SlideShare una empresa de Scribd logo
1 de 52
Descargar para leer sin conexión
Introduction to Algorithms
      6.046J/18.401J
                         LECTURE 1
                         Analysis of Algorithms
                         • Insertion sort
                         • Asymptotic analysis
                         • Merge sort
                         • Recurrences


   Prof. Charles E. Leiserson
    Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
Course information

1.    Staff                    8.      Course website
2.    Distance learning        9.      Extra help
3.    Prerequisites            10.     Registration
4.    Lectures                 11.     Problem sets
5.    Recitations              12.     Describing algorithms
6.    Handouts                 13.     Grading policy
7.    Textbook                 14.     Collaboration policy




September 7, 2005    Introduction to Algorithms           L1.2
Analysis of algorithms
   The theoretical study of computer-program
   performance and resource usage.
   What’s more important than performance?
    • modularity       • user-friendliness
    • correctness      • programmer time
    • maintainability  • simplicity
    • functionality    • extensibility
    • robustness       • reliability

                    Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                  Introduction to Algorithms                     L1.3
Why study algorithms and
          performance?
• Algorithms help us to understand scalability.
• Performance often draws the line between what
  is feasible and what is impossible.
• Algorithmic mathematics provides a language
  for talking about program behavior.
• Performance is the currency of computing.
• The lessons of program performance generalize
  to other computing resources.
• Speed is fun!
                     Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
 September 7, 2005                  Introduction to Algorithms                     L1.4
The problem of sorting

Input: sequence 〈a1, a2, …, an〉 of numbers.

Output: permutation 〈a'1, a'2, …, a'n〉 such
that a'1 ≤ a'2 ≤ … ≤ a'n .

                    Example:
                      Input: 8 2 4 9 3 6
                        Output: 2 3 4 6 8 9
                    Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                  Introduction to Algorithms                     L1.5
Insertion sort
                                  INSERTION-SORT (A, n)     ⊳ A[1 . . n]
                                     for j ← 2 to n
                                           do key ← A[ j]
                                              i←j–1
“pseudocode”                                  while i > 0 and A[i] > key
                                                    do A[i+1] ← A[i]
                                                       i←i–1
                                              A[i+1] = key




                    Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                  Introduction to Algorithms                     L1.6
Insertion sort
                                  INSERTION-SORT (A, n)     ⊳ A[1 . . n]
                                     for j ← 2 to n
                                           do key ← A[ j]
                                              i←j–1
“pseudocode”                                  while i > 0 and A[i] > key
                                                    do A[i+1] ← A[i]
                                                       i←i–1
                                              A[i+1] = key
              1             i                      j                              n
   A:
                                               key
                     sorted
                    Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                  Introduction to Algorithms                         L1.7
Example of insertion sort
                    8           2            4             9             3            6




                        Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                      Introduction to Algorithms                         L1.8
Example of insertion sort
                    8           2            4             9             3            6




                        Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                      Introduction to Algorithms                         L1.9
Example of insertion sort
                    8           2            4             9             3            6
                    2           8            4             9             3            6




                        Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                      Introduction to Algorithms                         L1.10
Example of insertion sort
                    8           2            4             9             3            6
                    2           8            4             9             3            6




                        Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                      Introduction to Algorithms                         L1.11
Example of insertion sort
                    8           2            4             9             3            6
                    2           8            4             9             3            6
                    2           4            8             9             3            6




                        Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                      Introduction to Algorithms                         L1.12
Example of insertion sort
                    8           2            4             9             3            6
                    2           8            4             9             3            6
                    2           4            8             9             3            6




                        Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                      Introduction to Algorithms                         L1.13
Example of insertion sort
                    8           2            4             9             3            6
                    2           8            4             9             3            6
                    2           4            8             9             3            6
                    2           4            8             9             3            6




                        Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                      Introduction to Algorithms                         L1.14
Example of insertion sort
                    8           2            4             9             3            6
                    2           8            4             9             3            6
                    2           4            8             9             3            6
                    2           4            8             9             3            6




                        Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                      Introduction to Algorithms                         L1.15
Example of insertion sort
                    8           2            4             9             3            6
                    2           8            4             9             3            6
                    2           4            8             9             3            6
                    2           4            8             9             3            6
                    2           3            4             8             9            6


