SlideShare una empresa de Scribd logo
1 de 32
Descargar para leer sin conexión
Chapter 1
ICT 2073
Prepare by : Ms. Siti Hajar Binti Ismail
Learning Objective
 Define Database Management System (DBMS) and
database
 Describe the advantages and disadvantages of DBMS
to file based system.
 Analyses structure models in Database
Definitions
Database:
 A very large, integrated collection of data.
 Models real-world enterprise.
 Entities (e.g., students, courses)
 Relationships (e.g., Madonna is taking CS564)
Database Management System (DBMS)
 a software package designed to store and manage databases.
 Examples of Database Applications:
• Banking: all transactions
• Airlines: reservations, schedules
• Universities: registration, grades
Purpose of Database Systems
 In the early days, database applications were built directly on top of
file systems
 Drawbacks of using file systems to store data:
 Data redundancy and inconsistency
 Multiple file formats, duplication of information in different files
 Difficulty in accessing data
 Need to write a new program to carry out each new task
 Data isolation — multiple files and formats
 Drawbacks of using file systems (cont.)
 Integrity problems
 Integrity constraints (e.g. account balance > 0) become
“buried” in program code rather than being stated explicitly
 Hard to add new constraints or change existing ones
 Atomicity of updates
 Failures may leave database in an inconsistent state with
partial updates carried out
 E.g. transfer of funds from one account to another should either
complete or not happen at all
 Concurrent access by multiple users
 Concurrent accessed needed for performance
 Uncontrolled concurrent accesses can lead to inconsistencies
 E.g. two people reading a balance and updating it at the
same time
 Security problems
 Database systems offer solutions to all the above problems
Why Use a DBMS?
 Separation of the Data definition and the Program
 Abstraction into a simple model
 Data independence and efficient access.
 Reduced application development time – ad-hoc queries
 Data integrity and security.
 Uniform data administration.
 Concurrent access, recovery from crashes.
 Support for multiple different views
Why Study Databases??
 Shift from computation to information
 at the “low end”: scramble to webspace (a mess!)
 at the “high end”: scientific applications
 Datasets increasing in diversity and volume.
 Digital libraries, interactive video, Human Genome project, EOS
project
 ... need for DBMS exploding
 DBMS encompasses most of CS
 OS, languages, theory, “AI”, multimedia, logic
?
Levels of Abstraction
 Many views, single conceptual
(logical) schema and physical
schema.
 Views describe how users see
the data.
 Conceptual schema defines
logical structure. Sometime we
separate between conceptual
level and logical level
 Physical schema describes the
files and indexes used.
* Schemas are defined using DDL (Data Definition Language)
*data is modified/queried using DML (Data Manipulation Language)
Physical Schema
Conceptual Schema
View 1 View 2 View 3
Levels of Abstraction
 Physical level: describes how a record (e.g., customer) is stored.
 Logical level: describes data stored in database, and the relationships
among the data.
type customer = record
customer_id : string;
customer_name : string;
customer_street : string;
customer_city : string;
end;
 View level: application programs hide details of data types. Views can
also hide information (such as an employee’s salary) for security
purposes.
Instances and Schemas
 Schema – the logical structure of the database
 Example: The database consists of information about a set of
customers and accounts and the relationship between them)
 Analogous to type information of a variable in a program
 Physical schema: database design at the physical level
 Logical schema: database design at the logical level
 Instance – the actual content of the database at a particular point in
time
 Analogous to the value of a variable
 Physical Data Independence – the ability to modify the physical
schema without changing the logical schema
 Applications depend on the logical schema
 In general, the interfaces between the various levels and
components should be well defined so that changes in some
parts do not seriously influence others.
Data Models
 A collection of tools for describing
 Data
 Data relationships
 Data semantics
 Data constraints
 Relational model
 Entity-Relationship data model (mainly for database design)
 Object-based data models (Object-oriented and Object-relational)
 Semistructured data model (XML)
 Other older models:
 Network model
 Hierarchical model
Data Manipulation Language (DML)
 Language for accessing and manipulating the data organized by the
appropriate data model
 DML also known as query language
 Two classes of languages
 Procedural – user specifies what data is required and how to get
those data
 Declarative (nonprocedural) – user specifies what data is
required without specifying how to get those data
 SQL is the most widely used query language
Data Definition Language (DDL)
 Specification notation for defining the database schema
Example: create table account (
account_number char(10),
branch_name char(10),
balance integer)
 DDL compiler generates a set of tables stored in a data
dictionary
 Data dictionary contains metadata (i.e., data about data)
 Database schema
 Data storage and definition language
 Specifies the storage structure and access methods used
 Integrity constraints
