÅçãéäÉñ=åìãÄÉêW=êI= N ê I= O ê = ^êÖìãÉåí=çÑ=~=ÅçãéäÉñ=åìãÄÉêW=ϕ I= N ϕ I= O ϕ = = = á áN = = á áR = = á á N å Q = + = N áO − = = N áS − = = N á O å Q − = + = á áP − = = á áT − = = á á P å Q − = + = 46. N áQ = = N áU = = N á å Q = = = 47. Äá ~ ò + = = = 48. `çãéäÉñ=mä~åÉ= =
  18. CHAPTER 1. NUMBER SETS 9 ===== = = Figure 6. = 49. ( ) ( ) ( ) ( )á Ç Ä Å ~ Çá Å Äá ~ + + + = + + + = = 50. ( ) ( ) ( ) ( )á Ç Ä Å ~ Çá Å Äá ~ − + − = + − + = = 51. ( )( ) ( ) ( )á ÄÅ ~Ç ÄÇ ~Å Çá Å Äá ~ + + − = + + = = 52. á Ç Å ~Ç ÄÅ Ç Å ÄÇ ~Å Çá Å Äá ~ O O O O ⋅ + − + + + = + + = = 53. `çåàìÖ~íÉ=`çãéäÉñ=kìãÄÉêë= Äá ~ Äá ~ ||||||| − = + = = 54. ϕ = Åçë ê ~ I= ϕ = ëáå ê Ä == =
  19. CHAPTER 1. NUMBER SETS 10 = = Figure 7. = 55. mçä~ê=mêÉëÉåí~íáçå=çÑ=`çãéäÉñ=kìãÄÉêë= ( ) ϕ + ϕ = + ëáå á Åçë ê Äá ~ = = 56. jçÇìäìë=~åÇ=^êÖìãÉåí=çÑ=~=`çãéäÉñ=kìãÄÉê= fÑ= Äá ~ + =áë=~=ÅçãéäÉñ=åìãÄÉêI=íÜÉå= O O Ä ~ ê + = =EãçÇìäìëFI== ~ Ä ~êÅí~å = ϕ =E~êÖìãÉåíFK= = 57. mêçÇìÅí=áå=mçä~ê=oÉéêÉëÉåí~íáçå= ( ) ( ) O O O N N N O N ëáå á Åçë ê ëáå á Åçë ê ò ò ϕ + ϕ ⋅ ϕ + ϕ = ⋅ = ( ) ( ) [ ] O N O N O N ëáå á Åçë ê ê ϕ + ϕ + ϕ + ϕ = = = 58. `çåàìÖ~íÉ=kìãÄÉêë=áå=mçä~ê=oÉéêÉëÉåí~íáçå= ( ) ( ) ( ) [ ] ϕ − + ϕ − = ϕ + ϕ ëáå á Åçë ê ëáå á Åçë ê | |||||||||| |||||||||| = = 59. fåîÉêëÉ=çÑ=~=`çãéäÉñ=kìãÄÉê=áå=mçä~ê=oÉéêÉëÉåí~íáçå= ( ) ( ) ( ) [ ] ϕ − + ϕ − = ϕ + ϕ ëáå á Åçë ê N ëáå á Åçë ê N =
  20. CHAPTER 1. NUMBER SETS 11 60. nìçíáÉåí=áå=mçä~ê=oÉéêÉëÉåí~íáçå= ( ) ( ) ( ) ( ) [ ] O N O N O N O O O N N N O N ëáå á Åçë ê ê ëáå á Åçë ê ëáå á Åçë ê ò ò ϕ − ϕ + ϕ − ϕ = ϕ + ϕ ϕ + ϕ = = = 61. mçïÉê=çÑ=~=`çãéäÉñ=kìãÄÉê= ( ) [ ] ( ) ( ) [ ] ϕ + ϕ = ϕ + ϕ = å ëáå á å Åçë ê ëáå á Åçë ê ò å å å = = 62. cçêãìä~=±aÉ=jçáîêÉ≤= ( ) ( ) ( ) ϕ + ϕ = ϕ + ϕ å ëáå á å Åçë ëáå á Åçë å = = 63. kíÜ=oççí=çÑ=~=`çãéäÉñ=kìãÄÉê= ( )       π + ϕ + π + ϕ = ϕ + ϕ = å â O ëáå á å â O Åçë ê ëáå á Åçë ê ò å å å I== ïÜÉêÉ== N å I I O I N I M â − = K K== = 64. bìäÉê∞ë=cçêãìä~= ñ ëáå á ñ Åçë Éáñ + = = = =
  21. 12 Chapter 2 Algebra = = = = 2.1 Factoring Formulas = oÉ~ä=åìãÄÉêëW=~I=ÄI=Å== k~íìê~ä=åìãÄÉêW=å= = = 65. ( )( ) Ä ~ Ä ~ Ä ~ O O − + = − = = 66. ( )( ) O O P P Ä ~Ä ~ Ä ~ Ä ~ + + − = − = = 67. ( )( ) O O P P Ä ~Ä ~ Ä ~ Ä ~ + − + = + = = 68. ( )( ) ( )( )( ) O O O O O O Q Q Ä ~ Ä ~ Ä ~ Ä ~ Ä ~ Ä ~ + + − = + − = − = = 69. ( )( ) Q P O O P Q R R Ä ~Ä Ä ~ Ä ~ ~ Ä ~ Ä ~ + + + + − = − = = 70. ( )( ) Q P O O P Q R R Ä ~Ä Ä ~ Ä ~ ~ Ä ~ Ä ~ + − + − + = + = = 71. fÑ=å=áë=çÇÇI=íÜÉå= ( )( ) N å O å O P å O å N å å å Ä ~Ä Ä ~ Ä ~ ~ Ä ~ Ä ~ − − − − − + − − + − + = + K K== = 72. fÑ=å=áë=ÉîÉåI=íÜÉå== ( )( ) N å O å O P å O å N å å å Ä ~Ä Ä ~ Ä ~ ~ Ä ~ Ä ~ − − − − − + + + + + − = − K I==
  22. CHAPTER 2. ALGEBRA 13 ( )( ) N å O å O P å O å N å å å Ä ~Ä Ä ~ Ä ~ ~ Ä ~ Ä ~ − − − − − − + − + − + = + K K= = = = 2.2 Product Formulas oÉ~ä=åìãÄÉêëW=~I=ÄI=Å== tÜçäÉ=åìãÄÉêëW=åI=â= = = 73. ( ) O O O Ä ~Ä O ~ Ä ~ + − = − = = 74. ( ) O O O Ä ~Ä O ~ Ä ~ + + = + = = 75. ( ) P O O P P Ä ~Ä P Ä ~ P ~ Ä ~ − + − = − = = 76. ( ) P O O P P Ä ~Ä P Ä ~ P ~ Ä ~ + + + = + = = 77. ( ) Q P O O P Q Q Ä ~Ä Q Ä ~ S Ä ~ Q ~ Ä ~ + − + − = − = = 78. ( ) Q P O O P Q Q Ä ~Ä Q Ä ~ S Ä ~ Q ~ Ä ~ + + + + = + = = 79. _áåçãá~ä=cçêãìä~= ( ) I Ä ` ~Ä ` Ä ~ ` Ä ~ ` ~ ` Ä ~ å å å N å N å å O O å O å N å N å å M å å + + + + + = + − − − − K ïÜÉêÉ= ( )> â å > â > å `â å − = =~êÉ=íÜÉ=Äáåçãá~ä=ÅçÉÑÑáÅáÉåíëK= = 80. ( ) ÄÅ O ~Å O ~Ä O Å Ä ~ Å Ä ~ O O O O + + + + + = + + = = 81. ( ) + + + + + + = + + + + + O O O O O O î ì Å Ä ~ î ì Å Ä ~ K K = ( ) ìî Äî Äì ÄÅ ~î ~ì ~Å ~Ä O + + + + + + + + + + + K K K =
  23. CHAPTER 2. ALGEBRA 14 2.3 Powers = _~ëÉë=EéçëáíáîÉ=êÉ~ä=åìãÄÉêëFW=~I=Ä== mçïÉêë=Eê~íáçå~ä=åìãÄÉêëFW=åI=ã= = = 82. å ã å ã ~ ~ ~ + = = = 83. å ã å ã ~ ~ ~ − = = = 84. ( ) ã ã ã Ä ~ ~Ä = = = 85. ã ã ã Ä ~ Ä ~ =       = = 86. ( ) ãå å ã ~ ~ = = = 87. N ~M = I= M ~ ≠ = = 88. N ~N = = = 89. ã ã ~ N ~ = − = = 90. å ã å ã ~ ~ = = = = = = =
  24. CHAPTER 2. ALGEBRA 15 2.4 Roots = _~ëÉëW=~I=Ä== mçïÉêë=Eê~íáçå~ä=åìãÄÉêëFW=åI=ã= M Ä I ~ ≥ =Ñçê=ÉîÉå=êççíë=E â O å = I= k â∈ F= = = 91. å å å Ä ~ ~Ä = = = 92. åã å ã ã å Ä ~ Ä ~ = = = 93. å å å Ä ~ Ä ~ = I= M Ä ≠ = = 94. åã å ã åã å åã ã ã å Ä ~ Ä ~ Ä ~ = = I= M Ä ≠ K= = 95. ( ) å ãé é å ã ~ ~ = = = 96. ( ) ~ ~ å å = = = 97. åé ãé å ã ~ ~ = = = 98. å ã å ã ~ ~ = = = 99. ãå ã å ~ ~ = = = 100. ( ) å ã ã å ~ ~ = = =
  25. CHAPTER 2. ALGEBRA 16 101. ~ ~ ~ N å N å å − = I= M ~ ≠ K= = 102. O Ä ~ ~ O Ä ~ ~ Ä ~ O O − − ± − + = ± = = 103. Ä ~ Ä ~ Ä ~ N − = ± m = = = = 2.5 Logarithms = mçëáíáîÉ=êÉ~ä=åìãÄÉêëW=ñI=óI=~I=ÅI=â= k~íìê~ä=åìãÄÉêW=å== = = 104. aÉÑáåáíáçå=çÑ=içÖ~êáíÜã= ñ äçÖ ó ~ = =áÑ=~åÇ=çåäó=áÑ= ó ~ ñ = I= M ~ > I= N ~ ≠ K= = 105. M N äçÖ~ = = = 106. N ~ äçÖ~ = = = 107.    < ∞ + > ∞ − = N ~ áÑ N ~ áÑ M äçÖ~ = = 108. ( ) ó äçÖ ñ äçÖ ñó äçÖ ~ ~ ~ + = = = 109. ó äçÖ ñ äçÖ ó ñ äçÖ ~ ~ ~ − = =
  26. CHAPTER 2. ALGEBRA 17 110. ( ) ñ äçÖ å ñ äçÖ ~ å ~ = = = 111. ñ äçÖ å N ñ äçÖ ~ å ~ = = = 112. Å äçÖ ñ äçÖ ~ äçÖ ñ äçÖ ñ äçÖ ~ Å Å Å ~ ⋅ = = I= M Å > I= N Å ≠ K= = 113. ~ äçÖ N Å äçÖ Å ~ = = = 114. ñ äçÖ~ ~ ñ = = = 115. içÖ~êáíÜã=íç=_~ëÉ=NM= ñ äçÖ ñ äçÖNM = = = 116. k~íìê~ä=içÖ~êáíÜã= ñ äå ñ äçÖÉ = I== ïÜÉêÉ= K TNUOUNUOU K O â N N äáã É â â =       + = ∞ → = = 117. ñ äå QPQOVQ K M ñ äå NM äå N ñ äçÖ = = = = 118. ñ äçÖ PMORUR K O ñ äçÖ É äçÖ N ñ äå = = = = = = = =
  27. CHAPTER 2. ALGEBRA 18 2.6 Equations = oÉ~ä=åìãÄÉêëW=~I=ÄI=ÅI=éI=èI=ìI=î= pçäìíáçåëW= N ñ I= O ñ I= N ó I= O ó I= P ó = = = 119. iáåÉ~ê=bèì~íáçå=áå=låÉ=s~êá~ÄäÉ= M Ä ~ñ = + I= ~ Ä ñ − = K== = 120. nì~Çê~íáÅ=bèì~íáçå= M Å Äñ ~ñO = + + I= ~ O ~Å Q Ä Ä ñ O O I N − ± − = K= = 121. aáëÅêáãáå~åí= ~Å Q Ä a O − = = = 122. sáÉíÉ∞ë=cçêãìä~ë= fÑ= M è éñ ñO = + + I=íÜÉå==    = − = + è ñ ñ é ñ ñ O N O N K= = 123. M Äñ ~ñO = + I= M ñN = I= ~ Ä ñO − = K= = 124. M Å ~ñO = + I= ~ Å ñ O I N − ± = K= = 125. `ìÄáÅ=bèì~íáçåK=`~êÇ~åç∞ë=cçêãìä~K== M è éó óP = + + I==
  28. CHAPTER 2. ALGEBRA 19 î ì óN + = I= ( ) ( )á î ì O P î ì O N ó P I O + ± + − = I== ïÜÉêÉ== P O O P é O è O è ì       +       + − = I= P O O P é O è O è î       +       − − = K== = = 2.7 Inequalities s~êá~ÄäÉëW=ñI=óI=ò= oÉ~ä=åìãÄÉêëW=    å P O N ~ I I ~ I ~ I ~ Ç I Å I Ä I ~ K I=ãI=å= aÉíÉêãáå~åíëW=aI= ñ a I= ó a I= ò a == = = 126. fåÉèì~äáíáÉëI=fåíÉêî~ä=kçí~íáçåë=~åÇ=dê~éÜë== = fåÉèì~äáíó= fåíÉêî~ä=kçí~íáçå= dê~éÜ= Ä ñ ~ ≤ ≤ = [ ] Ä I ~ = = Ä ñ ~ ≤ < = ( ] Ä I ~ = = Ä ñ ~ < ≤ = [ ) Ä I ~ = = Ä ñ ~ < < = ( ) Ä I ~ = = Ä ñ ≤ < ∞ − I= Ä ñ ≤ = ( ] Ä I ∞ − = = Ä ñ < < ∞ − I= Ä ñ < = ( ) Ä I ∞ − = = ∞ < ≤ ñ ~ I= ~ ñ ≥ = [ ) ∞ I ~ = = ∞ < < ñ ~ I= ~ ñ > = ( ) ∞ I ~ = =
  29. CHAPTER 2. ALGEBRA 20 127. fÑ= Ä ~ > I=íÜÉå= ~ Ä < K= = 128. fÑ= Ä ~ > I=íÜÉå= M Ä ~ > − =çê= M ~ Ä < − K= = 129. fÑ= Ä ~ > I=íÜÉå= Å Ä Å ~ + > + K= = 130. fÑ= Ä ~ > I=íÜÉå= Å Ä Å ~ − > − K= = 131. fÑ= Ä ~ > =~åÇ= Ç Å > I=íÜÉå= Ç Ä Å ~ + > + K= = 132. fÑ= Ä ~ > =~åÇ= Ç Å > I=íÜÉå= Å Ä Ç ~ − > − K= = 133. fÑ= Ä ~ > =~åÇ= M ã > I=íÜÉå= ãÄ ã~ > K= = 134. fÑ= Ä ~ > =~åÇ= M ã > I=íÜÉå= ã Ä ã ~ > K= = 135. fÑ= Ä ~ > =~åÇ= M ã < I=íÜÉå= ãÄ ã~ < K= = 136. fÑ= Ä ~ > =~åÇ= M ã < I=íÜÉå= ã Ä ã ~ < K= = 137. fÑ= Ä ~ M < < =~åÇ= M å > I=íÜÉå= å å Ä ~ < K= = 138. fÑ= Ä ~ M < < =~åÇ= M å < I=íÜÉå= å å Ä ~ > K= = 139. fÑ= Ä ~ M < < I=íÜÉå= å å Ä ~ < K= = 140. O Ä ~ ~Ä + ≤ I== ïÜÉêÉ= M ~ > =I= M Ä > X=~å=Éèì~äáíó=áë=î~äáÇ=çåäó=áÑ= Ä ~ = K== = 141. O ~ N ~ ≥ + I=ïÜÉêÉ= M ~ > X=~å=Éèì~äáíó=í~âÉë=éä~ÅÉ=çåäó=~í= N ~ = K=
  30. CHAPTER 2. ALGEBRA 21 142. å ~ ~ ~ ~ ~ ~ å O N å å O N + + + ≤ K K I=ïÜÉêÉ= M ~ I I ~ I ~ å O N > K K= = 143. fÑ= M Ä ~ñ > + =~åÇ= M ~ > I=íÜÉå= ~ Ä ñ − > K= = 144. fÑ= M Ä ~ñ > + =~åÇ= M ~ < I=íÜÉå= ~ Ä ñ − < K== = 145. M Å Äñ ~ñO > + + = = = M ~ > = M ~ < = = = = M a > = = = N ñ ñ < I= O ñ ñ > = = = = O N ñ ñ ñ < < = = = = M a = = = ñ ñN < I= N ñ ñ > = = = ∅ ∈ ñ = = = = M a< = = = ∞ < < ∞ − ñ = = = = ∅ ∈ ñ = =
  31. CHAPTER 2. ALGEBRA 22 146. Ä ~ Ä ~ + ≤ + = = 147. fÑ= ~ ñ < I=íÜÉå= ~ ñ ~ < < − I=ïÜÉêÉ= M ~ > K= = 148. fÑ= ~ ñ > I=íÜÉå= ~ ñ − < =~åÇ= ~ ñ > I=ïÜÉêÉ= M ~ > K= = 149. fÑ= ~ ñO < I=íÜÉå= ~ ñ < I=ïÜÉêÉ= M ~ > K= = 150. fÑ= ~ ñO > I=íÜÉå= ~ ñ > I=ïÜÉêÉ= M ~ > K= = 151. fÑ= ( ) ( ) M ñ Ö ñ Ñ > I=íÜÉå= ( ) ( ) ( )    ≠ > ⋅ M ñ Ö M ñ Ö ñ Ñ K= = 152. ( ) ( ) M ñ Ö ñ Ñ < I=íÜÉå= ( ) ( ) ( )    ≠ < ⋅ M ñ Ö M ñ Ö ñ Ñ K= = = = 2.8 Compound Interest Formulas = cìíìêÉ=î~äìÉW=^= fåáíá~ä=ÇÉéçëáíW=`= ^ååì~ä=ê~íÉ=çÑ=áåíÉêÉëíW=ê= kìãÄÉê=çÑ=óÉ~êë=áåîÉëíÉÇW=í= kìãÄÉê=çÑ=íáãÉë=ÅçãéçìåÇÉÇ=éÉê=óÉ~êW=å= = = 153. dÉåÉê~ä=`çãéçìåÇ=fåíÉêÉëí=cçêãìä~= åí å ê N ` ^       + = = =