                        Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                      Introduction to Algorithms                         L1.16
Example of insertion sort
                    8           2            4             9             3            6
                    2           8            4             9             3            6
                    2           4            8             9             3            6
                    2           4            8             9             3            6
                    2           3            4             8             9            6


                        Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                      Introduction to Algorithms                         L1.17
Example of insertion sort
                    8           2            4             9             3            6
                    2           8            4             9             3            6
                    2           4            8             9             3            6
                    2           4            8             9             3            6
                    2           3            4             8             9            6
                    2           3            4             6             8            9 done

                        Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                      Introduction to Algorithms                          L1.18
Running time

• The running time depends on the input: an
  already sorted sequence is easier to sort.
• Parameterize the running time by the size of
  the input, since short sequences are easier to
  sort than long ones.
• Generally, we seek upper bounds on the
  running time, because everybody likes a
  guarantee.

                    Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                  Introduction to Algorithms                     L1.19
Kinds of analyses
      Worst-case: (usually)
        • T(n) = maximum time of algorithm
          on any input of size n.
      Average-case: (sometimes)
        • T(n) = expected time of algorithm
          over all inputs of size n.
        • Need assumption of statistical
          distribution of inputs.
      Best-case: (bogus)
        • Cheat with a slow algorithm that
          works fast on some input.
                    Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                  Introduction to Algorithms                     L1.20
Machine-independent time

  What is insertion sort’s worst-case time?
  • It depends on the speed of our computer:
      • relative speed (on the same machine),
      • absolute speed (on different machines).
  BIG IDEA:
  • Ignore machine-dependent constants.
  • Look at growth of T(n) as n → ∞ .
                    “Asymptotic Analysis”
                    Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                  Introduction to Algorithms                     L1.21
Θ-notation

Math:
Θ(g(n)) = { f (n) : there exist positive constants c1, c2, and
                    n0 such that 0 ≤ c1 g(n) ≤ f (n) ≤ c2 g(n)
                    for all n ≥ n0 }
Engineering:
• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3)


                      Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
  September 7, 2005                  Introduction to Algorithms                     L1.22
Asymptotic performance
   When n gets large enough, a Θ(n2) algorithm
   always beats a Θ(n3) algorithm.
                                                         • We shouldn’t ignore
                                                           asymptotically slower
                                                           algorithms, however.
                                                         • Real-world design
                                                           situations often call for a
T(n)                                                       careful balancing of
                                                           engineering objectives.
                                                         • Asymptotic analysis is a
                                                           useful tool to help to
                        n          n0                      structure our thinking.
                       Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
   September 7, 2005                  Introduction to Algorithms                     L1.23
Insertion sort analysis
Worst case: Input reverse sorted.
                     n
     T ( n) =       ∑ Θ( j ) = Θ(n 2 )                            [arithmetic series]
                    j =2
Average case: All permutations equally likely.
                     n
     T ( n) =       ∑ Θ( j / 2) = Θ(n 2 )
                    j =2
Is insertion sort a fast sorting algorithm?
• Moderately so, for small n.
• Not at all, for large n.
                     Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                   Introduction to Algorithms                     L1.24
Merge sort

         MERGE-SORT A[1 . . n]
           1. If n = 1, done.
           2. Recursively sort A[ 1 . . ⎡n/2⎤ ]
              and A[ ⎡n/2⎤+1 . . n ] .
           3. “Merge” the 2 sorted lists.

                    Key subroutine: MERGE


                    Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                  Introduction to Algorithms                     L1.25
Merging two sorted arrays
20 12
13 11
7       9
2       1




                        Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
    September 7, 2005                  Introduction to Algorithms                     L1.26
Merging two sorted arrays
20 12
13 11
7       9
2       1

    1




                        Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
    September 7, 2005                  Introduction to Algorithms                     L1.27
Merging two sorted arrays
20 12             20 12
13 11             13 11
7       9          7    9
2       1          2

    1




                        Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
    September 7, 2005                  Introduction to Algorithms                     L1.28
Merging two sorted arrays
20 12             20 12
13 11             13 11
7       9          7        9
2       1          2

    1                   2




                            Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
    September 7, 2005                      Introduction to Algorithms                     L1.29
Merging two sorted arrays
20 12             20 12                 20 12
13 11             13 11                 13 11
7       9          7        9            7       9
2       1          2