 Domain constraints
 Referential integrity (e.g. branch_name must correspond to a
valid branch in the branch table)
 Authorization
SQL
 SQL: widely used non-procedural language
 Example: Find the name of the customer with customer-id
192-83-7465
select customer.customer_name
from customer
where customer.customer_id = ‘192-83-7465’
 Application programs generally access databases through one
of
 Language extensions to allow embedded SQL
 Application program interface (e.g., ODBC/JDBC) which
allow SQL queries to be sent to a database
Database Design
The process of designing the general structure of the database:
 Logical Design – Deciding on the database schema. Database design
requires that we find a “good” collection of relation schemas.
 Business decision – What attributes should we record in the
database?
 Computer Science decision – What relation schemas should we have
and how should the attributes be distributed among the various
relation schemas?
 Physical Design – Deciding on the physical layout of the database
The Entity-Relationship Model
 Models an enterprise as a collection of entities and relationships
 Entity: a “thing” or “object” in the enterprise that is distinguishable
from other objects
 Described by a set of attributes
 Relationship: an association among several entities
 Represented diagrammatically by an entity-relationship diagram:
Other Data Models
 Object-oriented data model
 Object-relational data model
Database Users
 Users are differentiated by the way they expect to interact with the
system
 Application programmers – interact with system through DML calls
 Sophisticated users – form requests in a database query language
 Specialized users – write specialized database applications that do
not fit into the traditional data processing framework
 Naïve users – invoke one of the permanent application programs that
have been written previously
 E.g. people accessing database over the web, bank tellers,
clerical staff
Database Administrator
 Coordinates all the activities of the database system; the
database administrator has a good understanding of the
enterprise’s information resources and needs.
 Database administrator's duties include:
 Schema definition
 Storage structure and access method definition
 Schema and physical organization modification
 Granting user authority to access the database
 Specifying integrity constraints
 Acting as liaison with users
 Monitoring performance and responding to changes in requirements
Database Management System
Internals
 Storage management
 Query processing
 Transaction processing
Storage Management
 Storage manager is a program module that provides the
interface between the low-level data stored in the
database and the application programs and queries
submitted to the system.
 The storage manager is responsible to the following
tasks:
 interaction with the file manager
 efficient storing, retrieving and updating of data
Concurrency Control
 Concurrent execution of user programs is essential for good DBMS
performance.
 Because disk accesses are frequent, and relatively slow, it is
important to keep the cpu humming by working on several user
programs concurrently.
 Interleaving actions of different user programs can lead to
inconsistency: e.g., check is cleared while account balance is being
computed.
 DBMS ensures such problems don’t arise: users can pretend they
are using a single-user system.
Transaction Management
 A transaction is a collection of operations that performs a single
logical function in a database application
 Transaction-management component ensures that the database
remains in a consistent (correct) state despite system failures (e.g.,
power failures and operating system crashes) and transaction
failures.
 Concurrency-control manager controls the interaction among the
concurrent transactions, to ensure the consistency of the database.
History of Database Systems
 1950s and early 1960s:
 Data processing using magnetic tapes for storage
 Tapes provide only sequential access
 Punched cards for input
 Late 1960s and 1970s:
 Hard disks allow direct access to data
 Network and hierarchical data models in widespread use
 Ted Codd defines the relational data model
 Would win the ACM Turing Award for this work
 IBM Research begins System R prototype
 UC Berkeley begins Ingres prototype
 High-performance (for the era) transaction processing
History (cont.)
 1980s:
 Research relational prototypes evolve into commercial systems
 SQL becomes industry standard
 Parallel and distributed database systems
 Object-oriented database systems
 1990s:
 Large decision support and data-mining applications
 Large multi-terabyte data warehouses
 Emergence of Web commerce
 2000s:
 XML and XQuery standards
 Automated database administration
 Increasing use of highly parallel database systems
 Web-scale distributed data storage systems
Learning outcome
 Differentiate between Database Management System
(DBMS) and database
 Briefly explain advantages and disadvantages of DBMS
to file based system.
 Discuss Database Models
Summary
 DBMS used to maintain, query large datasets.
 Benefits include recovery from system crashes, concurrent access,
quick application development, data integrity and security.
 Levels of abstraction give data independence.
 A DBMS typically has a layered architecture.
 DBAs hold responsible jobs and are well-paid!
 DBMS R&D is one of the broadest,
most exciting areas in CS.
 Advanced databases course at the graduate level