  32. CHAPTER 2. ALGEBRA 23 154. páãéäáÑáÉÇ=`çãéçìåÇ=fåíÉêÉëí=cçêãìä~= fÑ=áåíÉêÉëí=áë=ÅçãéçìåÇÉÇ=çåÅÉ=éÉê=óÉ~êI=íÜÉå=íÜÉ=éêÉîáçìë= Ñçêãìä~=ëáãéäáÑáÉë=íçW= ( )í ê N ` ^ + = K= = 155. `çåíáåìçìë=`çãéçìåÇ=fåíÉêÉëí= fÑ=áåíÉêÉëí=áë=ÅçãéçìåÇÉÇ=Åçåíáåì~ääó=E ∞ → å FI=íÜÉå== êí `É ^ = K= = =
  33. 24 Chapter 3 Geometry = = = = 3.1 Right Triangle = iÉÖë=çÑ=~=êáÖÜí=íêá~åÖäÉW=~I=Ä= eóéçíÉåìëÉW=Å= ^äíáíìÇÉW=Ü= jÉÇá~åëW= ~ ã I= Ä ã I= Å ã = ^åÖäÉëW=α Iβ = o~Çáìë=çÑ=ÅáêÅìãëÅêáÄÉÇ=ÅáêÅäÉW=o= o~Çáìë=çÑ=áåëÅêáÄÉÇ=ÅáêÅäÉW=ê= ^êÉ~W=p= = = = = Figure 8. = 156. ° = β + α VM = =
  34. CHAPTER 3. GEOMETRY 25 157. β = = α Åçë Å ~ ëáå = = 158. β = = α ëáå Å Ä Åçë = = 159. β = = α Åçí Ä ~ í~å = = 160. β = = α í~å ~ Ä Åçí = = 161. β = = α ÉÅ Åçë Ä Å ëÉÅ = = 162. β = = α ëÉÅ ~ Å ÉÅ Åçë = = 163. móíÜ~ÖçêÉ~å=qÜÉçêÉã= O O O Å Ä ~ = + = = 164. ÑÅ ~O = I= ÖÅ ÄO = I== ïÜÉêÉ= Ñ= ~åÇ= Å= ~êÉ= éêçàÉÅíáçåë= çÑ= íÜÉ= äÉÖë= ~= ~åÇ= ÄI= êÉëéÉÅ- íáîÉäóI=çåíç=íÜÉ=ÜóéçíÉåìëÉ=ÅK= = ===== = = Figure 9. =
  35. CHAPTER 3. GEOMETRY 26 165. ÑÖ ÜO = I=== ïÜÉêÉ=Ü=áë=íÜÉ=~äíáíìÇÉ=Ñêçã=íÜÉ=êáÖÜí=~åÖäÉK== = 166. Q ~ Ä ã O O O ~ − = I= Q Ä ~ ã O O O Ä − = I=== ïÜÉêÉ= ~ ã =~åÇ= Ä ã =~êÉ=íÜÉ=ãÉÇá~åë=íç=íÜÉ=äÉÖë=~=~åÇ=ÄK== = = = Figure 10. = 167. O Å ãÅ = I== ïÜÉêÉ= Å ã =áë=íÜÉ=ãÉÇá~å=íç=íÜÉ=ÜóéçíÉåìëÉ=ÅK= = 168. Å ã O Å o = = = = 169. Å Ä ~ ~Ä O Å Ä ~ ê + + = − + = = = 170. ÅÜ ~Ä = = = =
  36. CHAPTER 3. GEOMETRY 27 171. O ÅÜ O ~Ä p = = = = = = 3.2 Isosceles Triangle = _~ëÉW=~= iÉÖëW=Ä= _~ëÉ=~åÖäÉW=β = sÉêíÉñ=~åÖäÉW=α = ^äíáíìÇÉ=íç=íÜÉ=Ä~ëÉW=Ü= mÉêáãÉíÉêW=i= ^êÉ~W=p= = = = = Figure 11. = 172. O VM α − ° = β = = 173. Q ~ Ä Ü O O O − = =
  37. CHAPTER 3. GEOMETRY 28 174. Ä O ~ i + = = = 175. α = = ëáå O Ä O ~Ü p O = = = = 3.3 Equilateral Triangle = páÇÉ=çÑ=~=Éèìáä~íÉê~ä=íêá~åÖäÉW=~= ^äíáíìÇÉW=Ü= o~Çáìë=çÑ=ÅáêÅìãëÅêáÄÉÇ=ÅáêÅäÉW=o= o~Çáìë=çÑ=áåëÅêáÄÉÇ=ÅáêÅäÉW=ê= mÉêáãÉíÉêW=i= ^êÉ~W=p= = = = = Figure 12. = 176. O P ~ Ü = = =
  38. CHAPTER 3. GEOMETRY 29 177. P P ~ Ü P O o = = = = 178. O o S P ~ Ü P N ê = = = = = 179. ~ P i = = = 180. Q P ~ O ~Ü p O = = = = = = 3.4 Scalene Triangle E^=íêá~åÖäÉ=ïáíÜ=åç=íïç=ëáÇÉë=Éèì~äF= = = páÇÉë=çÑ=~=íêá~åÖäÉW=~I=ÄI=Å= pÉãáéÉêáãÉíÉêW= O Å Ä ~ é + + = == ^åÖäÉë=çÑ=~=íêá~åÖäÉW= γ β α I I = ^äíáíìÇÉë=íç=íÜÉ=ëáÇÉë=~I=ÄI=ÅW= Å Ä ~ Ü I Ü I Ü = jÉÇá~åë=íç=íÜÉ=ëáÇÉë=~I=ÄI=ÅW= Å Ä ~ ã I ã I ã = _áëÉÅíçêë=çÑ=íÜÉ=~åÖäÉë= γ β α I I W= Å Ä ~ í I í I í = o~Çáìë=çÑ=ÅáêÅìãëÅêáÄÉÇ=ÅáêÅäÉW=o= o~Çáìë=çÑ=áåëÅêáÄÉÇ=ÅáêÅäÉW=ê= ^êÉ~W=p= = =
  39. CHAPTER 3. GEOMETRY 30 ===== = = Figure 13. = 181. ° = γ + β + α NUM = = 182. Å Ä ~ > + I== ~ Å Ä > + I== Ä Å ~ > + K= = 183. Å Ä ~ < − I== ~ Å Ä < − I== Ä Å ~ < − K= = 184. jáÇäáåÉ= O ~ è = I= ~ öö è K= = ===== = = Figure 14. =
  40. CHAPTER 3. GEOMETRY 31 185. i~ï=çÑ=`çëáåÉë= α − + = Åçë ÄÅ O Å Ä ~ O O O I= β − + = Åçë ~Å O Å ~ Ä O O O I= γ − + = Åçë ~Ä O Ä ~ Å O O O K= = 186. i~ï=çÑ=páåÉë= o O ëáå Å ëáå Ä ëáå ~ = γ = β = α I== ïÜÉêÉ=o=áë=íÜÉ=ê~Çáìë=çÑ=íÜÉ=ÅáêÅìãëÅêáÄÉÇ=ÅáêÅäÉK== = 187. p Q ~ÄÅ Ü O ~Ä Ü O ~Å Ü O ÄÅ ëáå O Å ëáå O Ä ëáå O ~ o Å Ä ~ = = = = γ = β = α = = = 188. ( )( )( ) é Å é Ä é ~ é êO − − − = I== Å Ä ~ Ü N Ü N Ü N ê N + + = K= = 189. ( )( ) ÄÅ Å é Ä é O ëáå − − = α I= ( ) ÄÅ ~ é é O Åçë − = α I= ( )( ) ( ) ~ é é Å é Ä é O í~å − − − = α K= = 190. ( )( )( ) Å é Ä é ~ é é ~ O Ü~ − − − = I= ( )( )( ) Å é Ä é ~ é é Ä O ÜÄ − − − = I= ( )( )( ) Å é Ä é ~ é é Å O ÜÅ − − − = K=
  41. CHAPTER 3. GEOMETRY 32 191. β = γ = ëáå Å ëáå Ä Ü~ I= α = γ = ëáå Å ëáå ~ ÜÄ I= α = β = ëáå Ä ëáå ~ ÜÅ K= = 192. Q ~ O Å Ä ã O O O O ~ − + = I== Q Ä O Å ~ ã O O O O Ä − + = I== Q Å O Ä ~ ã O O O O Å − + = K= = ===== = = Figure 15. = 193. ~ ã P O ^j = I= Ä ã P O _j = I= Å ã P O `j = =EcáÖKNRFK= = 194. ( ) ( )O O ~ Å Ä ~ é ÄÅé Q í + − = I== ( ) ( )O O Ä Å ~ Ä é ~Åé Q í + − = I== ( ) ( )O O Å Ä ~ Å é ~Äé Q í + − = K= =
  42. CHAPTER 3. GEOMETRY 33 195. O ÅÜ O ÄÜ O ~Ü p Å Ä ~ = = = I== O ëáå ÄÅ O ëáå ~Å O ëáå ~Ä p α = β = γ = I== ( )( )( ) Å é Ä é ~ é é p − − − = =EeÉêçå∞ë=cçêãìä~FI= éê p = I== o Q ~ÄÅ p = I= γ β α = ëáå ëáå ëáå o O p O I= O í~å O í~å O í~å é p O γ β α = K= = = = 3.5 Square páÇÉ=çÑ=~=ëèì~êÉW=~= aá~Öçå~äW=Ç= o~Çáìë=çÑ=ÅáêÅìãëÅêáÄÉÇ=ÅáêÅäÉW=o= o~Çáìë=çÑ=áåëÅêáÄÉÇ=ÅáêÅäÉW=ê= mÉêáãÉíÉêW=i= ^êÉ~W=p= = = = Figure 16.
  43. CHAPTER 3. GEOMETRY 34 196. O ~ Ç = == = 197. O O ~ O Ç o = = = = 198. O ~ ê = = = 199. ~ Q i = = = 200. O ~ p = = = = = 3.6 Rectangle = páÇÉë=çÑ=~=êÉÅí~åÖäÉW=~I=Ä= aá~Öçå~äW=Ç= o~Çáìë=çÑ=ÅáêÅìãëÅêáÄÉÇ=ÅáêÅäÉW=o= mÉêáãÉíÉêW=i= ^êÉ~W=p= = = = = Figure 17. = 201. O O Ä ~ Ç + = ==
  44. CHAPTER 3. GEOMETRY 35 202. O Ç o = = = 203. ( ) Ä ~ O i + = = = 204. ~Ä p = = = = = 3.7 Parallelogram = páÇÉë=çÑ=~=é~ê~ääÉäçÖê~ãW=~I=Ä= aá~Öçå~äëW= O N Ç I Ç = `çåëÉÅìíáîÉ=~åÖäÉëW= β αI = ^åÖäÉ=ÄÉíïÉÉå=íÜÉ=Çá~Öçå~äëW=ϕ = ^äíáíìÇÉW=Ü== mÉêáãÉíÉêW=i= ^êÉ~W=p= = = ===== = = Figure 18. = 205. ° = β + α NUM = = 206. ( ) O O O O O N Ä ~ O Ç Ç + = + = =
  45. CHAPTER 3. GEOMETRY 36 207. β = α = ëáå Ä ëáå Ä Ü = = 208. ( ) Ä ~ O i + = = = 209. α = = ëáå ~Ä ~Ü p I== ϕ = ëáå Ç Ç O N p O N K= = = = 3.8 Rhombus = páÇÉ=çÑ=~=êÜçãÄìëW=~= aá~Öçå~äëW= O N Ç I Ç = `çåëÉÅìíáîÉ=~åÖäÉëW= β αI = ^äíáíìÇÉW=e= o~Çáìë=çÑ=áåëÅêáÄÉÇ=ÅáêÅäÉW=ê= mÉêáãÉíÉêW=i= ^êÉ~W=p= = = ===== = = Figure 19. =
  46. CHAPTER 3. GEOMETRY 37 210. ° = β + α NUM = = 211. O O O O N ~ Q Ç Ç = + = = 212. ~ O Ç Ç ëáå ~ Ü O N = α = = = 213. O ëáå ~ ~ Q Ç Ç O Ü ê O N α = = = = = 214. ~ Q i = = = 215. α = = ëáå ~ ~Ü p O I== O NÇ Ç O N p = K= = = = 3.9 Trapezoid = _~ëÉë=çÑ=~=íê~éÉòçáÇW=~I=Ä= jáÇäáåÉW=è= ^äíáíìÇÉW=Ü= ^êÉ~W=p= = =
  47. CHAPTER 3. GEOMETRY 38 = = Figure 20. = 216. O Ä ~ è + = = = 217. èÜ Ü O Ä ~ p = ⋅ + = = = = = 3.10 Isosceles Trapezoid = _~ëÉë=çÑ=~=íê~éÉòçáÇW=~I=Ä= iÉÖW=Å= jáÇäáåÉW=è= ^äíáíìÇÉW=Ü= aá~Öçå~äW=Ç= o~Çáìë=çÑ=ÅáêÅìãëÅêáÄÉÇ=ÅáêÅäÉW=o= ^êÉ~W=p= = =
  48. CHAPTER 3. GEOMETRY 39 = = Figure 21. = 218. O Ä ~ è + = = = 219. O Å ~Ä Ç + = = = 220. ( )O O ~ Ä Q N Å Ü − − = = = 221. ( )( ) Ä ~ Å O Ä ~ Å O Å ~Ä Å o O − + + − + = = = 222. èÜ Ü O Ä ~ p = ⋅ + = = = = = = = =
  49. CHAPTER 3. GEOMETRY 40 3.11 Isosceles Trapezoid with Inscribed Circle = _~ëÉë=çÑ=~=íê~éÉòçáÇW=~I=Ä= iÉÖW=Å= jáÇäáåÉW=è= ^äíáíìÇÉW=Ü= aá~Öçå~äW=Ç= o~Çáìë=çÑ=áåëÅêáÄÉÇ=ÅáêÅäÉW=o= o~Çáìë=çÑ=ÅáêÅìãëÅêáÄÉÇ=ÅáêÅäÉW=ê= mÉêáãÉíÉêW=i= ^êÉ~W=p= = = = = Figure 22. = 223. Å O Ä ~ = + = = 224. Å O Ä ~ è = + = = = 225. O O O Å Ü Ç + = = =
  50. CHAPTER 3. GEOMETRY 41 226. O ~Ä O Ü ê = = = = 227. ~ Ä S Ä ~ U Ä ~ Å Ü Ü O Å ~Ä Å N O Å ê Q ÅÇ Ü O ÅÇ o O O O + + + = + = + = = = = = 228. ( ) Å Q Ä ~ O i = + = = = 229. ( ) O iê ÅÜ èÜ O ~Ä Ä ~ Ü O Ä ~ p = = = + = ⋅ + = == = = = 3.12 Trapezoid with Inscribed Circle = _~ëÉë=çÑ=~=íê~éÉòçáÇW=~I=Ä= i~íÉê~ä=ëáÇÉëW=ÅI=Ç= jáÇäáåÉW=è= ^äíáíìÇÉW=Ü= aá~Öçå~äëW= O N Ç I Ç = ^åÖäÉ=ÄÉíïÉÉå=íÜÉ=Çá~Öçå~äëW=ϕ = o~Çáìë=çÑ=áåëÅêáÄÉÇ=ÅáêÅäÉW=ê= o~Çáìë=çÑ=ÅáêÅìãëÅêáÄÉÇ=ÅáêÅäÉW=o= mÉêáãÉíÉêW=i= ^êÉ~W=p= =
  51. CHAPTER 3. GEOMETRY 42 = = Figure 23. = 230. Ç Å Ä ~ + = + = = 231. O Ç Å O Ä ~ è + = + = = = 232. ( ) ( ) Ç Å O Ä ~ O i + = + = = = 233. èÜ Ü O Ç Å Ü O Ä ~ p = ⋅ + = ⋅ + = I== ϕ = ëáå Ç Ç O N p O N K= = = = 3.13 Kite = páÇÉë=çÑ=~=âáíÉW=~I=Ä= aá~Öçå~äëW= O N Ç I Ç = ^åÖäÉëW= γ β α I I = mÉêáãÉíÉêW=i= ^êÉ~W=p= = =
  52. CHAPTER 3. GEOMETRY 43 = = Figure 24. = 234. ° = γ + β + α PSM O = = 235. ( ) Ä ~ O i + = = = 236. O Ç Ç p O N = = = = = 3.14 Cyclic Quadrilateral páÇÉë=çÑ=~=èì~Çêáä~íÉê~äW=~I=ÄI=ÅI=Ç= aá~Öçå~äëW= O N Ç I Ç = ^åÖäÉ=ÄÉíïÉÉå=íÜÉ=Çá~Öçå~äëW=ϕ = fåíÉêå~ä=~åÖäÉëW= δ γ β α I I I = o~Çáìë=çÑ=ÅáêÅìãëÅêáÄÉÇ=ÅáêÅäÉW=o= mÉêáãÉíÉêW=i= pÉãáéÉêáãÉíÉêW=é== ^êÉ~W=p=
  53. CHAPTER 3. GEOMETRY 44 = = Figure 25. = 237. ° = δ + β = γ + α NUM = = 238. míçäÉãó∞ë=qÜÉçêÉã= O NÇ Ç ÄÇ ~Å = + = = 239. Ç Å Ä ~ i + + + = = = 240. ( )( )( ) ( )( )( )( ) Ç é Å é Ä é ~ é ÅÇ ~Ä ÄÅ ~Ç ÄÇ ~Å Q N o − − − − + + + = I== ïÜÉêÉ= O i é = K= = 241. ϕ = ëáå Ç Ç O N p O N I== ( )( )( )( ) Ç é Å é Ä é ~ é p − − − − = I== ïÜÉêÉ= O i é = K= = = =