    1                   2




                            Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
    September 7, 2005                      Introduction to Algorithms                     L1.30
Merging two sorted arrays
20 12             20 12                 20 12
13 11             13 11                 13 11
7       9          7        9            7       9
2       1          2

    1                   2                    7




                            Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
    September 7, 2005                      Introduction to Algorithms                     L1.31
Merging two sorted arrays
20 12             20 12                 20 12                 20 12
13 11             13 11                 13 11                 13 11
7       9          7        9            7       9                     9
2       1          2

    1                   2                    7




                            Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
    September 7, 2005                      Introduction to Algorithms                     L1.32
Merging two sorted arrays
20 12             20 12                 20 12                 20 12
13 11             13 11                 13 11                 13 11
7       9          7        9            7       9                     9
2       1          2

    1                   2                    7                     9




                            Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
    September 7, 2005                      Introduction to Algorithms                     L1.33
Merging two sorted arrays
20 12             20 12                 20 12                 20 12                 20 12
13 11             13 11                 13 11                 13 11                 13 11
7       9          7        9            7       9                     9
2       1          2

    1                   2                    7                     9




                            Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
    September 7, 2005                      Introduction to Algorithms                       L1.34
Merging two sorted arrays
20 12             20 12                 20 12                 20 12                 20 12
13 11             13 11                 13 11                 13 11                 13 11
7       9          7        9            7       9                     9
2       1          2

    1                   2                    7                     9                      11




                            Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
    September 7, 2005                      Introduction to Algorithms                          L1.35
Merging two sorted arrays
20 12             20 12                 20 12                 20 12                 20 12      20 12
13 11             13 11                 13 11                 13 11                 13 11      13
7       9          7        9            7       9                     9
2       1          2

    1                   2                    7                     9                      11




                            Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
    September 7, 2005                      Introduction to Algorithms                          L1.36
Merging two sorted arrays
20 12             20 12                 20 12                 20 12                 20 12      20 12
13 11             13 11                 13 11                 13 11                 13 11      13
7       9          7        9            7       9                     9
2       1          2

    1                   2                    7                     9                      11        12




                            Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
    September 7, 2005                      Introduction to Algorithms                          L1.37
Merging two sorted arrays
20 12             20 12                 20 12                 20 12                 20 12      20 12
13 11             13 11                 13 11                 13 11                 13 11      13
7       9          7        9            7       9                     9
2       1          2

    1                   2                    7                     9                      11        12

                        Time = Θ(n) to merge a total
                         of n elements (linear time).
                            Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
    September 7, 2005                      Introduction to Algorithms                          L1.38
Analyzing merge sort

      T(n)    MERGE-SORT A[1 . . n]
      Θ(1)    1. If n = 1, done.
      2T(n/2) 2. Recursively sort A[ 1 . . ⎡n/2⎤ ]
Abuse            and A[ ⎡n/2⎤+1 . . n ] .
      Θ(n)    3. “Merge” the 2 sorted lists
  Sloppiness: Should be T( ⎡n/2⎤ ) + T( ⎣n/2⎦ ) ,
  but it turns out not to matter asymptotically.

                      Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
  September 7, 2005                  Introduction to Algorithms                     L1.39
Recurrence for merge sort
                              Θ(1) if n = 1;
             T(n) =
                              2T(n/2) + Θ(n) if n > 1.
  • We shall usually omit stating the base
    case when T(n) = Θ(1) for sufficiently
    small n, but only when it has no effect on
    the asymptotic solution to the recurrence.
  • CLRS and Lecture 2 provide several ways
    to find a good upper bound on T(n).

                    Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                  Introduction to Algorithms                     L1.40
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.