Más contenido relacionado

Similar a database introductoin optimization1-app6891.pdf

1. Introduction to DBMS
1. Introduction to DBMS1. Introduction to DBMS
1. Introduction to DBMSkoolkampus
 
Database Management System, Lecture-1
Database Management System, Lecture-1Database Management System, Lecture-1
Database Management System, Lecture-1Sonia Mim
 
21UCAC 41 Database Management System.ppt
21UCAC 41 Database Management System.ppt21UCAC 41 Database Management System.ppt
21UCAC 41 Database Management System.pptssuser7f90ae
 
Ch-1-Introduction-to-Database.pdf
Ch-1-Introduction-to-Database.pdfCh-1-Introduction-to-Database.pdf
Ch-1-Introduction-to-Database.pdfMrjJoker1
 
Database Management System Introduction
Database Management System IntroductionDatabase Management System Introduction
Database Management System IntroductionSmriti Jain
 
DBMS introduction and functionality of of dbms
DBMS introduction and functionality of  of dbmsDBMS introduction and functionality of  of dbms
DBMS introduction and functionality of of dbmsranjana dalwani
 
Database systems - Chapter 2 (Remaining)
Database systems - Chapter 2 (Remaining)Database systems - Chapter 2 (Remaining)
Database systems - Chapter 2 (Remaining)shahab3
 
Advanced Database Management System_Introduction Slide.ppt
Advanced Database Management System_Introduction Slide.pptAdvanced Database Management System_Introduction Slide.ppt
Advanced Database Management System_Introduction Slide.pptBikalAdhikari4
 

Similar a database introductoin optimization1-app6891.pdf (20)

1. Introduction to DBMS
1. Introduction to DBMS1. Introduction to DBMS
1. Introduction to DBMS
 
27 fcs157al2
27 fcs157al227 fcs157al2
27 fcs157al2
 
Database Management System, Lecture-1
Database Management System, Lecture-1Database Management System, Lecture-1
Database Management System, Lecture-1
 
Dbms models
Dbms modelsDbms models
Dbms models
 
Database Systems Concepts, 5th Ed
Database Systems Concepts, 5th EdDatabase Systems Concepts, 5th Ed
Database Systems Concepts, 5th Ed
 
21UCAC 41 Database Management System.ppt
21UCAC 41 Database Management System.ppt21UCAC 41 Database Management System.ppt
21UCAC 41 Database Management System.ppt
 
DBMS - Introduction
DBMS - IntroductionDBMS - Introduction
DBMS - Introduction
 
Ch-1-Introduction-to-Database.pdf
Ch-1-Introduction-to-Database.pdfCh-1-Introduction-to-Database.pdf
Ch-1-Introduction-to-Database.pdf
 
Database Management System Introduction
Database Management System IntroductionDatabase Management System Introduction
Database Management System Introduction
 
DBMS introduction and functionality of of dbms
DBMS introduction and functionality of  of dbmsDBMS introduction and functionality of  of dbms
DBMS introduction and functionality of of dbms
 
dbms notes.ppt
dbms notes.pptdbms notes.ppt
dbms notes.ppt
 
DBMS and its Models
DBMS and its ModelsDBMS and its Models
DBMS and its Models
 
Dbms 1
Dbms 1Dbms 1
Dbms 1
 
Dbms unit i
Dbms unit iDbms unit i
Dbms unit i
 
DBMS-Unit-1.pptx
DBMS-Unit-1.pptxDBMS-Unit-1.pptx
DBMS-Unit-1.pptx
 
LectDBS_1.pdf
LectDBS_1.pdfLectDBS_1.pdf
LectDBS_1.pdf
 
Database systems - Chapter 2 (Remaining)
Database systems - Chapter 2 (Remaining)Database systems - Chapter 2 (Remaining)
Database systems - Chapter 2 (Remaining)
 