  54. CHAPTER 3. GEOMETRY 45 3.15 Tangential Quadrilateral = páÇÉë=çÑ=~=èì~Çêáä~íÉê~äW=~I=ÄI=ÅI=Ç= aá~Öçå~äëW= O N Ç I Ç = ^åÖäÉ=ÄÉíïÉÉå=íÜÉ=Çá~Öçå~äëW=ϕ = o~Çáìë=çÑ=áåëÅêáÄÉÇ=ÅáêÅäÉW=ê= mÉêáãÉíÉêW=i= pÉãáéÉêáãÉíÉêW=é== ^êÉ~W=p= = = = = Figure 26. = 242. Ç Ä Å ~ + = + = = 243. ( ) ( ) Ç Ä O Å ~ O Ç Å Ä ~ i + = + = + + + = = = 244. ( ) ( ) é O é Ä ~ Ä ~ Ç Ç ê O O O O O N − + − − = I== ïÜÉêÉ= O i é = K== =
  55. CHAPTER 3. GEOMETRY 46 245. ϕ = = ëáå Ç Ç O N éê p O N = = = = 3.16 General Quadrilateral = páÇÉë=çÑ=~=èì~Çêáä~íÉê~äW=~I=ÄI=ÅI=Ç= aá~Öçå~äëW= O N Ç I Ç = ^åÖäÉ=ÄÉíïÉÉå=íÜÉ=Çá~Öçå~äëW=ϕ = fåíÉêå~ä=~åÖäÉëW= δ γ β α I I I = mÉêáãÉíÉêW=i= ^êÉ~W=p= = = ======= = = Figure 27. = 246. ° = δ + γ + β + α PSM = = 247. Ç Å Ä ~ i + + + = = =
  56. CHAPTER 3. GEOMETRY 47 248. ϕ = ëáå Ç Ç O N p O N = = = = 3.17 Regular Hexagon = páÇÉW=~= fåíÉêå~ä=~åÖäÉW=α = pä~åí=ÜÉáÖÜíW=ã= o~Çáìë=çÑ=áåëÅêáÄÉÇ=ÅáêÅäÉW=ê= o~Çáìë=çÑ=ÅáêÅìãëÅêáÄÉÇ=ÅáêÅäÉW=o= mÉêáãÉíÉêW=i= pÉãáéÉêáãÉíÉêW=é== ^êÉ~W=p= = = = = Figure 28. = 249. ° = α NOM = = 250. O P ~ ã ê = = =
  57. CHAPTER 3. GEOMETRY 48 251. ~ o = = = 252. ~ S i = = = 253. O P P ~ éê p O = = I== ïÜÉêÉ= O i é = K= = = = 3.18 Regular Polygon = páÇÉW=~= kìãÄÉê=çÑ=ëáÇÉëW=å= fåíÉêå~ä=~åÖäÉW=α = pä~åí=ÜÉáÖÜíW=ã= o~Çáìë=çÑ=áåëÅêáÄÉÇ=ÅáêÅäÉW=ê= o~Çáìë=çÑ=ÅáêÅìãëÅêáÄÉÇ=ÅáêÅäÉW=o= mÉêáãÉíÉêW=i= pÉãáéÉêáãÉíÉêW=é== ^êÉ~W=p= = =
  58. CHAPTER 3. GEOMETRY 49 = = Figure 29. = 254. ° ⋅ − = α NUM O O å = = 255. ° ⋅ − = α NUM O O å = = 256. å ëáå O ~ o π = = = 257. Q ~ o å í~å O ~ ã ê O O − = π = = = = 258. å~ i = = = 259. å O ëáå O åo p O π = I== Q ~ o é éê p O O − = = I==
  59. CHAPTER 3. GEOMETRY 50 ïÜÉêÉ= O i é = K== = = = 3.19 Circle = o~ÇáìëW=o= aá~ãÉíÉêW=Ç= `ÜçêÇW=~= pÉÅ~åí=ëÉÖãÉåíëW=ÉI=Ñ= q~åÖÉåí=ëÉÖãÉåíW=Ö= `Éåíê~ä=~åÖäÉW=α = fåëÅêáÄÉÇ=~åÖäÉW=β = mÉêáãÉíÉêW=i= ^êÉ~W=p= = = 260. O ëáå o O ~ α = = = = = Figure 30. =
  60. CHAPTER 3. GEOMETRY 51 261. O N O N Ä Ä ~ ~ = = = = = Figure 31. = 262. N N ÑÑ ÉÉ = = = ===== = = Figure 32. = 263. N O ÑÑ Ö = = =
  61. CHAPTER 3. GEOMETRY 52 ===== = = Figure 33. = 264. O α = β = = = = Figure 34. = 265. Ç o O i π = π = = = 266. O io Q Ç o p O O = π = π = == =
  62. CHAPTER 3. GEOMETRY 53 3.20 Sector of a Circle = o~Çáìë=çÑ=~=ÅáêÅäÉW=o= ^êÅ=äÉåÖíÜW=ë= `Éåíê~ä=~åÖäÉ=Eáå=ê~Çá~åëFW=ñ= `Éåíê~ä=~åÖäÉ=Eáå=ÇÉÖêÉÉëFW=α= mÉêáãÉíÉêW=i= ^êÉ~W=p= = = = = Figure 35. = 267. oñ ë = = = 268. ° α π = NUM o ë = = 269. o O ë i + = = = 270. ° α π = = = PSM o O ñ o O oë p O O == = =
  63. CHAPTER 3. GEOMETRY 54 3.21 Segment of a Circle = o~Çáìë=çÑ=~=ÅáêÅäÉW=o= ^êÅ=äÉåÖíÜW=ë= `ÜçêÇW=~= `Éåíê~ä=~åÖäÉ=Eáå=ê~Çá~åëFW=ñ= `Éåíê~ä=~åÖäÉ=Eáå=ÇÉÖêÉÉëFW=α= eÉáÖÜí=çÑ=íÜÉ=ëÉÖãÉåíW=Ü= mÉêáãÉíÉêW=i= ^êÉ~W=p= = = = = Figure 36. = 271. O Ü Üo O O ~ − = = = 272. O O ~ o Q O N o Ü − − = I= o Ü < = = 273. ~ ë i + = = =
  64. CHAPTER 3. GEOMETRY 55 274. ( ) [ ] ( ) ñ ëáå ñ O o ëáå NUM O o Ü o ~ ëo O N p O O − =       α − ° απ = − − = I== Ü~ P O p ≈ K= = = = 3.22 Cube = bÇÖÉW=~== aá~Öçå~äW=Ç= o~Çáìë=çÑ=áåëÅêáÄÉÇ=ëéÜÉêÉW=ê= o~Çáìë=çÑ=ÅáêÅìãëÅêáÄÉÇ=ëéÜÉêÉW=ê= pìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = = === = = Figure 37. = 275. P ~ Ç = = = 276. O ~ ê = = =
  65. CHAPTER 3. GEOMETRY 56 277. O P ~ o = = = 278. O ~ S p = = = 279. P ~ s = == = = = 3.23 Rectangular Parallelepiped = bÇÖÉëW=~I=ÄI=Å== aá~Öçå~äW=Ç= pìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = = ===== = = Figure 38. = 280. O O O Å Ä ~ Ç + + = = = 281. ( ) ÄÅ ~Å ~Ä O p + + = = = 282. ~ÄÅ s = ==
  66. CHAPTER 3. GEOMETRY 57 3.24 Prism = i~íÉê~ä=ÉÇÖÉW=ä= eÉáÖÜíW=Ü= i~íÉê~ä=~êÉ~W= i p = ^êÉ~=çÑ=Ä~ëÉW= _ p = qçí~ä=ëìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = = ===== = = Figure 39. = 283. _ i p O p p + = K== = 284. i~íÉê~ä=^êÉ~=çÑ=~=oáÖÜí=mêáëã= ( )ä ~ ~ ~ ~ p å P O N i + + + + = K = = 285. i~íÉê~ä=^êÉ~=çÑ=~å=lÄäáèìÉ=mêáëã= éä pi = I== ïÜÉêÉ=é=áë=íÜÉ=éÉêáãÉíÉê=çÑ=íÜÉ=Åêçëë=ëÉÅíáçåK= =
  67. CHAPTER 3. GEOMETRY 58 286. Ü p s _ = = = 287. `~î~äáÉêáDë=mêáåÅáéäÉ== dáîÉå=íïç=ëçäáÇë=áåÅäìÇÉÇ=ÄÉíïÉÉå=é~ê~ääÉä=éä~åÉëK=fÑ=ÉîÉêó= éä~åÉ=Åêçëë=ëÉÅíáçå=é~ê~ääÉä=íç=íÜÉ=ÖáîÉå=éä~åÉë=Ü~ë=íÜÉ=ë~ãÉ= ~êÉ~=áå=ÄçíÜ=ëçäáÇëI=íÜÉå=íÜÉ=îçäìãÉë=çÑ=íÜÉ=ëçäáÇë=~êÉ=Éèì~äK= = = = 3.25 Regular Tetrahedron = qêá~åÖäÉ=ëáÇÉ=äÉåÖíÜW=~= eÉáÖÜíW=Ü= ^êÉ~=çÑ=Ä~ëÉW= _ p = pìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = = = = Figure 40. = 288. ~ P O Ü = = =
  68. CHAPTER 3. GEOMETRY 59 289. Q ~ P p O _ = = = 290. O ~ P p = = = 291. O S ~ Ü p P N s P _ = = K== = = = 3.26 Regular Pyramid = páÇÉ=çÑ=Ä~ëÉW=~= i~íÉê~ä=ÉÇÖÉW=Ä= eÉáÖÜíW=Ü= pä~åí=ÜÉáÖÜíW=ã== kìãÄÉê=çÑ=ëáÇÉëW=å== pÉãáéÉêáãÉíÉê=çÑ=Ä~ëÉW=é= o~Çáìë=çÑ=áåëÅêáÄÉÇ=ëéÜÉêÉ=çÑ=Ä~ëÉW=ê= ^êÉ~=çÑ=Ä~ëÉW= _ p = i~íÉê~ä=ëìêÑ~ÅÉ=~êÉ~W= i p = qçí~ä=ëìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = =
  69. CHAPTER 3. GEOMETRY 60 = = Figure 41. = 292. Q ~ Ä ã O O − = = = 293. å ëáå O ~ å ëáå Ä Q Ü O O O π − π = = = 294. éã ~ Ä Q å~ Q N å~ã O N p O O i = − = = = = 295. éê p_ = = = 296. i _ p p p + = = = 297. éêÜ P N Ü p P N s _ = = == = = =
  70. CHAPTER 3. GEOMETRY 61 3.27 Frustum of a Regular Pyramid = _~ëÉ=~åÇ=íçé=ëáÇÉ=äÉåÖíÜëW=    å P O N å P O N Ä I I Ä I Ä I Ä ~ I I ~ I ~ I ~ K K = eÉáÖÜíW=Ü= pä~åí=ÜÉáÖÜíW=ã== ^êÉ~=çÑ=Ä~ëÉëW= N p I= O p = i~íÉê~ä=ëìêÑ~ÅÉ=~êÉ~W= i p = mÉêáãÉíÉê=çÑ=Ä~ëÉëW= N m I= O m = pÅ~äÉ=Ñ~ÅíçêW=â= qçí~ä=ëìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = = = = Figure 42. = 298. â ~ Ä ~ Ä ~ Ä ~ Ä ~ Ä å å P P O O N N = = = = = = K = =
  71. CHAPTER 3. GEOMETRY 62 299. O N O â p p = = = 300. ( ) O m m ã p O N i + = = = 301. O N i p p p p + + = = = 302. ( ) O O N N p p p p P Ü s + + = = = 303. [ ] O N O N â â N P Üp ~ Ä ~ Ä N P Üp s + + =               + + = = = = = 3.28 Rectangular Right Wedge = páÇÉë=çÑ=Ä~ëÉW=~I=Ä= qçé=ÉÇÖÉW=Å= eÉáÖÜíW=Ü= i~íÉê~ä=ëìêÑ~ÅÉ=~êÉ~W= i p = ^êÉ~=çÑ=Ä~ëÉW= _ p = qçí~ä=ëìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = =
  72. CHAPTER 3. GEOMETRY 63 = = Figure 43. = 304. ( ) ( )O O O O i Å ~ Ü Ä Ä Ü Q Å ~ O N p − + + + + = = = 305. ~Ä p_ = = = 306. i _ p p p + = = = 307. ( ) Å ~ O S ÄÜ s + = = = = = 3.29 Platonic Solids = bÇÖÉW=~= o~Çáìë=çÑ=áåëÅêáÄÉÇ=ÅáêÅäÉW=ê= o~Çáìë=çÑ=ÅáêÅìãëÅêáÄÉÇ=ÅáêÅäÉW=o= pìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = =
  73. CHAPTER 3. GEOMETRY 64 308. cáîÉ=mä~íçåáÅ=pçäáÇë= qÜÉ= éä~íçåáÅ= ëçäáÇë= ~êÉ= ÅçåîÉñ= éçäóÜÉÇê~= ïáíÜ= Éèìáî~äÉåí= Ñ~ÅÉë=ÅçãéçëÉÇ=çÑ=ÅçåÖêìÉåí=ÅçåîÉñ=êÉÖìä~ê=éçäóÖçåëK== = pçäáÇ= kìãÄÉê= çÑ=sÉêíáÅÉë kìãÄÉê= çÑ=bÇÖÉë= kìãÄÉê= çÑ=c~ÅÉë= pÉÅíáçå= qÉíê~ÜÉÇêçå== Q= S= Q= PKOR= `ìÄÉ= U= NO= S= PKOO= lÅí~ÜÉÇêçå= S= NO= U= PKOT= fÅçë~ÜÉÇêçå= NO= PM= OM= PKOT= açÇÉÅ~ÜÉÇêçå= OM= PM= NO= PKOT= = = Octahedron = = = Figure 44. = 309. S S ~ ê = = = 310. O O ~ o = = =
  74. CHAPTER 3. GEOMETRY 65 311. P ~ O p O = = = 312. P O ~ s P = = = = Icosahedron = = = Figure 45. = 313. ( ) NO R P P ~ ê + = = = 314. ( ) R R O Q ~ o + = = = 315. P ~ R p O = = = 316. ( ) NO R P ~ R s P + = = = =
  75. CHAPTER 3. GEOMETRY 66 Dodecahedron = = = Figure 46. = 317. ( ) O R NN OR NM ~ ê + = = = 318. ( ) Q R N P ~ o + = = = 319. ( ) R O R R ~ P p O + = = = 320. ( ) Q R T NR ~ s P + = = = = = 3.30 Right Circular Cylinder = o~Çáìë=çÑ=Ä~ëÉW=o= aá~ãÉíÉê=çÑ=Ä~ëÉW=Ç=
  76. CHAPTER 3. GEOMETRY 67 eÉáÖÜíW=e= i~íÉê~ä=ëìêÑ~ÅÉ=~êÉ~W= i p = ^êÉ~=çÑ=Ä~ëÉW= _ p = qçí~ä=ëìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = = ===== = = Figure 47. = 321. oe O pi π = = = 322. ( )       + π = + π = + = O Ç e Ç o e o O p O p p _ i = = 323. e o e p s O _ π = = = = = =
  77. CHAPTER 3. GEOMETRY 68 3.31 Right Circular Cylinder with an Oblique Plane Face = o~Çáìë=çÑ=Ä~ëÉW=o= qÜÉ=ÖêÉ~íÉëí=ÜÉáÖÜí=çÑ=~=ëáÇÉW= N Ü = qÜÉ=ëÜçêíÉëí=ÜÉáÖÜí=çÑ=~=ëáÇÉW= O Ü = i~íÉê~ä=ëìêÑ~ÅÉ=~êÉ~W= i p = ^êÉ~=çÑ=éä~åÉ=ÉåÇ=Ñ~ÅÉëW= _ p = qçí~ä=ëìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = = = = Figure 48. = 324. ( ) O N i Ü Ü o p + π = = = 325. O O N O O _ O Ü Ü o o o p       − + π + π = = =
  78. CHAPTER 3. GEOMETRY 69 326.               − + + + + π = + = O O N O O N _ i O Ü Ü o o Ü Ü o p p p = = 327. ( ) O N O Ü Ü O o s + π = = = = = 3.32 Right Circular Cone o~Çáìë=çÑ=Ä~ëÉW=o= aá~ãÉíÉê=çÑ=Ä~ëÉW=Ç= eÉáÖÜíW=e= pä~åí=ÜÉáÖÜíW=ã= i~íÉê~ä=ëìêÑ~ÅÉ=~êÉ~W= i p = ^êÉ~=çÑ=Ä~ëÉW= _ p = qçí~ä=ëìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = = = = Figure 49.