                      Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
  September 7, 2005                  Introduction to Algorithms                     L1.41
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
                                              T(n)




                      Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
  September 7, 2005                  Introduction to Algorithms                     L1.42
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
                        cn
                      T(n/2)                                        T(n/2)




                      Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
  September 7, 2005                  Introduction to Algorithms                     L1.43
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
                        cn
                      cn/2                                            cn/2

            T(n/4)             T(n/4)                  T(n/4)                   T(n/4)




                      Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
  September 7, 2005                  Introduction to Algorithms                          L1.44
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
                        cn
                      cn/2                                            cn/2

              cn/4                cn/4                   cn/4                       cn/4
           …




          Θ(1)

                      Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
  September 7, 2005                  Introduction to Algorithms                            L1.45
Recursion tree
 Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
                         cn
                       cn/2                                            cn/2
h = lg n cn/4                      cn/4                   cn/4                       cn/4
            …




           Θ(1)

                       Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
   September 7, 2005                  Introduction to Algorithms                            L1.46
Recursion tree
 Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
                         cn                     cn
                       cn/2                                            cn/2
h = lg n cn/4                      cn/4                   cn/4                       cn/4
            …




           Θ(1)

                       Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
   September 7, 2005                  Introduction to Algorithms                            L1.47
Recursion tree
 Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
                         cn                     cn
                       cn/2                                            cn/2                  cn
h = lg n cn/4                      cn/4                   cn/4                       cn/4
            …




           Θ(1)

                       Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
   September 7, 2005                  Introduction to Algorithms                            L1.48
Recursion tree
 Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
                         cn                     cn
                       cn/2                                            cn/2                  cn
h = lg n cn/4                      cn/4                   cn/4                       cn/4    cn
            …




                                                                                            …
           Θ(1)

                       Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
   September 7, 2005                  Introduction to Algorithms                            L1.49
Recursion tree
 Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
                         cn                     cn
                       cn/2                                            cn/2                  cn
h = lg n cn/4                      cn/4                   cn/4                       cn/4    cn
            …




                                                                                            …
           Θ(1)                       #leaves = n                                           Θ(n)

                       Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
   September 7, 2005                  Introduction to Algorithms                            L1.50
Recursion tree
 Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
                         cn                     cn
                       cn/2                                            cn/2                  cn
h = lg n cn/4                      cn/4                   cn/4                       cn/4    cn
            …




                                                                                            …
           Θ(1)                       #leaves = n                                           Θ(n)
                                                                            Total = Θ(n lg n)
                       Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
   September 7, 2005                  Introduction to Algorithms                            L1.51
Conclusions

   • Θ(n lg n) grows more slowly than Θ(n2).
   • Therefore, merge sort asymptotically
     beats insertion sort in the worst case.
   • In practice, merge sort beats insertion
     sort for n > 30 or so.
   • Go test it out for yourself!



                    Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005                  Introduction to Algorithms                     L1.52

Más contenido relacionado

Destacado

Hf radio propagation
Hf radio propagationHf radio propagation
Hf radio propagationLax Koirala
 
Breast Thermography /Digital Infrared Analysis of the Breast
Breast Thermography /Digital Infrared Analysis of the BreastBreast Thermography /Digital Infrared Analysis of the Breast
Breast Thermography /Digital Infrared Analysis of the BreastEnrique Martín del Campo Mena
 
Geometric isomers ( cis trans )
Geometric isomers ( cis trans )Geometric isomers ( cis trans )
Geometric isomers ( cis trans )goodemc
 
Makalah manajemen logistik
Makalah manajemen logistikMakalah manajemen logistik
Makalah manajemen logistikAgung Widarman
 

Destacado (6)

Kljucevi za kreativnost
Kljucevi za kreativnostKljucevi za kreativnost
Kljucevi za kreativnost
 
Hf radio propagation
Hf radio propagationHf radio propagation
Hf radio propagation
 
Breast Thermography /Digital Infrared Analysis of the Breast
Breast Thermography /Digital Infrared Analysis of the BreastBreast Thermography /Digital Infrared Analysis of the Breast
Breast Thermography /Digital Infrared Analysis of the Breast
 
Geometric isomers ( cis trans )
Geometric isomers ( cis trans )Geometric isomers ( cis trans )
Geometric isomers ( cis trans )
 
Remote Sensing
Remote SensingRemote Sensing
Remote Sensing
 
Makalah manajemen logistik
Makalah manajemen logistikMakalah manajemen logistik
Makalah manajemen logistik
 