Dbms
DbmsDbms
Dbms
 
DBMS
DBMSDBMS
DBMS
 
Advanced Database Management System_Introduction Slide.ppt
Advanced Database Management System_Introduction Slide.pptAdvanced Database Management System_Introduction Slide.ppt
Advanced Database Management System_Introduction Slide.ppt
 

Último

Pre-ProductionImproveddsfjgndflghtgg.pptx
Pre-ProductionImproveddsfjgndflghtgg.pptxPre-ProductionImproveddsfjgndflghtgg.pptx
Pre-ProductionImproveddsfjgndflghtgg.pptxStephen266013
 
如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证成绩单原版一比一
如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证成绩单原版一比一如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证成绩单原版一比一
如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证成绩单原版一比一hwhqz6r1y
 
2024 Q1 Tableau User Group Leader Quarterly Call
2024 Q1 Tableau User Group Leader Quarterly Call2024 Q1 Tableau User Group Leader Quarterly Call
2024 Q1 Tableau User Group Leader Quarterly Calllward7
 
Toko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra Malang
Toko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra MalangToko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra Malang
Toko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra Malangadet6151
 
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证ppy8zfkfm
 
ℂall Girls Kashmiri Gate ℂall Now Chhaya ☎ 9899900591 WhatsApp Number 24/7
ℂall Girls Kashmiri Gate ℂall Now Chhaya ☎ 9899900591 WhatsApp  Number 24/7ℂall Girls Kashmiri Gate ℂall Now Chhaya ☎ 9899900591 WhatsApp  Number 24/7
ℂall Girls Kashmiri Gate ℂall Now Chhaya ☎ 9899900591 WhatsApp Number 24/7komalsharmaa480
 
社内勉強会資料  Mamba - A new era or ephemeral
社内勉強会資料   Mamba - A new era or ephemeral社内勉強会資料   Mamba - A new era or ephemeral
社内勉強会資料  Mamba - A new era or ephemeralNABLAS株式会社
 
如何办理英国卡迪夫大学毕业证(Cardiff毕业证书)成绩单留信学历认证
如何办理英国卡迪夫大学毕业证(Cardiff毕业证书)成绩单留信学历认证如何办理英国卡迪夫大学毕业证(Cardiff毕业证书)成绩单留信学历认证
如何办理英国卡迪夫大学毕业证(Cardiff毕业证书)成绩单留信学历认证ju0dztxtn
 
一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理
一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理
一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理pyhepag
 
Aggregations - The Elasticsearch "GROUP BY"
Aggregations - The Elasticsearch "GROUP BY"Aggregations - The Elasticsearch "GROUP BY"
Aggregations - The Elasticsearch "GROUP BY"John Sobanski
 
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...Amil baba
 
如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一
如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一
如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一hwhqz6r1y
 
一比一原版麦考瑞大学毕业证成绩单如何办理
一比一原版麦考瑞大学毕业证成绩单如何办理一比一原版麦考瑞大学毕业证成绩单如何办理
一比一原版麦考瑞大学毕业证成绩单如何办理cyebo
 
一比一原版纽卡斯尔大学毕业证成绩单如何办理
一比一原版纽卡斯尔大学毕业证成绩单如何办理一比一原版纽卡斯尔大学毕业证成绩单如何办理
一比一原版纽卡斯尔大学毕业证成绩单如何办理cyebo
 
2024 Q2 Orange County (CA) Tableau User Group Meeting
2024 Q2 Orange County (CA) Tableau User Group Meeting2024 Q2 Orange County (CA) Tableau User Group Meeting
2024 Q2 Orange County (CA) Tableau User Group MeetingAlison Pitt
 
一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理
一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理
一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理pyhepag
 
How I opened a fake bank account and didn't go to prison
How I opened a fake bank account and didn't go to prisonHow I opened a fake bank account and didn't go to prison
How I opened a fake bank account and didn't go to prisonPayment Village
 