  79. CHAPTER 3. GEOMETRY 70 328. O O o ã e − = = = 329. O ãÇ oã pi π = π = = = 330. O _ o p π = = = 331. ( )       + π = + π = + = O Ç ã Ç O N o ã o p p p _ i = = 332. e o P N e p P N s O _ π = = = = = = 3.33 Frustum of a Right Circular Cone = o~Çáìë=çÑ=Ä~ëÉëW=oI=ê= eÉáÖÜíW=e= pä~åí=ÜÉáÖÜíW=ã= pÅ~äÉ=Ñ~ÅíçêW=â= ^êÉ~=çÑ=Ä~ëÉëW= N p I= O p = i~íÉê~ä=ëìêÑ~ÅÉ=~êÉ~W= i p = qçí~ä=ëìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = =
  80. CHAPTER 3. GEOMETRY 71 = = Figure 50. = 333. ( )O O ê o ã e − − = = = 334. â ê o = = = 335. O O O N O â ê o p p = = = = 336. ( ) ê o ã pi + π = = = 337. ( ) [ ] ê o ã ê o p p p p O O i O N + + + π = + + = = = 338. ( ) O O N N p p p p P Ü s + + = = = 339. [ ] O N O N â â N P Üp ê o ê o N P Üp s + + =               + + = = = = =
  81. CHAPTER 3. GEOMETRY 72 3.34 Sphere = o~ÇáìëW=o= aá~ãÉíÉêW=Ç= pìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = = = Figure 51. = 340. O o Q p π = = = 341. po P N Ç S N e o P Q s P P = π = π = = = = = 3.35 Spherical Cap o~Çáìë=çÑ=ëéÜÉêÉW=o= o~Çáìë=çÑ=Ä~ëÉW=ê= eÉáÖÜíW=Ü= ^êÉ~=çÑ=éä~åÉ=Ñ~ÅÉW= _ p = ^êÉ~=çÑ=ëéÜÉêáÅ~ä=Å~éW= ` p = qçí~ä=ëìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s=
  82. CHAPTER 3. GEOMETRY 73 = = Figure 52. = 342. Ü O Ü ê o O O + = = = 343. O _ ê p π = = = 344. ( ) O O ` ê Ü p + π = = = 345. ( ) ( ) O O O ` _ ê oÜ O ê O Ü p p p + π = + π = + = = = 346. ( ) ( ) O O O Ü ê P Ü S Ü o P Ü S s + π = − π = = = = = 3.36 Spherical Sector = o~Çáìë=çÑ=ëéÜÉêÉW=o= o~Çáìë=çÑ=Ä~ëÉ=çÑ=ëéÜÉêáÅ~ä=Å~éW=ê= eÉáÖÜíW=Ü= qçí~ä=ëìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= =
  83. CHAPTER 3. GEOMETRY 74 ====== === = = Figure 53. = 347. ( ) ê Ü O o p + π = = = 348. Ü o P O s O π = = = kçíÉW=qÜÉ=ÖáîÉå=Ñçêãìä~ë=~êÉ=ÅçêêÉÅí=ÄçíÜ=Ñçê=±çéÉå≤=~åÇ= ±ÅäçëÉÇ≤=ëéÜÉêáÅ~ä=ëÉÅíçêK= = = = 3.37 Spherical Segment = o~Çáìë=çÑ=ëéÜÉêÉW=o= o~Çáìë=çÑ=Ä~ëÉëW= N ê I= O ê = eÉáÖÜíW=Ü= ^êÉ~=çÑ=ëéÜÉêáÅ~ä=ëìêÑ~ÅÉW= p p = ^êÉ~=çÑ=éä~åÉ=ÉåÇ=Ñ~ÅÉëW= N p I= O p = qçí~ä=ëìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= =
  84. CHAPTER 3. GEOMETRY 75 ===== = = Figure 54. = 349. oÜ O pp π = = = 350. ( ) O O O N O N p ê ê oÜ O p p p p + + π = + + = = = 351. ( ) O O O O N Ü ê P ê P Ü S N s + + π = = = = = 3.38 Spherical Wedge = o~ÇáìëW=o= aáÜÉÇê~ä=~åÖäÉ=áå=ÇÉÖêÉÉëW=ñ= aáÜÉÇê~ä=~åÖäÉ=áå=ê~Çá~åëW=α= ^êÉ~=çÑ=ëéÜÉêáÅ~ä=äìåÉW= i p = qçí~ä=ëìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = =
  85. CHAPTER 3. GEOMETRY 76 = = Figure 55. = 352. ñ o O VM o p O O i = α π = = = 353. ñ o O o VM o o p O O O O + π = α π + π = = = 354. ñ o P O OTM o s P P = α π = = = = = 3.39 Ellipsoid = pÉãá-~ñÉëW=~I=ÄI=Å= sçäìãÉW=s=
  86. CHAPTER 3. GEOMETRY 77 ======= = = Figure 56. = 355. ~ÄÅ P Q s π = = = = = Prolate Spheroid = pÉãá-~ñÉëW=~I=ÄI=Ä=E Ä ~ > F= pìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = = 356.       + π = É É ~êÅëáå ~ Ä Ä O p I== ïÜÉêÉ= ~ Ä ~ É O O − = K= = 357. ~ Ä P Q s O π = = =
  87. CHAPTER 3. GEOMETRY 78 Oblate Spheroid = pÉãá-~ñÉëW=~I=ÄI=Ä=E Ä ~ < F= pìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= = = 358.                   + π = ~ L ÄÉ ~ ÄÉ ~êÅëáåÜ ~ Ä Ä O p I== ïÜÉêÉ= Ä ~ Ä É O O − = K= = 359. ~ Ä P Q s O π = = = = = 3.40 Circular Torus = j~àçê=ê~ÇáìëW=o= jáåçê=ê~ÇáìëW=ê= pìêÑ~ÅÉ=~êÉ~W=p= sçäìãÉW=s= =
  88. CHAPTER 3. GEOMETRY 79 == = Picture 57. = 360. oê Q p O π = = = 361. O O oê O s π = = = =
  89. 80 Chapter 4 Trigonometry = = = = ^åÖäÉëW=α I=β = oÉ~ä=åìãÄÉêë=EÅççêÇáå~íÉë=çÑ=~=éçáåíFW=ñI=ó== tÜçäÉ=åìãÄÉêW=â= = = 4.1 Radian and Degree Measures of Angles = 362. ? QR D NT RT NUM ê~Ç N ° ≈ π ° = = = 363. ê~Ç MNTQRP K M ê~Ç NUM N ≈ π = ° = = 364. ê~Ç MMMOVN K M ê~Ç SM NUM D N ≈ ⋅ π = = = 365. ê~Ç MMMMMR K M ê~Ç PSMM NUM ? N ≈ ⋅ π = = = 366. = = ^åÖäÉ= EÇÉÖêÉÉëF= M= PM= QR= SM= VM= NUM= OTM= PSM= ^åÖäÉ= Eê~Çá~åëF= M= S π = Q π = P π = O π = π= O Pπ = π O = = = =
  90. CHAPTER 4. TRIGONOMETRY 81 4.2 Definitions and Graphs of Trigonometric Functions = = = = Figure 58. = 367. ê ó ëáå = α = = 368. ê ñ Åçë = α = = 369. ñ ó í~å = α = = 370. ó ñ Åçí = α = =
  91. CHAPTER 4. TRIGONOMETRY 82 371. ñ ê ëÉÅ = α = = 372. ó ê ÅçëÉÅ = α = = 373. páåÉ=cìåÅíáçå= ñ ëáå ó = I= N ñ ëáå N ≤ ≤ − K= = = Figure 59. = 374. `çëáåÉ=cìåÅíáçå== ñ Åçë ó = I= N ñ Åçë N ≤ ≤ − K=
  92. CHAPTER 4. TRIGONOMETRY 83 = = Figure 60. = 375. q~åÖÉåí=cìåÅíáçå= ñ í~å ó = I= ( ) O N â O ñ π + ≠ I= K ñ í~å ∞ ≤ ≤ ∞ − = = = = Figure 61. =
  93. CHAPTER 4. TRIGONOMETRY 84 376. `çí~åÖÉåí=cìåÅíáçå== ñ Åçí ó = I= π ≠ â ñ I== ∞ ≤ ≤ ∞ − ñ Åçí K= = = = Figure 62. = 377. pÉÅ~åí=cìåÅíáçå= ñ ëÉÅ ó = I= ( ) O N â O ñ π + ≠ K= ==
  94. CHAPTER 4. TRIGONOMETRY 85 = = Figure 63. = 378. `çëÉÅ~åí=cìåÅíáçå== ñ ÉÅ Åçë ó = I= π ≠ â ñ K= = Figure 64.
  95. CHAPTER 4. TRIGONOMETRY 86 4.3. Signs of Trigonometric Functions 379. = = nì~Çê~åí= páå α = `çë α = q~å α = `çí α = pÉÅ α = `çëÉÅ= α = f= H= H= H= H= H= H= ff= H= = = = = H= fff= = = H= H= = = fs= = H= = = H= = = = = 380. = = = Figure 65. = = = = = = = = = =
  96. CHAPTER 4. TRIGONOMETRY 87 4.4 Trigonometric Functions of Common Angles 381. = ° α = ê~Ç α = α ëáå = α Åçë = α í~å = α Åçí α ëÉÅ = α ÅçëÉÅ = M= M= M= N= M= ∞= N= ∞= PM= S π = O N = O P = P N = P = P O = O= QR= Q π = O O = O O = N= N= O = O = SM= P π = O P = O N = P = P N = O= P O = VM= O π = N= M= ∞ = M= ∞ = N= NOM= P Oπ = O P = O N − = P − = P N − O − = P O = NUM= π= M= N − = M= ∞ = N − = ∞ = OTM= O Pπ = N − = M= ∞= M= ∞= N − = PSM= π O = M= N= M= ∞ = N= ∞ = = = = = = = = = = = = = =
  97. CHAPTER 4. TRIGONOMETRY 88 382. = ° α = ê~Ç α = α ëáå = α Åçë = α í~å = α Åçí = NR= NO π = Q O S − = Q O S + = P O− = P O+ = NU= NM π = Q N R − = Q R O NM + R R O R− = R O R+ = PS= R π = Q R O NM − Q N R + = N R R O NM + − R O NM N R − + = RQ= NM Pπ = Q N R + = Q R O NM − R O NM N R − + N R R O NM + − = TO= R Oπ = Q R O NM + Q N R − = R O R+ = R R O R− = TR= NO Rπ = Q O S + = Q O S − = P O+ = P O− = = = = 4.5 Most Important Formulas = 383. N Åçë ëáå O O = α + α = = 384. N í~å ëÉÅ O O = α − α = = 385. N Åçí ÅëÅ O O = α − α = = 386. α α = α Åçë ëáå í~å =
  98. CHAPTER 4. TRIGONOMETRY 89 387. α α = α ëáå Åçë Åçí = = 388. N Åçí í~å = α ⋅ α = = 389. α = α Åçë N ëÉÅ = = 390. α = α ëáå N ÅçëÉÅ = = = = 4.6 Reduction Formulas = 391. = = β = β ëáå = β Åçë = β í~å = β Åçí = α − = α − ëáå = α + Åçë = α − í~å = α − Åçí = α − ° VM = α + Åçë = α + ëáå = α + Åçí = α + í~å = α + ° VM = α + Åçë = α − ëáå = α − Åçí = α − í~å = α − ° NUM α + ëáå = α − Åçë = α − í~å = α − Åçí = α + ° NUM α − ëáå = α − Åçë = α + í~å = α + Åçí = α − ° OTM α − Åçë = α − ëáå = α + Åçí = α + í~å = α + ° OTM α − Åçë = α + ëáå = α − Åçí = α − í~å = α − ° PSM α − ëáå = α + Åçë = α − í~å = α − Åçí = α + ° PSM α + ëáå = α + Åçë = α + í~å = α + Åçí = = = = = = =
  99. CHAPTER 4. TRIGONOMETRY 90 4.7 Periodicity of Trigonometric Functions = 392. ( ) α = π ± α ëáå å O ëáå I=éÉêáçÇ= π O =çê= ° PSM K= = 393. ( ) α = π ± α Åçë å O Åçë I=éÉêáçÇ= π O =çê= ° PSM K= = 394. ( ) α = π ± α í~å å í~å I=éÉêáçÇ=π=çê= ° NUM K= = 395. ( ) α = π ± α Åçí å Åçí I=éÉêáçÇ=π=çê= ° NUM K= = = = 4.8 Relations between Trigonometric Functions = 396. ( ) N Q O Åçë O O Åçë N O N Åçë N ëáå O O −       π − α = α − ± = α − ± = α = = O í~å N O í~å O O α + α = = = 397. ( ) N O Åçë O O Åçë N O N ëáå N Åçë O O − α = α + ± = α − ± = α = = O í~å N O í~å N O O α + α − = = = 398. α α − = α + α = − α ± = α α = α O ëáå O Åçë N O Åçë N O ëáå N ëÉÅ Åçë ëáå í~å O =
  100. CHAPTER 4. TRIGONOMETRY 91 = O í~å N O í~å O O Åçë N O Åçë N O α + α = α + α − ± = = = 399. α − α = α α + = − α ± = α α = α O Åçë N O ëáå O ëáå O Åçë N N ÅëÅ ëáå Åçë Åçí O = = O í~å O O í~å N O Åçë N O Åçë N O α α − = α − α + ± = = = 400. O í~å N O í~å N í~å N Åçë N ëÉÅ O O O α − α + = α + ± = α = α = = 401. O í~å O O í~å N Åçí N ëáå N ÅëÅ O O α α + = α + ± = α = α = = = = 4.9 Addition and Subtraction Formulas = 402. ( ) α β + β α = β + α Åçë ëáå Åçë ëáå ëáå = = 403. ( ) α β − β α = − α Åçë ëáå Åçë ëáå ó ëáå = = 404. ( ) β α − β α = β + α ëáå ëáå Åçë Åçë Åçë = = 405. ( ) β α + β α = β − α ëáå ëáå Åçë Åçë Åçë =
  101. CHAPTER 4. TRIGONOMETRY 92 406. ( ) β α − β + α = β + α í~å í~å N í~å í~å í~å = = 407. ( ) β α + β − α = β − α í~å í~å N í~å í~å í~å = = 408. ( ) β + α β α − = β + α í~å í~å í~å í~å N Åçí = = 409. ( ) β − α β α + = β − α í~å í~å í~å í~å N Åçí = = = = 4.10 Double Angle Formulas = 410. α ⋅ α = α Åçë ëáå O O ëáå = = 411. N Åçë O ëáå O N ëáå Åçë O Åçë O O O O − α = α − = α − α = α = = 412. α − α = α − α = α í~å Åçí O í~å N í~å O O í~å O = = 413. O í~å Åçí Åçí O N Åçí O Åçí O α − α = α − α = α = = = = = = =