Lec1

  • 1. Introduction to Algorithms 6.046J/18.401J LECTURE 1 Analysis of Algorithms • Insertion sort • Asymptotic analysis • Merge sort • Recurrences Prof. Charles E. Leiserson Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
  • 2. Course information 1. Staff 8. Course website 2. Distance learning 9. Extra help 3. Prerequisites 10. Registration 4. Lectures 11. Problem sets 5. Recitations 12. Describing algorithms 6. Handouts 13. Grading policy 7. Textbook 14. Collaboration policy September 7, 2005 Introduction to Algorithms L1.2
  • 3. Analysis of algorithms The theoretical study of computer-program performance and resource usage. What’s more important than performance? • modularity • user-friendliness • correctness • programmer time • maintainability • simplicity • functionality • extensibility • robustness • reliability Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.3
  • 4. Why study algorithms and performance? • Algorithms help us to understand scalability. • Performance often draws the line between what is feasible and what is impossible. • Algorithmic mathematics provides a language for talking about program behavior. • Performance is the currency of computing. • The lessons of program performance generalize to other computing resources. • Speed is fun! Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.4
  • 5. The problem of sorting Input: sequence 〈a1, a2, …, an〉 of numbers. Output: permutation 〈a'1, a'2, …, a'n〉 such that a'1 ≤ a'2 ≤ … ≤ a'n . Example: Input: 8 2 4 9 3 6 Output: 2 3 4 6 8 9 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.5
  • 6. Insertion sort INSERTION-SORT (A, n) ⊳ A[1 . . n] for j ← 2 to n do key ← A[ j] i←j–1 “pseudocode” while i > 0 and A[i] > key do A[i+1] ← A[i] i←i–1 A[i+1] = key Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.6
  • 7. Insertion sort INSERTION-SORT (A, n) ⊳ A[1 . . n] for j ← 2 to n do key ← A[ j] i←j–1 “pseudocode” while i > 0 and A[i] > key do A[i+1] ← A[i] i←i–1 A[i+1] = key 1 i j n A: key sorted Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.7
  • 8. Example of insertion sort 8 2 4 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.8
  • 9. Example of insertion sort 8 2 4 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.9
  • 10. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.10
  • 11. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.11
  • 12. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.12
  • 13. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.13
  • 14. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.14
  • 15. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.15
  • 16. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 2 3 4 8 9 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.16
  • 17. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 2 3 4 8 9 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.17
  • 18. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 2 3 4 8 9 6 2 3 4 6 8 9 done Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.18
  • 19. Running time • The running time depends on the input: an already sorted sequence is easier to sort. • Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones. • Generally, we seek upper bounds on the running time, because everybody likes a guarantee. Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.19
  • 20. Kinds of analyses Worst-case: (usually) • T(n) = maximum time of algorithm on any input of size n. Average-case: (sometimes) • T(n) = expected time of algorithm over all inputs of size n. • Need assumption of statistical distribution of inputs. Best-case: (bogus) • Cheat with a slow algorithm that works fast on some input. Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.20
  • 21. Machine-independent time What is insertion sort’s worst-case time? • It depends on the speed of our computer: • relative speed (on the same machine), • absolute speed (on different machines). BIG IDEA: • Ignore machine-dependent constants. • Look at growth of T(n) as n → ∞ . “Asymptotic Analysis” Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.21
  • 22. Θ-notation Math: Θ(g(n)) = { f (n) : there exist positive constants c1, c2, and n0 such that 0 ≤ c1 g(n) ≤ f (n) ≤ c2 g(n) for all n ≥ n0 } Engineering: • Drop low-order terms; ignore leading constants. • Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.22
  • 23. Asymptotic performance When n gets large enough, a Θ(n2) algorithm always beats a Θ(n3) algorithm. • We shouldn’t ignore asymptotically slower algorithms, however. • Real-world design situations often call for a T(n) careful balancing of engineering objectives. • Asymptotic analysis is a useful tool to help to n n0 structure our thinking. Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.23
  • 24. Insertion sort analysis Worst case: Input reverse sorted. n T ( n) = ∑ Θ( j ) = Θ(n 2 ) [arithmetic series] j =2 Average case: All permutations equally likely. n T ( n) = ∑ Θ( j / 2) = Θ(n 2 ) j =2 Is insertion sort a fast sorting algorithm? • Moderately so, for small n. • Not at all, for large n. Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.24