Generative AI for Trailblazers_ Unlock the Future of AI.pdf
Generative AI for Trailblazers_ Unlock the Future of AI.pdfGenerative AI for Trailblazers_ Unlock the Future of AI.pdf
Generative AI for Trailblazers_ Unlock the Future of AI.pdfEmmanuel Dauda
 

Último (20)

Pre-ProductionImproveddsfjgndflghtgg.pptx
Pre-ProductionImproveddsfjgndflghtgg.pptxPre-ProductionImproveddsfjgndflghtgg.pptx
Pre-ProductionImproveddsfjgndflghtgg.pptx
 
如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证成绩单原版一比一
如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证成绩单原版一比一如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证成绩单原版一比一
如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证成绩单原版一比一
 
2024 Q1 Tableau User Group Leader Quarterly Call
2024 Q1 Tableau User Group Leader Quarterly Call2024 Q1 Tableau User Group Leader Quarterly Call
2024 Q1 Tableau User Group Leader Quarterly Call
 
Toko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra Malang
Toko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra MalangToko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra Malang
Toko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra Malang
 
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
 
ℂall Girls Kashmiri Gate ℂall Now Chhaya ☎ 9899900591 WhatsApp Number 24/7
ℂall Girls Kashmiri Gate ℂall Now Chhaya ☎ 9899900591 WhatsApp  Number 24/7ℂall Girls Kashmiri Gate ℂall Now Chhaya ☎ 9899900591 WhatsApp  Number 24/7
ℂall Girls Kashmiri Gate ℂall Now Chhaya ☎ 9899900591 WhatsApp Number 24/7
 
社内勉強会資料  Mamba - A new era or ephemeral
社内勉強会資料   Mamba - A new era or ephemeral社内勉強会資料   Mamba - A new era or ephemeral
社内勉強会資料  Mamba - A new era or ephemeral
 
如何办理英国卡迪夫大学毕业证(Cardiff毕业证书)成绩单留信学历认证
如何办理英国卡迪夫大学毕业证(Cardiff毕业证书)成绩单留信学历认证如何办理英国卡迪夫大学毕业证(Cardiff毕业证书)成绩单留信学历认证
如何办理英国卡迪夫大学毕业证(Cardiff毕业证书)成绩单留信学历认证
 
一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理
一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理
一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理
 
Aggregations - The Elasticsearch "GROUP BY"
Aggregations - The Elasticsearch "GROUP BY"Aggregations - The Elasticsearch "GROUP BY"
Aggregations - The Elasticsearch "GROUP BY"
 
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
 
如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一
如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一
如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一
 
一比一原版麦考瑞大学毕业证成绩单如何办理
一比一原版麦考瑞大学毕业证成绩单如何办理一比一原版麦考瑞大学毕业证成绩单如何办理
一比一原版麦考瑞大学毕业证成绩单如何办理
 
Abortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotec
Abortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotecAbortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotec
Abortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotec
 
一比一原版纽卡斯尔大学毕业证成绩单如何办理
一比一原版纽卡斯尔大学毕业证成绩单如何办理一比一原版纽卡斯尔大学毕业证成绩单如何办理
一比一原版纽卡斯尔大学毕业证成绩单如何办理
 
2024 Q2 Orange County (CA) Tableau User Group Meeting
2024 Q2 Orange County (CA) Tableau User Group Meeting2024 Q2 Orange County (CA) Tableau User Group Meeting
2024 Q2 Orange County (CA) Tableau User Group Meeting
 
一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理
一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理
一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理
 
How I opened a fake bank account and didn't go to prison
How I opened a fake bank account and didn't go to prisonHow I opened a fake bank account and didn't go to prison
How I opened a fake bank account and didn't go to prison
 
123.docx. .
123.docx.                                 .123.docx.                                 .
123.docx. .
 