  102. CHAPTER 4. TRIGONOMETRY 93 4.11 Multiple Angle Formulas = 414. α − α ⋅ α = α − α = α P O P ëáå ëáå Åçë P ëáå Q ëáå P P ëáå = = 415. α ⋅ α − α ⋅ α = α Åçë ëáå U Åçë ëáå Q Q ëáå P = = 416. α + α − α = α R P ëáå NS ëáå OM ëáå R R ëáå = = 417. α ⋅ α − α = α − α = α O P P ëáå Åçë P Åçë Åçë P Åçë Q P Åçë = = 418. N Åçë U Åçë U Q Åçë O Q + α − α = α = = 419. α + α − α = α Åçë R Åçë OM Åçë NS R Åçë P R = = 420. α − α − α = α O P í~å P N í~å í~å P P í~å = = 421. α + α − α − α = α Q O P í~å í~å S N í~å Q í~å Q Q í~å = = 422. α + α − α + α − α = α Q O P R í~å R í~å NM N í~å R í~å NM í~å R í~å = = 423. N Åçí P Åçí P Åçí P Åçí O P − α α − α = α = = 424. α − α α + α − = α P Q O í~å Q í~å Q í~å í~å S N Q Åçí == =
  103. CHAPTER 4. TRIGONOMETRY 94 425. α + α − α α + α − = α í~å R í~å NM í~å í~å R í~å NM N R Åçí P R Q O = = = = 4.12 Half Angle Formulas = 426. O Åçë N O ëáå α − ± = α = = 427. O Åçë N O Åçë α + ± = α = = 428. α − α = α α − = α + α = α + α − ± = α Åçí ÅëÅ ëáå Åçë N Åçë N ëáå Åçë N Åçë N O í~å = = 429. α + α = α α + = α − α = α − α + ± = α Åçí ÅëÅ ëáå Åçë N Åçë N ëáå Åçë N Åçë N O Åçí = = = = 4.13 Half Angle Tangent Identities = 430. O í~å N O í~å O ëáå O α + α = α = =
  104. CHAPTER 4. TRIGONOMETRY 95 431. O í~å N O í~å N Åçë O O α + α − = α = = 432. O í~å N O í~å O í~å O α − α = α = = 433. O í~å O O í~å N Åçí O α α − = α = = = = 4.14 Transforming of Trigonometric Expressions to Product = 434. O Åçë O ëáå O ëáå ëáå β − α β + α = β + α = = 435. O ëáå O Åçë O ëáå ëáå β − α β + α = β − α = = 436. O Åçë O Åçë O Åçë Åçë β − α β + α = β + α = = 437. O ëáå O ëáå O Åçë Åçë β − α β + α − = β − α = =
  105. CHAPTER 4. TRIGONOMETRY 96 438. ( ) β ⋅ α β + α = β + α Åçë Åçë ëáå í~å í~å = = 439. ( ) β ⋅ α β − α = β − α Åçë Åçë ëáå í~å í~å = = 440. ( ) β ⋅ α α + β = β + α ëáå ëáå ëáå Åçí Åçí = = 441. ( ) β ⋅ α α − β = β − α ëáå ëáå ëáå Åçí Åçí = = 442.       α + π =       α − π = α + α Q ëáå O Q Åçë O ëáå Åçë = = 443.       α + π =       α − π = α − α Q Åçë O Q ëáå O ëáå Åçë = = 444. ( ) β ⋅ α β − α = β + α ëáå Åçë Åçë Åçí í~å = = 445. ( ) β ⋅ α β + α − = β − α ëáå Åçë Åçë Åçí í~å = = 446. O Åçë O Åçë N O α = α + = = 447. O ëáå O Åçë N O α = α − = =
  106. CHAPTER 4. TRIGONOMETRY 97 448.       α − π = α + O Q Åçë O ëáå N O = = 449.       α − π = α − O Q ëáå O ëáå N O = = = = 4.15 Transforming of Trigonometric Expressions to Sum = 450. ( ) ( ) O Åçë Åçë ëáå ëáå β + α − β − α = β ⋅ α = = 451. ( ) ( ) O Åçë Åçë Åçë Åçë β + α + β − α = β ⋅ α = = 452. ( ) ( ) O ëáå ëáå Åçë ëáå β + α + β − α = β ⋅ α = = 453. β + α β + α = β ⋅ α Åçí Åçí í~å í~å í~å í~å = = 454. β + α β + α = β ⋅ α í~å í~å Åçí Åçí Åçí Åçí = = 455. β + α β + α = β ⋅ α í~å Åçí Åçí í~å Åçí í~å = = = =
  107. CHAPTER 4. TRIGONOMETRY 98 4.16 Powers of Trigonometric Functions = 456. O O Åçë N ëáåO α − = α = = 457. Q P ëáå ëáå P ëáåP α − α = α = = 458. U P O Åçë Q Q Åçë ëáåQ + α − α = α = = 459. NS R ëáå P ëáå R ëáå NM ëáåR α + α − α = α = = 460. PO S Åçë Q Åçë S O Åçë NR NM ëáåS α − α + α − = α = = 461. O O Åçë N ÅçëO α + = α = = 462. Q P Åçë Åçë P ÅçëP α + α = α = = 463. U P O Åçë Q Q Åçë ÅçëQ + α + α = α = = 464. NS R Åçë P ëáå R Åçë NM ÅçëR α + α + α = α = = 465. PO S Åçë Q Åçë S O Åçë NR NM ÅçëS α + α + α + = α = =
  108. CHAPTER 4. TRIGONOMETRY 99 4.17 Graphs of Inverse Trigonometric Functions = 466. fåîÉêëÉ=páåÉ=cìåÅíáçå== ñ ~êÅëáå ó = I= N ñ N ≤ ≤ − I= O ñ ~êÅëáå O π ≤ ≤ π − K= = = = Figure 66. = 467. fåîÉêëÉ=`çëáåÉ=cìåÅíáçå== ñ ~êÅÅçë ó = I= N ñ N ≤ ≤ − I= π ≤ ≤ ñ ~êÅÅçë M K= =
  109. CHAPTER 4. TRIGONOMETRY 100 = = Figure 67. = 468. fåîÉêëÉ=q~åÖÉåí=cìåÅíáçå== ñ ~êÅí~å ó = I= ∞ ≤ ≤ ∞ − ñ I= O ñ ~êÅí~å O π < < π − K= = ===== = = Figure 68.
  110. CHAPTER 4. TRIGONOMETRY 101 469. fåîÉêëÉ=`çí~åÖÉåí=cìåÅíáçå== ñ Åçí ~êÅ ó = I= ∞ ≤ ≤ ∞ − ñ I= π < < ñ Åçí ~êÅ M K= ===== = Figure 69. = 470. fåîÉêëÉ=pÉÅ~åí=cìåÅíáçå== ( ] [ ) K I O O I M ñ ëÉÅ ~êÅ I I N N I ñ I ñ = ~êÅëÉÅ ó       π π ∪       π ∈ ∞ ∪ − ∞ − ∈ = = Figure 70.
  111. CHAPTER 4. TRIGONOMETRY 102 471. fåîÉêëÉ=`çëÉÅ~åí=cìåÅíáçå== ( ] [ ) K O I M M I O ñ ÅëÅ ~êÅ I I N N I ñ I ñ ~êÅÅëÅ ó       π ∪       π − ∈ ∞ ∪ − ∞ − ∈ = = = Figure 71. = = 4.18 Principal Values of Inverse Trigonometric Functions 472. ñ = M= O N = O O = O P N= ñ ~êÅëáå = ° M = ° PM = ° QR = ° SM ° VM ñ ~êÅÅçë = ° VM ° SM = ° QR = ° PM ° M = ñ = O N − O O − O P − N − = = ñ ~êÅëáå = ° −PM = ° − QR ° − SM ° − VM = = ñ ~êÅÅçë = ° NOM = ° NPR = ° NRM = ° NUM = =
  112. CHAPTER 4. TRIGONOMETRY 103 473. ñ = M= P P N= P = P P − N − = P − = ñ ~êÅí~å = ° M = ° PM ° QR ° SM ° −PM ° − QR = ° − SM = ñ Åçí ~êÅ = ° VM ° SM ° QR ° PM ° NOM = ° NPR = ° NRM = = = = 4.19 Relations between Inverse Trigonometric Functions = 474. ( ) ñ ~êÅëáå ñ ~êÅëáå − = − = = 475. ñ ~êÅÅçë O ñ ~êÅëáå − π = = = 476. O ñ N ~êÅÅçë ñ ~êÅëáå − = I= N ñ M ≤ ≤ K= = 477. O ñ N ~êÅÅçë ñ ~êÅëáå − − = I= M ñ N ≤ ≤ − K= = 478. O ñ N ñ ~êÅí~å ñ ~êÅëáå − = I= N ñO < K= = 479. ñ ñ N Åçí ~êÅ ñ ~êÅëáå O − = I= N ñ M ≤ < K= = 480. π − − = ñ ñ N Åçí ~êÅ ñ ~êÅëáå O I= M ñ N < ≤ − K= = 481. ( ) ñ ~êÅÅçë ñ ~êÅÅçë − π = − =
  113. CHAPTER 4. TRIGONOMETRY 104 482. ñ ~êÅëáå O ñ ~êÅÅçë − π = = = 483. O ñ N ~êÅëáå ñ ~êÅÅçë − = I= N ñ M ≤ ≤ K= = 484. O ñ N ~êÅëáå ñ ~êÅÅçë − − π = I= M ñ N ≤ ≤ − K= = 485. ñ ñ N ~êÅí~å ñ ~êÅÅçë O − = I= N ñ M ≤ < K= = 486. ñ ñ N ~êÅí~å ñ ~êÅÅçë O − + π = I= M ñ N < ≤ − K= = 487. O ñ N ñ Åçí ~êÅ ñ ~êÅÅçë − = I= N ñ N ≤ ≤ − K= = 488. ( ) ñ ~êÅí~å ñ ~êÅí~å − = − = = 489. ñ Åçí ~êÅ O ñ ~êÅí~å − π = = = 490. O ñ N ñ ~êÅëáå ñ ~êÅí~å + = = = 491. O ñ N N ~êÅÅçë ñ ~êÅí~å + = I= M ñ ≥ K= = 492. O ñ N N ~êÅÅçë ñ ~êÅí~å + − = I= M ñ ≤ K= =
  114. CHAPTER 4. TRIGONOMETRY 105 493. ñ N ~êÅí~å O ñ ~êÅí~å − π = I= M ñ > K= = 494. ñ N ~êÅí~å O ñ ~êÅí~å − π − = I= M ñ < K= = 495. ñ N Åçí ~êÅ ñ ~êÅí~å = I= M ñ > K= = 496. π − = ñ N Åçí ~êÅ ñ ~êÅí~å I= M ñ < K= = 497. ( ) ñ Åçí ~êÅ ñ Åçí ~êÅ − π = − = = 498. ñ ~êÅí~å O ñ Åçí ~êÅ − π = = = 499. O ñ N N ~êÅëáå ñ Åçí ~êÅ + = I= M ñ > K= = 500. O ñ N N ~êÅëáå ñ Åçí ~êÅ + − π = I= M ñ < K= = 501. O ñ N ñ ~êÅÅçë ñ Åçí ~êÅ + = = = 502. ñ N ~êÅí~å ñ Åçí ~êÅ = I= M ñ > K= = 503. ñ N ~êÅí~å ñ Åçí ~êÅ + π = I= M ñ < K= = =
  115. CHAPTER 4. TRIGONOMETRY 106 4.20 Trigonometric Equations = tÜçäÉ=åìãÄÉêW=å= = = 504. ~ ñ ëáå = I= ( ) å ~ ~êÅëáå N ñ å π + − = = = 505. ~ ñ Åçë = I= å O ~ ~êÅÅçë ñ π + ± = = = 506. ~ ñ í~å = I= å ~ ~êÅí~å ñ π + = = = 507. ~ ñ Åçí = I= å ~ Åçí ~êÅ ñ π + = = = = = 4.21 Relations to Hyperbolic Functions = fã~Öáå~êó=ìåáíW=á= = = 508. ( ) ñ ëáåÜ á áñ ëáå = = = 509. ( ) ñ í~åÜ á áñ í~å = = = 510. ( ) ñ ÅçíÜ á áñ Åçí − = = = 511. ( ) ñ ëÉÅÜ áñ ëÉÅ = = = 512. ( ) ñ ÅëÅÜ á áñ ÅëÅ − = = = = =
  116. 107 Chapter 5 Matrices and Determinants = = = = j~íêáÅÉëW=^I=_I=`= bäÉãÉåíë=çÑ=~=ã~íêáñW= á ~ I= á Ä I= áà ~ I= áà Ä I= áà Å = aÉíÉêãáå~åí=çÑ=~=ã~íêáñW= ^ ÇÉí = jáåçê=çÑ=~å=ÉäÉãÉåí= áà ~ W= áà j = `çÑ~Åíçê=çÑ=~å=ÉäÉãÉåí= áà ~ W= áà ` = qê~åëéçëÉ=çÑ=~=ã~íêáñW= q ^ I= ^ ú = ^Çàçáåí=çÑ=~=ã~íêáñW= ^ ~Çà = qê~ÅÉ=çÑ=~=ã~íêáñW= ^ íê = fåîÉêëÉ=çÑ=~=ã~íêáñW= N ^− = oÉ~ä=åìãÄÉêW=â= oÉ~ä=î~êá~ÄäÉëW= á ñ = k~íìê~ä=åìãÄÉêëW=ãI=å=== = = 5.1 Determinants = 513. pÉÅçåÇ=lêÇÉê=aÉíÉêãáå~åí= N O O N O O N N Ä ~ Ä ~ Ä ~ Ä ~ ^ ÇÉí − = = = = = = = =
  117. CHAPTER 5. MATRICES AND DETERMINANTS 108 514. qÜáêÇ=lêÇÉê=aÉíÉêãáå~åí= − + + = = PO ON NP PN OP NO PP OO NN PP PO PN OP OO ON NP NO NN ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ^ ÇÉí = PN OO NP PP ON NO PO OP NN ~ ~ ~ ~ ~ ~ ~ ~ ~ − − − = = 515. p~êêìë=oìäÉ=E^êêçï=oìäÉF= = = Figure 72. = 516. k-íÜ=lêÇÉê=aÉíÉêãáå~åí= åå åà O å N å áå áà O á N á å O à O OO ON å N à N NO NN ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ^ ÇÉí K K K K K K K K K K K K K K K K K K K K = = = 517. jáåçê= qÜÉ=ãáåçê= áà j =~ëëçÅá~íÉÇ=ïáíÜ=íÜÉ=ÉäÉãÉåí= áà ~ =çÑ=å-íÜ=çêÇÉê= ã~íêáñ=^=áë=íÜÉ= ( ) N å − -íÜ=çêÇÉê=ÇÉíÉêãáå~åí=ÇÉêáîÉÇ=Ñêçã= íÜÉ=ã~íêáñ=^=Äó=ÇÉäÉíáçå=çÑ=áíë=á-íÜ=êçï=~åÇ=à-íÜ=ÅçäìãåK=== =