  • 25. Merge sort MERGE-SORT A[1 . . n] 1. If n = 1, done. 2. Recursively sort A[ 1 . . ⎡n/2⎤ ] and A[ ⎡n/2⎤+1 . . n ] . 3. “Merge” the 2 sorted lists. Key subroutine: MERGE Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.25
  • 26. Merging two sorted arrays 20 12 13 11 7 9 2 1 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.26
  • 27. Merging two sorted arrays 20 12 13 11 7 9 2 1 1 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.27
  • 28. Merging two sorted arrays 20 12 20 12 13 11 13 11 7 9 7 9 2 1 2 1 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.28
  • 29. Merging two sorted arrays 20 12 20 12 13 11 13 11 7 9 7 9 2 1 2 1 2 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.29
  • 30. Merging two sorted arrays 20 12 20 12 20 12 13 11 13 11 13 11 7 9 7 9 7 9 2 1 2 1 2 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.30
  • 31. Merging two sorted arrays 20 12 20 12 20 12 13 11 13 11 13 11 7 9 7 9 7 9 2 1 2 1 2 7 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.31
  • 32. Merging two sorted arrays 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 7 9 7 9 7 9 9 2 1 2 1 2 7 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.32
  • 33. Merging two sorted arrays 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 7 9 7 9 7 9 9 2 1 2 1 2 7 9 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.33
  • 34. Merging two sorted arrays 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 11 7 9 7 9 7 9 9 2 1 2 1 2 7 9 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.34
  • 35. Merging two sorted arrays 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 11 7 9 7 9 7 9 9 2 1 2 1 2 7 9 11 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.35
  • 36. Merging two sorted arrays 20 12 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 11 13 7 9 7 9 7 9 9 2 1 2 1 2 7 9 11 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.36
  • 37. Merging two sorted arrays 20 12 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 11 13 7 9 7 9 7 9 9 2 1 2 1 2 7 9 11 12 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.37
  • 38. Merging two sorted arrays 20 12 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 11 13 7 9 7 9 7 9 9 2 1 2 1 2 7 9 11 12 Time = Θ(n) to merge a total of n elements (linear time). Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.38
  • 39. Analyzing merge sort T(n) MERGE-SORT A[1 . . n] Θ(1) 1. If n = 1, done. 2T(n/2) 2. Recursively sort A[ 1 . . ⎡n/2⎤ ] Abuse and A[ ⎡n/2⎤+1 . . n ] . Θ(n) 3. “Merge” the 2 sorted lists Sloppiness: Should be T( ⎡n/2⎤ ) + T( ⎣n/2⎦ ) , but it turns out not to matter asymptotically. Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.39
  • 40. Recurrence for merge sort Θ(1) if n = 1; T(n) = 2T(n/2) + Θ(n) if n > 1. • We shall usually omit stating the base case when T(n) = Θ(1) for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence. • CLRS and Lecture 2 provide several ways to find a good upper bound on T(n). Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.40
  • 41. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.41
  • 42. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. T(n) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.42
  • 43. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn T(n/2) T(n/2) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.43
  • 44. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/2 cn/2 T(n/4) T(n/4) T(n/4) T(n/4) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.44
  • 45. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/2 cn/2 cn/4 cn/4 cn/4 cn/4 … Θ(1) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.45
  • 46. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/2 cn/2 h = lg n cn/4 cn/4 cn/4 cn/4 … Θ(1) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.46
  • 47. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn cn/2 cn/2 h = lg n cn/4 cn/4 cn/4 cn/4 … Θ(1) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.47
  • 48. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn cn/2 cn/2 cn h = lg n cn/4 cn/4 cn/4 cn/4 … Θ(1) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.48
  • 49. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn cn/2 cn/2 cn h = lg n cn/4 cn/4 cn/4 cn/4 cn … … Θ(1) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.49
  • 50. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn cn/2 cn/2 cn h = lg n cn/4 cn/4 cn/4 cn/4 cn … … Θ(1) #leaves = n Θ(n) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.50
  • 51. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn cn/2 cn/2 cn h = lg n cn/4 cn/4 cn/4 cn/4 cn … … Θ(1) #leaves = n Θ(n) Total = Θ(n lg n) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.51
  • 52. Conclusions • Θ(n lg n) grows more slowly than Θ(n2). • Therefore, merge sort asymptotically beats insertion sort in the worst case. • In practice, merge sort beats insertion sort for n > 30 or so. • Go test it out for yourself! Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.52