Generative AI for Trailblazers_ Unlock the Future of AI.pdf
Generative AI for Trailblazers_ Unlock the Future of AI.pdfGenerative AI for Trailblazers_ Unlock the Future of AI.pdf
Generative AI for Trailblazers_ Unlock the Future of AI.pdf
 

database introductoin optimization1-app6891.pdf

  • 1. Chapter 1 ICT 2073 Prepare by : Ms. Siti Hajar Binti Ismail
  • 2. Learning Objective  Define Database Management System (DBMS) and database  Describe the advantages and disadvantages of DBMS to file based system.  Analyses structure models in Database
  • 3. Definitions Database:  A very large, integrated collection of data.  Models real-world enterprise.  Entities (e.g., students, courses)  Relationships (e.g., Madonna is taking CS564) Database Management System (DBMS)  a software package designed to store and manage databases.  Examples of Database Applications: • Banking: all transactions • Airlines: reservations, schedules • Universities: registration, grades
  • 4. Purpose of Database Systems  In the early days, database applications were built directly on top of file systems  Drawbacks of using file systems to store data:  Data redundancy and inconsistency  Multiple file formats, duplication of information in different files  Difficulty in accessing data  Need to write a new program to carry out each new task  Data isolation — multiple files and formats
  • 5.  Drawbacks of using file systems (cont.)  Integrity problems  Integrity constraints (e.g. account balance > 0) become “buried” in program code rather than being stated explicitly  Hard to add new constraints or change existing ones  Atomicity of updates  Failures may leave database in an inconsistent state with partial updates carried out  E.g. transfer of funds from one account to another should either complete or not happen at all
  • 6.  Concurrent access by multiple users  Concurrent accessed needed for performance  Uncontrolled concurrent accesses can lead to inconsistencies  E.g. two people reading a balance and updating it at the same time  Security problems  Database systems offer solutions to all the above problems
  • 7. Why Use a DBMS?  Separation of the Data definition and the Program  Abstraction into a simple model  Data independence and efficient access.  Reduced application development time – ad-hoc queries  Data integrity and security.  Uniform data administration.  Concurrent access, recovery from crashes.  Support for multiple different views
  • 8. Why Study Databases??  Shift from computation to information  at the “low end”: scramble to webspace (a mess!)  at the “high end”: scientific applications  Datasets increasing in diversity and volume.  Digital libraries, interactive video, Human Genome project, EOS project  ... need for DBMS exploding  DBMS encompasses most of CS  OS, languages, theory, “AI”, multimedia, logic ?
  • 9. Levels of Abstraction  Many views, single conceptual (logical) schema and physical schema.  Views describe how users see the data.  Conceptual schema defines logical structure. Sometime we separate between conceptual level and logical level  Physical schema describes the files and indexes used. * Schemas are defined using DDL (Data Definition Language) *data is modified/queried using DML (Data Manipulation Language) Physical Schema Conceptual Schema View 1 View 2 View 3
  • 10. Levels of Abstraction  Physical level: describes how a record (e.g., customer) is stored.  Logical level: describes data stored in database, and the relationships among the data. type customer = record customer_id : string; customer_name : string; customer_street : string; customer_city : string; end;  View level: application programs hide details of data types. Views can also hide information (such as an employee’s salary) for security purposes.
  • 11. Instances and Schemas  Schema – the logical structure of the database  Example: The database consists of information about a set of customers and accounts and the relationship between them)  Analogous to type information of a variable in a program  Physical schema: database design at the physical level  Logical schema: database design at the logical level  Instance – the actual content of the database at a particular point in time  Analogous to the value of a variable
  • 12.  Physical Data Independence – the ability to modify the physical schema without changing the logical schema  Applications depend on the logical schema  In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.
  • 13.
  • 14. Data Models  A collection of tools for describing  Data  Data relationships  Data semantics  Data constraints  Relational model  Entity-Relationship data model (mainly for database design)  Object-based data models (Object-oriented and Object-relational)  Semistructured data model (XML)  Other older models:  Network model  Hierarchical model
  • 15. Data Manipulation Language (DML)  Language for accessing and manipulating the data organized by the appropriate data model  DML also known as query language  Two classes of languages  Procedural – user specifies what data is required and how to get those data  Declarative (nonprocedural) – user specifies what data is required without specifying how to get those data  SQL is the most widely used query language
  • 16. Data Definition Language (DDL)  Specification notation for defining the database schema Example: create table account ( account_number char(10), branch_name char(10), balance integer)  DDL compiler generates a set of tables stored in a data dictionary