  118. CHAPTER 5. MATRICES AND DETERMINANTS 109 518. `çÑ~Åíçê= ( ) áà à á áà j N ` + − = = = 519. i~éä~ÅÉ=bñé~åëáçå=çÑ=å-íÜ=lêÇÉê=aÉíÉêãáå~åí= i~éä~ÅÉ=Éñé~åëáçå=Äó=ÉäÉãÉåíë=çÑ=íÜÉ=á-íÜ=êçï= ∑ = = å N à áà áà` ~ ^ ÇÉí I= å I I O I N á K = K= i~éä~ÅÉ=Éñé~åëáçå=Äó=ÉäÉãÉåíë=çÑ=íÜÉ=à-íÜ=Åçäìãå= ∑ = = å N á áà áà` ~ ^ ÇÉí I= å I I O I N à K = K== = = = 5.2 Properties of Determinants = 520. qÜÉ==î~äìÉ==çÑ=~=ÇÉíÉêãáå~åí=êÉã~áåë==ìåÅÜ~åÖÉÇ=áÑ=êçïë=~êÉ= ÅÜ~åÖÉÇ=íç=Åçäìãåë=~åÇ=Åçäìãåë=íç=êçïëK= = O O N N O N O N Ä ~ Ä ~ Ä Ä ~ ~ = == = 521. fÑ=íïç==êçïë==Eçê=íïç=ÅçäìãåëF=~êÉ==áåíÉêÅÜ~åÖÉÇI=íÜÉ=ëáÖå=çÑ= íÜÉ=ÇÉíÉêãáå~åí=áë=ÅÜ~åÖÉÇK= N N O O O O N N Ä ~ Ä ~ Ä ~ Ä ~ − = = = 522. fÑ=íïç=êçïë==Eçê=íïç=ÅçäìãåëF=~êÉ==áÇÉåíáÅ~äI=íÜÉ=î~äìÉ=çÑ=íÜÉ= ÇÉíÉêãáå~åí=áë=òÉêçK= M ~ ~ ~ ~ O O N N = = =
  119. CHAPTER 5. MATRICES AND DETERMINANTS 110 523. fÑ==íÜÉ===ÉäÉãÉåíë==çÑ==~åó=êçï==Eçê=ÅçäìãåF=~êÉ=ãìäíáéäáÉÇ=Äó===== ~==Åçããçå==Ñ~ÅíçêI==íÜÉ==ÇÉíÉêãáå~åí==áë==ãìäíáéäáÉÇ==Äó==íÜ~í= Ñ~ÅíçêK= O O N N O O N N Ä ~ Ä ~ â Ä ~ âÄ â~ = = = 524. fÑ==íÜÉ==ÉäÉãÉåíë==çÑ==~åó==êçï==Eçê==ÅçäìãåF=~êÉ=áåÅêÉ~ëÉÇ=Eçê= ÇÉÅêÉ~ëÉÇFÄó=Éèì~ä=ãìäíáéäÉë=çÑ=íÜÉ=ÅçêêÉëéçåÇáåÖ=ÉäÉãÉåíë= çÑ=~åó=çíÜÉê=êçï==Eçê=ÅçäìãåFI==íÜÉ=î~äìÉ=çÑ=íÜÉ=ÇÉíÉêãáå~åí= áë=ìåÅÜ~åÖÉÇK= O O N N O O O N N N Ä ~ Ä ~ Ä âÄ ~ Ä âÄ ~ = + + = = = = 5.3 Matrices = 525. aÉÑáåáíáçå= ^å= å ã× =ã~íêáñ=^=áë=~=êÉÅí~åÖìä~ê=~êê~ó=çÑ=ÉäÉãÉåíë=Eåìã- ÄÉêë=çê=ÑìåÅíáçåëF=ïáíÜ=ã=êçïë=~åÇ=å=ÅçäìãåëK== [ ]             = = ãå O ã N ã å O OO ON å N NO NN áà ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ^ K M M M K K == = 526. pèì~êÉ=ã~íêáñ=áë=~=ã~íêáñ=çÑ=çêÇÉê= å å× K== = 527. ^=ëèì~êÉ=ã~íêáñ==[ ] áà ~ ==áë==ëóããÉíêáÅ==áÑ== àá áà ~ ~ = I==áKÉK==áí==áë= ëóããÉíêáÅ=~Äçìí=íÜÉ=äÉ~ÇáåÖ=Çá~Öçå~äK== = 528. ^=ëèì~êÉ=ã~íêáñ=[ ] áà ~ =áë=ëâÉï-ëóããÉíêáÅ=áÑ= àá áà ~ ~ − = K== =
  120. CHAPTER 5. MATRICES AND DETERMINANTS 111 529. aá~Öçå~ä=ã~íêáñ==áë==~=ëèì~êÉ==ã~íêáñ=ïáíÜ=~ää==ÉäÉãÉåíë==òÉêç= ÉñÅÉéí=íÜçëÉ=çå=íÜÉ=äÉ~ÇáåÖ=Çá~Öçå~äK== = 530. råáí=ã~íêáñ==áë==~=Çá~Öçå~ä==ã~íêáñ==áå=ïÜáÅÜ=íÜÉ=ÉäÉãÉåíë=çå= íÜÉ=äÉ~ÇáåÖ=Çá~Öçå~ä=~êÉ=~ää=ìåáíóK=qÜÉ=ìåáí=ã~íêáñ=áë=========== ÇÉåçíÉÇ=Äó=fK== = 531. ^=åìää=ã~íêáñ=áë=çåÉ=ïÜçëÉ=ÉäÉãÉåíë=~êÉ=~ää=òÉêçK= = = = 5.4 Operations with Matrices = 532. qïç=ã~íêáÅÉë=^=~åÇ=_=~êÉ=Éèì~ä=áÑI=~åÇ=çåäó=áÑI=íÜÉó=~êÉ=ÄçíÜ= çÑ==íÜÉ==ë~ãÉ==ëÜ~éÉ== å ã× ==~åÇ=ÅçêêÉëéçåÇáåÖ=ÉäÉãÉåíë=~êÉ= Éèì~äK= = 533. qïç=ã~íêáÅÉë==^=~åÇ=_==Å~å=ÄÉ=~ÇÇÉÇ=Eçê=ëìÄíê~ÅíÉÇF=çÑI=~åÇ= çåäó=áÑI=íÜÉó=Ü~îÉ=íÜÉ=ë~ãÉ=ëÜ~éÉ= å ã× K=fÑ== [ ]             = = ãå O ã N ã å O OO ON å N NO NN áà ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ^ K M M M K K I== [ ]             = = ãå O ã N ã å O OO ON å N NO NN áà Ä Ä Ä Ä Ä Ä Ä Ä Ä Ä _ K M M M K K I== = = = = =
  121. CHAPTER 5. MATRICES AND DETERMINANTS 112 íÜÉå==             + + + + + + + + + = + ãå ãå O ã O ã N ã N ã å O å O OO OO ON ON å N å N NO NO NN NN Ä ~ Ä ~ Ä ~ Ä ~ Ä ~ Ä ~ Ä ~ Ä ~ Ä ~ _ ^ K M M M K K K= = 534. fÑ=â=áë=~=ëÅ~ä~êI=~åÇ= [ ] áà ~ ^ = =áë=~=ã~íêáñI=íÜÉå= [ ]             = = ãå O ã N ã å O OO ON å N NO NN áà â~ â~ â~ â~ â~ â~ â~ â~ â~ â~ â^ K M M M K K K= = 535. jìäíáéäáÅ~íáçå=çÑ=qïç=j~íêáÅÉë= qïç= ã~íêáÅÉë= Å~å= ÄÉ= ãìäíáéäáÉÇ= íçÖÉíÜÉê= çåäó= ïÜÉå= íÜÉ= åìãÄÉê=çÑ=Åçäìãåë=áå=íÜÉ=Ñáêëí=áë=Éèì~ä=íç=íÜÉ=åìãÄÉê=çÑ= êçïë=áå=íÜÉ=ëÉÅçåÇK== = fÑ= [ ]             = = ãå O ã N ã å O OO ON å N NO NN áà ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ^ K M M M K K I== [ ]             = = åâ O å N å â O OO ON â N NO NN áà Ä Ä Ä Ä Ä Ä Ä Ä Ä Ä _ K M M M K K I= = = = = =
  122. CHAPTER 5. MATRICES AND DETERMINANTS 113 íÜÉå==             = = ãâ O ã N ã â O OO ON â N NO NN Å Å Ä Å Å Å Å Å Å ` ^_ K M M M K K I== ïÜÉêÉ== ∑ = λ λ λ = + + + = å N à á åà áå à O O á à N N á áà Ä ~ Ä ~ Ä ~ Ä ~ Å K = E ã I I O I N á K = X â I I O I N à K = FK== = qÜìë=áÑ= [ ]       = = OP OO ON NP NO NN áà ~ ~ ~ ~ ~ ~ ~ ^ I= [ ]           = = P O N á Ä Ä Ä Ä _ I== íÜÉå==       =           ⋅       = P OP O OO N ON P NP O NO N NN P O N OP OO ON NP NO NN Ä ~ Ä ~ Ä ~ Ä ~ Ä ~ Ä ~ Ä Ä Ä ~ ~ ~ ~ ~ ~ ^_ K== = 536. qê~åëéçëÉ=çÑ=~=j~íêáñ= fÑ=íÜÉ=êçïë=~åÇ=Åçäìãåë=çÑ=~=ã~íêáñ=~êÉ=áåíÉêÅÜ~åÖÉÇI=íÜÉå= íÜÉ=åÉï=ã~íêáñ=áë=Å~ääÉÇ=íÜÉ=íê~åëéçëÉ=çÑ=íÜÉ=çêáÖáå~ä=ã~íêáñK=== fÑ=^=áë=íÜÉ=çêáÖáå~ä=ã~íêáñI=áíë=íê~åëéçëÉ=áë=ÇÉåçíÉÇ= q ^ =çê= ^ ú K== = 537. qÜÉ=ã~íêáñ=^=áë=çêíÜçÖçå~ä=áÑ= f ^^q = K== = 538. fÑ=íÜÉ=ã~íêáñ=éêçÇìÅí=^_=áë=ÇÉÑáåÉÇI=íÜÉå== ( ) q q q ^ _ ^_ = K= = =
  123. CHAPTER 5. MATRICES AND DETERMINANTS 114 539. ^Çàçáåí=çÑ=j~íêáñ= fÑ=^=áë=~=ëèì~êÉ= å å× ã~íêáñI=áíë=~ÇàçáåíI=ÇÉåçíÉÇ=Äó= ^ ~Çà I= áë=íÜÉ=íê~åëéçëÉ=çÑ=íÜÉ=ã~íêáñ=çÑ=ÅçÑ~Åíçêë= áà ` =çÑ=^W= [ ]q áà ` ^ ~Çà = K== = 540. qê~ÅÉ=çÑ=~=j~íêáñ= fÑ=^=áë=~=ëèì~êÉ= å å× ã~íêáñI=áíë=íê~ÅÉI=ÇÉåçíÉÇ=Äó= ^ íê I=áë= ÇÉÑáåÉÇ=íç=ÄÉ==íÜÉ=ëìã=çÑ==íÜÉ=íÉêãë=çå=íÜÉ=äÉ~ÇáåÖ=Çá~Öçå~äW= åå OO NN ~ ~ ~ ^ íê + + + = K K= = 541. fåîÉêëÉ=çÑ=~=j~íêáñ= fÑ=^=áë=~=ëèì~êÉ= å å× ã~íêáñ=ïáíÜ=~=åçåëáåÖìä~ê=ÇÉíÉêãáå~åí= ^ ÇÉí I=íÜÉå=áíë=áåîÉêëÉ= N ^− =áë=ÖáîÉå=Äó= ^ ÇÉí ^ ~Çà ^ N = − K= = 542. fÑ=íÜÉ=ã~íêáñ=éêçÇìÅí=^_=áë=ÇÉÑáåÉÇI=íÜÉå== ( ) N N N ^ _ ^_ − − − = K= = 543. fÑ==^==áë=~=ëèì~êÉ=== å å× ==ã~íêáñI==íÜÉ==ÉáÖÉåîÉÅíçêë==u===ë~íáëÑó= íÜÉ=Éèì~íáçå= u ^u λ = I== ïÜáäÉ=íÜÉ=ÉáÖÉåî~äìÉë=λ =ë~íáëÑó=íÜÉ=ÅÜ~ê~ÅíÉêáëíáÅ=Éèì~íáçå= M f ^ = λ − K=== = = = 5.5 Systems of Linear Equations = = s~êá~ÄäÉëW=ñI=óI=òI= N ñ I= K I ñO = oÉ~ä=åìãÄÉêëW= K I ~ I ~ I Ä I ~ I ~ I ~ NO NN N P O N =
  124. CHAPTER 5. MATRICES AND DETERMINANTS 115 aÉíÉêãáå~åíëW=aI= ñ a I= ó a I= ò a == j~íêáÅÉëW=^I=_I=u= = = 544.    = + = + O O O N N N Ç ó Ä ñ ~ Ç ó Ä ñ ~ I== a a ñ ñ = I= a a ó ó = =E`ê~ãÉê∞ë=êìäÉFI== ïÜÉêÉ== N O O N O O N N Ä ~ Ä ~ Ä ~ Ä ~ a − = = I== N O O N O O N N ñ Ä Ç Ä Ç Ä Ç Ä Ç a − = = I== N O O N O O N N ó Ç ~ Ç ~ Ç ~ Ç ~ a − = = K== = 545. fÑ= M a ≠ I=íÜÉå=íÜÉ=ëóëíÉã=Ü~ë=~=ëáåÖäÉ=ëçäìíáçåW== a a ñ ñ = I= a a ó ó = K= fÑ= M a = =~åÇ= M añ ≠ Eçê= M aó ≠ FI=íÜÉå=íÜÉ=ëóëíÉã=Ü~ë==åç== ëçäìíáçåK= fÑ= M a a a ó ñ = = = I= íÜÉå= íÜÉ= ëóëíÉã= Ü~ë= = áåÑáåáíÉäó= = ã~åó== ëçäìíáçåëK= = 546.      = + + = + + = + + P P P P O O O O N N N N Ç ò Å ó Ä ñ ~ Ç ò Å ó Ä ñ ~ = Ç ò Å ó Ä ñ ~ I== a a ñ ñ = I= a a ó ó = I= a a ò ò = =E`ê~ãÉê∞ë=êìäÉFI== =
  125. CHAPTER 5. MATRICES AND DETERMINANTS 116 ïÜÉêÉ== P P P O O O N N N Å Ä ~ Å Ä ~ Å Ä ~ a = I= P P P O O O N N N ñ Å Ä Ç Å Ä Ç Å Ä Ç a = I= P P P O O O N N N ó Å Ç ~ Å Ç ~ Å Ç ~ a = I= P P P O O O N N N ò Ç Ä ~ Ç Ä ~ Ç Ä ~ a = K== = 547. fÑ= M a ≠ I=íÜÉå=íÜÉ=ëóëíÉã=Ü~ë=~=ëáåÖäÉ=ëçäìíáçåW== a a ñ ñ = I= a a ó ó = I= a a ò ò = K= fÑ= M a = =~åÇ= M añ ≠ Eçê= M aó ≠ =çê= M aò ≠ FI=íÜÉå=íÜÉ=ëóëíÉã= Ü~ë=åç=ëçäìíáçåK= fÑ= M a a a a ò ó ñ = = = = I= íÜÉå= íÜÉ= ëóëíÉã= Ü~ë= áåÑáåáíÉäó= ã~åó=ëçäìíáçåëK= = 548. j~íêáñ=cçêã=çÑ=~=póëíÉã=çÑ=å=iáåÉ~ê=bèì~íáçåë=áå================= å=råâåçïåë= qÜÉ=ëÉí=çÑ=äáåÉ~ê=Éèì~íáçåë==        = + + + = + + + = + + + å å åå O O å N N å O å å O O OO N ON N å å N O NO N NN Ä ñ ~ ñ ~ ñ ~ Ä ñ ~ ñ ~ ñ ~ Ä ñ ~ ñ ~ ñ ~ K K K K K K K K K K K K K K K = Å~å=ÄÉ=ïêáííÉå=áå=ã~íêáñ=Ñçêã=               =               ⋅               å O N å O N åå O å N å å O OO ON å N NO NN Ä Ä Ä ñ ñ ñ ~ ~ ~ ~ ~ ~ ~ ~ ~ M M K M M M K K I== áKÉK== _ u ^ = ⋅ I==
  126. CHAPTER 5. MATRICES AND DETERMINANTS 117 ïÜÉêÉ==               = åå O å N å å O OO ON å N NO NN ~ ~ ~ ~ ~ ~ ~ ~ ~ ^ K M M M K K I=               = å O N ñ ñ ñ u M I=               = å O N Ä Ä Ä _ M K== = 549. pçäìíáçå=çÑ=~=pÉí=çÑ=iáåÉ~ê=bèì~íáçåë= å å× = _ ^ u N ⋅ = − I== ïÜÉêÉ= N ^− =áë=íÜÉ=áåîÉêëÉ=çÑ=^K= = =
  127. 118 Chapter 6 Vectors = = = = sÉÅíçêëW=ì r I= î r I= ï r I= ê r I= → ^_ I=£= sÉÅíçê=äÉåÖíÜW= ì r I= î r I=£= råáí=îÉÅíçêëW= á r I= à r I=â r = kìää=îÉÅíçêW=M r = `ççêÇáå~íÉë=çÑ=îÉÅíçê=ì r W= N N N w I v I u = `ççêÇáå~íÉë=çÑ=îÉÅíçê= î r W= O O O w I v I u = pÅ~ä~êëW=λ Iµ= aáêÉÅíáçå=ÅçëáåÉëW= α Åçë I= β Åçë I= γ Åçë = ^åÖäÉ=ÄÉíïÉÉå=íïç=îÉÅíçêëW=θ = = = 6.1 Vector Coordinates = 550. råáí=sÉÅíçêë= ( ) M I M I N á = r I= ( ) M I N I M à = r I= ( ) N I M I M â = r I= N â à á = = = r r r K= = 551. ( ) ( ) ( )â ò ò à ó ó á ñ ñ ^_ ê M N M N M N r r r r − + − + − = = → = =
  128. CHAPTER 6. VECTORS 119 ======= = = Figure 73. = 552. ( ) ( ) ( )O M N O M N O M N ò ò ó ó ñ ñ ^_ ê − + − + − = = → r = = 553. fÑ= ê ^_ r = → I=íÜÉå= ê _^ r − = → K= = = = Figure 74. = 554. α = Åçë ê u r I= β = Åçë ê v r I= γ = Åçë ê w r K=
  129. CHAPTER 6. VECTORS 120 ===== = = Figure 75. = 555. fÑ= ( ) ( ) N N N N w I v I u ê w I v I u ê r r = I=íÜÉå== N u u = I= N v v = I= N w w = K== == = 6.2 Vector Addition = 556. î ì ï r r r + = = = == = = Figure 76.
  130. CHAPTER 6. VECTORS 121 == = = Figure 77. = 557. å P O N ì ì ì ì ï r K r r r r + + + + = = = == = = Figure 78. = 558. `çããìí~íáîÉ=i~ï= ì î î ì r r r r + = + = = 559. ^ëëçÅá~íáîÉ=i~ï= ( ) ( ) ï î ì ï î ì r r r r r r + + = + + = = 560. ( ) O N O N O N w w I v v I u u î ì + + + = + r r = = = = = = =
  131. CHAPTER 6. VECTORS 122 6.3 Vector Subtraction = 561. î ì ï r r r − = =áÑ= ì ï î r r r = + K= = = = Figure 79. = == = = Figure 80. = 562. ( ) î ì î ì r r r r − + = − = = 563. ( ) M I M I M M ì ì = = − r r r = = 564. M M = r = = 565. ( ) O N O N O N w w I v v I u u î ì − − − = − r r I== = = = 6.4 Scaling Vectors = 566. ì ï r r λ = =
  132. CHAPTER 6. VECTORS 123 = = Figure 81. = 567. ì ï r r ⋅ λ = = = 568. ( ) w I v I u ì λ λ λ = λ r = = 569. λ = λ ì ì r r = = 570. ( ) ì ì ì r r r µ + λ = µ + λ = = 571. ( ) ( ) ( )ì ì ì r r r λµ = λ µ = µ λ = = 572. ( ) î ì î ì r r r r λ + λ = + λ = = = = 6.5 Scalar Product = 573. pÅ~ä~ê=mêçÇìÅí=çÑ=sÉÅíçêë=ì r =~åÇ î r = θ ⋅ ⋅ = ⋅ Åçë î ì î ì r r r r I== ïÜÉêÉ=θ =áë=íÜÉ=~åÖäÉ=ÄÉíïÉÉå=îÉÅíçêë=ì r =~åÇ î r K==== =
  133. CHAPTER 6. VECTORS 124 = = = Figure 82. = 574. pÅ~ä~ê=mêçÇìÅí=áå=`ççêÇáå~íÉ=cçêã= fÑ= ( ) N N N w I v I u ì = r I= ( ) O O O w I v I u î = r I=íÜÉå== O N O N O N w w v v u u î ì + + = ⋅ r r K= = 575. ^åÖäÉ=_ÉíïÉÉå=qïç=sÉÅíçêë== fÑ= ( ) N N N w I v I u ì = r I= ( ) O O O w I v I u î = r I=íÜÉå== O O O O O O O N O N O N O N O N O N w v u w v u w w v v u u Åçë + + + + + + = θ K= = 576. `çããìí~íáîÉ=mêçéÉêíó= ì î î ì r r r r ⋅ = ⋅ = = 577. ^ëëçÅá~íáîÉ=mêçéÉêíó= ( ) ( ) î ì î ì r r r r ⋅ λµ = µ ⋅ λ = = 578. aáëíêáÄìíáîÉ=mêçéÉêíó= ( ) ï ì î ì ï î ì r r r r r r r ⋅ + ⋅ = + ⋅ = = 579. M î ì = ⋅ r r =áÑ=ì r I î r =~êÉ=çêíÜçÖçå~ä=E O π = θ FK= = 580. M î ì > ⋅ r r =áÑ= O M π < θ < K= =
  134. CHAPTER 6. VECTORS 125 581. M î ì < ⋅ r r =áÑ= π < θ < π O K= = 582. î ì î ì r r r r ⋅ ≤ ⋅ = = 583. î ì î ì r r r r ⋅ = ⋅ =áÑ=ì r I î r =~êÉ=é~ê~ääÉä=E M = θ FK= = 584. fÑ= ( ) N N N w I v I u ì = r I=íÜÉå== O N O N O N O O w v u ì ì ì ì + + = = = ⋅ r r r r K= = 585. N â â à à á á = ⋅ = ⋅ = ⋅ r r r r r r = = 586. M á â â à à á = ⋅ = ⋅ = ⋅ r r r r r r = = = = 6.6 Vector Product = 587. sÉÅíçê=mêçÇìÅí=çÑ=sÉÅíçêë=ì r =~åÇ î r = ï î ì r r r = × I=ïÜÉêÉ== • θ ⋅ ⋅ = ëáå î ì ï r r r I=ïÜÉêÉ= O M π ≤ θ ≤ X= • ì ï r r ⊥ = ~åÇ= î ï r r ⊥ X= • =sÉÅíçêë=ì r I= î r I= ï r =Ñçêã=~=êáÖÜí-Ü~åÇÉÇ=ëÅêÉïK= =
  135. CHAPTER 6. VECTORS 126 ======= = = Figure 83. = 588. O O O N N N w v u w v u â à á î ì ï r r r r r r = × = = = 589.         − = × = O O N N O O N N O O N N v u v u I w u w u I w v w v î ì ï r r r = = 590. θ ⋅ ⋅ = × = ëáå î ì î ì p r r r r =EcáÖKUPF= = 591. ^åÖäÉ=_ÉíïÉÉå=qïç=sÉÅíçêë=EcáÖKUPF= î ì î ì ëáå r r r r ⋅ × = θ = = 592. kçåÅçããìí~íáîÉ=mêçéÉêíó= ( ) ì î î ì r r r r × − = × == = 593. ^ëëçÅá~íáîÉ=mêçéÉêíó= ( ) ( ) î ì î ì r r r r × λµ = µ × λ = = =
  136. CHAPTER 6. VECTORS 127 594. aáëíêáÄìíáîÉ=mêçéÉêíó= ( ) ï ì î ì ï î ì r r r r r r r × + × = + × = = 595. M î ì r r r = × =áÑ=ì r =~åÇ= î r =~êÉ=é~ê~ääÉä=E M = θ FK= = 596. M â â à à á á r r r r r r r = × = × = × = = 597. â à á r r r = × I= á â à r r r = × I= à á â r r r = × = = = = 6.7 Triple Product = 598. pÅ~ä~ê=qêáéäÉ=mêçÇìÅí= [ ] ( ) ( ) ( ) î ì ï ì ï î ï î ì ï î ì r r r r r r r r r r r r × ⋅ = × ⋅ = × ⋅ = = = 599. [ ] [ ] [ ] [ ] [ ] [ ] î ï ì ì î ï ï ì î ì ï î î ì ï ï î ì r r r r r r r r r r r r r r r r r r − = − = − = = = = = 600. ( ) [ ] ï î ì â ï î ì â r r r r r r = × ⋅ = = 601. pÅ~ä~ê=qêáéäÉ=mêçÇìÅí=áå=`ççêÇáå~íÉ=cçêã= ( ) P P P O O O N N N w v u w v u w v u ï î ì = × ⋅ r r r I== ïÜÉêÉ== ( ) N N N w I v I u ì = r I= ( ) O O O w I v I u î = r I= ( ) P P P w I v I u ï = r K== = 602. sçäìãÉ=çÑ=m~ê~ääÉäÉéáéÉÇ= ( ) ï î ì s r r r × ⋅ = = =
  137. CHAPTER 6. VECTORS 128 ============ = = Figure 84. = 603. sçäìãÉ=çÑ=móê~ãáÇ= ( ) ï î ì S N s r r r × ⋅ = = = = = Figure 85. = 604. fÑ== ( ) M ï î ì = × ⋅ r r r I=íÜÉå=íÜÉ=îÉÅíçêë==ì r I= î r I=~åÇ= ï r =~êÉ=äáåÉ~êäó= ÇÉéÉåÇÉåí=I=ëç= î ì ï r r r µ + λ = =Ñçê=ëçãÉ=ëÅ~ä~êë=λ =~åÇ=µK== = 605. fÑ== ( ) M ï î ì ≠ × ⋅ r r r I=íÜÉå=íÜÉ=îÉÅíçêë==ì r I= î r I=~åÇ= ï r =~êÉ=äáåÉ~êäó= áåÇÉéÉåÇÉåíK= =
  138. CHAPTER 6. VECTORS 129 606. sÉÅíçê=qêáéäÉ=mêçÇìÅí= ( ) ( ) ( )ï î ì î ï ì ï î ì r r r r r r r r r ⋅ − ⋅ = × × == = = = = = = = =
  139. 130 Chapter 7 Analytic Geometry = = = = 7.1 One-Dimensional Coordinate System = mçáåí=ÅççêÇáå~íÉëW= M ñ I= N ñ I= O ñ I= M ó I= N ó I= O ó = oÉ~ä=åìãÄÉêW=λ == aáëí~åÅÉ=ÄÉíïÉÉå=íïç=éçáåíëW=Ç= = = 607. aáëí~åÅÉ=_ÉíïÉÉå=qïç=mçáåíë= O N N O ñ ñ ñ ñ ^_ Ç − = − = = = = = = Figure 86. = 608. aáîáÇáåÖ=~=iáåÉ=pÉÖãÉåí=áå=íÜÉ=o~íáç=λ = λ + λ + = N ñ ñ ñ O N M I= `_ ^` = λ I= N − ≠ λ K= = ======== = = Figure 87.
  140. CHAPTER 7. ANALYTIC GEOMETRY 131 609. jáÇéçáåí=çÑ=~=iáåÉ=pÉÖãÉåí= O ñ ñ ñ O N M + = I= N = λ K= = = = 7.2 Two-Dimensional Coordinate System = mçáåí=ÅççêÇáå~íÉëW= M ñ I= N ñ I= O ñ I= M ó I= N ó I= O ó = mçä~ê=ÅççêÇáå~íÉëW= ϕ I ê = oÉ~ä=åìãÄÉêW=λ == mçëáíáîÉ=êÉ~ä=åìãÄÉêëW=~I=ÄI=ÅI== aáëí~åÅÉ=ÄÉíïÉÉå=íïç=éçáåíëW=Ç= ^êÉ~W=p= = = 610. aáëí~åÅÉ=_ÉíïÉÉå=qïç=mçáåíë= ( ) ( )O N O O N O ó ó ñ ñ ^_ Ç − + − = = = = = = Figure 88.
  141. CHAPTER 7. ANALYTIC GEOMETRY 132 611. aáîáÇáåÖ=~=iáåÉ=pÉÖãÉåí=áå=íÜÉ=o~íáç=λ = λ + λ + = N ñ ñ ñ O N M I= λ + λ + = N ó ó ó O N M I== `_ ^` = λ I= N − ≠ λ K= = ======= = = Figure 89. = =
  142. CHAPTER 7. ANALYTIC GEOMETRY 133 ======= = = Figure 90. = 612. jáÇéçáåí=çÑ=~=iáåÉ=pÉÖãÉåí= O ñ ñ ñ O N M + = I= O ó ó ó O N M + = I= N = λ K= = 613. `ÉåíêçáÇ=EfåíÉêëÉÅíáçå=çÑ=jÉÇá~åëF=çÑ=~=qêá~åÖäÉ= P ñ ñ ñ ñ P O N M + + = I= P ó ó ó ó P O N M + + = I== ïÜÉêÉ== ( ) N N ó I ñ ^ I== ( ) O O ó I ñ _ I==~åÇ== ( ) P P ó I ñ ` ==~êÉ=îÉêíáÅÉë=çÑ= íÜÉ=íêá~åÖäÉ= ^_` K= = =
  143. CHAPTER 7. ANALYTIC GEOMETRY 134 ========= = = Figure 91. = 614. fåÅÉåíÉê=EfåíÉêëÉÅíáçå=çÑ=^åÖäÉ=_áëÉÅíçêëF=çÑ=~=qêá~åÖäÉ= Å Ä ~ Åñ Äñ ~ñ ñ P O N M + + + + = I= Å Ä ~ Åó Äó ~ó ó P O N M + + + + = I== ïÜÉêÉ= _` ~ = I= `^ Ä = I= ^_ Å = K== = ======== = = Figure 92.
  144. CHAPTER 7. ANALYTIC GEOMETRY 135 615. `áêÅìãÅÉåíÉê=EfåíÉêëÉÅíáçå=çÑ=íÜÉ=páÇÉ=mÉêéÉåÇáÅìä~ê====================== _áëÉÅíçêëF=çÑ=~=qêá~åÖäÉ= N ó ñ N ó ñ N ó ñ O N ó ó ñ N ó ó ñ N ó ó ñ ñ P P O O N N P O P O P O O O O O N O N O N M + + + = I= N ó ñ N ó ñ N ó ñ O N ó ñ ñ N ó ñ ñ N ó ñ ñ ó P P O O N N O P O P P O O O O O O N O N N M + + + = = = ======== = == Figure 93. = = = = = = =
  145. CHAPTER 7. ANALYTIC GEOMETRY 136 616. lêíÜçÅÉåíÉê=EfåíÉêëÉÅíáçå=çÑ=^äíáíìÇÉëF=çÑ=~=qêá~åÖäÉ= N ó ñ N ó ñ N ó ñ N ó ñ ñ ó N ó ñ ñ ó N ó ñ ñ ó ñ P P O O N N O P O N P O O N P O O N P O N M + + + = I= N ó ñ N ó ñ N ó ñ N ñ ó ó ñ N ñ ó ó ñ N ñ ó ó ñ ó P P O O N N P O N O P O N P O O N P O O N M + + + = = = ====== = = Figure 94. = 617. ^êÉ~=çÑ=~=qêá~åÖäÉ= ( ) ( ) N P N P N O N O P P O O N N ó ó ñ ñ ó ó ñ ñ O N N ó ñ N ó ñ N ó ñ O N p − − − − ± = ± = = = = =
  146. CHAPTER 7. ANALYTIC GEOMETRY 137 618. ^êÉ~=çÑ=~=nì~Çêáä~íÉê~ä= ( ) ( )( ) ( )( ) [ + + − + + − ± = P O P O O N O N ó ó ñ ñ ó ó ñ ñ O N p = ( )( ) ( )( )] N Q N Q Q P Q P ó ó ñ ñ ó ó ñ ñ + − + + − + = = === = = Figure 95. = kçíÉW=få=Ñçêãìä~ë=SNTI=SNU=ïÉ=ÅÜççëÉ=íÜÉ=ëáÖå=EHF=çê=E¥F=ëç= íÜ~í=íç=ÖÉí=~=éçëáíáîÉ=~åëïÉê=Ñçê=~êÉ~K== = 619. aáëí~åÅÉ=_ÉíïÉÉå=qïç=mçáåíë=áå=mçä~ê=`ççêÇáå~íÉë= ( ) N O O N O O O N Åçë ê ê O ê ê ^_ Ç ϕ − ϕ − + = = = =
  147. CHAPTER 7. ANALYTIC GEOMETRY 138 = = Figure 96. = 620. `çåîÉêíáåÖ=oÉÅí~åÖìä~ê=`ççêÇáå~íÉë=íç=mçä~ê=`ççêÇáå~íÉë= ϕ = Åçë ê ñ I= ϕ = ëáå ê ó K= = = = Figure 97. = 621. `çåîÉêíáåÖ=mçä~ê=`ççêÇáå~íÉë=íç=oÉÅí~åÖìä~ê=`ççêÇáå~íÉë= O O ó ñ ê + = I= ñ ó í~å = ϕ K=
  148. CHAPTER 7. ANALYTIC GEOMETRY 139 7.3 Straight Line in Plane = mçáåí=ÅççêÇáå~íÉëW=uI=vI=ñI= M ñ I= N ñ I== M ó I= N ó I= N ~ I= O ~ I=£== oÉ~ä=åìãÄÉêëW=âI=~I=ÄI=éI=íI=^I=_I=`I= N ^ I= O ^ I=£= ^åÖäÉëW=α I=β = ^åÖäÉ=ÄÉíïÉÉå=íïç=äáåÉëW=ϕ = kçêã~ä=îÉÅíçêW=å r = mçëáíáçå=îÉÅíçêëW= ê r I=~ r I= Ä r = = = 622. dÉåÉê~ä=bèì~íáçå=çÑ=~=píê~áÖÜí=iáåÉ= M ` _ó ^ñ = + + = = 623. kçêã~ä=sÉÅíçê=íç=~=píê~áÖÜí=iáåÉ= qÜÉ=îÉÅíçê= ( ) _ I ^ å r =áë=åçêã~ä=íç=íÜÉ=äáåÉ= M ` _ó ^ñ = + + K= = = = Figure 98. = 624. bñéäáÅáí=bèì~íáçå=çÑ=~=píê~áÖÜí=iáåÉ=EpäçéÉ-fåíÉêÅÉéí=cçêãF= Ä âñ ó + = K==
  149. CHAPTER 7. ANALYTIC GEOMETRY 140 qÜÉ=Öê~ÇáÉåí=çÑ=íÜÉ=äáåÉ=áë= α = í~å â K= = = = Figure 99. = 625. dê~ÇáÉåí=çÑ=~=iáåÉ== N O N O ñ ñ ó ó í~å â − − = α = = = = = Figure 100.