  • 17.  Data dictionary contains metadata (i.e., data about data)  Database schema  Data storage and definition language  Specifies the storage structure and access methods used  Integrity constraints  Domain constraints  Referential integrity (e.g. branch_name must correspond to a valid branch in the branch table)  Authorization
  • 18. SQL  SQL: widely used non-procedural language  Example: Find the name of the customer with customer-id 192-83-7465 select customer.customer_name from customer where customer.customer_id = ‘192-83-7465’  Application programs generally access databases through one of  Language extensions to allow embedded SQL  Application program interface (e.g., ODBC/JDBC) which allow SQL queries to be sent to a database
  • 19. Database Design The process of designing the general structure of the database:  Logical Design – Deciding on the database schema. Database design requires that we find a “good” collection of relation schemas.  Business decision – What attributes should we record in the database?  Computer Science decision – What relation schemas should we have and how should the attributes be distributed among the various relation schemas?  Physical Design – Deciding on the physical layout of the database
  • 20. The Entity-Relationship Model  Models an enterprise as a collection of entities and relationships  Entity: a “thing” or “object” in the enterprise that is distinguishable from other objects  Described by a set of attributes  Relationship: an association among several entities  Represented diagrammatically by an entity-relationship diagram:
  • 21. Other Data Models  Object-oriented data model  Object-relational data model
  • 22. Database Users  Users are differentiated by the way they expect to interact with the system  Application programmers – interact with system through DML calls  Sophisticated users – form requests in a database query language  Specialized users – write specialized database applications that do not fit into the traditional data processing framework  Naïve users – invoke one of the permanent application programs that have been written previously  E.g. people accessing database over the web, bank tellers, clerical staff
  • 23. Database Administrator  Coordinates all the activities of the database system; the database administrator has a good understanding of the enterprise’s information resources and needs.
  • 24.  Database administrator's duties include:  Schema definition  Storage structure and access method definition  Schema and physical organization modification  Granting user authority to access the database  Specifying integrity constraints  Acting as liaison with users  Monitoring performance and responding to changes in requirements
  • 25. Database Management System Internals  Storage management  Query processing  Transaction processing
  • 26. Storage Management  Storage manager is a program module that provides the interface between the low-level data stored in the database and the application programs and queries submitted to the system.  The storage manager is responsible to the following tasks:  interaction with the file manager  efficient storing, retrieving and updating of data
  • 27. Concurrency Control  Concurrent execution of user programs is essential for good DBMS performance.  Because disk accesses are frequent, and relatively slow, it is important to keep the cpu humming by working on several user programs concurrently.  Interleaving actions of different user programs can lead to inconsistency: e.g., check is cleared while account balance is being computed.  DBMS ensures such problems don’t arise: users can pretend they are using a single-user system.
  • 28. Transaction Management  A transaction is a collection of operations that performs a single logical function in a database application  Transaction-management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.  Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.
  • 29. History of Database Systems  1950s and early 1960s:  Data processing using magnetic tapes for storage  Tapes provide only sequential access  Punched cards for input  Late 1960s and 1970s:  Hard disks allow direct access to data  Network and hierarchical data models in widespread use  Ted Codd defines the relational data model  Would win the ACM Turing Award for this work  IBM Research begins System R prototype  UC Berkeley begins Ingres prototype  High-performance (for the era) transaction processing
  • 30. History (cont.)  1980s:  Research relational prototypes evolve into commercial systems  SQL becomes industry standard  Parallel and distributed database systems  Object-oriented database systems  1990s:  Large decision support and data-mining applications  Large multi-terabyte data warehouses  Emergence of Web commerce  2000s:  XML and XQuery standards  Automated database administration  Increasing use of highly parallel database systems  Web-scale distributed data storage systems
  • 31. Learning outcome  Differentiate between Database Management System (DBMS) and database  Briefly explain advantages and disadvantages of DBMS to file based system.  Discuss Database Models
  • 32. Summary  DBMS used to maintain, query large datasets.  Benefits include recovery from system crashes, concurrent access, quick application development, data integrity and security.  Levels of abstraction give data independence.  A DBMS typically has a layered architecture.  DBAs hold responsible jobs and are well-paid!  DBMS R&D is one of the broadest, most exciting areas in CS.  Advanced databases course at the graduate level