  150. CHAPTER 7. ANALYTIC GEOMETRY 141 626. bèì~íáçå=çÑ=~=iáåÉ=dáîÉå=~=mçáåí=~åÇ=íÜÉ=dê~ÇáÉåí= ( ) M M ñ ñ â ó ó − + = I== ïÜÉêÉ=â=áë=íÜÉ=Öê~ÇáÉåíI= ( ) M M ó I ñ m =áë=~=éçáåí=çå=íÜÉ=äáåÉK= = = = Figure 101. = 627. bèì~íáçå=çÑ=~=iáåÉ=qÜ~í=m~ëëÉë=qÜêçìÖÜ=qïç=mçáåíë= N O N N O N ñ ñ ñ ñ ó ó ó ó − − = − − == çê= M N ó ñ N ó ñ N ó ñ O O N N = K= =
  151. CHAPTER 7. ANALYTIC GEOMETRY 142 = = Figure 102. = 628. fåíÉêÅÉéí=cçêã= N Ä ó ~ ñ = + = = = = Figure 103. = =
  152. CHAPTER 7. ANALYTIC GEOMETRY 143 629. kçêã~ä=cçêã= M é ëáå ó Åçë ñ = − β + β = = = = Figure 104. = 630. mçáåí=aáêÉÅíáçå=cçêã= v ó ó u ñ ñ N N − = − I== ïÜÉêÉ= ( ) v I u =áë=íÜÉ=ÇáêÉÅíáçå=çÑ=íÜÉ=äáåÉ=~åÇ= ( ) N N N ó I ñ m =äáÉë= çå=íÜÉ=äáåÉK= =
  153. CHAPTER 7. ANALYTIC GEOMETRY 144 = = Figure 105. = 631. sÉêíáÅ~ä=iáåÉ= ~ ñ = = = 632. eçêáòçåí~ä=iáåÉ= Ä ó = = = 633. sÉÅíçê=bèì~íáçå=çÑ=~=píê~áÖÜí=iáåÉ= Ä í ~ ê r r r + = I== ïÜÉêÉ== l=áë=íÜÉ=çêáÖáå=çÑ=íÜÉ=ÅççêÇáå~íÉëI= u=áë=~åó=î~êá~ÄäÉ=éçáåí=çå=íÜÉ=äáåÉI== ~ r =áë=íÜÉ=éçëáíáçå=îÉÅíçê=çÑ=~=âåçïå=éçáåí=^=çå=íÜÉ=äáåÉ=I= Ä r =áë=~=âåçïå=îÉÅíçê=çÑ=ÇáêÉÅíáçåI=é~ê~ääÉä=íç=íÜÉ=äáåÉI== í=áë=~=é~ê~ãÉíÉêI== → = lu ê r =áë=íÜÉ=éçëáíáçå=îÉÅíçê=çÑ=~åó=éçáåí=u=çå=íÜÉ=äáåÉK== =
  154. CHAPTER 7. ANALYTIC GEOMETRY 145 = = Figure 106. = 634. píê~áÖÜí=iáåÉ=áå=m~ê~ãÉíêáÅ=cçêã=    + = + = O O N N íÄ ~ ó íÄ ~ ñ I== ïÜÉêÉ== ( ) ó I ñ ~êÉ=íÜÉ=ÅççêÇáå~íÉë=çÑ=~åó=ìåâåçïå=éçáåí=çå=íÜÉ=äáåÉI== ( ) O N ~ I ~ =~êÉ=íÜÉ=ÅççêÇáå~íÉë=çÑ=~=âåçïå=éçáåí=çå=íÜÉ=äáåÉI== ( ) O N Ä I Ä =~êÉ=íÜÉ=ÅççêÇáå~íÉë=çÑ=~=îÉÅíçê=é~ê~ääÉä=íç=íÜÉ=äáåÉI== í=áë=~=é~ê~ãÉíÉêK= =
  155. CHAPTER 7. ANALYTIC GEOMETRY 146 = Figure 107. = 635. aáëí~åÅÉ=cêçã=~=mçáåí=qç=~=iáåÉ= qÜÉ=Çáëí~åÅÉ=Ñêçã=íÜÉ=éçáåí= ( ) Ä I ~ m =íç=íÜÉ=äáåÉ= M ` _ó ^ñ = + + =áë== O O _ ^ ` _Ä ^~ Ç + + + = K= = = = Figure 108.
  156. CHAPTER 7. ANALYTIC GEOMETRY 147 636. m~ê~ääÉä=iáåÉë= qïç=äáåÉë= N N Ä ñ â ó + = =~åÇ= O O Ä ñ â ó + = =~êÉ=é~ê~ääÉä=áÑ== O N â â = K= qïç= äáåÉë= M ` ó _ ñ ^ N N N = + + = ~åÇ= M ` ó _ ñ ^ O O O = + + = ~êÉ= é~ê~ääÉä=áÑ= O N O N _ _ ^ ^ = K= = = = Figure 109. = 637. mÉêéÉåÇáÅìä~ê=iáåÉë= qïç=äáåÉë= N N Ä ñ â ó + = =~åÇ= O O Ä ñ â ó + = =~êÉ=éÉêéÉåÇáÅìä~ê=áÑ== N O â N â − = =çêI=Éèìáî~äÉåíäóI= N â â O N − = K= qïç= äáåÉë= M ` ó _ ñ ^ N N N = + + = ~åÇ= M ` ó _ ñ ^ O O O = + + = ~êÉ= éÉêéÉåÇáÅìä~ê=áÑ= M _ _ ^ ^ O N O N = + K= =
  157. CHAPTER 7. ANALYTIC GEOMETRY 148 = = Figure 110. = 638. ^åÖäÉ=_ÉíïÉÉå=qïç=iáåÉë= O N N O â â N â â í~å + − = ϕ I== O O O O O N O N O N O N _ ^ _ ^ _ _ ^ ^ Åçë + ⋅ + + = ϕ K= =
  158. CHAPTER 7. ANALYTIC GEOMETRY 149 = = Figure 111. = 639. fåíÉêëÉÅíáçå=çÑ=qïç=iáåÉë= fÑ=íïç=äáåÉë= M ` ó _ ñ ^ N N N = + + =~åÇ= M ` ó _ ñ ^ O O O = + + =áåíÉê- ëÉÅíI=íÜÉ=áåíÉêëÉÅíáçå=éçáåí=Ü~ë=ÅççêÇáå~íÉë= N O O N N O O N M _ ^ _ ^ _ ` _ ` ñ − + − = I= N O O N N O O N M _ ^ _ ^ ` ^ ` ^ ó − + − = K= = = = 7.4 Circle = o~ÇáìëW=o= `ÉåíÉê=çÑ=ÅáêÅäÉW=( ) Ä I ~ = mçáåí=ÅççêÇáå~íÉëW=ñI=óI= N ñ I= N ó I=£= oÉ~ä=åìãÄÉêëW=^I=_I=`I=aI=bI=cI=í=
  159. CHAPTER 7. ANALYTIC GEOMETRY 150 640. bèì~íáçå=çÑ=~=`áêÅäÉ=`ÉåíÉêÉÇ=~í=íÜÉ=lêáÖáå=Epí~åÇ~êÇ= cçêãF= O O O o ó ñ = + = ====== = = Figure 112. = 641. bèì~íáçå=çÑ=~=`áêÅäÉ=`ÉåíÉêÉÇ=~í=^åó=mçáåí=( ) Ä I ~ ( ) ( ) O O O o Ä ó ~ ñ = − + − Figure 113.
  160. CHAPTER 7. ANALYTIC GEOMETRY 151 642. qÜêÉÉ=mçáåí=cçêã M N ó ñ ó ñ N ó ñ ó ñ N ó ñ ó ñ N ó ñ ó ñ P P O P O P O O O O O O N N O N O N O O = + + + + = = = Figure 114. = 643. m~ê~ãÉíêáÅ=cçêã    = = í ëáå o ó í Åçë o ñ I= π ≤ ≤ O í M K = 644. dÉåÉê~ä=cçêã M c bó añ ^ó ^ñ O O = + + + + =E^=åçåòÉêçI= ^c Q b a O O > + FK== qÜÉ=ÅÉåíÉê=çÑ=íÜÉ=ÅáêÅäÉ=Ü~ë=ÅççêÇáå~íÉë=( ) Ä I ~ I=ïÜÉêÉ== ^ O a ~ − = I= ^ O b Ä − = K= qÜÉ=ê~Çáìë=çÑ=íÜÉ=ÅáêÅäÉ=áë
  161. CHAPTER 7. ANALYTIC GEOMETRY 152 ^ O ^c Q b a o O O − + = K = = = 7.5 Ellipse = pÉãáã~àçê=~ñáëW=~= pÉãáãáåçê=~ñáëW=Ä= cçÅáW= ( ) M I Å cN − I= ( ) M I Å cO = aáëí~åÅÉ=ÄÉíïÉÉå=íÜÉ=ÑçÅáW=OÅ= = bÅÅÉåíêáÅáíóW=É== oÉ~ä=åìãÄÉêëW=^I=_I=`I=aI=bI=cI=í= mÉêáãÉíÉêW=i= ^êÉ~W=p= = = 645. bèì~íáçå=çÑ=~å=bääáéëÉ=Epí~åÇ~êÇ=cçêãF N Ä ó ~ ñ O O O O = + = = Figure 115.
  162. CHAPTER 7. ANALYTIC GEOMETRY 153 646. ~ O ê ê O N = + I= ïÜÉêÉ== N ê I== O ê ==~êÉ==Çáëí~åÅÉë==Ñêçã==~åó==éçáåí== ( ) ó I ñ m ==çå= íÜÉ=ÉääáéëÉ=íç=íÜÉ=íïç=ÑçÅáK= = = = Figure 116. = 647. O O O Å Ä ~ + = = 648. bÅÅÉåíêáÅáíó N ~ Å É < = = = 649. bèì~íáçåë=çÑ=aáêÉÅíêáÅÉë Å ~ É ~ ñ O ± = ± = = = 650. m~ê~ãÉíêáÅ=cçêã    = = í ëáå Ä ó í Åçë ~ ñ I= π ≤ ≤ O í M K = =
  163. CHAPTER 7. ANALYTIC GEOMETRY 154 651. dÉåÉê~ä=cçêã M c bó añ `ó _ñó ^ñ O O = + + + + + I== ïÜÉêÉ= M ^` Q _O < − K= = 652. dÉåÉê~ä=cçêã=ïáíÜ=^ñÉë=m~ê~ääÉä=íç=íÜÉ=`ççêÇáå~íÉ=^ñÉë M c bó añ `ó ^ñ O O = + + + + I== ïÜÉêÉ= M ^` > K = 653. `áêÅìãÑÉêÉåÅÉ ( ) É ~b Q i = I== ïÜÉêÉ==íÜÉ==ÑìåÅíáçå=b==áë==íÜÉ=ÅçãéäÉíÉ==ÉääáéíáÅ=áåíÉÖê~ä==çÑ= íÜÉ=ëÉÅçåÇ=âáåÇK== = 654. ^ééêçñáã~íÉ=cçêãìä~ë=çÑ=íÜÉ=`áêÅìãÑÉêÉåÅÉ ( ) ( ) ~Ä Ä ~ R K N i − + π = I== ( ) O O Ä ~ O i + π = K= = 655. ~Ä p π = = = = = 7.6 Hyperbola = qê~åëîÉêëÉ=~ñáëW=~= `çåàìÖ~íÉ=~ñáëW=Ä= cçÅáW= ( ) M I Å cN − I= ( ) M I Å cO = aáëí~åÅÉ=ÄÉíïÉÉå=íÜÉ=ÑçÅáW=OÅ= = bÅÅÉåíêáÅáíóW=É== ^ëóãéíçíÉëW=ëI=í= oÉ~ä=åìãÄÉêëW=^I=_I=`I=aI=bI=cI=íI=â= = = =
  164. CHAPTER 7. ANALYTIC GEOMETRY 155 656. bèì~íáçå=çÑ=~=eóéÉêÄçä~=Epí~åÇ~êÇ=cçêãF= N Ä ó ~ ñ O O O O = − = = = = Figure 117. = 657. ~ O ê ê O N = − I= ïÜÉêÉ== N ê I== O ê ==~êÉ==Çáëí~åÅÉë==Ñêçã==~åó=éçáåí== ( ) ó I ñ m ==çå= íÜÉ=ÜóéÉêÄçä~=íç=íÜÉ=íïç=ÑçÅáK= =
  165. CHAPTER 7. ANALYTIC GEOMETRY 156 = = Figure 118. = 658. bèì~íáçåë=çÑ=^ëóãéíçíÉë= ñ ~ Ä ó ± = = = 659. O O O Ä ~ Å + = = = 660. bÅÅÉåíêáÅáíó N ~ Å É > = = = 661. bèì~íáçåë=çÑ=aáêÉÅíêáÅÉë Å ~ É ~ ñ O ± = ± = = = = =
  166. CHAPTER 7. ANALYTIC GEOMETRY 157 662. m~ê~ãÉíêáÅ=bèì~íáçåë=çÑ=íÜÉ=oáÖÜí=_ê~åÅÜ=çÑ=~=eóéÉêÄçä~=    = = í ëáåÜ Ä ó í ÅçëÜ ~ ñ I= π ≤ ≤ O í M K = 663. dÉåÉê~ä=cçêã M c bó añ `ó _ñó ^ñ O O = + + + + + I== ïÜÉêÉ= M ^` Q _O > − K= = 664. dÉåÉê~ä=cçêã=ïáíÜ=^ñÉë=m~ê~ääÉä=íç=íÜÉ=`ççêÇáå~íÉ=^ñÉë M c bó añ `ó ^ñ O O = + + + + I== ïÜÉêÉ= M ^` < K= 665. ^ëóãéíçíáÅ=cçêã= Q É ñó O = I== çê== ñ â ó = I=ïÜÉêÉ= Q É â O = K= få= íÜáë= Å~ëÉ= I= íÜÉ= ~ëóãéíçíÉë= Ü~îÉ= Éèì~íáçåë= M ñ = = ~åÇ= M ó = K== =
  167. CHAPTER 7. ANALYTIC GEOMETRY 158 = = Figure 119. = = = 7.7 Parabola = cçÅ~ä=é~ê~ãÉíÉêW=é= cçÅìëW=c= sÉêíÉñW= ( ) M M ó I ñ j = oÉ~ä=åìãÄÉêëW=^I=_I=`I=aI=bI=cI=éI=~I=ÄI=Å= = = 666. bèì~íáçå=çÑ=~=m~ê~Äçä~=Epí~åÇ~êÇ=cçêãF éñ O óO = =
  168. CHAPTER 7. ANALYTIC GEOMETRY 159 = = Figure 120. = bèì~íáçå=çÑ=íÜÉ=ÇáêÉÅíêáñ O é ñ − = I= `ççêÇáå~íÉë=çÑ=íÜÉ=ÑçÅìë=       M I O é c I= `ççêÇáå~íÉë=çÑ=íÜÉ=îÉêíÉñ= ( ) M I M j K= = 667. dÉåÉê~ä=cçêã M c bó añ `ó _ñó ^ñ O O = + + + + + I== ïÜÉêÉ= M ^` Q _O = − K= = 668. O ~ñ ó = I= ~ O N é = K= bèì~íáçå=çÑ=íÜÉ=ÇáêÉÅíêáñ
  169. CHAPTER 7. ANALYTIC GEOMETRY 160 O é ó − = I= `ççêÇáå~íÉë=çÑ=íÜÉ=ÑçÅìë=       O é I M c I= `ççêÇáå~íÉë=çÑ=íÜÉ=îÉêíÉñ= ( ) M I M j K= = = = Figure 121. = 669. dÉåÉê~ä=cçêãI=^ñáë=m~ê~ääÉä=íç=íÜÉ=ó-~ñáë== M c bó añ ^ñO = + + + =E^I=b=åçåòÉêçFI== Å Äñ ~ñ ó O + + = I= ~ O N é = K== bèì~íáçå=çÑ=íÜÉ=ÇáêÉÅíêáñ O é ó ó M − = I= `ççêÇáå~íÉë=çÑ=íÜÉ=ÑçÅìë=
  170. CHAPTER 7. ANALYTIC GEOMETRY 161       + O é ó I ñ c M M I= `ççêÇáå~íÉë=çÑ=íÜÉ=îÉêíÉñ= ~ O Ä ñM − = I= ~ Q Ä ~Å Q Å Äñ ~ñ ó O M O M M − = + + = K= = = = Figure 122. = = = 7.8 Three-Dimensional Coordinate System = mçáåí=ÅççêÇáå~íÉëW= M ñ I= M ó I= M ò I= N ñ I= N ó I= N ò I=£= oÉ~ä=åìãÄÉêW=λ == aáëí~åÅÉ=ÄÉíïÉÉå=íïç=éçáåíëW=Ç= ^êÉ~W=p= sçäìãÉW=s= =
Publicidad